~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/vmw_vsock/vmci_transport.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * VMware vSockets Driver
  4  *
  5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
  6  */
  7 
  8 #include <linux/types.h>
  9 #include <linux/bitops.h>
 10 #include <linux/cred.h>
 11 #include <linux/init.h>
 12 #include <linux/io.h>
 13 #include <linux/kernel.h>
 14 #include <linux/kmod.h>
 15 #include <linux/list.h>
 16 #include <linux/module.h>
 17 #include <linux/mutex.h>
 18 #include <linux/net.h>
 19 #include <linux/poll.h>
 20 #include <linux/skbuff.h>
 21 #include <linux/smp.h>
 22 #include <linux/socket.h>
 23 #include <linux/stddef.h>
 24 #include <linux/unistd.h>
 25 #include <linux/wait.h>
 26 #include <linux/workqueue.h>
 27 #include <net/sock.h>
 28 #include <net/af_vsock.h>
 29 
 30 #include "vmci_transport_notify.h"
 31 
 32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
 33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
 34 static void vmci_transport_peer_detach_cb(u32 sub_id,
 35                                           const struct vmci_event_data *ed,
 36                                           void *client_data);
 37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
 38 static void vmci_transport_cleanup(struct work_struct *work);
 39 static int vmci_transport_recv_listen(struct sock *sk,
 40                                       struct vmci_transport_packet *pkt);
 41 static int vmci_transport_recv_connecting_server(
 42                                         struct sock *sk,
 43                                         struct sock *pending,
 44                                         struct vmci_transport_packet *pkt);
 45 static int vmci_transport_recv_connecting_client(
 46                                         struct sock *sk,
 47                                         struct vmci_transport_packet *pkt);
 48 static int vmci_transport_recv_connecting_client_negotiate(
 49                                         struct sock *sk,
 50                                         struct vmci_transport_packet *pkt);
 51 static int vmci_transport_recv_connecting_client_invalid(
 52                                         struct sock *sk,
 53                                         struct vmci_transport_packet *pkt);
 54 static int vmci_transport_recv_connected(struct sock *sk,
 55                                          struct vmci_transport_packet *pkt);
 56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
 57 static u16 vmci_transport_new_proto_supported_versions(void);
 58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
 59                                                   bool old_pkt_proto);
 60 static bool vmci_check_transport(struct vsock_sock *vsk);
 61 
 62 struct vmci_transport_recv_pkt_info {
 63         struct work_struct work;
 64         struct sock *sk;
 65         struct vmci_transport_packet pkt;
 66 };
 67 
 68 static LIST_HEAD(vmci_transport_cleanup_list);
 69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
 70 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
 71 
 72 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
 73                                                            VMCI_INVALID_ID };
 74 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
 75 
 76 static int PROTOCOL_OVERRIDE = -1;
 77 
 78 static struct vsock_transport vmci_transport; /* forward declaration */
 79 
 80 /* Helper function to convert from a VMCI error code to a VSock error code. */
 81 
 82 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
 83 {
 84         switch (vmci_error) {
 85         case VMCI_ERROR_NO_MEM:
 86                 return -ENOMEM;
 87         case VMCI_ERROR_DUPLICATE_ENTRY:
 88         case VMCI_ERROR_ALREADY_EXISTS:
 89                 return -EADDRINUSE;
 90         case VMCI_ERROR_NO_ACCESS:
 91                 return -EPERM;
 92         case VMCI_ERROR_NO_RESOURCES:
 93                 return -ENOBUFS;
 94         case VMCI_ERROR_INVALID_RESOURCE:
 95                 return -EHOSTUNREACH;
 96         case VMCI_ERROR_INVALID_ARGS:
 97         default:
 98                 break;
 99         }
100         return -EINVAL;
101 }
102 
103 static u32 vmci_transport_peer_rid(u32 peer_cid)
104 {
105         if (VMADDR_CID_HYPERVISOR == peer_cid)
106                 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
107 
108         return VMCI_TRANSPORT_PACKET_RID;
109 }
110 
111 static inline void
112 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
113                            struct sockaddr_vm *src,
114                            struct sockaddr_vm *dst,
115                            u8 type,
116                            u64 size,
117                            u64 mode,
118                            struct vmci_transport_waiting_info *wait,
119                            u16 proto,
120                            struct vmci_handle handle)
121 {
122         /* We register the stream control handler as an any cid handle so we
123          * must always send from a source address of VMADDR_CID_ANY
124          */
125         pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
126                                        VMCI_TRANSPORT_PACKET_RID);
127         pkt->dg.dst = vmci_make_handle(dst->svm_cid,
128                                        vmci_transport_peer_rid(dst->svm_cid));
129         pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
130         pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
131         pkt->type = type;
132         pkt->src_port = src->svm_port;
133         pkt->dst_port = dst->svm_port;
134         memset(&pkt->proto, 0, sizeof(pkt->proto));
135         memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
136 
137         switch (pkt->type) {
138         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
139                 pkt->u.size = 0;
140                 break;
141 
142         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
143         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
144                 pkt->u.size = size;
145                 break;
146 
147         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
148         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
149                 pkt->u.handle = handle;
150                 break;
151 
152         case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
153         case VMCI_TRANSPORT_PACKET_TYPE_READ:
154         case VMCI_TRANSPORT_PACKET_TYPE_RST:
155                 pkt->u.size = 0;
156                 break;
157 
158         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
159                 pkt->u.mode = mode;
160                 break;
161 
162         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
163         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
164                 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
165                 break;
166 
167         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
168         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
169                 pkt->u.size = size;
170                 pkt->proto = proto;
171                 break;
172         }
173 }
174 
175 static inline void
176 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
177                                     struct sockaddr_vm *local,
178                                     struct sockaddr_vm *remote)
179 {
180         vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
181         vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
182 }
183 
184 static int
185 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
186                                   struct sockaddr_vm *src,
187                                   struct sockaddr_vm *dst,
188                                   enum vmci_transport_packet_type type,
189                                   u64 size,
190                                   u64 mode,
191                                   struct vmci_transport_waiting_info *wait,
192                                   u16 proto,
193                                   struct vmci_handle handle,
194                                   bool convert_error)
195 {
196         int err;
197 
198         vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
199                                    proto, handle);
200         err = vmci_datagram_send(&pkt->dg);
201         if (convert_error && (err < 0))
202                 return vmci_transport_error_to_vsock_error(err);
203 
204         return err;
205 }
206 
207 static int
208 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
209                                       enum vmci_transport_packet_type type,
210                                       u64 size,
211                                       u64 mode,
212                                       struct vmci_transport_waiting_info *wait,
213                                       struct vmci_handle handle)
214 {
215         struct vmci_transport_packet reply;
216         struct sockaddr_vm src, dst;
217 
218         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
219                 return 0;
220         } else {
221                 vmci_transport_packet_get_addresses(pkt, &src, &dst);
222                 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
223                                                          type,
224                                                          size, mode, wait,
225                                                          VSOCK_PROTO_INVALID,
226                                                          handle, true);
227         }
228 }
229 
230 static int
231 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
232                                    struct sockaddr_vm *dst,
233                                    enum vmci_transport_packet_type type,
234                                    u64 size,
235                                    u64 mode,
236                                    struct vmci_transport_waiting_info *wait,
237                                    struct vmci_handle handle)
238 {
239         /* Note that it is safe to use a single packet across all CPUs since
240          * two tasklets of the same type are guaranteed to not ever run
241          * simultaneously. If that ever changes, or VMCI stops using tasklets,
242          * we can use per-cpu packets.
