1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2024 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include <kunit/visibility.h> 24 #include "core.h" 25 #include "nl80211.h" 26 #include "wext-compat.h" 27 #include "rdev-ops.h" 28 29 /** 30 * DOC: BSS tree/list structure 31 * 32 * At the top level, the BSS list is kept in both a list in each 33 * registered device (@bss_list) as well as an RB-tree for faster 34 * lookup. In the RB-tree, entries can be looked up using their 35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 36 * for other BSSes. 37 * 38 * Due to the possibility of hidden SSIDs, there's a second level 39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 40 * The hidden_list connects all BSSes belonging to a single AP 41 * that has a hidden SSID, and connects beacon and probe response 42 * entries. For a probe response entry for a hidden SSID, the 43 * hidden_beacon_bss pointer points to the BSS struct holding the 44 * beacon's information. 45 * 46 * Reference counting is done for all these references except for 47 * the hidden_list, so that a beacon BSS struct that is otherwise 48 * not referenced has one reference for being on the bss_list and 49 * one for each probe response entry that points to it using the 50 * hidden_beacon_bss pointer. When a BSS struct that has such a 51 * pointer is get/put, the refcount update is also propagated to 52 * the referenced struct, this ensure that it cannot get removed 53 * while somebody is using the probe response version. 54 * 55 * Note that the hidden_beacon_bss pointer never changes, due to 56 * the reference counting. Therefore, no locking is needed for 57 * it. 58 * 59 * Also note that the hidden_beacon_bss pointer is only relevant 60 * if the driver uses something other than the IEs, e.g. private 61 * data stored in the BSS struct, since the beacon IEs are 62 * also linked into the probe response struct. 63 */ 64 65 /* 66 * Limit the number of BSS entries stored in mac80211. Each one is 67 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 68 * If somebody wants to really attack this though, they'd likely 69 * use small beacons, and only one type of frame, limiting each of 70 * the entries to a much smaller size (in order to generate more 71 * entries in total, so overhead is bigger.) 72 */ 73 static int bss_entries_limit = 1000; 74 module_param(bss_entries_limit, int, 0644); 75 MODULE_PARM_DESC(bss_entries_limit, 76 "limit to number of scan BSS entries (per wiphy, default 1000)"); 77 78 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 79 80 static void bss_free(struct cfg80211_internal_bss *bss) 81 { 82 struct cfg80211_bss_ies *ies; 83 84 if (WARN_ON(atomic_read(&bss->hold))) 85 return; 86 87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 88 if (ies && !bss->pub.hidden_beacon_bss) 89 kfree_rcu(ies, rcu_head); 90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 91 if (ies) 92 kfree_rcu(ies, rcu_head); 93 94 /* 95 * This happens when the module is removed, it doesn't 96 * really matter any more save for completeness 97 */ 98 if (!list_empty(&bss->hidden_list)) 99 list_del(&bss->hidden_list); 100 101 kfree(bss); 102 } 103 104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 105 struct cfg80211_internal_bss *bss) 106 { 107 lockdep_assert_held(&rdev->bss_lock); 108 109 bss->refcount++; 110 111 if (bss->pub.hidden_beacon_bss) 112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 113 114 if (bss->pub.transmitted_bss) 115 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 116 } 117 118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 119 struct cfg80211_internal_bss *bss) 120 { 121 lockdep_assert_held(&rdev->bss_lock); 122 123 if (bss->pub.hidden_beacon_bss) { 124 struct cfg80211_internal_bss *hbss; 125 126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 127 hbss->refcount--; 128 if (hbss->refcount == 0) 129 bss_free(hbss); 130 } 131 132 if (bss->pub.transmitted_bss) { 133 struct cfg80211_internal_bss *tbss; 134 135 tbss = bss_from_pub(bss->pub.transmitted_bss); 136 tbss->refcount--; 137 if (tbss->refcount == 0) 138 bss_free(tbss); 139 } 140 141 bss->refcount--; 142 if (bss->refcount == 0) 143 bss_free(bss); 144 } 145 146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 147 struct cfg80211_internal_bss *bss) 148 { 149 lockdep_assert_held(&rdev->bss_lock); 150 151 if (!list_empty(&bss->hidden_list)) { 152 /* 153 * don't remove the beacon entry if it has 154 * probe responses associated with it 155 */ 156 if (!bss->pub.hidden_beacon_bss) 157 return false; 158 /* 159 * if it's a probe response entry break its 160 * link to the other entries in the group 161 */ 162 list_del_init(&bss->hidden_list); 163 } 164 165 list_del_init(&bss->list); 166 list_del_init(&bss->pub.nontrans_list); 167 rb_erase(&bss->rbn, &rdev->bss_tree); 168 rdev->bss_entries--; 169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 170 "rdev bss entries[%d]/list[empty:%d] corruption\n", 171 rdev->bss_entries, list_empty(&rdev->bss_list)); 172 bss_ref_put(rdev, bss); 173 return true; 174 } 175 176 bool cfg80211_is_element_inherited(const struct element *elem, 177 const struct element *non_inherit_elem) 178 { 179 u8 id_len, ext_id_len, i, loop_len, id; 180 const u8 *list; 181 182 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 183 return false; 184 185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && 186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) 187 return false; 188 189 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 190 return true; 191 192 /* 193 * non inheritance element format is: 194 * ext ID (56) | IDs list len | list | extension IDs list len | list 195 * Both lists are optional. Both lengths are mandatory. 196 * This means valid length is: 197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 198 */ 199 id_len = non_inherit_elem->data[1]; 200 if (non_inherit_elem->datalen < 3 + id_len) 201 return true; 202 203 ext_id_len = non_inherit_elem->data[2 + id_len]; 204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 205 return true; 206 207 if (elem->id == WLAN_EID_EXTENSION) { 208 if (!ext_id_len) 209 return true; 210 loop_len = ext_id_len; 211 list = &non_inherit_elem->data[3 + id_len]; 212 id = elem->data[0]; 213 } else { 214 if (!id_len) 215 return true; 216 loop_len = id_len; 217 list = &non_inherit_elem->data[2]; 218 id = elem->id; 219 } 220 221 for (i = 0; i < loop_len; i++) { 222 if (list[i] == id) 223 return false; 224 } 225 226 return true; 227 } 228 EXPORT_SYMBOL(cfg80211_is_element_inherited); 229 230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem, 231 const u8 *ie, size_t ie_len, 232 u8 **pos, u8 *buf, size_t buf_len) 233 { 234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || 235 elem->data + elem->datalen > ie + ie_len)) 236 return 0; 237 238 if (elem->datalen + 2 > buf + buf_len - *pos) 239 return 0; 240 241 memcpy(*pos, elem, elem->datalen + 2); 242 *pos += elem->datalen + 2; 243 244 /* Finish if it is not fragmented */ 245 if (elem->datalen != 255) 246 return *pos - buf; 247 248 ie_len = ie + ie_len - elem->data - elem->datalen; 249 ie = (const u8 *)elem->data + elem->datalen; 250 251 for_each_element(elem, ie, ie_len) { 252 if (elem->id != WLAN_EID_FRAGMENT) 253 break; 254 255 if (elem->datalen + 2 > buf + buf_len - *pos) 256 return 0; 257 258 memcpy(*pos, elem, elem->datalen + 2); 259 *pos += elem->datalen + 2; 260 261 if (elem->datalen != 255) 262 break; 263 } 264 265 return *pos - buf; 266 } 267 268 VISIBLE_IF_CFG80211_KUNIT size_t 269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 270 const u8 *subie, size_t subie_len, 271 u8 *new_ie, size_t new_ie_len) 272 { 273 const struct element *non_inherit_elem, *parent, *sub; 274 u8 *pos = new_ie; 275 u8 id, ext_id; 276 unsigned int match_len; 277 278 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 279 subie, subie_len); 280 281 /* We copy the elements one by one from the parent to the generated 282 * elements. 283 * If they are not inherited (included in subie or in the non 284 * inheritance element), then we copy all occurrences the first time 285 * we see this element type. 286 */ 287 for_each_element(parent, ie, ielen) { 288 if (parent->id == WLAN_EID_FRAGMENT) 289 continue; 290 291 if (parent->id == WLAN_EID_EXTENSION) { 292 if (parent->datalen < 1) 293 continue; 294 295 id = WLAN_EID_EXTENSION; 296 ext_id = parent->data[0]; 297 match_len = 1; 298 } else { 299 id = parent->id; 300 match_len = 0; 301 } 302 303 /* Find first occurrence in subie */ 304 sub = cfg80211_find_elem_match(id, subie, subie_len, 305 &ext_id, match_len, 0); 306 307 /* Copy from parent if not in subie and inherited */ 308 if (!sub && 309 cfg80211_is_element_inherited(parent, non_inherit_elem)) { 310 if (!cfg80211_copy_elem_with_frags(parent, 311 ie, ielen, 312 &pos, new_ie, 313 new_ie_len)) 314 return 0; 315 316 continue; 317 } 318 319 /* Already copied if an earlier element had the same type */ 320 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, 321 &ext_id, match_len, 0)) 322 continue; 323 324 /* Not inheriting, copy all similar elements from subie */ 325 while (sub) { 326 if (!cfg80211_copy_elem_with_frags(sub, 327 subie, subie_len, 328 &pos, new_ie, 329 new_ie_len)) 330 return 0; 331 332 sub = cfg80211_find_elem_match(id, 333 sub->data + sub->datalen, 334 subie_len + subie - 335 (sub->data + 336 sub->datalen), 337 &ext_id, match_len, 0); 338 } 339 } 340 341 /* The above misses elements that are included in subie but not in the 342 * parent, so do a pass over subie and append those. 343 * Skip the non-tx BSSID caps and non-inheritance element. 344 */ 345 for_each_element(sub, subie, subie_len) { 346 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) 347 continue; 348 349 if (sub->id == WLAN_EID_FRAGMENT) 350 continue; 351 352 if (sub->id == WLAN_EID_EXTENSION) { 353 if (sub->datalen < 1) 354 continue; 355 356 id = WLAN_EID_EXTENSION; 357 ext_id = sub->data[0]; 358 match_len = 1; 359 360 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) 361 continue; 362 } else { 363 id = sub->id; 364 match_len = 0; 365 } 366 367 /* Processed if one was included in the parent */ 368 if (cfg80211_find_elem_match(id, ie, ielen, 369 &ext_id, match_len, 0)) 370 continue; 371 372 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, 373 &pos, new_ie, new_ie_len)) 374 return 0; 375 } 376 377 return pos - new_ie; 378 } 379 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie); 380 381 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 382 const u8 *ssid, size_t ssid_len) 383 { 384 const struct cfg80211_bss_ies *ies; 385 const struct element *ssid_elem; 386 387 if (bssid && !ether_addr_equal(a->bssid, bssid)) 388 return false; 389 390 if (!ssid) 391 return true; 392 393 ies = rcu_access_pointer(a->ies); 394 if (!ies) 395 return false; 396 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 397 if (!ssid_elem) 398 return false; 399 if (ssid_elem->datalen != ssid_len) 400 return false; 401 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 402 } 403 404 static int 405 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 406 struct cfg80211_bss *nontrans_bss) 407 { 408 const struct element *ssid_elem; 409 struct cfg80211_bss *bss = NULL; 410 411 rcu_read_lock(); 412 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 413 if (!ssid_elem) { 414 rcu_read_unlock(); 415 return -EINVAL; 416 } 417 418 /* check if nontrans_bss is in the list */ 419 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 420 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 421 ssid_elem->datalen)) { 422 rcu_read_unlock(); 423 return 0; 424 } 425 } 426 427 rcu_read_unlock(); 428 429 /* 430 * This is a bit weird - it's not on the list, but already on another 431 * one! The only way that could happen is if there's some BSSID/SSID 432 * shared by multiple APs in their multi-BSSID profiles, potentially 433 * with hidden SSID mixed in ... ignore it. 434 */ 435 if (!list_empty(&nontrans_bss->nontrans_list)) 436 return -EINVAL; 437 438 /* add to the list */ 439 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 440 return 0; 441 } 442 443 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 444 unsigned long expire_time) 445 { 446 struct cfg80211_internal_bss *bss, *tmp; 447 bool expired = false; 448 449 lockdep_assert_held(&rdev->bss_lock); 450 451 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 452 if (atomic_read(&bss->hold)) 453 continue; 454 if (!time_after(expire_time, bss->ts)) 455 continue; 456 457 if (__cfg80211_unlink_bss(rdev, bss)) 458 expired = true; 459 } 460 461 if (expired) 462 rdev->bss_generation++; 463 } 464 465 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 466 { 467 struct cfg80211_internal_bss *bss, *oldest = NULL; 468 bool ret; 469 470 lockdep_assert_held(&rdev->bss_lock); 471 472 list_for_each_entry(bss, &rdev->bss_list, list) { 473 if (atomic_read(&bss->hold)) 474 continue; 475 476 if (!list_empty(&bss->hidden_list) && 477 !bss->pub.hidden_beacon_bss) 478 continue; 479 480 if (oldest && time_before(oldest->ts, bss->ts)) 481 continue; 482 oldest = bss; 483 } 484 485 if (WARN_ON(!oldest)) 486 return false; 487 488 /* 489 * The callers make sure to increase rdev->bss_generation if anything 490 * gets removed (and a new entry added), so there's no need to also do 491 * it here. 492 */ 493 494 ret = __cfg80211_unlink_bss(rdev, oldest); 495 WARN_ON(!ret); 496 return ret; 497 } 498 499 static u8 cfg80211_parse_bss_param(u8 data, 500 struct cfg80211_colocated_ap *coloc_ap) 501 { 502 coloc_ap->oct_recommended = 503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 504 coloc_ap->same_ssid = 505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 506 coloc_ap->multi_bss = 507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 