243          */
244         static struct vmci_transport_packet pkt;
245 
246         return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
247                                                  size, mode, wait,
248                                                  VSOCK_PROTO_INVALID, handle,
249                                                  false);
250 }
251 
252 static int
253 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
254                                       struct sockaddr_vm *dst,
255                                       enum vmci_transport_packet_type type,
256                                       u64 size,
257                                       u64 mode,
258                                       struct vmci_transport_waiting_info *wait,
259                                       u16 proto,
260                                       struct vmci_handle handle)
261 {
262         struct vmci_transport_packet *pkt;
263         int err;
264 
265         pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
266         if (!pkt)
267                 return -ENOMEM;
268 
269         err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
270                                                 mode, wait, proto, handle,
271                                                 true);
272         kfree(pkt);
273 
274         return err;
275 }
276 
277 static int
278 vmci_transport_send_control_pkt(struct sock *sk,
279                                 enum vmci_transport_packet_type type,
280                                 u64 size,
281                                 u64 mode,
282                                 struct vmci_transport_waiting_info *wait,
283                                 u16 proto,
284                                 struct vmci_handle handle)
285 {
286         struct vsock_sock *vsk;
287 
288         vsk = vsock_sk(sk);
289 
290         if (!vsock_addr_bound(&vsk->local_addr))
291                 return -EINVAL;
292 
293         if (!vsock_addr_bound(&vsk->remote_addr))
294                 return -EINVAL;
295 
296         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
297                                                      &vsk->remote_addr,
298                                                      type, size, mode,
299                                                      wait, proto, handle);
300 }
301 
302 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
303                                         struct sockaddr_vm *src,
304                                         struct vmci_transport_packet *pkt)
305 {
306         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
307                 return 0;
308         return vmci_transport_send_control_pkt_bh(
309                                         dst, src,
310                                         VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
311                                         0, NULL, VMCI_INVALID_HANDLE);
312 }
313 
314 static int vmci_transport_send_reset(struct sock *sk,
315                                      struct vmci_transport_packet *pkt)
316 {
317         struct sockaddr_vm *dst_ptr;
318         struct sockaddr_vm dst;
319         struct vsock_sock *vsk;
320 
321         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
322                 return 0;
323 
324         vsk = vsock_sk(sk);
325 
326         if (!vsock_addr_bound(&vsk->local_addr))
327                 return -EINVAL;
328 
329         if (vsock_addr_bound(&vsk->remote_addr)) {
330                 dst_ptr = &vsk->remote_addr;
331         } else {
332                 vsock_addr_init(&dst, pkt->dg.src.context,
333                                 pkt->src_port);
334                 dst_ptr = &dst;
335         }
336         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
337                                              VMCI_TRANSPORT_PACKET_TYPE_RST,
338                                              0, 0, NULL, VSOCK_PROTO_INVALID,
339                                              VMCI_INVALID_HANDLE);
340 }
341 
342 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
343 {
344         return vmci_transport_send_control_pkt(
345                                         sk,
346                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
347                                         size, 0, NULL,
348                                         VSOCK_PROTO_INVALID,
349                                         VMCI_INVALID_HANDLE);
350 }
351 
352 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
353                                           u16 version)
354 {
355         return vmci_transport_send_control_pkt(
356                                         sk,
357                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
358                                         size, 0, NULL, version,
359                                         VMCI_INVALID_HANDLE);
360 }
361 
362 static int vmci_transport_send_qp_offer(struct sock *sk,
363                                         struct vmci_handle handle)
364 {
365         return vmci_transport_send_control_pkt(
366                                         sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
367                                         0, NULL,
368                                         VSOCK_PROTO_INVALID, handle);
369 }
370 
371 static int vmci_transport_send_attach(struct sock *sk,
372                                       struct vmci_handle handle)
373 {
374         return vmci_transport_send_control_pkt(
375                                         sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
376                                         0, 0, NULL, VSOCK_PROTO_INVALID,
377                                         handle);
378 }
379 
380 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
381 {
382         return vmci_transport_reply_control_pkt_fast(
383                                                 pkt,
384                                                 VMCI_TRANSPORT_PACKET_TYPE_RST,
385                                                 0, 0, NULL,
386                                                 VMCI_INVALID_HANDLE);
387 }
388 
389 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
390                                           struct sockaddr_vm *src)
391 {
392         return vmci_transport_send_control_pkt_bh(
393                                         dst, src,
394                                         VMCI_TRANSPORT_PACKET_TYPE_INVALID,
395                                         0, 0, NULL, VMCI_INVALID_HANDLE);
396 }
397 
398 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
399                                  struct sockaddr_vm *src)
400 {
401         return vmci_transport_send_control_pkt_bh(
402                                         dst, src,
403                                         VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
404                                         0, NULL, VMCI_INVALID_HANDLE);
405 }
406 
407 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
408                                 struct sockaddr_vm *src)
409 {
410         return vmci_transport_send_control_pkt_bh(
411                                         dst, src,
412                                         VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
413                                         0, NULL, VMCI_INVALID_HANDLE);
414 }
415 
416 int vmci_transport_send_wrote(struct sock *sk)
417 {
418         return vmci_transport_send_control_pkt(
419                                         sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
420                                         0, NULL, VSOCK_PROTO_INVALID,
421                                         VMCI_INVALID_HANDLE);
422 }
423 
424 int vmci_transport_send_read(struct sock *sk)
425 {
426         return vmci_transport_send_control_pkt(
427                                         sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
428                                         0, NULL, VSOCK_PROTO_INVALID,
429                                         VMCI_INVALID_HANDLE);
430 }
431 
432 int vmci_transport_send_waiting_write(struct sock *sk,
433                                       struct vmci_transport_waiting_info *wait)
434 {
435         return vmci_transport_send_control_pkt(
436                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
437                                 0, 0, wait, VSOCK_PROTO_INVALID,
438                                 VMCI_INVALID_HANDLE);
439 }
440 
441 int vmci_transport_send_waiting_read(struct sock *sk,
442                                      struct vmci_transport_waiting_info *wait)
443 {
444         return vmci_transport_send_control_pkt(
445                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
446                                 0, 0, wait, VSOCK_PROTO_INVALID,
447                                 VMCI_INVALID_HANDLE);
448 }
449 
450 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
451 {
452         return vmci_transport_send_control_pkt(
453                                         &vsk->sk,
454                                         VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
455                                         0, mode, NULL,
456                                         VSOCK_PROTO_INVALID,
457                                         VMCI_INVALID_HANDLE);
458 }
459 
460 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
461 {
462         return vmci_transport_send_control_pkt(sk,
463                                         VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
464                                         size, 0, NULL,
465                                         VSOCK_PROTO_INVALID,
466                                         VMCI_INVALID_HANDLE);
467 }
468 
469 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
470                                              u16 version)
471 {
472         return vmci_transport_send_control_pkt(
473                                         sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
474                                         size, 0, NULL, version,
475                                         VMCI_INVALID_HANDLE);
476 }
477 
478 static struct sock *vmci_transport_get_pending(
479                                         struct sock *listener,
480                                         struct vmci_transport_packet *pkt)
481 {
482         struct vsock_sock *vlistener;
483         struct vsock_sock *vpending;
484         struct sock *pending;
485         struct sockaddr_vm src;
486 
487         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
488 
489         vlistener = vsock_sk(listener);
490 
491         list_for_each_entry(vpending, &vlistener->pending_links,
492                             pending_links) {
493                 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
494                     pkt->dst_port == vpending->local_addr.svm_port) {
495                         pending = sk_vsock(vpending);
496                         sock_hold(pending);
497                         goto found;
498                 }
499         }
500 
501         pending = NULL;
502 found:
503         return pending;
504 
505 }
506 
507 static void vmci_transport_release_pending(struct sock *pending)
508 {
509         sock_put(pending);
510 }
511 
512 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
513  * trusted sockets 2) sockets from applications running as the same user as the
514  * VM (this is only true for the host side and only when using hosted products)
515  */
516 
517 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
518 {
519         return vsock->trusted ||
520                vmci_is_context_owner(peer_cid, vsock->owner->uid);
521 }
522 
523 /* We allow sending datagrams to and receiving datagrams from a restricted VM
524  * only if it is trusted as described in vmci_transport_is_trusted.
525  */
526 
527 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
528 {
529         if (VMADDR_CID_HYPERVISOR == peer_cid)
530                 return true;
531 
532         if (vsock->cached_peer != peer_cid) {
533                 vsock->cached_peer = peer_cid;
534                 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
535                     (vmci_context_get_priv_flags(peer_cid) &
536                      VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
537                         vsock->cached_peer_allow_dgram = false;
538                 } else {
539                         vsock->cached_peer_allow_dgram = true;
540                 }
541         }
542 
543         return vsock->cached_peer_allow_dgram;
544 }
545 
546 static int
547 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
548                                 struct vmci_handle *handle,
549                                 u64 produce_size,
550                                 u64 consume_size,
551                                 u32 peer, u32 flags, bool trusted)
552 {
553         int err = 0;
554 
555         if (trusted) {
556                 /* Try to allocate our queue pair as trusted. This will only
557                  * work if vsock is running in the host.
558                  */
559 
560                 err = vmci_qpair_alloc(qpair, handle, produce_size,
561                                        consume_size,
562                                        peer, flags,
563                                        VMCI_PRIVILEGE_FLAG_TRUSTED);
564                 if (err != VMCI_ERROR_NO_ACCESS)
565                         goto out;
566 
567         }
568 
569         err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
570                                peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
571 out:
572         if (err < 0) {
573                 pr_err_once("Could not attach to queue pair with %d\n", err);
574                 err = vmci_transport_error_to_vsock_error(err);
575         }
576 
577         return err;
578 }
579 
580 static int
581 vmci_transport_datagram_create_hnd(u32 resource_id,
582                                    u32 flags,
583                                    vmci_datagram_recv_cb recv_cb,
584                                    void *client_data,
585                                    struct vmci_handle *out_handle)
586 {
587         int err = 0;
588 
589         /* Try to allocate our datagram handler as trusted. This will only work
590          * if vsock is running in the host.
591          */
592 
593         err = vmci_datagram_create_handle_priv(resource_id, flags,
594                                                VMCI_PRIVILEGE_FLAG_TRUSTED,
595                                                recv_cb,
596                                                client_data, out_handle);
597 
598         if (err == VMCI_ERROR_NO_ACCESS)
599                 err = vmci_datagram_create_handle(resource_id, flags,
600                                                   recv_cb, client_data,
601                                                   out_handle);
602 
603         return err;
604 }
605 
606 /* This is invoked as part of a tasklet that's scheduled when the VMCI
607  * interrupt fires.  This is run in bottom-half context and if it ever needs to
608  * sleep it should defer that work to a work queue.
609  */
610 
611 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
612 {
613         struct sock *sk;
614         size_t size;
615         struct sk_buff *skb;
616         struct vsock_sock *vsk;
617 
618         sk = (struct sock *)data;
619 
620         /* This handler is privileged when this module is running on the host.
621          * We will get datagrams from all endpoints (even VMs that are in a
622          * restricted context). If we get one from a restricted context then
623          * the destination socket must be trusted.
624          *
625          * NOTE: We access the socket struct without holding the lock here.
626          * This is ok because the field we are interested is never modified
627          * outside of the create and destruct socket functions.
628          */
629         vsk = vsock_sk(sk);
630         if (!vmci_transport_allow_dgram(vsk, dg->src.context))
631                 return VMCI_ERROR_NO_ACCESS;
632 
633         size = VMCI_DG_SIZE(dg);
634 
635         /* Attach the packet to the socket's receive queue as an sk_buff. */
636         skb = alloc_skb(size, GFP_ATOMIC);
637         if (!skb)
638                 return VMCI_ERROR_NO_MEM;
639 
640         /* sk_receive_skb() will do a sock_put(), so hold here. */
641         sock_hold(sk);
642         skb_put(skb, size);
643         memcpy(skb->data, dg, size);
644         sk_receive_skb(sk, skb, 0);
645 
646         return VMCI_SUCCESS;
647 }
648 
649 static bool vmci_transport_stream_allow(u32 cid, u32 port)
650 {
651         static const u32 non_socket_contexts[] = {
652                 VMADDR_CID_LOCAL,
653         };
654         int i;
655 
656         BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
657 
658         for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
659                 if (cid == non_socket_contexts[i])
660                         return false;
661         }
662 
663         return true;
664 }
665 
666 /* This is invoked as part of a tasklet that's scheduled when the VMCI
667  * interrupt fires.  This is run in bottom-half context but it defers most of
668  * its work to the packet handling work queue.
669  */
670 
671 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
672 {
673         struct sock *sk;
674         struct sockaddr_vm dst;
675         struct sockaddr_vm src;
676         struct vmci_transport_packet *pkt;
677         struct vsock_sock *vsk;
678         bool bh_process_pkt;
679         int err;
680 
681         sk = NULL;
682         err = VMCI_SUCCESS;
683         bh_process_pkt = false;
684 
685         /* Ignore incoming packets from contexts without sockets, or resources
686          * that aren't vsock implementations.
687          */
688 
689         if (!vmci_transport_stream_allow(dg->src.context, -1)
690             || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
691                 return VMCI_ERROR_NO_ACCESS;
692 
693         if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
694                 /* Drop datagrams that do not contain full VSock packets. */
695                 return VMCI_ERROR_INVALID_ARGS;
696 
697         pkt = (struct vmci_transport_packet *)dg;
698 
699         /* Find the socket that should handle this packet.  First we look for a
700          * connected socket and if there is none we look for a socket bound to
701          * the destintation address.
702          */
703         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
704         vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
705 
706         sk = vsock_find_connected_socket(&src, &dst);
707         if (!sk) {
708                 sk = vsock_find_bound_socket(&dst);
709                 if (!sk) {
710                         /* We could not find a socket for this specified
711                          * address.  If this packet is a RST, we just drop it.
712                          * If it is another packet, we send a RST.  Note that
713                          * we do not send a RST reply to RSTs so that we do not
714                          * continually send RSTs between two endpoints.
715                          *
716                          * Note that since this is a reply, dst is src and src
717                          * is dst.
718                          */
719                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
720                                 pr_err("unable to send reset\n");
721 
722                         err = VMCI_ERROR_NOT_FOUND;
723                         goto out;
724                 }
725         }
726 
727         /* If the received packet type is beyond all types known to this
728          * implementation, reply with an invalid message.  Hopefully this will
729          * help when implementing backwards compatibility in the future.
730          */
731         if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
732                 vmci_transport_send_invalid_bh(&dst, &src);
733                 err = VMCI_ERROR_INVALID_ARGS;
734                 goto out;
735         }
736 
737         /* This handler is privileged when this module is running on the host.
738          * We will get datagram connect requests from all endpoints (even VMs
739          * that are in a restricted context). If we get one from a restricted
740          * context then the destination socket must be trusted.
741          *
742          * NOTE: We access the socket struct without holding the lock here.
743          * This is ok because the field we are interested is never modified
744          * outside of the create and destruct socket functions.
745          */
746         vsk = vsock_sk(sk);
747         if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
748                 err = VMCI_ERROR_NO_ACCESS;
749                 goto out;
750         }
751 
752         /* We do most everything in a work queue, but let's fast path the
753          * notification of reads and writes to help data transfer performance.
754          * We can only do this if there is no process context code executing
755          * for this socket since that may change the state.
756          */
757         bh_lock_sock(sk);
758 
759         if (!sock_owned_by_user(sk)) {
760                 /* The local context ID may be out of date, update it. */
761                 vsk->local_addr.svm_cid = dst.svm_cid;
762 
763                 if (sk->sk_state == TCP_ESTABLISHED)
764                         vmci_trans(vsk)->notify_ops->handle_notify_pkt(
765                                         sk, pkt, true, &dst, &src,
766                                         &bh_process_pkt);
767         }
768 
769         bh_unlock_sock(sk);
770 
771         if (!bh_process_pkt) {
772                 struct vmci_transport_recv_pkt_info *recv_pkt_info;
773 
774                 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
775                 if (!recv_pkt_info) {
776                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
777                                 pr_err("unable to send reset\n");
778 
779                         err = VMCI_ERROR_NO_MEM;
780                         goto out;
781                 }
782 
783                 recv_pkt_info->sk = sk;
784                 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
785                 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
786 
787                 schedule_work(&recv_pkt_info->work);
788                 /* Clear sk so that the reference count incremented by one of
789                  * the Find functions above is not decremented below.  We need
790                  * that reference count for the packet handler we've scheduled
791                  * to run.
792                  */
793                 sk = NULL;
794         }
795 
796 out:
797         if (sk)
798                 sock_put(sk);
799 
800         return err;
801 }
802 
803 static void vmci_transport_handle_detach(struct sock *sk)
804 {
805         struct vsock_sock *vsk;
806 
807         vsk = vsock_sk(sk);
808         if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
809                 sock_set_flag(sk, SOCK_DONE);
810 
811                 /* On a detach the peer will not be sending or receiving
812                  * anymore.
813                  */
814                 vsk->peer_shutdown = SHUTDOWN_MASK;
815 
816                 /* We should not be sending anymore since the peer won't be
817                  * there to receive, but we can still receive if there is data
818                  * left in our consume queue. If the local endpoint is a host,
819                  * we can't call vsock_stream_has_data, since that may block,
820                  * but a host endpoint can't read data once the VM has
821                  * detached, so there is no available data in that case.
822                  */
823                 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
824                     vsock_stream_has_data(vsk) <= 0) {
825                         if (sk->sk_state == TCP_SYN_SENT) {
826                                 /* The peer may detach from a queue pair while
827                                  * we are still in the connecting state, i.e.,
828                                  * if the peer VM is killed after attaching to
829                                  * a queue pair, but before we complete the
830                                  * handshake. In that case, we treat the detach
831                                  * event like a reset.