508 coloc_ap->transmitted_bssid = 509 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 510 coloc_ap->unsolicited_probe = 511 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 512 coloc_ap->colocated_ess = 513 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 514 515 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 516 } 517 518 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 519 const struct element **elem, u32 *s_ssid) 520 { 521 522 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 523 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 524 return -EINVAL; 525 526 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 527 return 0; 528 } 529 530 VISIBLE_IF_CFG80211_KUNIT void 531 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 532 { 533 struct cfg80211_colocated_ap *ap, *tmp_ap; 534 535 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 536 list_del(&ap->list); 537 kfree(ap); 538 } 539 } 540 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list); 541 542 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 543 const u8 *pos, u8 length, 544 const struct element *ssid_elem, 545 u32 s_ssid_tmp) 546 { 547 u8 bss_params; 548 549 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 550 551 /* The length is already verified by the caller to contain bss_params */ 552 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { 553 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; 554 555 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 556 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); 557 entry->short_ssid_valid = true; 558 559 bss_params = tbtt_info->bss_params; 560 561 /* Ignore disabled links */ 562 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { 563 if (le16_get_bits(tbtt_info->mld_params.params, 564 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) 565 return -EINVAL; 566 } 567 568 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 569 psd_20)) 570 entry->psd_20 = tbtt_info->psd_20; 571 } else { 572 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; 573 574 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 575 576 bss_params = tbtt_info->bss_params; 577 578 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 579 psd_20)) 580 entry->psd_20 = tbtt_info->psd_20; 581 } 582 583 /* ignore entries with invalid BSSID */ 584 if (!is_valid_ether_addr(entry->bssid)) 585 return -EINVAL; 586 587 /* skip non colocated APs */ 588 if (!cfg80211_parse_bss_param(bss_params, entry)) 589 return -EINVAL; 590 591 /* no information about the short ssid. Consider the entry valid 592 * for now. It would later be dropped in case there are explicit 593 * SSIDs that need to be matched 594 */ 595 if (!entry->same_ssid && !entry->short_ssid_valid) 596 return 0; 597 598 if (entry->same_ssid) { 599 entry->short_ssid = s_ssid_tmp; 600 entry->short_ssid_valid = true; 601 602 /* 603 * This is safe because we validate datalen in 604 * cfg80211_parse_colocated_ap(), before calling this 605 * function. 606 */ 607 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); 608 entry->ssid_len = ssid_elem->datalen; 609 } 610 611 return 0; 612 } 613 614 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len, 615 enum cfg80211_rnr_iter_ret 616 (*iter)(void *data, u8 type, 617 const struct ieee80211_neighbor_ap_info *info, 618 const u8 *tbtt_info, u8 tbtt_info_len), 619 void *iter_data) 620 { 621 const struct element *rnr; 622 const u8 *pos, *end; 623 624 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, 625 elems, elems_len) { 626 const struct ieee80211_neighbor_ap_info *info; 627 628 pos = rnr->data; 629 end = rnr->data + rnr->datalen; 630 631 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 632 while (sizeof(*info) <= end - pos) { 633 u8 length, i, count; 634 u8 type; 635 636 info = (void *)pos; 637 count = u8_get_bits(info->tbtt_info_hdr, 638 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 639 1; 640 length = info->tbtt_info_len; 641 642 pos += sizeof(*info); 643 644 if (count * length > end - pos) 645 return false; 646 647 type = u8_get_bits(info->tbtt_info_hdr, 648 IEEE80211_AP_INFO_TBTT_HDR_TYPE); 649 650 for (i = 0; i < count; i++) { 651 switch (iter(iter_data, type, info, 652 pos, length)) { 653 case RNR_ITER_CONTINUE: 654 break; 655 case RNR_ITER_BREAK: 656 return true; 657 case RNR_ITER_ERROR: 658 return false; 659 } 660 661 pos += length; 662 } 663 } 664 665 if (pos != end) 666 return false; 667 } 668 669 return true; 670 } 671 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr); 672 673 struct colocated_ap_data { 674 const struct element *ssid_elem; 675 struct list_head ap_list; 676 u32 s_ssid_tmp; 677 int n_coloc; 678 }; 679 680 static enum cfg80211_rnr_iter_ret 681 cfg80211_parse_colocated_ap_iter(void *_data, u8 type, 682 const struct ieee80211_neighbor_ap_info *info, 683 const u8 *tbtt_info, u8 tbtt_info_len) 684 { 685 struct colocated_ap_data *data = _data; 686 struct cfg80211_colocated_ap *entry; 687 enum nl80211_band band; 688 689 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT) 690 return RNR_ITER_CONTINUE; 691 692 if (!ieee80211_operating_class_to_band(info->op_class, &band)) 693 return RNR_ITER_CONTINUE; 694 695 /* TBTT info must include bss param + BSSID + (short SSID or 696 * same_ssid bit to be set). Ignore other options, and move to 697 * the next AP info 698 */ 699 if (band != NL80211_BAND_6GHZ || 700 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9, 701 bss_params) || 702 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) || 703 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11, 704 bss_params))) 705 return RNR_ITER_CONTINUE; 706 707 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC); 708 if (!entry) 709 return RNR_ITER_ERROR; 710 711 entry->center_freq = 712 ieee80211_channel_to_frequency(info->channel, band); 713 714 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len, 715 data->ssid_elem, data->s_ssid_tmp)) { 716 data->n_coloc++; 717 list_add_tail(&entry->list, &data->ap_list); 718 } else { 719 kfree(entry); 720 } 721 722 return RNR_ITER_CONTINUE; 723 } 724 725 VISIBLE_IF_CFG80211_KUNIT int 726 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 727 struct list_head *list) 728 { 729 struct colocated_ap_data data = {}; 730 int ret; 731 732 INIT_LIST_HEAD(&data.ap_list); 733 734 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp); 735 if (ret) 736 return 0; 737 738 if (!cfg80211_iter_rnr(ies->data, ies->len, 739 cfg80211_parse_colocated_ap_iter, &data)) { 740 cfg80211_free_coloc_ap_list(&data.ap_list); 741 return 0; 742 } 743 744 list_splice_tail(&data.ap_list, list); 745 return data.n_coloc; 746 } 747 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap); 748 749 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 750 struct ieee80211_channel *chan, 751 bool add_to_6ghz) 752 { 753 int i; 754 u32 n_channels = request->n_channels; 755 struct cfg80211_scan_6ghz_params *params = 756 &request->scan_6ghz_params[request->n_6ghz_params]; 757 758 for (i = 0; i < n_channels; i++) { 759 if (request->channels[i] == chan) { 760 if (add_to_6ghz) 761 params->channel_idx = i; 762 return; 763 } 764 } 765 766 request->channels[n_channels] = chan; 767 if (add_to_6ghz) 768 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 769 n_channels; 770 771 request->n_channels++; 772 } 773 774 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 775 struct cfg80211_scan_request *request) 776 { 777 int i; 778 u32 s_ssid; 779 780 for (i = 0; i < request->n_ssids; i++) { 781 /* wildcard ssid in the scan request */ 782 if (!request->ssids[i].ssid_len) { 783 if (ap->multi_bss && !ap->transmitted_bssid) 784 continue; 785 786 return true; 787 } 788 789 if (ap->ssid_len && 790 ap->ssid_len == request->ssids[i].ssid_len) { 791 if (!memcmp(request->ssids[i].ssid, ap->ssid, 792 ap->ssid_len)) 793 return true; 794 } else if (ap->short_ssid_valid) { 795 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 796 request->ssids[i].ssid_len); 797 798 if (ap->short_ssid == s_ssid) 799 return true; 800 } 801 } 802 803 return false; 804 } 805 806 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 807 { 808 u8 i; 809 struct cfg80211_colocated_ap *ap; 810 int n_channels, count = 0, err; 811 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 812 LIST_HEAD(coloc_ap_list); 813 bool need_scan_psc = true; 814 const struct ieee80211_sband_iftype_data *iftd; 815 size_t size, offs_ssids, offs_6ghz_params, offs_ies; 816 817 rdev_req->scan_6ghz = true; 818 819 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 820 return -EOPNOTSUPP; 821 822 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 823 rdev_req->wdev->iftype); 824 if (!iftd || !iftd->he_cap.has_he) 825 return -EOPNOTSUPP; 826 827 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 828 829 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 830 struct cfg80211_internal_bss *intbss; 831 832 spin_lock_bh(&rdev->bss_lock); 833 list_for_each_entry(intbss, &rdev->bss_list, list) { 834 struct cfg80211_bss *res = &intbss->pub; 835 const struct cfg80211_bss_ies *ies; 836 const struct element *ssid_elem; 837 struct cfg80211_colocated_ap *entry; 838 u32 s_ssid_tmp; 839 int ret; 840 841 ies = rcu_access_pointer(res->ies); 842 count += cfg80211_parse_colocated_ap(ies, 843 &coloc_ap_list); 844 845 /* In case the scan request specified a specific BSSID 846 * and the BSS is found and operating on 6GHz band then 847 * add this AP to the collocated APs list. 848 * This is relevant for ML probe requests when the lower 849 * band APs have not been discovered. 850 */ 851 if (is_broadcast_ether_addr(rdev_req->bssid) || 852 !ether_addr_equal(rdev_req->bssid, res->bssid) || 853 res->channel->band != NL80211_BAND_6GHZ) 854 continue; 855 856 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, 857 &s_ssid_tmp); 858 if (ret) 859 continue; 860 861 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 862 GFP_ATOMIC); 863 864 if (!entry) 865 continue; 866 867 memcpy(entry->bssid, res->bssid, ETH_ALEN); 868 entry->short_ssid = s_ssid_tmp; 869 memcpy(entry->ssid, ssid_elem->data, 870 ssid_elem->datalen); 871 entry->ssid_len = ssid_elem->datalen; 872 entry->short_ssid_valid = true; 873 entry->center_freq = res->channel->center_freq; 874 875 list_add_tail(&entry->list, &coloc_ap_list); 876 count++; 877 } 878 spin_unlock_bh(&rdev->bss_lock); 879 } 880 881 size = struct_size(request, channels, n_channels); 882 offs_ssids = size; 883 size += sizeof(*request->ssids) * rdev_req->n_ssids; 884 offs_6ghz_params = size; 885 size += sizeof(*request->scan_6ghz_params) * count; 886 offs_ies = size; 887 size += rdev_req->ie_len; 888 889 request = kzalloc(size, GFP_KERNEL); 890 if (!request) { 891 cfg80211_free_coloc_ap_list(&coloc_ap_list); 892 return -ENOMEM; 893 } 894 895 *request = *rdev_req; 896 request->n_channels = 0; 897 request->n_6ghz_params = 0; 898 if (rdev_req->n_ssids) { 899 /* 900 * Add the ssids from the parent scan request to the new 901 * scan request, so the driver would be able to use them 902 * in its probe requests to discover hidden APs on PSC 903 * channels. 904 */ 905 request->ssids = (void *)request + offs_ssids; 906 memcpy(request->ssids, rdev_req->ssids, 907 sizeof(*request->ssids) * request->n_ssids); 908 } 909 request->scan_6ghz_params = (void *)request + offs_6ghz_params; 910 911 if (rdev_req->ie_len) { 912 void *ie = (void *)request + offs_ies; 913 914 memcpy(ie, rdev_req->ie, rdev_req->ie_len); 915 request->ie = ie; 916 } 917 918 /* 919 * PSC channels should not be scanned in case of direct scan with 1 SSID 920 * and at least one of the reported co-located APs with same SSID 921 * indicating that all APs in the same ESS are co-located 922 */ 923 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 924 list_for_each_entry(ap, &coloc_ap_list, list) { 925 if (ap->colocated_ess && 926 cfg80211_find_ssid_match(ap, request)) { 927 need_scan_psc = false; 928 break; 929 } 930 } 931 } 932 933 /* 934 * add to the scan request the channels that need to be scanned 935 * regardless of the collocated APs (PSC channels or all channels 936 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 937 */ 938 for (i = 0; i < rdev_req->n_channels; i++) { 939 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 940 ((need_scan_psc && 941 cfg80211_channel_is_psc(rdev_req->channels[i])) || 942 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 943 cfg80211_scan_req_add_chan(request, 944 rdev_req->channels[i], 945 false); 946 } 947 } 948 949 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 950 goto skip; 951 952 list_for_each_entry(ap, &coloc_ap_list, list) { 953 bool found = false; 954 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 955 &request->scan_6ghz_params[request->n_6ghz_params]; 956 struct ieee80211_channel *chan = 957 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 958 959 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 960 continue; 961 962 for (i = 0; i < rdev_req->n_channels; i++) { 963 if (rdev_req->channels[i] == chan) 964 found = true; 965 } 966 967 if (!found) 968 continue; 969 970 if (request->n_ssids > 0 && 971 !cfg80211_find_ssid_match(ap, request)) 972 continue; 973 974 if (!is_broadcast_ether_addr(request->bssid) && 975 !ether_addr_equal(request->bssid, ap->bssid)) 976 continue; 977 978 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 979 continue; 980 981 cfg80211_scan_req_add_chan(request, chan, true); 982 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 983 scan_6ghz_params->short_ssid = ap->short_ssid; 984 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 985 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 986 scan_6ghz_params->psd_20 = ap->psd_20; 987 988 /* 989 * If a PSC channel is added to the scan and 'need_scan_psc' is 990 * set to false, then all the APs that the scan logic is 991 * interested with on the channel are collocated and thus there 992 * is no need to perform the initial PSC channel listen. 