832                                  */
833 
834                                 sk->sk_state = TCP_CLOSE;
835                                 sk->sk_err = ECONNRESET;
836                                 sk_error_report(sk);
837                                 return;
838                         }
839                         sk->sk_state = TCP_CLOSE;
840                 }
841                 sk->sk_state_change(sk);
842         }
843 }
844 
845 static void vmci_transport_peer_detach_cb(u32 sub_id,
846                                           const struct vmci_event_data *e_data,
847                                           void *client_data)
848 {
849         struct vmci_transport *trans = client_data;
850         const struct vmci_event_payload_qp *e_payload;
851 
852         e_payload = vmci_event_data_const_payload(e_data);
853 
854         /* XXX This is lame, we should provide a way to lookup sockets by
855          * qp_handle.
856          */
857         if (vmci_handle_is_invalid(e_payload->handle) ||
858             !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
859                 return;
860 
861         /* We don't ask for delayed CBs when we subscribe to this event (we
862          * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
863          * guarantees in that case about what context we might be running in,
864          * so it could be BH or process, blockable or non-blockable.  So we
865          * need to account for all possible contexts here.
866          */
867         spin_lock_bh(&trans->lock);
868         if (!trans->sk)
869                 goto out;
870 
871         /* Apart from here, trans->lock is only grabbed as part of sk destruct,
872          * where trans->sk isn't locked.
873          */
874         bh_lock_sock(trans->sk);
875 
876         vmci_transport_handle_detach(trans->sk);
877 
878         bh_unlock_sock(trans->sk);
879  out:
880         spin_unlock_bh(&trans->lock);
881 }
882 
883 static void vmci_transport_qp_resumed_cb(u32 sub_id,
884                                          const struct vmci_event_data *e_data,
885                                          void *client_data)
886 {
887         vsock_for_each_connected_socket(&vmci_transport,
888                                         vmci_transport_handle_detach);
889 }
890 
891 static void vmci_transport_recv_pkt_work(struct work_struct *work)
892 {
893         struct vmci_transport_recv_pkt_info *recv_pkt_info;
894         struct vmci_transport_packet *pkt;
895         struct sock *sk;
896 
897         recv_pkt_info =
898                 container_of(work, struct vmci_transport_recv_pkt_info, work);
899         sk = recv_pkt_info->sk;
900         pkt = &recv_pkt_info->pkt;
901 
902         lock_sock(sk);
903 
904         /* The local context ID may be out of date. */
905         vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
906 
907         switch (sk->sk_state) {
908         case TCP_LISTEN:
909                 vmci_transport_recv_listen(sk, pkt);
910                 break;
911         case TCP_SYN_SENT:
912                 /* Processing of pending connections for servers goes through
913                  * the listening socket, so see vmci_transport_recv_listen()
914                  * for that path.
915                  */
916                 vmci_transport_recv_connecting_client(sk, pkt);
917                 break;
918         case TCP_ESTABLISHED:
919                 vmci_transport_recv_connected(sk, pkt);
920                 break;
921         default:
922                 /* Because this function does not run in the same context as
923                  * vmci_transport_recv_stream_cb it is possible that the
924                  * socket has closed. We need to let the other side know or it
925                  * could be sitting in a connect and hang forever. Send a
926                  * reset to prevent that.
927                  */
928                 vmci_transport_send_reset(sk, pkt);
929                 break;
930         }
931 
932         release_sock(sk);
933         kfree(recv_pkt_info);
934         /* Release reference obtained in the stream callback when we fetched
935          * this socket out of the bound or connected list.
936          */
937         sock_put(sk);
938 }
939 
940 static int vmci_transport_recv_listen(struct sock *sk,
941                                       struct vmci_transport_packet *pkt)
942 {
943         struct sock *pending;
944         struct vsock_sock *vpending;
945         int err;
946         u64 qp_size;
947         bool old_request = false;
948         bool old_pkt_proto = false;
949 
950         /* Because we are in the listen state, we could be receiving a packet
951          * for ourself or any previous connection requests that we received.
952          * If it's the latter, we try to find a socket in our list of pending
953          * connections and, if we do, call the appropriate handler for the
954          * state that socket is in.  Otherwise we try to service the
955          * connection request.
956          */
957         pending = vmci_transport_get_pending(sk, pkt);
958         if (pending) {
959                 lock_sock(pending);
960 
961                 /* The local context ID may be out of date. */
962                 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
963 
964                 switch (pending->sk_state) {
965                 case TCP_SYN_SENT:
966                         err = vmci_transport_recv_connecting_server(sk,
967                                                                     pending,
968                                                                     pkt);
969                         break;
970                 default:
971                         vmci_transport_send_reset(pending, pkt);
972                         err = -EINVAL;
973                 }
974 
975                 if (err < 0)
976                         vsock_remove_pending(sk, pending);
977 
978                 release_sock(pending);
979                 vmci_transport_release_pending(pending);
980 
981                 return err;
982         }
983 
984         /* The listen state only accepts connection requests.  Reply with a
985          * reset unless we received a reset.
986          */
987 
988         if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
989               pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
990                 vmci_transport_reply_reset(pkt);
991                 return -EINVAL;
992         }
993 
994         if (pkt->u.size == 0) {
995                 vmci_transport_reply_reset(pkt);
996                 return -EINVAL;
997         }
998 
999         /* If this socket can't accommodate this connection request, we send a
1000          * reset.  Otherwise we create and initialize a child socket and reply
1001          * with a connection negotiation.
1002          */
1003         if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1004                 vmci_transport_reply_reset(pkt);
1005                 return -ECONNREFUSED;
1006         }
1007 
1008         pending = vsock_create_connected(sk);
1009         if (!pending) {
1010                 vmci_transport_send_reset(sk, pkt);
1011                 return -ENOMEM;
1012         }
1013 
1014         vpending = vsock_sk(pending);
1015 
1016         vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1017                         pkt->dst_port);
1018         vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1019                         pkt->src_port);
1020 
1021         err = vsock_assign_transport(vpending, vsock_sk(sk));
1022         /* Transport assigned (looking at remote_addr) must be the same
1023          * where we received the request.
1024          */
1025         if (err || !vmci_check_transport(vpending)) {
1026                 vmci_transport_send_reset(sk, pkt);
1027                 sock_put(pending);
1028                 return err;
1029         }
1030 
1031         /* If the proposed size fits within our min/max, accept it. Otherwise
1032          * propose our own size.
1033          */
1034         if (pkt->u.size >= vpending->buffer_min_size &&
1035             pkt->u.size <= vpending->buffer_max_size) {
1036                 qp_size = pkt->u.size;
1037         } else {
1038                 qp_size = vpending->buffer_size;
1039         }
1040 
1041         /* Figure out if we are using old or new requests based on the
1042          * overrides pkt types sent by our peer.
1043          */
1044         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1045                 old_request = old_pkt_proto;
1046         } else {
1047                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1048                         old_request = true;
1049                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1050                         old_request = false;
1051 
1052         }
1053 
1054         if (old_request) {
1055                 /* Handle a REQUEST (or override) */
1056                 u16 version = VSOCK_PROTO_INVALID;
1057                 if (vmci_transport_proto_to_notify_struct(
1058                         pending, &version, true))
1059                         err = vmci_transport_send_negotiate(pending, qp_size);
1060                 else
1061                         err = -EINVAL;
1062 
1063         } else {
1064                 /* Handle a REQUEST2 (or override) */
1065                 int proto_int = pkt->proto;
1066                 int pos;
1067                 u16 active_proto_version = 0;
1068 
1069                 /* The list of possible protocols is the intersection of all
1070                  * protocols the client supports ... plus all the protocols we
1071                  * support.
1072                  */
1073                 proto_int &= vmci_transport_new_proto_supported_versions();
1074 
1075                 /* We choose the highest possible protocol version and use that
1076                  * one.
1077                  */
1078                 pos = fls(proto_int);
1079                 if (pos) {
1080                         active_proto_version = (1 << (pos - 1));
1081                         if (vmci_transport_proto_to_notify_struct(
1082                                 pending, &active_proto_version, false))
1083                                 err = vmci_transport_send_negotiate2(pending,
1084                                                         qp_size,
1085                                                         active_proto_version);
1086                         else
1087                                 err = -EINVAL;
1088 
1089                 } else {
1090                         err = -EINVAL;
1091                 }
1092         }
1093 
1094         if (err < 0) {
1095                 vmci_transport_send_reset(sk, pkt);
1096                 sock_put(pending);
1097                 err = vmci_transport_error_to_vsock_error(err);
1098                 goto out;
1099         }
1100 
1101         vsock_add_pending(sk, pending);
1102         sk_acceptq_added(sk);
1103 
1104         pending->sk_state = TCP_SYN_SENT;
1105         vmci_trans(vpending)->produce_size =
1106                 vmci_trans(vpending)->consume_size = qp_size;
1107         vpending->buffer_size = qp_size;
1108 
1109         vmci_trans(vpending)->notify_ops->process_request(pending);
1110 
1111         /* We might never receive another message for this socket and it's not
1112          * connected to any process, so we have to ensure it gets cleaned up
1113          * ourself.  Our delayed work function will take care of that.  Note
1114          * that we do not ever cancel this function since we have few
1115          * guarantees about its state when calling cancel_delayed_work().