993 */ 994 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 995 scan_6ghz_params->psc_no_listen = true; 996 997 request->n_6ghz_params++; 998 } 999 1000 skip: 1001 cfg80211_free_coloc_ap_list(&coloc_ap_list); 1002 1003 if (request->n_channels) { 1004 struct cfg80211_scan_request *old = rdev->int_scan_req; 1005 1006 rdev->int_scan_req = request; 1007 1008 /* 1009 * If this scan follows a previous scan, save the scan start 1010 * info from the first part of the scan 1011 */ 1012 if (old) 1013 rdev->int_scan_req->info = old->info; 1014 1015 err = rdev_scan(rdev, request); 1016 if (err) { 1017 rdev->int_scan_req = old; 1018 kfree(request); 1019 } else { 1020 kfree(old); 1021 } 1022 1023 return err; 1024 } 1025 1026 kfree(request); 1027 return -EINVAL; 1028 } 1029 1030 int cfg80211_scan(struct cfg80211_registered_device *rdev) 1031 { 1032 struct cfg80211_scan_request *request; 1033 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 1034 u32 n_channels = 0, idx, i; 1035 1036 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 1037 return rdev_scan(rdev, rdev_req); 1038 1039 for (i = 0; i < rdev_req->n_channels; i++) { 1040 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1041 n_channels++; 1042 } 1043 1044 if (!n_channels) 1045 return cfg80211_scan_6ghz(rdev); 1046 1047 request = kzalloc(struct_size(request, channels, n_channels), 1048 GFP_KERNEL); 1049 if (!request) 1050 return -ENOMEM; 1051 1052 *request = *rdev_req; 1053 request->n_channels = n_channels; 1054 1055 for (i = idx = 0; i < rdev_req->n_channels; i++) { 1056 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1057 request->channels[idx++] = rdev_req->channels[i]; 1058 } 1059 1060 rdev_req->scan_6ghz = false; 1061 rdev->int_scan_req = request; 1062 return rdev_scan(rdev, request); 1063 } 1064 1065 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 1066 bool send_message) 1067 { 1068 struct cfg80211_scan_request *request, *rdev_req; 1069 struct wireless_dev *wdev; 1070 struct sk_buff *msg; 1071 #ifdef CONFIG_CFG80211_WEXT 1072 union iwreq_data wrqu; 1073 #endif 1074 1075 lockdep_assert_held(&rdev->wiphy.mtx); 1076 1077 if (rdev->scan_msg) { 1078 nl80211_send_scan_msg(rdev, rdev->scan_msg); 1079 rdev->scan_msg = NULL; 1080 return; 1081 } 1082 1083 rdev_req = rdev->scan_req; 1084 if (!rdev_req) 1085 return; 1086 1087 wdev = rdev_req->wdev; 1088 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 1089 1090 if (wdev_running(wdev) && 1091 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 1092 !rdev_req->scan_6ghz && !request->info.aborted && 1093 !cfg80211_scan_6ghz(rdev)) 1094 return; 1095 1096 /* 1097 * This must be before sending the other events! 1098 * Otherwise, wpa_supplicant gets completely confused with 1099 * wext events. 1100 */ 1101 if (wdev->netdev) 1102 cfg80211_sme_scan_done(wdev->netdev); 1103 1104 if (!request->info.aborted && 1105 request->flags & NL80211_SCAN_FLAG_FLUSH) { 1106 /* flush entries from previous scans */ 1107 spin_lock_bh(&rdev->bss_lock); 1108 __cfg80211_bss_expire(rdev, request->scan_start); 1109 spin_unlock_bh(&rdev->bss_lock); 1110 } 1111 1112 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 1113 1114 #ifdef CONFIG_CFG80211_WEXT 1115 if (wdev->netdev && !request->info.aborted) { 1116 memset(&wrqu, 0, sizeof(wrqu)); 1117 1118 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 1119 } 1120 #endif 1121 1122 dev_put(wdev->netdev); 1123 1124 kfree(rdev->int_scan_req); 1125 rdev->int_scan_req = NULL; 1126 1127 kfree(rdev->scan_req); 1128 rdev->scan_req = NULL; 1129 1130 if (!send_message) 1131 rdev->scan_msg = msg; 1132 else 1133 nl80211_send_scan_msg(rdev, msg); 1134 } 1135 1136 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) 1137 { 1138 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); 1139 } 1140 1141 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1142 struct cfg80211_scan_info *info) 1143 { 1144 struct cfg80211_scan_info old_info = request->info; 1145 1146 trace_cfg80211_scan_done(request, info); 1147 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1148 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1149 1150 request->info = *info; 1151 1152 /* 1153 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1154 * be of the first part. In such a case old_info.scan_start_tsf should 1155 * be non zero. 1156 */ 1157 if (request->scan_6ghz && old_info.scan_start_tsf) { 1158 request->info.scan_start_tsf = old_info.scan_start_tsf; 1159 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1160 sizeof(request->info.tsf_bssid)); 1161 } 1162 1163 request->notified = true; 1164 wiphy_work_queue(request->wiphy, 1165 &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1166 } 1167 EXPORT_SYMBOL(cfg80211_scan_done); 1168 1169 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1170 struct cfg80211_sched_scan_request *req) 1171 { 1172 lockdep_assert_held(&rdev->wiphy.mtx); 1173 1174 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1175 } 1176 1177 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1178 struct cfg80211_sched_scan_request *req) 1179 { 1180 lockdep_assert_held(&rdev->wiphy.mtx); 1181 1182 list_del_rcu(&req->list); 1183 kfree_rcu(req, rcu_head); 1184 } 1185 1186 static struct cfg80211_sched_scan_request * 1187 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1188 { 1189 struct cfg80211_sched_scan_request *pos; 1190 1191 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1192 lockdep_is_held(&rdev->wiphy.mtx)) { 1193 if (pos->reqid == reqid) 1194 return pos; 1195 } 1196 return NULL; 1197 } 1198 1199 /* 1200 * Determines if a scheduled scan request can be handled. When a legacy 1201 * scheduled scan is running no other scheduled scan is allowed regardless 1202 * whether the request is for legacy or multi-support scan. When a multi-support 1203 * scheduled scan is running a request for legacy scan is not allowed. In this 1204 * case a request for multi-support scan can be handled if resources are 1205 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1206 */ 1207 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1208 bool want_multi) 1209 { 1210 struct cfg80211_sched_scan_request *pos; 1211 int i = 0; 1212 1213 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1214 /* request id zero means legacy in progress */ 1215 if (!i && !pos->reqid) 1216 return -EINPROGRESS; 1217 i++; 1218 } 1219 1220 if (i) { 1221 /* no legacy allowed when multi request(s) are active */ 1222 if (!want_multi) 1223 return -EINPROGRESS; 1224 1225 /* resource limit reached */ 1226 if (i == rdev->wiphy.max_sched_scan_reqs) 1227 return -ENOSPC; 1228 } 1229 return 0; 1230 } 1231 1232 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1233 { 1234 struct cfg80211_registered_device *rdev; 1235 struct cfg80211_sched_scan_request *req, *tmp; 1236 1237 rdev = container_of(work, struct cfg80211_registered_device, 1238 sched_scan_res_wk); 1239 1240 wiphy_lock(&rdev->wiphy); 1241 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1242 if (req->report_results) { 1243 req->report_results = false; 1244 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1245 /* flush entries from previous scans */ 1246 spin_lock_bh(&rdev->bss_lock); 1247 __cfg80211_bss_expire(rdev, req->scan_start); 1248 spin_unlock_bh(&rdev->bss_lock); 1249 req->scan_start = jiffies; 1250 } 1251 nl80211_send_sched_scan(req, 1252 NL80211_CMD_SCHED_SCAN_RESULTS); 1253 } 1254 } 1255 wiphy_unlock(&rdev->wiphy); 1256 } 1257 1258 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1259 { 1260 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1261 struct cfg80211_sched_scan_request *request; 1262 1263 trace_cfg80211_sched_scan_results(wiphy, reqid); 1264 /* ignore if we're not scanning */ 1265 1266 rcu_read_lock(); 1267 request = cfg80211_find_sched_scan_req(rdev, reqid); 1268 if (request) { 1269 request->report_results = true; 1270 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1271 } 1272 rcu_read_unlock(); 1273 } 1274 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1275 1276 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1277 { 1278 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1279 1280 lockdep_assert_held(&wiphy->mtx); 1281 1282 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1283 1284 __cfg80211_stop_sched_scan(rdev, reqid, true); 1285 } 1286 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1287 1288 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1289 { 1290 wiphy_lock(wiphy); 1291 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1292 wiphy_unlock(wiphy); 1293 } 1294 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1295 1296 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1297 struct cfg80211_sched_scan_request *req, 1298 bool driver_initiated) 1299 { 1300 lockdep_assert_held(&rdev->wiphy.mtx); 1301 1302 if (!driver_initiated) { 1303 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1304 if (err) 1305 return err; 1306 } 1307 1308 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1309 1310 cfg80211_del_sched_scan_req(rdev, req); 1311 1312 return 0; 1313 } 1314 1315 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1316 u64 reqid, bool driver_initiated) 1317 { 1318 struct cfg80211_sched_scan_request *sched_scan_req; 1319 1320 lockdep_assert_held(&rdev->wiphy.mtx); 1321 1322 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1323 if (!sched_scan_req) 1324 return -ENOENT; 1325 1326 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1327 driver_initiated); 1328 } 1329 1330 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1331 unsigned long age_secs) 1332 { 1333 struct cfg80211_internal_bss *bss; 1334 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1335 1336 spin_lock_bh(&rdev->bss_lock); 1337 list_for_each_entry(bss, &rdev->bss_list, list) 1338 bss->ts -= age_jiffies; 1339 spin_unlock_bh(&rdev->bss_lock); 1340 } 1341 1342 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1343 { 1344 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1345 } 1346 1347 void cfg80211_bss_flush(struct wiphy *wiphy) 1348 { 1349 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1350 1351 spin_lock_bh(&rdev->bss_lock); 1352 __cfg80211_bss_expire(rdev, jiffies); 1353 spin_unlock_bh(&rdev->bss_lock); 1354 } 1355 EXPORT_SYMBOL(cfg80211_bss_flush); 1356 1357 const struct element * 1358 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1359 const u8 *match, unsigned int match_len, 1360 unsigned int match_offset) 1361 { 1362 const struct element *elem; 1363 1364 for_each_element_id(elem, eid, ies, len) { 1365 if (elem->datalen >= match_offset + match_len && 1366 !memcmp(elem->data + match_offset, match, match_len)) 1367 return elem; 1368 } 1369 1370 return NULL; 1371 } 1372 EXPORT_SYMBOL(cfg80211_find_elem_match); 1373 1374 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1375 const u8 *ies, 1376 unsigned int len) 1377 { 1378 const struct element *elem; 1379 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1380 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1381 1382 if (WARN_ON(oui_type > 0xff)) 1383 return NULL; 1384 1385 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1386 match, match_len, 0); 1387 1388 if (!elem || elem->datalen < 4) 1389 return NULL; 1390 1391 return elem; 1392 } 1393 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1394 1395 /** 1396 * enum bss_compare_mode - BSS compare mode 1397 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1398 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1399 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1400 */ 1401 enum bss_compare_mode { 1402 BSS_CMP_REGULAR, 1403 BSS_CMP_HIDE_ZLEN, 1404 BSS_CMP_HIDE_NUL, 1405 }; 1406 1407 static int cmp_bss(struct cfg80211_bss *a, 1408 struct cfg80211_bss *b, 1409 enum bss_compare_mode mode) 1410 { 1411 const struct cfg80211_bss_ies *a_ies, *b_ies; 1412 const u8 *ie1 = NULL; 1413 const u8 *ie2 = NULL; 1414 int i, r; 1415 1416 if (a->channel != b->channel) 1417 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1418 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1419 1420 a_ies = rcu_access_pointer(a->ies); 1421 if (!a_ies) 1422 return -1; 1423 b_ies = rcu_access_pointer(b->ies); 1424 if (!b_ies) 1425 return 1; 1426 1427 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1428 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1429 a_ies->data, a_ies->len); 1430 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1431 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1432 b_ies->data, b_ies->len); 1433 if (ie1 && ie2) { 1434 int mesh_id_cmp; 1435 1436 if (ie1[1] == ie2[1]) 1437 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1438 else 1439 mesh_id_cmp = ie2[1] - ie1[1]; 1440 1441 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1442 a_ies->data, a_ies->len); 1443 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1444 b_ies->data, b_ies->len); 1445 if (ie1 && ie2) { 1446 if (mesh_id_cmp) 1447 return mesh_id_cmp; 1448 if (ie1[1] != ie2[1]) 1449 return ie2[1] - ie1[1]; 1450 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1451 } 1452 } 1453 1454 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1455 if (r) 1456 return r; 1457 1458 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1459 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1460 1461 if (!ie1 && !ie2) 1462 return 0; 1463 1464 /* 1465 * Note that with "hide_ssid", the function returns a match if 1466 * the already-present BSS ("b") is a hidden SSID beacon for 1467 * the new BSS ("a"). 