1116          * Instead we hold a reference on the socket for that function and make
1117          * it capable of handling cases where it needs to do nothing but
1118          * release that reference.
1119          */
1120         vpending->listener = sk;
1121         sock_hold(sk);
1122         sock_hold(pending);
1123         schedule_delayed_work(&vpending->pending_work, HZ);
1124 
1125 out:
1126         return err;
1127 }
1128 
1129 static int
1130 vmci_transport_recv_connecting_server(struct sock *listener,
1131                                       struct sock *pending,
1132                                       struct vmci_transport_packet *pkt)
1133 {
1134         struct vsock_sock *vpending;
1135         struct vmci_handle handle;
1136         struct vmci_qp *qpair;
1137         bool is_local;
1138         u32 flags;
1139         u32 detach_sub_id;
1140         int err;
1141         int skerr;
1142 
1143         vpending = vsock_sk(pending);
1144         detach_sub_id = VMCI_INVALID_ID;
1145 
1146         switch (pkt->type) {
1147         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1148                 if (vmci_handle_is_invalid(pkt->u.handle)) {
1149                         vmci_transport_send_reset(pending, pkt);
1150                         skerr = EPROTO;
1151                         err = -EINVAL;
1152                         goto destroy;
1153                 }
1154                 break;
1155         default:
1156                 /* Close and cleanup the connection. */
1157                 vmci_transport_send_reset(pending, pkt);
1158                 skerr = EPROTO;
1159                 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1160                 goto destroy;
1161         }
1162 
1163         /* In order to complete the connection we need to attach to the offered
1164          * queue pair and send an attach notification.  We also subscribe to the
1165          * detach event so we know when our peer goes away, and we do that
1166          * before attaching so we don't miss an event.  If all this succeeds,
1167          * we update our state and wakeup anything waiting in accept() for a
1168          * connection.
1169          */
1170 
1171         /* We don't care about attach since we ensure the other side has
1172          * attached by specifying the ATTACH_ONLY flag below.
1173          */
1174         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1175                                    vmci_transport_peer_detach_cb,
1176                                    vmci_trans(vpending), &detach_sub_id);
1177         if (err < VMCI_SUCCESS) {
1178                 vmci_transport_send_reset(pending, pkt);
1179                 err = vmci_transport_error_to_vsock_error(err);
1180                 skerr = -err;
1181                 goto destroy;
1182         }
1183 
1184         vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1185 
1186         /* Now attach to the queue pair the client created. */
1187         handle = pkt->u.handle;
1188 
1189         /* vpending->local_addr always has a context id so we do not need to
1190          * worry about VMADDR_CID_ANY in this case.
1191          */
1192         is_local =
1193             vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1194         flags = VMCI_QPFLAG_ATTACH_ONLY;
1195         flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1196 
1197         err = vmci_transport_queue_pair_alloc(
1198                                         &qpair,
1199                                         &handle,
1200                                         vmci_trans(vpending)->produce_size,
1201                                         vmci_trans(vpending)->consume_size,
1202                                         pkt->dg.src.context,
1203                                         flags,
1204                                         vmci_transport_is_trusted(
1205                                                 vpending,
1206                                                 vpending->remote_addr.svm_cid));
1207         if (err < 0) {
1208                 vmci_transport_send_reset(pending, pkt);
1209                 skerr = -err;
1210                 goto destroy;
1211         }
1212 
1213         vmci_trans(vpending)->qp_handle = handle;
1214         vmci_trans(vpending)->qpair = qpair;
1215 
1216         /* When we send the attach message, we must be ready to handle incoming
1217          * control messages on the newly connected socket. So we move the
1218          * pending socket to the connected state before sending the attach
1219          * message. Otherwise, an incoming packet triggered by the attach being
1220          * received by the peer may be processed concurrently with what happens
1221          * below after sending the attach message, and that incoming packet
1222          * will find the listening socket instead of the (currently) pending
1223          * socket. Note that enqueueing the socket increments the reference
1224          * count, so even if a reset comes before the connection is accepted,
1225          * the socket will be valid until it is removed from the queue.
1226          *
1227          * If we fail sending the attach below, we remove the socket from the
1228          * connected list and move the socket to TCP_CLOSE before
1229          * releasing the lock, so a pending slow path processing of an incoming
1230          * packet will not see the socket in the connected state in that case.
1231          */
1232         pending->sk_state = TCP_ESTABLISHED;
1233 
1234         vsock_insert_connected(vpending);
1235 
1236         /* Notify our peer of our attach. */
1237         err = vmci_transport_send_attach(pending, handle);
1238         if (err < 0) {
1239                 vsock_remove_connected(vpending);
1240                 pr_err("Could not send attach\n");
1241                 vmci_transport_send_reset(pending, pkt);
1242                 err = vmci_transport_error_to_vsock_error(err);
1243                 skerr = -err;
1244                 goto destroy;
1245         }
1246 
1247         /* We have a connection. Move the now connected socket from the
1248          * listener's pending list to the accept queue so callers of accept()
1249          * can find it.
1250          */
1251         vsock_remove_pending(listener, pending);
1252         vsock_enqueue_accept(listener, pending);
1253 
1254         /* Callers of accept() will be waiting on the listening socket, not
1255          * the pending socket.
1256          */
1257         listener->sk_data_ready(listener);
1258 
1259         return 0;
1260 
1261 destroy:
1262         pending->sk_err = skerr;
1263         pending->sk_state = TCP_CLOSE;
1264         /* As long as we drop our reference, all necessary cleanup will handle
1265          * when the cleanup function drops its reference and our destruct
1266          * implementation is called.  Note that since the listen handler will
1267          * remove pending from the pending list upon our failure, the cleanup
1268          * function won't drop the additional reference, which is why we do it
1269          * here.
1270          */
1271         sock_put(pending);
1272 
1273         return err;
1274 }
1275 
1276 static int
1277 vmci_transport_recv_connecting_client(struct sock *sk,
1278                                       struct vmci_transport_packet *pkt)
1279 {
1280         struct vsock_sock *vsk;
1281         int err;
1282         int skerr;
1283 
1284         vsk = vsock_sk(sk);
1285 
1286         switch (pkt->type) {
1287         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1288                 if (vmci_handle_is_invalid(pkt->u.handle) ||
1289                     !vmci_handle_is_equal(pkt->u.handle,
1290                                           vmci_trans(vsk)->qp_handle)) {
1291                         skerr = EPROTO;
1292                         err = -EINVAL;
1293                         goto destroy;
1294                 }
1295 
1296                 /* Signify the socket is connected and wakeup the waiter in
1297                  * connect(). Also place the socket in the connected table for
1298                  * accounting (it can already be found since it's in the bound
1299                  * table).
1300                  */
1301                 sk->sk_state = TCP_ESTABLISHED;
1302                 sk->sk_socket->state = SS_CONNECTED;
1303                 vsock_insert_connected(vsk);
1304                 sk->sk_state_change(sk);
1305 
1306                 break;
1307         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1308         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1309                 if (pkt->u.size == 0
1310                     || pkt->dg.src.context != vsk->remote_addr.svm_cid
1311                     || pkt->src_port != vsk->remote_addr.svm_port
1312                     || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1313                     || vmci_trans(vsk)->qpair
1314                     || vmci_trans(vsk)->produce_size != 0
1315                     || vmci_trans(vsk)->consume_size != 0
1316                     || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1317                         skerr = EPROTO;
1318                         err = -EINVAL;
1319 
1320                         goto destroy;
1321                 }
1322 
1323                 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1324                 if (err) {
1325                         skerr = -err;
1326                         goto destroy;
1327                 }
1328 
1329                 break;
1330         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1331                 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1332                 if (err) {
1333                         skerr = -err;
1334                         goto destroy;
1335                 }
1336 
1337                 break;
1338         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1339                 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1340                  * continue processing here after they sent an INVALID packet.
1341                  * This meant that we got a RST after the INVALID. We ignore a
1342                  * RST after an INVALID. The common code doesn't send the RST
1343                  * ... so we can hang if an old version of the common code
1344                  * fails between getting a REQUEST and sending an OFFER back.
1345                  * Not much we can do about it... except hope that it doesn't
1346                  * happen.
1347                  */
1348                 if (vsk->ignore_connecting_rst) {
1349                         vsk->ignore_connecting_rst = false;
1350                 } else {
1351                         skerr = ECONNRESET;
1352                         err = 0;
1353                         goto destroy;
1354                 }
1355 
1356                 break;
1357         default:
1358                 /* Close and cleanup the connection. */
1359                 skerr = EPROTO;
1360                 err = -EINVAL;
1361                 goto destroy;
1362         }
1363 
1364         return 0;
1365 
1366 destroy:
1367         vmci_transport_send_reset(sk, pkt);
1368 
1369         sk->sk_state = TCP_CLOSE;
1370         sk->sk_err = skerr;
1371         sk_error_report(sk);
1372         return err;
1373 }
1374 
1375 static int vmci_transport_recv_connecting_client_negotiate(
1376                                         struct sock *sk,
1377                                         struct vmci_transport_packet *pkt)
1378 {
1379         int err;
1380         struct vsock_sock *vsk;
1381         struct vmci_handle handle;
1382         struct vmci_qp *qpair;
1383         u32 detach_sub_id;
1384         bool is_local;
1385         u32 flags;
1386         bool old_proto = true;
1387         bool old_pkt_proto;
1388         u16 version;
1389 
1390         vsk = vsock_sk(sk);
1391         handle = VMCI_INVALID_HANDLE;
1392         detach_sub_id = VMCI_INVALID_ID;
1393 
1394         /* If we have gotten here then we should be past the point where old
1395          * linux vsock could have sent the bogus rst.
1396          */
1397         vsk->sent_request = false;
1398         vsk->ignore_connecting_rst = false;
1399 
1400         /* Verify that we're OK with the proposed queue pair size */
1401         if (pkt->u.size < vsk->buffer_min_size ||
1402             pkt->u.size > vsk->buffer_max_size) {
1403                 err = -EINVAL;
1404                 goto destroy;
1405         }
1406 
1407         /* At this point we know the CID the peer is using to talk to us. */
1408 
1409         if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1410                 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1411 
1412         /* Setup the notify ops to be the highest supported version that both
1413          * the server and the client support.
1414          */
1415 
1416         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1417                 old_proto = old_pkt_proto;
1418         } else {
1419                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1420                         old_proto = true;
1421                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1422                         old_proto = false;
1423 
1424         }
1425 
1426         if (old_proto)
1427                 version = VSOCK_PROTO_INVALID;
1428         else
1429                 version = pkt->proto;
1430 
1431         if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1432                 err = -EINVAL;
1433                 goto destroy;
1434         }
1435 
1436         /* Subscribe to detach events first.
1437          *
1438          * XXX We attach once for each queue pair created for now so it is easy
1439          * to find the socket (it's provided), but later we should only
1440          * subscribe once and add a way to lookup sockets by queue pair handle.
1441          */
1442         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1443                                    vmci_transport_peer_detach_cb,
1444                                    vmci_trans(vsk), &detach_sub_id);
1445         if (err < VMCI_SUCCESS) {
1446                 err = vmci_transport_error_to_vsock_error(err);
1447                 goto destroy;
1448         }
1449 
1450         /* Make VMCI select the handle for us. */
1451         handle = VMCI_INVALID_HANDLE;
1452         is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1453         flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1454 
1455         err = vmci_transport_queue_pair_alloc(&qpair,
1456                                               &handle,
1457                                               pkt->u.size,
1458                                               pkt->u.size,
1459                                               vsk->remote_addr.svm_cid,
1460                                               flags,
1461                                               vmci_transport_is_trusted(
1462                                                   vsk,
1463                                                   vsk->
1464                                                   remote_addr.svm_cid));
1465         if (err < 0)
1466                 goto destroy;
1467 
1468         err = vmci_transport_send_qp_offer(sk, handle);
1469         if (err < 0) {
1470                 err = vmci_transport_error_to_vsock_error(err);
1471                 goto destroy;
1472         }
1473 
1474         vmci_trans(vsk)->qp_handle = handle;
1475         vmci_trans(vsk)->qpair = qpair;
1476 
1477         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1478                 pkt->u.size;
1479 
1480         vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1481 
1482         vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1483 
1484         return 0;
1485 
1486 destroy:
1487         if (detach_sub_id != VMCI_INVALID_ID)
1488                 vmci_event_unsubscribe(detach_sub_id);
1489 
1490         if (!vmci_handle_is_invalid(handle))
1491                 vmci_qpair_detach(&qpair);
1492 
1493         return err;
1494 }
1495 
1496 static int
1497 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1498                                               struct vmci_transport_packet *pkt)
1499 {
1500         int err = 0;
1501         struct vsock_sock *vsk = vsock_sk(sk);
1502 
1503         if (vsk->sent_request) {
1504                 vsk->sent_request = false;
1505                 vsk->ignore_connecting_rst = true;
1506 
1507                 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1508                 if (err < 0)
1509                         err = vmci_transport_error_to_vsock_error(err);
1510                 else
1511                         err = 0;
1512 
1513         }
1514 
1515         return err;
1516 }
1517 
1518 static int vmci_transport_recv_connected(struct sock *sk,
1519                                          struct vmci_transport_packet *pkt)
1520 {
1521         struct vsock_sock *vsk;
1522         bool pkt_processed = false;
1523 
1524         /* In cases where we are closing the connection, it's sufficient to
1525          * mark the state change (and maybe error) and wake up any waiting
1526          * threads. Since this is a connected socket, it's owned by a user
1527          * process and will be cleaned up when the failure is passed back on
1528          * the current or next system call.  Our system call implementations
1529          * must therefore check for error and state changes on entry and when
1530          * being awoken.
1531          */
1532         switch (pkt->type) {
1533         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1534                 if (pkt->u.mode) {
1535                         vsk = vsock_sk(sk);
1536 
1537                         vsk->peer_shutdown |= pkt->u.mode;
1538                         sk->sk_state_change(sk);
1539                 }
1540                 break;
1541 
1542         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1543                 vsk = vsock_sk(sk);
1544                 /* It is possible that we sent our peer a message (e.g a
1545                  * WAITING_READ) right before we got notified that the peer had
1546                  * detached. If that happens then we can get a RST pkt back
1547                  * from our peer even though there is data available for us to
1548                  * read. In that case, don't shutdown the socket completely but
1549                  * instead allow the local client to finish reading data off
1550                  * the queuepair. Always treat a RST pkt in connected mode like
1551                  * a clean shutdown.
1552                  */
1553                 sock_set_flag(sk, SOCK_DONE);
1554                 vsk->peer_shutdown = SHUTDOWN_MASK;
1555                 if (vsock_stream_has_data(vsk) <= 0)
1556                         sk->sk_state = TCP_CLOSING;
1557 
1558                 sk->sk_state_change(sk);
1559                 break;
1560 
1561         default:
1562                 vsk = vsock_sk(sk);
1563                 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1564                                 sk, pkt, false, NULL, NULL,
1565                                 &pkt_processed);
1566                 if (!pkt_processed)
1567                         return -EINVAL;
1568 
1569                 break;
1570         }
1571 
1572         return 0;
1573 }
1574 
1575 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1576                                       struct vsock_sock *psk)
1577 {
1578         vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1579         if (!vsk->trans)
1580                 return -ENOMEM;
1581 
1582         vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1583         vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1584         vmci_trans(vsk)->qpair = NULL;
1585         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1586         vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1587         vmci_trans(vsk)->notify_ops = NULL;
1588         INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1589         vmci_trans(vsk)->sk = &vsk->sk;
1590         spin_lock_init(&vmci_trans(vsk)->lock);
1591 
1592         return 0;
1593 }
1594 
1595 static void vmci_transport_free_resources(struct list_head *transport_list)
1596 {
1597         while (!list_empty(transport_list)) {
1598                 struct vmci_transport *transport =
1599                     list_first_entry(transport_list, struct vmci_transport,
1600                                      elem);
1601                 list_del(&transport->elem);
1602 
1603                 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1604                         vmci_event_unsubscribe(transport->detach_sub_id);
1605                         transport->detach_sub_id = VMCI_INVALID_ID;
1606                 }
1607 
1608                 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1609                         vmci_qpair_detach(&transport->qpair);
1610                         transport->qp_handle = VMCI_INVALID_HANDLE;
1611                         transport->produce_size = 0;
1612                         transport->consume_size = 0;
1613                 }
1614 
1615                 kfree(transport);
1616         }
1617 }
1618 
1619 static void vmci_transport_cleanup(struct work_struct *work)
1620 {
1621         LIST_HEAD(pending);
1622 
1623         spin_lock_bh(&vmci_transport_cleanup_lock);
1624         list_replace_init(&vmci_transport_cleanup_list, &pending);
1625         spin_unlock_bh(&vmci_transport_cleanup_lock);
1626         vmci_transport_free_resources(&pending);
1627 }
1628 
1629 static void vmci_transport_destruct(struct vsock_sock *vsk)
1630 {
1631         /* transport can be NULL if we hit a failure at init() time */
1632         if (!vmci_trans(vsk))
1633                 return;
1634 
1635         /* Ensure that the detach callback doesn't use the sk/vsk
1636          * we are about to destruct.