1468 */ 1469 1470 /* sort missing IE before (left of) present IE */ 1471 if (!ie1) 1472 return -1; 1473 if (!ie2) 1474 return 1; 1475 1476 switch (mode) { 1477 case BSS_CMP_HIDE_ZLEN: 1478 /* 1479 * In ZLEN mode we assume the BSS entry we're 1480 * looking for has a zero-length SSID. So if 1481 * the one we're looking at right now has that, 1482 * return 0. Otherwise, return the difference 1483 * in length, but since we're looking for the 1484 * 0-length it's really equivalent to returning 1485 * the length of the one we're looking at. 1486 * 1487 * No content comparison is needed as we assume 1488 * the content length is zero. 1489 */ 1490 return ie2[1]; 1491 case BSS_CMP_REGULAR: 1492 default: 1493 /* sort by length first, then by contents */ 1494 if (ie1[1] != ie2[1]) 1495 return ie2[1] - ie1[1]; 1496 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1497 case BSS_CMP_HIDE_NUL: 1498 if (ie1[1] != ie2[1]) 1499 return ie2[1] - ie1[1]; 1500 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1501 for (i = 0; i < ie2[1]; i++) 1502 if (ie2[i + 2]) 1503 return -1; 1504 return 0; 1505 } 1506 } 1507 1508 static bool cfg80211_bss_type_match(u16 capability, 1509 enum nl80211_band band, 1510 enum ieee80211_bss_type bss_type) 1511 { 1512 bool ret = true; 1513 u16 mask, val; 1514 1515 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1516 return ret; 1517 1518 if (band == NL80211_BAND_60GHZ) { 1519 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1520 switch (bss_type) { 1521 case IEEE80211_BSS_TYPE_ESS: 1522 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1523 break; 1524 case IEEE80211_BSS_TYPE_PBSS: 1525 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1526 break; 1527 case IEEE80211_BSS_TYPE_IBSS: 1528 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1529 break; 1530 default: 1531 return false; 1532 } 1533 } else { 1534 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1535 switch (bss_type) { 1536 case IEEE80211_BSS_TYPE_ESS: 1537 val = WLAN_CAPABILITY_ESS; 1538 break; 1539 case IEEE80211_BSS_TYPE_IBSS: 1540 val = WLAN_CAPABILITY_IBSS; 1541 break; 1542 case IEEE80211_BSS_TYPE_MBSS: 1543 val = 0; 1544 break; 1545 default: 1546 return false; 1547 } 1548 } 1549 1550 ret = ((capability & mask) == val); 1551 return ret; 1552 } 1553 1554 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1555 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, 1556 struct ieee80211_channel *channel, 1557 const u8 *bssid, 1558 const u8 *ssid, size_t ssid_len, 1559 enum ieee80211_bss_type bss_type, 1560 enum ieee80211_privacy privacy, 1561 u32 use_for) 1562 { 1563 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1564 struct cfg80211_internal_bss *bss, *res = NULL; 1565 unsigned long now = jiffies; 1566 int bss_privacy; 1567 1568 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1569 privacy); 1570 1571 spin_lock_bh(&rdev->bss_lock); 1572 1573 list_for_each_entry(bss, &rdev->bss_list, list) { 1574 if (!cfg80211_bss_type_match(bss->pub.capability, 1575 bss->pub.channel->band, bss_type)) 1576 continue; 1577 1578 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1579 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1580 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1581 continue; 1582 if (channel && bss->pub.channel != channel) 1583 continue; 1584 if (!is_valid_ether_addr(bss->pub.bssid)) 1585 continue; 1586 if ((bss->pub.use_for & use_for) != use_for) 1587 continue; 1588 /* Don't get expired BSS structs */ 1589 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1590 !atomic_read(&bss->hold)) 1591 continue; 1592 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1593 res = bss; 1594 bss_ref_get(rdev, res); 1595 break; 1596 } 1597 } 1598 1599 spin_unlock_bh(&rdev->bss_lock); 1600 if (!res) 1601 return NULL; 1602 trace_cfg80211_return_bss(&res->pub); 1603 return &res->pub; 1604 } 1605 EXPORT_SYMBOL(__cfg80211_get_bss); 1606 1607 static bool rb_insert_bss(struct cfg80211_registered_device *rdev, 1608 struct cfg80211_internal_bss *bss) 1609 { 1610 struct rb_node **p = &rdev->bss_tree.rb_node; 1611 struct rb_node *parent = NULL; 1612 struct cfg80211_internal_bss *tbss; 1613 int cmp; 1614 1615 while (*p) { 1616 parent = *p; 1617 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1618 1619 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1620 1621 if (WARN_ON(!cmp)) { 1622 /* will sort of leak this BSS */ 1623 return false; 1624 } 1625 1626 if (cmp < 0) 1627 p = &(*p)->rb_left; 1628 else 1629 p = &(*p)->rb_right; 1630 } 1631 1632 rb_link_node(&bss->rbn, parent, p); 1633 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1634 return true; 1635 } 1636 1637 static struct cfg80211_internal_bss * 1638 rb_find_bss(struct cfg80211_registered_device *rdev, 1639 struct cfg80211_internal_bss *res, 1640 enum bss_compare_mode mode) 1641 { 1642 struct rb_node *n = rdev->bss_tree.rb_node; 1643 struct cfg80211_internal_bss *bss; 1644 int r; 1645 1646 while (n) { 1647 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1648 r = cmp_bss(&res->pub, &bss->pub, mode); 1649 1650 if (r == 0) 1651 return bss; 1652 else if (r < 0) 1653 n = n->rb_left; 1654 else 1655 n = n->rb_right; 1656 } 1657 1658 return NULL; 1659 } 1660 1661 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev, 1662 struct cfg80211_internal_bss *bss) 1663 { 1664 lockdep_assert_held(&rdev->bss_lock); 1665 1666 if (!rb_insert_bss(rdev, bss)) 1667 return; 1668 list_add_tail(&bss->list, &rdev->bss_list); 1669 rdev->bss_entries++; 1670 } 1671 1672 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev, 1673 struct cfg80211_internal_bss *bss) 1674 { 1675 lockdep_assert_held(&rdev->bss_lock); 1676 1677 rb_erase(&bss->rbn, &rdev->bss_tree); 1678 if (!rb_insert_bss(rdev, bss)) { 1679 list_del(&bss->list); 1680 if (!list_empty(&bss->hidden_list)) 1681 list_del_init(&bss->hidden_list); 1682 if (!list_empty(&bss->pub.nontrans_list)) 1683 list_del_init(&bss->pub.nontrans_list); 1684 rdev->bss_entries--; 1685 } 1686 rdev->bss_generation++; 1687 } 1688 1689 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1690 struct cfg80211_internal_bss *new) 1691 { 1692 const struct cfg80211_bss_ies *ies; 1693 struct cfg80211_internal_bss *bss; 1694 const u8 *ie; 1695 int i, ssidlen; 1696 u8 fold = 0; 1697 u32 n_entries = 0; 1698 1699 ies = rcu_access_pointer(new->pub.beacon_ies); 1700 if (WARN_ON(!ies)) 1701 return false; 1702 1703 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1704 if (!ie) { 1705 /* nothing to do */ 1706 return true; 1707 } 1708 1709 ssidlen = ie[1]; 1710 for (i = 0; i < ssidlen; i++) 1711 fold |= ie[2 + i]; 1712 1713 if (fold) { 1714 /* not a hidden SSID */ 1715 return true; 1716 } 1717 1718 /* This is the bad part ... */ 1719 1720 list_for_each_entry(bss, &rdev->bss_list, list) { 1721 /* 1722 * we're iterating all the entries anyway, so take the 1723 * opportunity to validate the list length accounting 1724 */ 1725 n_entries++; 1726 1727 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1728 continue; 1729 if (bss->pub.channel != new->pub.channel) 1730 continue; 1731 if (rcu_access_pointer(bss->pub.beacon_ies)) 1732 continue; 1733 ies = rcu_access_pointer(bss->pub.ies); 1734 if (!ies) 1735 continue; 1736 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1737 if (!ie) 1738 continue; 1739 if (ssidlen && ie[1] != ssidlen) 1740 continue; 1741 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1742 continue; 1743 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1744 list_del(&bss->hidden_list); 1745 /* combine them */ 1746 list_add(&bss->hidden_list, &new->hidden_list); 1747 bss->pub.hidden_beacon_bss = &new->pub; 1748 new->refcount += bss->refcount; 1749 rcu_assign_pointer(bss->pub.beacon_ies, 1750 new->pub.beacon_ies); 1751 } 1752 1753 WARN_ONCE(n_entries != rdev->bss_entries, 1754 "rdev bss entries[%d]/list[len:%d] corruption\n", 1755 rdev->bss_entries, n_entries); 1756 1757 return true; 1758 } 1759 1760 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1761 const struct cfg80211_bss_ies *new_ies, 1762 const struct cfg80211_bss_ies *old_ies) 1763 { 1764 struct cfg80211_internal_bss *bss; 1765 1766 /* Assign beacon IEs to all sub entries */ 1767 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1768 const struct cfg80211_bss_ies *ies; 1769 1770 ies = rcu_access_pointer(bss->pub.beacon_ies); 1771 WARN_ON(ies != old_ies); 1772 1773 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1774 } 1775 } 1776 1777 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev, 1778 struct cfg80211_internal_bss *known, 1779 const struct cfg80211_bss_ies *old) 1780 { 1781 const struct ieee80211_ext_chansw_ie *ecsa; 1782 const struct element *elem_new, *elem_old; 1783 const struct cfg80211_bss_ies *new, *bcn; 1784 1785 if (known->pub.proberesp_ecsa_stuck) 1786 return; 1787 1788 new = rcu_dereference_protected(known->pub.proberesp_ies, 1789 lockdep_is_held(&rdev->bss_lock)); 1790 if (WARN_ON(!new)) 1791 return; 1792 1793 if (new->tsf - old->tsf < USEC_PER_SEC) 1794 return; 1795 1796 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1797 old->data, old->len); 1798 if (!elem_old) 1799 return; 1800 1801 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1802 new->data, new->len); 1803 if (!elem_new) 1804 return; 1805 1806 bcn = rcu_dereference_protected(known->pub.beacon_ies, 1807 lockdep_is_held(&rdev->bss_lock)); 1808 if (bcn && 1809 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1810 bcn->data, bcn->len)) 1811 return; 1812 1813 if (elem_new->datalen != elem_old->datalen) 1814 return; 1815 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie)) 1816 return; 1817 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen)) 1818 return; 1819 1820 ecsa = (void *)elem_new->data; 1821 1822 if (!ecsa->mode) 1823 return; 1824 1825 if (ecsa->new_ch_num != 1826 ieee80211_frequency_to_channel(known->pub.channel->center_freq)) 1827 return; 1828 1829 known->pub.proberesp_ecsa_stuck = 1; 1830 } 1831 1832 static bool 1833 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1834 struct cfg80211_internal_bss *known, 1835 struct cfg80211_internal_bss *new, 1836 bool signal_valid) 1837 { 1838 lockdep_assert_held(&rdev->bss_lock); 1839 1840 /* Update IEs */ 1841 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1842 const struct cfg80211_bss_ies *old; 1843 1844 old = rcu_access_pointer(known->pub.proberesp_ies); 1845 1846 rcu_assign_pointer(known->pub.proberesp_ies, 1847 new->pub.proberesp_ies); 1848 /* Override possible earlier Beacon frame IEs */ 1849 rcu_assign_pointer(known->pub.ies, 1850 new->pub.proberesp_ies); 1851 if (old) { 1852 cfg80211_check_stuck_ecsa(rdev, known, old); 1853 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1854 } 1855 } 1856 1857 if (rcu_access_pointer(new->pub.beacon_ies)) { 1858 const struct cfg80211_bss_ies *old; 1859 1860 if (known->pub.hidden_beacon_bss && 1861 !list_empty(&known->hidden_list)) { 1862 const struct cfg80211_bss_ies *f; 1863 1864 /* The known BSS struct is one of the probe 1865 * response members of a group, but we're 1866 * receiving a beacon (beacon_ies in the new 1867 * bss is used). This can only mean that the 1868 * AP changed its beacon from not having an 1869 * SSID to showing it, which is confusing so 1870 * drop this information. 1871 */ 1872 1873 f = rcu_access_pointer(new->pub.beacon_ies); 1874 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1875 return false; 1876 } 1877 1878 old = rcu_access_pointer(known->pub.beacon_ies); 1879 1880 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1881 1882 /* Override IEs if they were from a beacon before */ 1883 if (old == rcu_access_pointer(known->pub.ies)) 1884 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1885 1886 cfg80211_update_hidden_bsses(known, 1887 rcu_access_pointer(new->pub.beacon_ies), 1888 old); 1889 1890 if (old) 1891 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1892 } 1893 1894 known->pub.beacon_interval = new->pub.beacon_interval; 1895 1896 /* don't update the signal if beacon was heard on 1897 * adjacent channel. 1898 */ 1899 if (signal_valid) 1900 known->pub.signal = new->pub.signal; 1901 known->pub.capability = new->pub.capability; 1902 known->ts = new->ts; 1903 known->ts_boottime = new->ts_boottime; 1904 known->parent_tsf = new->parent_tsf; 1905 known->pub.chains = new->pub.chains; 1906 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1907 IEEE80211_MAX_CHAINS); 1908 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1909 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1910 known->pub.bssid_index = new->pub.bssid_index; 1911 known->pub.use_for &= new->pub.use_for; 1912 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons; 1913 1914 return true; 1915 } 1916 1917 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1918 static struct cfg80211_internal_bss * 1919 __cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1920 struct cfg80211_internal_bss *tmp, 1921 bool signal_valid, unsigned long ts) 1922 { 1923 struct cfg80211_internal_bss *found = NULL; 1924 struct cfg80211_bss_ies *ies; 1925 1926 if (WARN_ON(!tmp->pub.channel)) 1927 goto free_ies; 1928 1929 tmp->ts = ts; 1930 1931 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) 1932 goto free_ies; 1933 1934 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1935 1936 if (found) { 1937 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1938 return NULL; 1939 } else { 1940 struct cfg80211_internal_bss *new; 1941 struct cfg80211_internal_bss *hidden; 1942 1943 /* 1944 * create a copy -- the "res" variable that is passed in 1945 * is allocated on the stack since it's not needed in the 1946 * more common case of an update 1947 */ 1948 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1949 GFP_ATOMIC); 1950 if (!new) 1951 goto free_ies; 1952 memcpy(new, tmp, sizeof(*new)); 1953 new->refcount = 1; 1954 INIT_LIST_HEAD(&new->hidden_list); 1955 INIT_LIST_HEAD(&new->pub.nontrans_list); 1956 /* we'll set this later if it was non-NULL */ 1957 new->pub.transmitted_bss = NULL; 1958 1959 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1960 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1961 if (!hidden) 1962 hidden = rb_find_bss(rdev, tmp, 1963 BSS_CMP_HIDE_NUL); 1964 if (hidden) { 1965 new->pub.hidden_beacon_bss = &hidden->pub; 1966 list_add(&new->hidden_list, 1967 &hidden->hidden_list); 1968 hidden->refcount++; 1969 1970 ies = (void *)rcu_access_pointer(new->pub.beacon_ies); 1971 rcu_assign_pointer(new->pub.beacon_ies, 1972 hidden->pub.beacon_ies); 1973 if (ies) 1974 kfree_rcu(ies, rcu_head); 1975 } 1976 } else { 1977 /* 1978 * Ok so we found a beacon, and don't have an entry. If 1979 * it's a beacon with hidden SSID, we might be in for an 1980 * expensive search for any probe responses that should 1981 * be grouped with this beacon for updates ... 