1637          */
1638         spin_lock_bh(&vmci_trans(vsk)->lock);
1639         vmci_trans(vsk)->sk = NULL;
1640         spin_unlock_bh(&vmci_trans(vsk)->lock);
1641 
1642         if (vmci_trans(vsk)->notify_ops)
1643                 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1644 
1645         spin_lock_bh(&vmci_transport_cleanup_lock);
1646         list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1647         spin_unlock_bh(&vmci_transport_cleanup_lock);
1648         schedule_work(&vmci_transport_cleanup_work);
1649 
1650         vsk->trans = NULL;
1651 }
1652 
1653 static void vmci_transport_release(struct vsock_sock *vsk)
1654 {
1655         vsock_remove_sock(vsk);
1656 
1657         if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1658                 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1659                 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1660         }
1661 }
1662 
1663 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1664                                      struct sockaddr_vm *addr)
1665 {
1666         u32 port;
1667         u32 flags;
1668         int err;
1669 
1670         /* VMCI will select a resource ID for us if we provide
1671          * VMCI_INVALID_ID.
1672          */
1673         port = addr->svm_port == VMADDR_PORT_ANY ?
1674                         VMCI_INVALID_ID : addr->svm_port;
1675 
1676         if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1677                 return -EACCES;
1678 
1679         flags = addr->svm_cid == VMADDR_CID_ANY ?
1680                                 VMCI_FLAG_ANYCID_DG_HND : 0;
1681 
1682         err = vmci_transport_datagram_create_hnd(port, flags,
1683                                                  vmci_transport_recv_dgram_cb,
1684                                                  &vsk->sk,
1685                                                  &vmci_trans(vsk)->dg_handle);
1686         if (err < VMCI_SUCCESS)
1687                 return vmci_transport_error_to_vsock_error(err);
1688         vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1689                         vmci_trans(vsk)->dg_handle.resource);
1690 
1691         return 0;
1692 }
1693 
1694 static int vmci_transport_dgram_enqueue(
1695         struct vsock_sock *vsk,
1696         struct sockaddr_vm *remote_addr,
1697         struct msghdr *msg,
1698         size_t len)
1699 {
1700         int err;
1701         struct vmci_datagram *dg;
1702 
1703         if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1704                 return -EMSGSIZE;
1705 
1706         if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1707                 return -EPERM;
1708 
1709         /* Allocate a buffer for the user's message and our packet header. */
1710         dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1711         if (!dg)
1712                 return -ENOMEM;
1713 
1714         err = memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1715         if (err) {
1716                 kfree(dg);
1717                 return err;
1718         }
1719 
1720         dg->dst = vmci_make_handle(remote_addr->svm_cid,
1721                                    remote_addr->svm_port);
1722         dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1723                                    vsk->local_addr.svm_port);
1724         dg->payload_size = len;
1725 
1726         err = vmci_datagram_send(dg);
1727         kfree(dg);
1728         if (err < 0)
1729                 return vmci_transport_error_to_vsock_error(err);
1730 
1731         return err - sizeof(*dg);
1732 }
1733 
1734 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1735                                         struct msghdr *msg, size_t len,
1736                                         int flags)
1737 {
1738         int err;
1739         struct vmci_datagram *dg;
1740         size_t payload_len;
1741         struct sk_buff *skb;
1742 
1743         if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1744                 return -EOPNOTSUPP;
1745 
1746         /* Retrieve the head sk_buff from the socket's receive queue. */
1747         err = 0;
1748         skb = skb_recv_datagram(&vsk->sk, flags, &err);
1749         if (!skb)
1750                 return err;
1751 
1752         dg = (struct vmci_datagram *)skb->data;
1753         if (!dg)
1754                 /* err is 0, meaning we read zero bytes. */
1755                 goto out;
1756 
1757         payload_len = dg->payload_size;
1758         /* Ensure the sk_buff matches the payload size claimed in the packet. */
1759         if (payload_len != skb->len - sizeof(*dg)) {
1760                 err = -EINVAL;
1761                 goto out;
1762         }
1763 
1764         if (payload_len > len) {
1765                 payload_len = len;
1766                 msg->msg_flags |= MSG_TRUNC;
1767         }
1768 
1769         /* Place the datagram payload in the user's iovec. */
1770         err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1771         if (err)
1772                 goto out;
1773 
1774         if (msg->msg_name) {
1775                 /* Provide the address of the sender. */
1776                 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1777                 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1778                 msg->msg_namelen = sizeof(*vm_addr);
1779         }
1780         err = payload_len;
1781 
1782 out:
1783         skb_free_datagram(&vsk->sk, skb);
1784         return err;
1785 }
1786 
1787 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1788 {
1789         if (cid == VMADDR_CID_HYPERVISOR) {
1790                 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1791                  * state and are allowed.
1792                  */
1793                 return port == VMCI_UNITY_PBRPC_REGISTER;
1794         }
1795 
1796         return true;
1797 }
1798 
1799 static int vmci_transport_connect(struct vsock_sock *vsk)
1800 {
1801         int err;
1802         bool old_pkt_proto = false;
1803         struct sock *sk = &vsk->sk;
1804 
1805         if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1806                 old_pkt_proto) {
1807                 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1808                 if (err < 0) {
1809                         sk->sk_state = TCP_CLOSE;
1810                         return err;
1811                 }
1812         } else {
1813                 int supported_proto_versions =
1814                         vmci_transport_new_proto_supported_versions();
1815                 err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
1816                                 supported_proto_versions);
1817                 if (err < 0) {
1818                         sk->sk_state = TCP_CLOSE;
1819                         return err;
1820                 }
1821 
1822                 vsk->sent_request = true;
1823         }
1824 
1825         return err;
1826 }
1827 
1828 static ssize_t vmci_transport_stream_dequeue(
1829         struct vsock_sock *vsk,
1830         struct msghdr *msg,
1831         size_t len,
1832         int flags)
1833 {
1834         ssize_t err;
1835 
1836         if (flags & MSG_PEEK)
1837                 err = vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1838         else
1839                 err = vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1840 
1841         if (err < 0)
1842                 err = -ENOMEM;
1843 
1844         return err;
1845 }
1846 
1847 static ssize_t vmci_transport_stream_enqueue(
1848         struct vsock_sock *vsk,
1849         struct msghdr *msg,
1850         size_t len)
1851 {
1852         ssize_t err;
1853 
1854         err = vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1855         if (err < 0)
1856                 err = -ENOMEM;
1857 
1858         return err;
1859 }
1860 
1861 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1862 {
1863         return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1864 }
1865 
1866 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1867 {
1868         return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1869 }
1870 
1871 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1872 {
1873         return vmci_trans(vsk)->consume_size;
1874 }
1875 
1876 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1877 {
1878         return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1879 }
1880 
1881 static int vmci_transport_notify_poll_in(
1882         struct vsock_sock *vsk,
1883         size_t target,
1884         bool *data_ready_now)
1885 {
1886         return vmci_trans(vsk)->notify_ops->poll_in(
1887                         &vsk->sk, target, data_ready_now);
1888 }
1889 
1890 static int vmci_transport_notify_poll_out(
1891         struct vsock_sock *vsk,
1892         size_t target,
1893         bool *space_available_now)
1894 {
1895         return vmci_trans(vsk)->notify_ops->poll_out(
1896                         &vsk->sk, target, space_available_now);
1897 }
1898 
1899 static int vmci_transport_notify_recv_init(
1900         struct vsock_sock *vsk,
1901         size_t target,
1902         struct vsock_transport_recv_notify_data *data)
1903 {
1904         return vmci_trans(vsk)->notify_ops->recv_init(
1905                         &vsk->sk, target,
1906                         (struct vmci_transport_recv_notify_data *)data);
1907 }
1908 
1909 static int vmci_transport_notify_recv_pre_block(
1910         struct vsock_sock *vsk,
1911         size_t target,
1912         struct vsock_transport_recv_notify_data *data)
1913 {
1914         return vmci_trans(vsk)->notify_ops->recv_pre_block(
1915                         &vsk->sk, target,
1916                         (struct vmci_transport_recv_notify_data *)data);
1917 }
1918 
1919 static int vmci_transport_notify_recv_pre_dequeue(