1982 */ 1983 if (!cfg80211_combine_bsses(rdev, new)) { 1984 bss_ref_put(rdev, new); 1985 return NULL; 1986 } 1987 } 1988 1989 if (rdev->bss_entries >= bss_entries_limit && 1990 !cfg80211_bss_expire_oldest(rdev)) { 1991 bss_ref_put(rdev, new); 1992 return NULL; 1993 } 1994 1995 /* This must be before the call to bss_ref_get */ 1996 if (tmp->pub.transmitted_bss) { 1997 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1998 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 1999 } 2000 2001 cfg80211_insert_bss(rdev, new); 2002 found = new; 2003 } 2004 2005 rdev->bss_generation++; 2006 bss_ref_get(rdev, found); 2007 2008 return found; 2009 2010 free_ies: 2011 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 2012 if (ies) 2013 kfree_rcu(ies, rcu_head); 2014 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 2015 if (ies) 2016 kfree_rcu(ies, rcu_head); 2017 2018 return NULL; 2019 } 2020 2021 struct cfg80211_internal_bss * 2022 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 2023 struct cfg80211_internal_bss *tmp, 2024 bool signal_valid, unsigned long ts) 2025 { 2026 struct cfg80211_internal_bss *res; 2027 2028 spin_lock_bh(&rdev->bss_lock); 2029 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); 2030 spin_unlock_bh(&rdev->bss_lock); 2031 2032 return res; 2033 } 2034 2035 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 2036 enum nl80211_band band) 2037 { 2038 const struct element *tmp; 2039 2040 if (band == NL80211_BAND_6GHZ) { 2041 struct ieee80211_he_operation *he_oper; 2042 2043 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 2044 ielen); 2045 if (tmp && tmp->datalen >= sizeof(*he_oper) && 2046 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 2047 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 2048 2049 he_oper = (void *)&tmp->data[1]; 2050 2051 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 2052 if (!he_6ghz_oper) 2053 return -1; 2054 2055 return he_6ghz_oper->primary; 2056 } 2057 } else if (band == NL80211_BAND_S1GHZ) { 2058 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 2059 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 2060 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 2061 2062 return s1gop->oper_ch; 2063 } 2064 } else { 2065 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 2066 if (tmp && tmp->datalen == 1) 2067 return tmp->data[0]; 2068 2069 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 2070 if (tmp && 2071 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 2072 struct ieee80211_ht_operation *htop = (void *)tmp->data; 2073 2074 return htop->primary_chan; 2075 } 2076 } 2077 2078 return -1; 2079 } 2080 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 2081 2082 /* 2083 * Update RX channel information based on the available frame payload 2084 * information. This is mainly for the 2.4 GHz band where frames can be received 2085 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 2086 * element to indicate the current (transmitting) channel, but this might also 2087 * be needed on other bands if RX frequency does not match with the actual 2088 * operating channel of a BSS, or if the AP reports a different primary channel. 2089 */ 2090 static struct ieee80211_channel * 2091 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 2092 struct ieee80211_channel *channel) 2093 { 2094 u32 freq; 2095 int channel_number; 2096 struct ieee80211_channel *alt_channel; 2097 2098 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 2099 channel->band); 2100 2101 if (channel_number < 0) { 2102 /* No channel information in frame payload */ 2103 return channel; 2104 } 2105 2106 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 2107 2108 /* 2109 * Frame info (beacon/prob res) is the same as received channel, 2110 * no need for further processing. 2111 */ 2112 if (freq == ieee80211_channel_to_khz(channel)) 2113 return channel; 2114 2115 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 2116 if (!alt_channel) { 2117 if (channel->band == NL80211_BAND_2GHZ || 2118 channel->band == NL80211_BAND_6GHZ) { 2119 /* 2120 * Better not allow unexpected channels when that could 2121 * be going beyond the 1-11 range (e.g., discovering 2122 * BSS on channel 12 when radio is configured for 2123 * channel 11) or beyond the 6 GHz channel range. 2124 */ 2125 return NULL; 2126 } 2127 2128 /* No match for the payload channel number - ignore it */ 2129 return channel; 2130 } 2131 2132 /* 2133 * Use the channel determined through the payload channel number 2134 * instead of the RX channel reported by the driver. 2135 */ 2136 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 2137 return NULL; 2138 return alt_channel; 2139 } 2140 2141 struct cfg80211_inform_single_bss_data { 2142 struct cfg80211_inform_bss *drv_data; 2143 enum cfg80211_bss_frame_type ftype; 2144 struct ieee80211_channel *channel; 2145 u8 bssid[ETH_ALEN]; 2146 u64 tsf; 2147 u16 capability; 2148 u16 beacon_interval; 2149 const u8 *ie; 2150 size_t ielen; 2151 2152 enum { 2153 BSS_SOURCE_DIRECT = 0, 2154 BSS_SOURCE_MBSSID, 2155 BSS_SOURCE_STA_PROFILE, 2156 } bss_source; 2157 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ 2158 struct cfg80211_bss *source_bss; 2159 u8 max_bssid_indicator; 2160 u8 bssid_index; 2161 2162 u8 use_for; 2163 u64 cannot_use_reasons; 2164 }; 2165 2166 enum ieee80211_ap_reg_power 2167 cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len) 2168 { 2169 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 2170 struct ieee80211_he_operation *he_oper; 2171 const struct element *tmp; 2172 2173 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 2174 elems, elems_len); 2175 if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 || 2176 tmp->datalen < ieee80211_he_oper_size(tmp->data + 1)) 2177 return IEEE80211_REG_UNSET_AP; 2178 2179 he_oper = (void *)&tmp->data[1]; 2180 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 2181 2182 if (!he_6ghz_oper) 2183 return IEEE80211_REG_UNSET_AP; 2184 2185 switch (u8_get_bits(he_6ghz_oper->control, 2186 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 2187 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 2188 case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP: 2189 return IEEE80211_REG_LPI_AP; 2190 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 2191 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP: 2192 return IEEE80211_REG_SP_AP; 2193 case IEEE80211_6GHZ_CTRL_REG_VLP_AP: 2194 return IEEE80211_REG_VLP_AP; 2195 default: 2196 return IEEE80211_REG_UNSET_AP; 2197 } 2198 } 2199 2200 static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len, 2201 const u32 flags) 2202 { 2203 switch (cfg80211_get_6ghz_power_type(elems, elems_len)) { 2204 case IEEE80211_REG_LPI_AP: 2205 return true; 2206 case IEEE80211_REG_SP_AP: 2207 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT); 2208 case IEEE80211_REG_VLP_AP: 2209 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT); 2210 default: 2211 return false; 2212 } 2213 } 2214 2215 /* Returned bss is reference counted and must be cleaned up appropriately. */ 2216 static struct cfg80211_bss * 2217 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 2218 struct cfg80211_inform_single_bss_data *data, 2219 gfp_t gfp) 2220 { 2221 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2222 struct cfg80211_inform_bss *drv_data = data->drv_data; 2223 struct cfg80211_bss_ies *ies; 2224 struct ieee80211_channel *channel; 2225 struct cfg80211_internal_bss tmp = {}, *res; 2226 int bss_type; 2227 bool signal_valid; 2228 unsigned long ts; 2229 2230 if (WARN_ON(!wiphy)) 2231 return NULL; 2232 2233 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2234 (drv_data->signal < 0 || drv_data->signal > 100))) 2235 return NULL; 2236 2237 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) 2238 return NULL; 2239 2240 channel = data->channel; 2241 if (!channel) 2242 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, 2243 drv_data->chan); 2244 if (!channel) 2245 return NULL; 2246 2247 if (channel->band == NL80211_BAND_6GHZ && 2248 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen, 2249 channel->flags)) { 2250 data->use_for = 0; 2251 data->cannot_use_reasons = 2252 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH; 2253 } 2254 2255 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); 2256 tmp.pub.channel = channel; 2257 if (data->bss_source != BSS_SOURCE_STA_PROFILE) 2258 tmp.pub.signal = drv_data->signal; 2259 else 2260 tmp.pub.signal = 0; 2261 tmp.pub.beacon_interval = data->beacon_interval; 2262 tmp.pub.capability = data->capability; 2263 tmp.ts_boottime = drv_data->boottime_ns; 2264 tmp.parent_tsf = drv_data->parent_tsf; 2265 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); 2266 tmp.pub.chains = drv_data->chains; 2267 memcpy(tmp.pub.chain_signal, drv_data->chain_signal, 2268 IEEE80211_MAX_CHAINS); 2269 tmp.pub.use_for = data->use_for; 2270 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 2271 2272 switch (data->bss_source) { 2273 case BSS_SOURCE_MBSSID: 2274 tmp.pub.transmitted_bss = data->source_bss; 2275 fallthrough; 2276 case BSS_SOURCE_STA_PROFILE: 2277 ts = bss_from_pub(data->source_bss)->ts; 2278 tmp.pub.bssid_index = data->bssid_index; 2279 tmp.pub.max_bssid_indicator = data->max_bssid_indicator; 2280 break; 2281 case BSS_SOURCE_DIRECT: 2282 ts = jiffies; 2283 2284 if (channel->band == NL80211_BAND_60GHZ) { 2285 bss_type = data->capability & 2286 WLAN_CAPABILITY_DMG_TYPE_MASK; 2287 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2288 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2289 regulatory_hint_found_beacon(wiphy, channel, 2290 gfp); 2291 } else { 2292 if (data->capability & WLAN_CAPABILITY_ESS) 2293 regulatory_hint_found_beacon(wiphy, channel, 2294 gfp); 2295 } 2296 break; 2297 } 2298 2299 /* 2300 * If we do not know here whether the IEs are from a Beacon or Probe 2301 * Response frame, we need to pick one of the options and only use it 2302 * with the driver that does not provide the full Beacon/Probe Response 2303 * frame. Use Beacon frame pointer to avoid indicating that this should 2304 * override the IEs pointer should we have received an earlier 2305 * indication of Probe Response data. 2306 */ 2307 ies = kzalloc(sizeof(*ies) + data->ielen, gfp); 2308 if (!ies) 2309 return NULL; 2310 ies->len = data->ielen; 2311 ies->tsf = data->tsf; 2312 ies->from_beacon = false; 2313 memcpy(ies->data, data->ie, data->ielen); 2314 2315 switch (data->ftype) { 2316 case CFG80211_BSS_FTYPE_BEACON: 2317 case CFG80211_BSS_FTYPE_S1G_BEACON: 2318 ies->from_beacon = true; 2319 fallthrough; 2320 case CFG80211_BSS_FTYPE_UNKNOWN: 2321 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2322 break; 2323 case CFG80211_BSS_FTYPE_PRESP: 2324 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2325 break; 2326 } 2327 rcu_assign_pointer(tmp.pub.ies, ies); 2328 2329 signal_valid = drv_data->chan == channel; 2330 spin_lock_bh(&rdev->bss_lock); 2331 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); 2332 if (!res) 2333 goto drop; 2334 2335 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data); 2336 2337 if (data->bss_source == BSS_SOURCE_MBSSID) { 2338 /* this is a nontransmitting bss, we need to add it to 2339 * transmitting bss' list if it is not there 2340 */ 2341 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { 2342 if (__cfg80211_unlink_bss(rdev, res)) { 2343 rdev->bss_generation++; 2344 res = NULL; 2345 } 2346 } 2347 2348 if (!res) 2349 goto drop; 2350 } 2351 spin_unlock_bh(&rdev->bss_lock); 2352 2353 trace_cfg80211_return_bss(&res->pub); 2354 /* __cfg80211_bss_update gives us a referenced result */ 2355 return &res->pub; 2356 2357 drop: 2358 spin_unlock_bh(&rdev->bss_lock); 2359 return NULL; 2360 } 2361 2362 static const struct element 2363 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2364 const struct element *mbssid_elem, 2365 const struct element *sub_elem) 2366 { 2367 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2368 const struct element *next_mbssid; 2369 const struct element *next_sub; 2370 2371 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2372 mbssid_end, 2373 ielen - (mbssid_end - ie)); 2374 2375 /* 2376 * If it is not the last subelement in current MBSSID IE or there isn't 2377 * a next MBSSID IE - profile is complete. 