1920         struct vsock_sock *vsk,
1921         size_t target,
1922         struct vsock_transport_recv_notify_data *data)
1923 {
1924         return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1925                         &vsk->sk, target,
1926                         (struct vmci_transport_recv_notify_data *)data);
1927 }
1928 
1929 static int vmci_transport_notify_recv_post_dequeue(
1930         struct vsock_sock *vsk,
1931         size_t target,
1932         ssize_t copied,
1933         bool data_read,
1934         struct vsock_transport_recv_notify_data *data)
1935 {
1936         return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1937                         &vsk->sk, target, copied, data_read,
1938                         (struct vmci_transport_recv_notify_data *)data);
1939 }
1940 
1941 static int vmci_transport_notify_send_init(
1942         struct vsock_sock *vsk,
1943         struct vsock_transport_send_notify_data *data)
1944 {
1945         return vmci_trans(vsk)->notify_ops->send_init(
1946                         &vsk->sk,
1947                         (struct vmci_transport_send_notify_data *)data);
1948 }
1949 
1950 static int vmci_transport_notify_send_pre_block(
1951         struct vsock_sock *vsk,
1952         struct vsock_transport_send_notify_data *data)
1953 {
1954         return vmci_trans(vsk)->notify_ops->send_pre_block(
1955                         &vsk->sk,
1956                         (struct vmci_transport_send_notify_data *)data);
1957 }
1958 
1959 static int vmci_transport_notify_send_pre_enqueue(
1960         struct vsock_sock *vsk,
1961         struct vsock_transport_send_notify_data *data)
1962 {
1963         return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1964                         &vsk->sk,
1965                         (struct vmci_transport_send_notify_data *)data);
1966 }
1967 
1968 static int vmci_transport_notify_send_post_enqueue(
1969         struct vsock_sock *vsk,
1970         ssize_t written,
1971         struct vsock_transport_send_notify_data *data)
1972 {
1973         return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1974                         &vsk->sk, written,
1975                         (struct vmci_transport_send_notify_data *)data);
1976 }
1977 
1978 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1979 {
1980         if (PROTOCOL_OVERRIDE != -1) {
1981                 if (PROTOCOL_OVERRIDE == 0)
1982                         *old_pkt_proto = true;
1983                 else
1984                         *old_pkt_proto = false;
1985 
1986                 pr_info("Proto override in use\n");
1987                 return true;
1988         }
1989 
1990         return false;
1991 }
1992 
1993 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
1994                                                   u16 *proto,
1995                                                   bool old_pkt_proto)
1996 {
1997         struct vsock_sock *vsk = vsock_sk(sk);
1998 
1999         if (old_pkt_proto) {
2000                 if (*proto != VSOCK_PROTO_INVALID) {
2001                         pr_err("Can't set both an old and new protocol\n");
2002                         return false;
2003                 }
2004                 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2005                 goto exit;
2006         }
2007 
2008         switch (*proto) {
2009         case VSOCK_PROTO_PKT_ON_NOTIFY:
2010                 vmci_trans(vsk)->notify_ops =
2011                         &vmci_transport_notify_pkt_q_state_ops;
2012                 break;
2013         default:
2014                 pr_err("Unknown notify protocol version\n");
2015                 return false;
2016         }
2017 
2018 exit:
2019         vmci_trans(vsk)->notify_ops->socket_init(sk);
2020         return true;
2021 }
2022 
2023 static u16 vmci_transport_new_proto_supported_versions(void)
2024 {
2025         if (PROTOCOL_OVERRIDE != -1)
2026                 return PROTOCOL_OVERRIDE;
2027 
2028         return VSOCK_PROTO_ALL_SUPPORTED;
2029 }
2030 
2031 static u32 vmci_transport_get_local_cid(void)
2032 {
2033         return vmci_get_context_id();
2034 }
2035 
2036 static struct vsock_transport vmci_transport = {
2037         .module = THIS_MODULE,
2038         .init = vmci_transport_socket_init,
2039         .destruct = vmci_transport_destruct,
2040         .release = vmci_transport_release,
2041         .connect = vmci_transport_connect,
2042         .dgram_bind = vmci_transport_dgram_bind,
2043         .dgram_dequeue = vmci_transport_dgram_dequeue,
2044         .dgram_enqueue = vmci_transport_dgram_enqueue,
2045         .dgram_allow = vmci_transport_dgram_allow,
2046         .stream_dequeue = vmci_transport_stream_dequeue,
2047         .stream_enqueue = vmci_transport_stream_enqueue,
2048         .stream_has_data = vmci_transport_stream_has_data,
2049         .stream_has_space = vmci_transport_stream_has_space,
2050         .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2051         .stream_is_active = vmci_transport_stream_is_active,
2052         .stream_allow = vmci_transport_stream_allow,
2053         .notify_poll_in = vmci_transport_notify_poll_in,
2054         .notify_poll_out = vmci_transport_notify_poll_out,
2055         .notify_recv_init = vmci_transport_notify_recv_init,
2056         .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2057         .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2058         .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2059         .notify_send_init = vmci_transport_notify_send_init,
2060         .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2061         .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2062         .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2063         .shutdown = vmci_transport_shutdown,
2064         .get_local_cid = vmci_transport_get_local_cid,
2065 };
2066 
2067 static bool vmci_check_transport(struct vsock_sock *vsk)
2068 {
2069         return vsk->transport == &vmci_transport;
2070 }
2071 
2072 static void vmci_vsock_transport_cb(bool is_host)
2073 {
2074         int features;
2075 
2076         if (is_host)
2077                 features = VSOCK_TRANSPORT_F_H2G;
2078         else
2079                 features = VSOCK_TRANSPORT_F_G2H;
2080 
2081         vsock_core_register(&vmci_transport, features);
2082 }
2083 
2084 static int __init vmci_transport_init(void)
2085 {
2086         int err;
2087 
2088         /* Create the datagram handle that we will use to send and receive all
2089          * VSocket control messages for this context.
2090          */
2091         err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2092                                                  VMCI_FLAG_ANYCID_DG_HND,
2093                                                  vmci_transport_recv_stream_cb,
2094                                                  NULL,
2095                                                  &vmci_transport_stream_handle);
2096         if (err < VMCI_SUCCESS) {
2097                 pr_err("Unable to create datagram handle. (%d)\n", err);
2098                 return vmci_transport_error_to_vsock_error(err);
2099         }
2100         err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2101                                    vmci_transport_qp_resumed_cb,
2102                                    NULL, &vmci_transport_qp_resumed_sub_id);
2103         if (err < VMCI_SUCCESS) {
2104                 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2105                 err = vmci_transport_error_to_vsock_error(err);
2106                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2107                 goto err_destroy_stream_handle;
2108         }
2109 
2110         /* Register only with dgram feature, other features (H2G, G2H) will be
2111          * registered when the first host or guest becomes active.
2112          */
2113         err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
2114         if (err < 0)
2115                 goto err_unsubscribe;
2116 
2117         err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
2118         if (err < 0)
2119                 goto err_unregister;
2120 
2121         return 0;
2122 
2123 err_unregister:
2124         vsock_core_unregister(&vmci_transport);
2125 err_unsubscribe:
2126         vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2127 err_destroy_stream_handle:
2128         vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2129         return err;
2130 }
2131 module_init(vmci_transport_init);
2132 
2133 static void __exit vmci_transport_exit(void)
2134 {
2135         cancel_work_sync(&vmci_transport_cleanup_work);
2136         vmci_transport_free_resources(&vmci_transport_cleanup_list);
2137 
2138         if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2139                 if (vmci_datagram_destroy_handle(
2140                         vmci_transport_stream_handle) != VMCI_SUCCESS)
2141                         pr_err("Couldn't destroy datagram handle\n");
2142                 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2143         }
2144 
2145         if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2146                 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2147                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2148         }
2149 
2150         vmci_register_vsock_callback(NULL);
2151         vsock_core_unregister(&vmci_transport);
2152 }
2153 module_exit(vmci_transport_exit);
2154 
2155 MODULE_AUTHOR("VMware, Inc.");
2156 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2157 MODULE_VERSION("1.0.5.0-k");
2158 MODULE_LICENSE("GPL v2");
2159 MODULE_ALIAS("vmware_vsock");
2160 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2161 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php