2378 */ 2379 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2380 !next_mbssid) 2381 return NULL; 2382 2383 /* For any length error, just return NULL */ 2384 2385 if (next_mbssid->datalen < 4) 2386 return NULL; 2387 2388 next_sub = (void *)&next_mbssid->data[1]; 2389 2390 if (next_mbssid->data + next_mbssid->datalen < 2391 next_sub->data + next_sub->datalen) 2392 return NULL; 2393 2394 if (next_sub->id != 0 || next_sub->datalen < 2) 2395 return NULL; 2396 2397 /* 2398 * Check if the first element in the next sub element is a start 2399 * of a new profile 2400 */ 2401 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2402 NULL : next_mbssid; 2403 } 2404 2405 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2406 const struct element *mbssid_elem, 2407 const struct element *sub_elem, 2408 u8 *merged_ie, size_t max_copy_len) 2409 { 2410 size_t copied_len = sub_elem->datalen; 2411 const struct element *next_mbssid; 2412 2413 if (sub_elem->datalen > max_copy_len) 2414 return 0; 2415 2416 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2417 2418 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2419 mbssid_elem, 2420 sub_elem))) { 2421 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2422 2423 if (copied_len + next_sub->datalen > max_copy_len) 2424 break; 2425 memcpy(merged_ie + copied_len, next_sub->data, 2426 next_sub->datalen); 2427 copied_len += next_sub->datalen; 2428 } 2429 2430 return copied_len; 2431 } 2432 EXPORT_SYMBOL(cfg80211_merge_profile); 2433 2434 static void 2435 cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2436 struct cfg80211_inform_single_bss_data *tx_data, 2437 struct cfg80211_bss *source_bss, 2438 gfp_t gfp) 2439 { 2440 struct cfg80211_inform_single_bss_data data = { 2441 .drv_data = tx_data->drv_data, 2442 .ftype = tx_data->ftype, 2443 .tsf = tx_data->tsf, 2444 .beacon_interval = tx_data->beacon_interval, 2445 .source_bss = source_bss, 2446 .bss_source = BSS_SOURCE_MBSSID, 2447 .use_for = tx_data->use_for, 2448 .cannot_use_reasons = tx_data->cannot_use_reasons, 2449 }; 2450 const u8 *mbssid_index_ie; 2451 const struct element *elem, *sub; 2452 u8 *new_ie, *profile; 2453 u64 seen_indices = 0; 2454 struct cfg80211_bss *bss; 2455 2456 if (!source_bss) 2457 return; 2458 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2459 tx_data->ie, tx_data->ielen)) 2460 return; 2461 if (!wiphy->support_mbssid) 2462 return; 2463 if (wiphy->support_only_he_mbssid && 2464 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, 2465 tx_data->ie, tx_data->ielen)) 2466 return; 2467 2468 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2469 if (!new_ie) 2470 return; 2471 2472 profile = kmalloc(tx_data->ielen, gfp); 2473 if (!profile) 2474 goto out; 2475 2476 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, 2477 tx_data->ie, tx_data->ielen) { 2478 if (elem->datalen < 4) 2479 continue; 2480 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2481 continue; 2482 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2483 u8 profile_len; 2484 2485 if (sub->id != 0 || sub->datalen < 4) { 2486 /* not a valid BSS profile */ 2487 continue; 2488 } 2489 2490 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2491 sub->data[1] != 2) { 2492 /* The first element within the Nontransmitted 2493 * BSSID Profile is not the Nontransmitted 2494 * BSSID Capability element. 2495 */ 2496 continue; 2497 } 2498 2499 memset(profile, 0, tx_data->ielen); 2500 profile_len = cfg80211_merge_profile(tx_data->ie, 2501 tx_data->ielen, 2502 elem, 2503 sub, 2504 profile, 2505 tx_data->ielen); 2506 2507 /* found a Nontransmitted BSSID Profile */ 2508 mbssid_index_ie = cfg80211_find_ie 2509 (WLAN_EID_MULTI_BSSID_IDX, 2510 profile, profile_len); 2511 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2512 mbssid_index_ie[2] == 0 || 2513 mbssid_index_ie[2] > 46 || 2514 mbssid_index_ie[2] >= (1 << elem->data[0])) { 2515 /* No valid Multiple BSSID-Index element */ 2516 continue; 2517 } 2518 2519 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2520 /* We don't support legacy split of a profile */ 2521 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2522 mbssid_index_ie[2]); 2523 2524 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2525 2526 data.bssid_index = mbssid_index_ie[2]; 2527 data.max_bssid_indicator = elem->data[0]; 2528 2529 cfg80211_gen_new_bssid(tx_data->bssid, 2530 data.max_bssid_indicator, 2531 data.bssid_index, 2532 data.bssid); 2533 2534 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2535 data.ie = new_ie; 2536 data.ielen = cfg80211_gen_new_ie(tx_data->ie, 2537 tx_data->ielen, 2538 profile, 2539 profile_len, 2540 new_ie, 2541 IEEE80211_MAX_DATA_LEN); 2542 if (!data.ielen) 2543 continue; 2544 2545 data.capability = get_unaligned_le16(profile + 2); 2546 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2547 if (!bss) 2548 break; 2549 cfg80211_put_bss(wiphy, bss); 2550 } 2551 } 2552 2553 out: 2554 kfree(new_ie); 2555 kfree(profile); 2556 } 2557 2558 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 2559 size_t ieslen, u8 *data, size_t data_len, 2560 u8 frag_id) 2561 { 2562 const struct element *next; 2563 ssize_t copied; 2564 u8 elem_datalen; 2565 2566 if (!elem) 2567 return -EINVAL; 2568 2569 /* elem might be invalid after the memmove */ 2570 next = (void *)(elem->data + elem->datalen); 2571 elem_datalen = elem->datalen; 2572 2573 if (elem->id == WLAN_EID_EXTENSION) { 2574 copied = elem->datalen - 1; 2575 2576 if (data) { 2577 if (copied > data_len) 2578 return -ENOSPC; 2579 2580 memmove(data, elem->data + 1, copied); 2581 } 2582 } else { 2583 copied = elem->datalen; 2584 2585 if (data) { 2586 if (copied > data_len) 2587 return -ENOSPC; 2588 2589 memmove(data, elem->data, copied); 2590 } 2591 } 2592 2593 /* Fragmented elements must have 255 bytes */ 2594 if (elem_datalen < 255) 2595 return copied; 2596 2597 for (elem = next; 2598 elem->data < ies + ieslen && 2599 elem->data + elem->datalen <= ies + ieslen; 2600 elem = next) { 2601 /* elem might be invalid after the memmove */ 2602 next = (void *)(elem->data + elem->datalen); 2603 2604 if (elem->id != frag_id) 2605 break; 2606 2607 elem_datalen = elem->datalen; 2608 2609 if (data) { 2610 if (copied + elem_datalen > data_len) 2611 return -ENOSPC; 2612 2613 memmove(data + copied, elem->data, elem_datalen); 2614 } 2615 2616 copied += elem_datalen; 2617 2618 /* Only the last fragment may be short */ 2619 if (elem_datalen != 255) 2620 break; 2621 } 2622 2623 return copied; 2624 } 2625 EXPORT_SYMBOL(cfg80211_defragment_element); 2626 2627 struct cfg80211_mle { 2628 struct ieee80211_multi_link_elem *mle; 2629 struct ieee80211_mle_per_sta_profile 2630 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; 2631 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; 2632 2633 u8 data[]; 2634 }; 2635 2636 static struct cfg80211_mle * 2637 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, 2638 gfp_t gfp) 2639 { 2640 const struct element *elem; 2641 struct cfg80211_mle *res; 2642 size_t buf_len; 2643 ssize_t mle_len; 2644 u8 common_size, idx; 2645 2646 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) 2647 return NULL; 2648 2649 /* Required length for first defragmentation */ 2650 buf_len = mle->datalen - 1; 2651 for_each_element(elem, mle->data + mle->datalen, 2652 ielen - sizeof(*mle) + mle->datalen) { 2653 if (elem->id != WLAN_EID_FRAGMENT) 2654 break; 2655 2656 buf_len += elem->datalen; 2657 } 2658 2659 res = kzalloc(struct_size(res, data, buf_len), gfp); 2660 if (!res) 2661 return NULL; 2662 2663 mle_len = cfg80211_defragment_element(mle, ie, ielen, 2664 res->data, buf_len, 2665 WLAN_EID_FRAGMENT); 2666 if (mle_len < 0) 2667 goto error; 2668 2669 res->mle = (void *)res->data; 2670 2671 /* Find the sub-element area in the buffer */ 2672 common_size = ieee80211_mle_common_size((u8 *)res->mle); 2673 ie = res->data + common_size; 2674 ielen = mle_len - common_size; 2675 2676 idx = 0; 2677 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, 2678 ie, ielen) { 2679 res->sta_prof[idx] = (void *)elem->data; 2680 res->sta_prof_len[idx] = elem->datalen; 2681 2682 idx++; 2683 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) 2684 break; 2685 } 2686 if (!for_each_element_completed(elem, ie, ielen)) 2687 goto error; 2688 2689 /* Defragment sta_info in-place */ 2690 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; 2691 idx++) { 2692 if (res->sta_prof_len[idx] < 255) 2693 continue; 2694 2695 elem = (void *)res->sta_prof[idx] - 2; 2696 2697 if (idx + 1 < ARRAY_SIZE(res->sta_prof) && 2698 res->sta_prof[idx + 1]) 2699 buf_len = (u8 *)res->sta_prof[idx + 1] - 2700 (u8 *)res->sta_prof[idx]; 2701 else 2702 buf_len = ielen + ie - (u8 *)elem; 2703 2704 res->sta_prof_len[idx] = 2705 cfg80211_defragment_element(elem, 2706 (u8 *)elem, buf_len, 2707 (u8 *)res->sta_prof[idx], 2708 buf_len, 2709 IEEE80211_MLE_SUBELEM_FRAGMENT); 2710 if (res->sta_prof_len[idx] < 0) 2711 goto error; 2712 } 2713 2714 return res; 2715 2716 error: 2717 kfree(res); 2718 return NULL; 2719 } 2720 2721 struct tbtt_info_iter_data { 2722 const struct ieee80211_neighbor_ap_info *ap_info; 2723 u8 param_ch_count; 2724 u32 use_for; 2725 u8 mld_id, link_id; 2726 bool non_tx; 2727 }; 2728 2729 static enum cfg80211_rnr_iter_ret 2730 cfg802121_mld_ap_rnr_iter(void *_data, u8 type, 2731 const struct ieee80211_neighbor_ap_info *info, 2732 const u8 *tbtt_info, u8 tbtt_info_len) 2733 { 2734 const struct ieee80211_rnr_mld_params *mld_params; 2735 struct tbtt_info_iter_data *data = _data; 2736 u8 link_id; 2737 bool non_tx = false; 2738 2739 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && 2740 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11, 2741 mld_params)) { 2742 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 = 2743 (void *)tbtt_info; 2744 2745 non_tx = (tbtt_info_ge_11->bss_params & 2746 (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID | 2747 IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) == 2748 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID; 2749 mld_params = &tbtt_info_ge_11->mld_params; 2750 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD && 2751 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params)) 2752 mld_params = (void *)tbtt_info; 2753 else 2754 return RNR_ITER_CONTINUE; 2755 2756 link_id = le16_get_bits(mld_params->params, 2757 IEEE80211_RNR_MLD_PARAMS_LINK_ID); 2758 2759 if (data->mld_id != mld_params->mld_id) 2760 return RNR_ITER_CONTINUE; 2761 2762 if (data->link_id != link_id) 2763 return RNR_ITER_CONTINUE; 2764 2765 data->ap_info = info; 2766 data->param_ch_count = 2767 le16_get_bits(mld_params->params, 2768 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); 2769 data->non_tx = non_tx; 2770 2771 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT) 2772 data->use_for = NL80211_BSS_USE_FOR_ALL; 2773 else 2774 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK; 2775 return RNR_ITER_BREAK; 2776 } 2777 2778 static u8 2779 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, 2780 const struct ieee80211_neighbor_ap_info **ap_info, 2781 u8 *param_ch_count, bool *non_tx) 2782 { 2783 struct tbtt_info_iter_data data = { 2784 .mld_id = mld_id, 2785 .link_id = link_id, 2786 }; 2787 2788 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data); 2789 2790 *ap_info = data.ap_info; 2791 *param_ch_count = data.param_ch_count; 2792 *non_tx = data.non_tx; 2793 2794 return data.use_for; 2795 } 2796 2797 static struct element * 2798 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid, 2799 bool same_mld, u8 link_id, u8 bss_change_count, 2800 gfp_t gfp) 2801 { 2802 const struct cfg80211_bss_ies *ies; 2803 struct ieee80211_neighbor_ap_info ap_info; 2804 struct ieee80211_tbtt_info_ge_11 tbtt_info; 2805 u32 short_ssid; 2806 const struct element *elem; 2807 struct element *res; 2808 2809 /* 2810 * We only generate the RNR to permit ML lookups. For that we do not 2811 * need an entry for the corresponding transmitting BSS, lets just skip 2812 * it even though it would be easy to add. 2813 */ 2814 if (!same_mld) 2815 return NULL; 2816 2817 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */ 2818 rcu_read_lock(); 2819 ies = rcu_dereference(source_bss->ies); 2820 2821 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params); 2822 ap_info.tbtt_info_hdr = 2823 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT, 2824 IEEE80211_AP_INFO_TBTT_HDR_TYPE) | 2825 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT); 2826 2827 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq); 2828 2829 /* operating class */ 2830 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 2831 ies->data, ies->len); 2832 if (elem && elem->datalen >= 1) { 2833 ap_info.op_class = elem->data[0]; 2834 } else { 2835 struct cfg80211_chan_def chandef; 2836 2837 /* The AP is not providing us with anything to work with. So 2838 * make up a somewhat reasonable operating class, but don't 2839 * bother with it too much as no one will ever use the 2840 * information. 2841 */ 2842 cfg80211_chandef_create(&chandef, source_bss->channel, 2843 NL80211_CHAN_NO_HT); 2844 2845 if (!ieee80211_chandef_to_operating_class(&chandef, 2846 &ap_info.op_class)) 2847 goto out_unlock; 2848 } 2849 2850 /* Just set TBTT offset and PSD 20 to invalid/unknown */ 2851 tbtt_info.tbtt_offset = 255; 2852 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 2853 2854 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN); 2855 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid)) 2856 goto out_unlock; 2857 2858 rcu_read_unlock(); 2859 2860 tbtt_info.short_ssid = cpu_to_le32(short_ssid); 2861 2862 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID; 2863 2864 if (is_mbssid) { 2865 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID; 2866 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID; 2867 } 2868 2869 tbtt_info.mld_params.mld_id = 0; 2870 tbtt_info.mld_params.params = 2871 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) | 2872 le16_encode_bits(bss_change_count, 2873 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); 2874 2875 res = kzalloc(struct_size(res, data, 2876 sizeof(ap_info) + ap_info.tbtt_info_len), 2877 gfp); 2878 if (!res) 2879 return NULL; 2880 2881 /* Copy the data */ 2882 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT; 2883 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len; 2884 memcpy(res->data, &ap_info, sizeof(ap_info)); 2885 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len); 2886 2887 return res; 2888 2889 out_unlock: 2890 rcu_read_unlock(); 2891 return NULL; 2892 } 2893 2894 static void 2895 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy, 2896 struct cfg80211_inform_single_bss_data *tx_data, 2897 struct cfg80211_bss *source_bss, 2898 const struct element *elem, 2899 gfp_t gfp) 2900 { 2901 struct cfg80211_inform_single_bss_data data = { 2902 .drv_data = tx_data->drv_data, 2903 .ftype = tx_data->ftype, 2904 .source_bss = source_bss, 2905 .bss_source = BSS_SOURCE_STA_PROFILE, 2906 }; 2907 struct element *reporter_rnr = NULL; 2908 struct ieee80211_multi_link_elem *ml_elem; 2909 struct cfg80211_mle *mle; 2910 u16 control; 2911 u8 ml_common_len; 2912 u8 *new_ie = NULL; 2913 struct cfg80211_bss *bss; 2914 u8 mld_id, reporter_link_id, bss_change_count; 2915 u16 seen_links = 0; 2916 u8 i; 2917 2918 if (!ieee80211_mle_type_ok(elem->data + 1, 2919 IEEE80211_ML_CONTROL_TYPE_BASIC, 2920 elem->datalen - 1)) 2921 return; 2922 2923 ml_elem = (void *)(elem->data + 1); 2924 control = le16_to_cpu(ml_elem->control); 2925 ml_common_len = ml_elem->variable[0]; 2926 2927 /* Must be present when transmitted by an AP (in a probe response) */ 2928 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || 2929 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || 2930 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 2931 return; 2932 2933 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1); 2934 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1); 2935 2936 /* 2937 * The MLD ID of the reporting AP is always zero. It is set if the AP 2938 * is part of an MBSSID set and will be non-zero for ML Elements 2939 * relating to a nontransmitted BSS (matching the Multi-BSSID Index, 2940 * Draft P802.11be_D3.2, 35.3.4.2) 2941 */ 2942 mld_id = ieee80211_mle_get_mld_id(elem->data + 1); 2943 2944 /* Fully defrag the ML element for sta information/profile iteration */ 2945 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); 2946 if (!mle) 2947 return; 2948 2949 /* No point in doing anything if there is no per-STA profile */ 2950 if (!mle->sta_prof[0]) 2951 goto out; 2952 2953 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2954 if (!new_ie) 2955 goto out; 2956 2957 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss, 2958 u16_get_bits(control, 2959 IEEE80211_MLC_BASIC_PRES_MLD_ID), 2960 mld_id == 0, reporter_link_id, 2961 bss_change_count, 2962 gfp); 2963 2964 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { 2965 const struct ieee80211_neighbor_ap_info *ap_info; 2966 enum nl80211_band band; 2967 u32 freq; 2968 const u8 *profile; 2969 ssize_t profile_len; 2970 u8 param_ch_count; 2971 u8 link_id, use_for; 2972 bool non_tx; 2973 2974 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], 2975 mle->sta_prof_len[i])) 2976 continue; 2977 2978 control = le16_to_cpu(mle->sta_prof[i]->control); 2979 2980 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 2981 continue; 2982 2983 link_id = u16_get_bits(control, 2984 IEEE80211_MLE_STA_CONTROL_LINK_ID); 2985 if (seen_links & BIT(link_id)) 2986 break; 2987 seen_links |= BIT(link_id); 2988 2989 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || 2990 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || 2991 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) 2992 continue; 2993 2994 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); 2995 data.beacon_interval = 2996 get_unaligned_le16(mle->sta_prof[i]->variable + 6); 2997 data.tsf = tx_data->tsf + 2998 get_unaligned_le64(mle->sta_prof[i]->variable + 8); 2999 3000 /* sta_info_len counts itself */ 3001 profile = mle->sta_prof[i]->variable + 3002 mle->sta_prof[i]->sta_info_len - 1; 3003 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - 3004 profile; 3005 3006 if (profile_len < 2) 3007 continue; 3008 3009 data.capability = get_unaligned_le16(profile); 3010 profile += 2; 3011 profile_len -= 2; 3012 3013 /* Find in RNR to look up channel information */ 3014 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie, 3015 tx_data->ielen, 3016 mld_id, link_id, 3017 &ap_info, 3018 ¶m_ch_count, 3019 &non_tx); 3020 if (!use_for) 3021 continue; 3022 3023 /* 3024 * As of 802.11be_D5.0, the specification does not give us any 3025 * way of discovering both the MaxBSSID and the Multiple-BSSID 3026 * Index. It does seem like the Multiple-BSSID Index element 3027 * may be provided, but section 9.4.2.45 explicitly forbids 3028 * including a Multiple-BSSID Element (in this case without any 3029 * subelements). 3030 * Without both pieces of information we cannot calculate the 3031 * reference BSSID, so simply ignore the BSS. 3032 */ 3033 if (non_tx) 3034 continue; 3035 3036 /* We could sanity check the BSSID is included */ 3037 3038 if (!ieee80211_operating_class_to_band(ap_info->op_class, 3039 &band)) 3040 continue; 3041 3042 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); 3043 data.channel = ieee80211_get_channel_khz(wiphy, freq); 3044 3045 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK && 3046 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) { 3047 use_for = 0; 3048 data.cannot_use_reasons = 3049 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY; 3050 } 3051 data.use_for = use_for; 3052 3053 /* Generate new elements */ 3054 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 3055 data.ie = new_ie; 3056 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, 3057 profile, profile_len, 3058 new_ie, 3059 IEEE80211_MAX_DATA_LEN); 3060 if (!data.ielen) 3061 continue; 3062 3063 /* The generated elements do not contain: 3064 * - Basic ML element 3065 * - A TBTT entry in the RNR for the transmitting AP 3066 * 3067 * This information is needed both internally and in userspace 3068 * as such, we should append it here. 3069 */ 3070 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len > 3071 IEEE80211_MAX_DATA_LEN) 3072 continue; 3073 3074 /* Copy the Basic Multi-Link element including the common 3075 * information, and then fix up the link ID and BSS param 3076 * change count. 3077 * Note that the ML element length has been verified and we 3078 * also checked that it contains the link ID. 3079 */ 3080 new_ie[data.ielen++] = WLAN_EID_EXTENSION; 3081 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len; 3082 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK; 3083 memcpy(new_ie + data.ielen, ml_elem, 3084 sizeof(*ml_elem) + ml_common_len); 3085 3086 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id; 3087 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] = 3088 param_ch_count; 3089 3090 data.ielen += sizeof(*ml_elem) + ml_common_len; 3091 3092 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) { 3093 if (data.ielen + sizeof(struct element) + 3094 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN) 3095 continue; 3096 3097 memcpy(new_ie + data.ielen, reporter_rnr, 3098 sizeof(struct element) + reporter_rnr->datalen); 3099 data.ielen += sizeof(struct element) + 3100 reporter_rnr->datalen; 3101 } 3102 3103 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 3104 if (!bss) 3105 break; 3106 cfg80211_put_bss(wiphy, bss); 3107 } 3108 3109 out: 3110 kfree(reporter_rnr); 3111 kfree(new_ie); 3112 kfree(mle); 3113 } 3114 3115 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, 3116 struct cfg80211_inform_single_bss_data *tx_data, 3117 struct cfg80211_bss *source_bss, 3118 gfp_t gfp) 3119 { 3120 const struct element *elem; 3121 3122 if (!source_bss) 3123 return; 3124 3125 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) 3126 return; 3127 3128 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK, 3129 tx_data->ie, tx_data->ielen) 3130 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss, 3131 elem, gfp); 3132 } 3133 3134 struct cfg80211_bss * 3135 cfg80211_inform_bss_data(struct wiphy *wiphy, 3136 struct cfg80211_inform_bss *data, 3137 enum cfg80211_bss_frame_type ftype, 3138 const u8 *bssid, u64 tsf, u16 capability, 3139 u16 beacon_interval, const u8 *ie, size_t ielen, 3140 gfp_t gfp) 3141 { 3142 struct cfg80211_inform_single_bss_data inform_data = { 3143 .drv_data = data, 3144 .ftype = ftype, 3145 .tsf = tsf, 3146 .capability = capability, 3147 .beacon_interval = beacon_interval, 3148 .ie = ie, 3149 .ielen = ielen, 3150 .use_for = data->restrict_use ? 3151 data->use_for : 3152 NL80211_BSS_USE_FOR_ALL, 3153 .cannot_use_reasons = data->cannot_use_reasons, 3154 }; 3155 struct cfg80211_bss *res; 3156 3157 memcpy(inform_data.bssid, bssid, ETH_ALEN); 3158 3159 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); 3160 if (!res) 3161 return NULL; 3162 3163 /* don't do any further MBSSID/ML handling for S1G */ 3164 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON) 3165 return res; 3166 3167 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 3168 3169 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 3170 3171 return res; 3172 } 3173 EXPORT_SYMBOL(cfg80211_inform_bss_data); 3174 3175 struct cfg80211_bss * 3176 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 3177 struct cfg80211_inform_bss *data, 3178 struct ieee80211_mgmt *mgmt, size_t len, 3179 gfp_t gfp) 3180 { 3181 size_t min_hdr_len; 3182 struct ieee80211_ext *ext = NULL; 3183 enum cfg80211_bss_frame_type ftype; 3184 u16 beacon_interval; 3185 const u8 *bssid; 3186 u16 capability; 3187 const u8 *ie; 3188 size_t ielen; 3189 u64 tsf; 3190 3191 if (WARN_ON(!mgmt)) 3192 return NULL; 3193 3194 if (WARN_ON(!wiphy)) 3195 return NULL; 3196 3197 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 3198 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 3199 3200 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 3201 3202 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 3203 ext = (void *) mgmt; 3204 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 3205 min_hdr_len = offsetof(struct ieee80211_ext, 3206 u.s1g_short_beacon.variable); 3207 else 3208 min_hdr_len = offsetof(struct ieee80211_ext, 3209 u.s1g_beacon.variable); 3210 } else { 3211 /* same for beacons */ 3212 min_hdr_len = offsetof(struct ieee80211_mgmt, 3213 u.probe_resp.variable); 3214 } 3215 3216 if (WARN_ON(len < min_hdr_len)) 3217 return NULL; 3218 3219 ielen = len - min_hdr_len; 3220 ie = mgmt->u.probe_resp.variable; 3221 if (ext) { 3222 const struct ieee80211_s1g_bcn_compat_ie *compat; 3223 const struct element *elem; 3224 3225 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 3226 ie = ext->u.s1g_short_beacon.variable; 3227 else 3228 ie = ext->u.s1g_beacon.variable; 3229 3230 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen); 3231 if (!elem) 3232 return NULL; 3233 if (elem->datalen < sizeof(*compat)) 3234 return NULL; 3235 compat = (void *)elem->data; 3236 bssid = ext->u.s1g_beacon.sa; 3237 capability = le16_to_cpu(compat->compat_info); 3238 beacon_interval = le16_to_cpu(compat->beacon_int); 3239 } else { 3240 bssid = mgmt->bssid; 3241 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 3242 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 3243 } 3244 3245 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 3246 3247 if (ieee80211_is_probe_resp(mgmt->frame_control)) 3248 ftype = CFG80211_BSS_FTYPE_PRESP; 3249 else if (ext) 3250 ftype = CFG80211_BSS_FTYPE_S1G_BEACON; 3251 else 3252 ftype = CFG80211_BSS_FTYPE_BEACON; 3253 3254 return cfg80211_inform_bss_data(wiphy, data, ftype, 3255 bssid, tsf, capability, 3256 beacon_interval, ie, ielen, 3257 gfp); 3258 } 3259 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 3260 3261 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3262 { 3263 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3264 3265 if (!pub) 3266 return; 3267 3268 spin_lock_bh(&rdev->bss_lock); 3269 bss_ref_get(rdev, bss_from_pub(pub)); 3270 spin_unlock_bh(&rdev->bss_lock); 3271 } 3272 EXPORT_SYMBOL(cfg80211_ref_bss); 3273 3274 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3275 { 3276 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3277 3278 if (!pub) 3279 return; 3280 3281 spin_lock_bh(&rdev->bss_lock); 3282 bss_ref_put(rdev, bss_from_pub(pub)); 3283 spin_unlock_bh(&rdev->bss_lock); 3284 } 3285 EXPORT_SYMBOL(cfg80211_put_bss); 3286 3287 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3288 { 3289 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3290 struct cfg80211_internal_bss *bss, *tmp1; 3291 struct cfg80211_bss *nontrans_bss, *tmp; 3292 3293 if (WARN_ON(!pub)) 3294 return; 3295 3296 bss = bss_from_pub(pub); 3297 3298 spin_lock_bh(&rdev->bss_lock); 3299 if (list_empty(&bss->list)) 3300 goto out; 3301 3302 list_for_each_entry_safe(nontrans_bss, tmp, 3303 &pub->nontrans_list, 3304 nontrans_list) { 3305 tmp1 = bss_from_pub(nontrans_bss); 3306 if (__cfg80211_unlink_bss(rdev, tmp1)) 3307 rdev->bss_generation++; 3308 } 3309 3310 if (__cfg80211_unlink_bss(rdev, bss)) 3311 rdev->bss_generation++; 3312 out: 3313 spin_unlock_bh(&rdev->bss_lock); 3314 } 3315 EXPORT_SYMBOL(cfg80211_unlink_bss); 3316 3317 void cfg80211_bss_iter(struct wiphy *wiphy, 3318 struct cfg80211_chan_def *chandef, 3319 void (*iter)(struct wiphy *wiphy, 3320 struct cfg80211_bss *bss, 3321 void *data), 3322 void *iter_data) 3323 { 3324 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3325 struct cfg80211_internal_bss *bss; 3326 3327 spin_lock_bh(&rdev->bss_lock); 3328 3329 list_for_each_entry(bss, &rdev->bss_list, list) { 3330 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 3331 false)) 3332 iter(wiphy, &bss->pub, iter_data); 3333 } 3334 3335 spin_unlock_bh(&rdev->bss_lock); 3336 } 3337 EXPORT_SYMBOL(cfg80211_bss_iter); 3338 3339 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 3340 unsigned int link_id, 3341 struct ieee80211_channel *chan) 3342 { 3343 struct wiphy *wiphy = wdev->wiphy; 3344 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3345 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 3346 struct cfg80211_internal_bss *new = NULL; 3347 struct cfg80211_internal_bss *bss; 3348 struct cfg80211_bss *nontrans_bss; 3349 struct cfg80211_bss *tmp; 3350 3351 spin_lock_bh(&rdev->bss_lock); 3352 3353 /* 3354 * Some APs use CSA also for bandwidth changes, i.e., without actually 3355 * changing the control channel, so no need to update in such a case. 3356 */ 3357 if (cbss->pub.channel == chan) 3358 goto done; 3359 3360 /* use transmitting bss */ 3361 if (cbss->pub.transmitted_bss) 3362 cbss = bss_from_pub(cbss->pub.transmitted_bss); 3363 3364 cbss->pub.channel = chan; 3365 3366 list_for_each_entry(bss, &rdev->bss_list, list) { 3367 if (!cfg80211_bss_type_match(bss->pub.capability, 3368 bss->pub.channel->band, 3369 wdev->conn_bss_type)) 3370 continue; 3371 3372 if (bss == cbss) 3373 continue; 3374 3375 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 3376 new = bss; 3377 break; 3378 } 3379 } 3380 3381 if (new) { 3382 /* to save time, update IEs for transmitting bss only */ 3383 cfg80211_update_known_bss(rdev, cbss, new, false); 3384 new->pub.proberesp_ies = NULL; 3385 new->pub.beacon_ies = NULL; 3386 3387 list_for_each_entry_safe(nontrans_bss, tmp, 3388 &new->pub.nontrans_list, 3389 nontrans_list) { 3390 bss = bss_from_pub(nontrans_bss); 3391 if (__cfg80211_unlink_bss(rdev, bss)) 3392 rdev->bss_generation++; 3393 } 3394 3395 WARN_ON(atomic_read(&new->hold)); 3396 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 3397 rdev->bss_generation++; 3398 } 3399 cfg80211_rehash_bss(rdev, cbss); 3400 3401 list_for_each_entry_safe(nontrans_bss, tmp, 3402 &cbss->pub.nontrans_list, 3403 nontrans_list) { 3404 bss = bss_from_pub(nontrans_bss); 3405 bss->pub.channel = chan; 3406 cfg80211_rehash_bss(rdev, bss); 3407 } 3408 3409 done: 3410 spin_unlock_bh(&rdev->bss_lock); 3411 } 3412 3413 #ifdef CONFIG_CFG80211_WEXT 3414 static struct cfg80211_registered_device * 3415 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 3416 { 3417 struct cfg80211_registered_device *rdev; 3418 struct net_device *dev; 3419 3420 ASSERT_RTNL(); 3421 3422 dev = dev_get_by_index(net, ifindex); 3423 if (!dev) 3424 return ERR_PTR(-ENODEV); 3425 if (dev->ieee80211_ptr) 3426 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 3427 else 3428 rdev = ERR_PTR(-ENODEV); 3429 dev_put(dev); 3430 return rdev; 3431 } 3432 3433 int cfg80211_wext_siwscan(struct net_device *dev, 3434 struct iw_request_info *info, 3435 union iwreq_data *wrqu, char *extra) 3436 { 3437 struct cfg80211_registered_device *rdev; 3438 struct wiphy *wiphy; 3439 struct iw_scan_req *wreq = NULL; 3440 struct cfg80211_scan_request *creq; 3441 int i, err, n_channels = 0; 3442 enum nl80211_band band; 3443 3444 if (!netif_running(dev)) 3445 return -ENETDOWN; 3446 3447 if (wrqu->data.length == sizeof(struct iw_scan_req)) 3448 wreq = (struct iw_scan_req *)extra; 3449 3450 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3451 3452 if (IS_ERR(rdev)) 3453 return PTR_ERR(rdev); 3454 3455 if (rdev->scan_req || rdev->scan_msg) 3456 return -EBUSY; 3457 3458 wiphy = &rdev->wiphy; 3459 3460 /* Determine number of channels, needed to allocate creq */ 3461 if (wreq && wreq->num_channels) { 3462 /* Passed from userspace so should be checked */ 3463 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES)) 3464 return -EINVAL; 3465 n_channels = wreq->num_channels; 3466 } else { 3467 n_channels = ieee80211_get_num_supported_channels(wiphy); 3468 } 3469 3470 creq = kzalloc(struct_size(creq, channels, n_channels) + 3471 sizeof(struct cfg80211_ssid), 3472 GFP_ATOMIC); 3473 if (!creq) 3474 return -ENOMEM; 3475 3476 creq->wiphy = wiphy; 3477 creq->wdev = dev->ieee80211_ptr; 3478 /* SSIDs come after channels */ 3479 creq->ssids = (void *)creq + struct_size(creq, channels, n_channels); 3480 creq->n_channels = n_channels; 3481 creq->n_ssids = 1; 3482 creq->scan_start = jiffies; 3483 3484 /* translate "Scan on frequencies" request */ 3485 i = 0; 3486 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3487 int j; 3488 3489 if (!wiphy->bands[band]) 3490 continue; 3491 3492 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 3493 /* ignore disabled channels */ 3494 if (wiphy->bands[band]->channels[j].flags & 3495 IEEE80211_CHAN_DISABLED) 3496 continue; 3497 3498 /* If we have a wireless request structure and the 3499 * wireless request specifies frequencies, then search 3500 * for the matching hardware channel. 3501 */ 3502 if (wreq && wreq->num_channels) { 3503 int k; 3504 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 3505 for (k = 0; k < wreq->num_channels; k++) { 3506 struct iw_freq *freq = 3507 &wreq->channel_list[k]; 3508 int wext_freq = 3509 cfg80211_wext_freq(freq); 3510 3511 if (wext_freq == wiphy_freq) 3512 goto wext_freq_found; 3513 } 3514 goto wext_freq_not_found; 3515 } 3516 3517 wext_freq_found: 3518 creq->channels[i] = &wiphy->bands[band]->channels[j]; 3519 i++; 3520 wext_freq_not_found: ; 3521 } 3522 } 3523 /* No channels found? */ 3524 if (!i) { 3525 err = -EINVAL; 3526 goto out; 3527 } 3528 3529 /* Set real number of channels specified in creq->channels[] */ 3530 creq->n_channels = i; 3531 3532 /* translate "Scan for SSID" request */ 3533 if (wreq) { 3534 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 3535 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 3536 err = -EINVAL; 3537 goto out; 3538 } 3539 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 3540 creq->ssids[0].ssid_len = wreq->essid_len; 3541 } 3542 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) { 3543 creq->ssids = NULL; 3544 creq->n_ssids = 0; 3545 } 3546 } 3547 3548 for (i = 0; i < NUM_NL80211_BANDS; i++) 3549 if (wiphy->bands[i]) 3550 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 3551 3552 eth_broadcast_addr(creq->bssid); 3553 3554 wiphy_lock(&rdev->wiphy); 3555 3556 rdev->scan_req = creq; 3557 err = rdev_scan(rdev, creq); 3558 if (err) { 3559 rdev->scan_req = NULL; 3560 /* creq will be freed below */ 3561 } else { 3562 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 3563 /* creq now owned by driver */ 3564 creq = NULL; 3565 dev_hold(dev); 3566 } 3567 wiphy_unlock(&rdev->wiphy); 3568 out: 3569 kfree(creq); 3570 return err; 3571 } 3572 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 3573 3574 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 3575 const struct cfg80211_bss_ies *ies, 3576 char *current_ev, char *end_buf) 3577 { 3578 const u8 *pos, *end, *next; 3579 struct iw_event iwe; 3580 3581 if (!ies) 3582 return current_ev; 3583 3584 /* 3585 * If needed, fragment the IEs buffer (at IE boundaries) into short 3586 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 3587 */ 3588 pos = ies->data; 3589 end = pos + ies->len; 3590 3591 while (end - pos > IW_GENERIC_IE_MAX) { 3592 next = pos + 2 + pos[1]; 3593 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 3594 next = next + 2 + next[1]; 3595 3596 memset(&iwe, 0, sizeof(iwe)); 3597 iwe.cmd = IWEVGENIE; 3598 iwe.u.data.length = next - pos; 3599 current_ev = iwe_stream_add_point_check(info, current_ev, 3600 end_buf, &iwe, 3601 (void *)pos); 3602 if (IS_ERR(current_ev)) 3603 return current_ev; 3604 pos = next; 3605 } 3606 3607 if (end > pos) { 3608 memset(&iwe, 0, sizeof(iwe)); 3609 iwe.cmd = IWEVGENIE; 3610 iwe.u.data.length = end - pos; 3611 current_ev = iwe_stream_add_point_check(info, current_ev, 3612 end_buf, &iwe, 3613 (void *)pos); 3614 if (IS_ERR(current_ev)) 3615 return current_ev; 3616 } 3617 3618 return current_ev; 3619 } 3620 3621 static char * 3622 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 3623 struct cfg80211_internal_bss *bss, char *current_ev, 3624 char *end_buf) 3625 { 3626 const struct cfg80211_bss_ies *ies; 3627 struct iw_event iwe; 3628 const u8 *ie; 3629 u8 buf[50]; 3630 u8 *cfg, *p, *tmp; 3631 int rem, i, sig; 3632 bool ismesh = false; 3633 3634 memset(&iwe, 0, sizeof(iwe)); 3635 iwe.cmd = SIOCGIWAP; 3636 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 3637 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 3638 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3639 IW_EV_ADDR_LEN); 3640 if (IS_ERR(current_ev)) 3641 return current_ev; 3642 3643 memset(&iwe, 0, sizeof(iwe)); 3644 iwe.cmd = SIOCGIWFREQ; 3645 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 3646 iwe.u.freq.e = 0; 3647 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3648 IW_EV_FREQ_LEN); 3649 if (IS_ERR(current_ev)) 3650 return current_ev; 3651 3652 memset(&iwe, 0, sizeof(iwe)); 3653 iwe.cmd = SIOCGIWFREQ; 3654 iwe.u.freq.m = bss->pub.channel->center_freq; 3655 iwe.u.freq.e = 6; 3656 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3657 IW_EV_FREQ_LEN); 3658 if (IS_ERR(current_ev)) 3659 return current_ev; 3660 3661 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 3662 memset(&iwe, 0, sizeof(iwe)); 3663 iwe.cmd = IWEVQUAL; 3664 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 3665 IW_QUAL_NOISE_INVALID | 3666 IW_QUAL_QUAL_UPDATED; 3667 switch (wiphy->signal_type) { 3668 case CFG80211_SIGNAL_TYPE_MBM: 3669 sig = bss->pub.signal / 100; 3670 iwe.u.qual.level = sig; 3671 iwe.u.qual.updated |= IW_QUAL_DBM; 3672 if (sig < -110) /* rather bad */ 3673 sig = -110; 3674 else if (sig > -40) /* perfect */ 3675 sig = -40; 3676 /* will give a range of 0 .. 70 */ 3677 iwe.u.qual.qual = sig + 110; 3678 break; 3679 case CFG80211_SIGNAL_TYPE_UNSPEC: 3680 iwe.u.qual.level = bss->pub.signal; 3681 /* will give range 0 .. 100 */ 3682 iwe.u.qual.qual = bss->pub.signal; 3683 break; 3684 default: 3685 /* not reached */ 3686 break; 3687 } 3688 current_ev = iwe_stream_add_event_check(info, current_ev, 3689 end_buf, &iwe, 3690 IW_EV_QUAL_LEN); 3691 if (IS_ERR(current_ev)) 3692 return current_ev; 3693 } 3694 3695 memset(&iwe, 0, sizeof(iwe)); 3696 iwe.cmd = SIOCGIWENCODE; 3697 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3698 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3699 else 3700 iwe.u.data.flags = IW_ENCODE_DISABLED; 3701 iwe.u.data.length = 0; 3702 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3703 &iwe, ""); 3704 if (IS_ERR(current_ev)) 3705 return current_ev; 3706 3707 rcu_read_lock(); 3708 ies = rcu_dereference(bss->pub.ies); 3709 rem = ies->len; 3710 ie = ies->data; 3711 3712 while (rem >= 2) { 3713 /* invalid data */ 3714 if (ie[1] > rem - 2) 3715 break; 3716 3717 switch (ie[0]) { 3718 case WLAN_EID_SSID: 3719 memset(&iwe, 0, sizeof(iwe)); 3720 iwe.cmd = SIOCGIWESSID; 3721 iwe.u.data.length = ie[1]; 3722 iwe.u.data.flags = 1; 3723 current_ev = iwe_stream_add_point_check(info, 3724 current_ev, 3725 end_buf, &iwe, 3726 (u8 *)ie + 2); 3727 if (IS_ERR(current_ev)) 3728 goto unlock; 3729 break; 3730 case WLAN_EID_MESH_ID: 3731 memset(&iwe, 0, sizeof(iwe)); 3732 iwe.cmd = SIOCGIWESSID; 3733 iwe.u.data.length = ie[1]; 3734 iwe.u.data.flags = 1; 3735 current_ev = iwe_stream_add_point_check(info, 3736 current_ev, 3737 end_buf, &iwe, 3738 (u8 *)ie + 2); 3739 if (IS_ERR(current_ev)) 3740 goto unlock; 3741 break; 3742 case WLAN_EID_MESH_CONFIG: 3743 ismesh = true; 3744 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3745 break; 3746 cfg = (u8 *)ie + 2; 3747 memset(&iwe, 0, sizeof(iwe)); 3748 iwe.cmd = IWEVCUSTOM; 3749 iwe.u.data.length = sprintf(buf, 3750 "Mesh Network Path Selection Protocol ID: 0x%02X", 3751 cfg[0]); 3752 current_ev = iwe_stream_add_point_check(info, 3753 current_ev, 3754 end_buf, 3755 &iwe, buf); 3756 if (IS_ERR(current_ev)) 3757 goto unlock; 3758 iwe.u.data.length = sprintf(buf, 3759 "Path Selection Metric ID: 0x%02X", 3760 cfg[1]); 3761 current_ev = iwe_stream_add_point_check(info, 3762 current_ev, 3763 end_buf, 3764 &iwe, buf); 3765 if (IS_ERR(current_ev)) 3766 goto unlock; 3767 iwe.u.data.length = sprintf(buf, 3768 "Congestion Control Mode ID: 0x%02X", 3769 cfg[2]); 3770 current_ev = iwe_stream_add_point_check(info, 3771 current_ev, 3772 end_buf, 3773 &iwe, buf); 3774 if (IS_ERR(current_ev)) 3775 goto unlock; 3776 iwe.u.data.length = sprintf(buf, 3777 "Synchronization ID: 0x%02X", 3778 cfg[3]); 3779 current_ev = iwe_stream_add_point_check(info, 3780 current_ev, 3781 end_buf, 3782 &iwe, buf); 3783 if (IS_ERR(current_ev)) 3784 goto unlock; 3785 iwe.u.data.length = sprintf(buf, 3786 "Authentication ID: 0x%02X", 3787 cfg[4]); 3788 current_ev = iwe_stream_add_point_check(info, 3789 current_ev, 3790 end_buf, 3791 &iwe, buf); 3792 if (IS_ERR(current_ev)) 3793 goto unlock; 3794 iwe.u.data.length = sprintf(buf, 3795 "Formation Info: 0x%02X", 3796 cfg[5]); 3797 current_ev = iwe_stream_add_point_check(info, 3798 current_ev, 3799 end_buf, 3800 &iwe, buf); 3801 if (IS_ERR(current_ev)) 3802 goto unlock; 3803 iwe.u.data.length = sprintf(buf, 3804 "Capabilities: 0x%02X", 3805 cfg[6]); 3806 current_ev = iwe_stream_add_point_check(info, 3807 current_ev, 3808 end_buf, 3809 &iwe, buf); 3810 if (IS_ERR(current_ev)) 3811 goto unlock; 3812 break; 3813 case WLAN_EID_SUPP_RATES: 3814 case WLAN_EID_EXT_SUPP_RATES: 3815 /* display all supported rates in readable format */ 3816 p = current_ev + iwe_stream_lcp_len(info); 3817 3818 memset(&iwe, 0, sizeof(iwe)); 3819 iwe.cmd = SIOCGIWRATE; 3820 /* Those two flags are ignored... */ 3821 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3822 3823 for (i = 0; i < ie[1]; i++) { 3824 iwe.u.bitrate.value = 3825 ((ie[i + 2] & 0x7f) * 500000); 3826 tmp = p; 3827 p = iwe_stream_add_value(info, current_ev, p, 3828 end_buf, &iwe, 3829 IW_EV_PARAM_LEN); 3830 if (p == tmp) { 3831 current_ev = ERR_PTR(-E2BIG); 3832 goto unlock; 3833 } 3834 } 3835 current_ev = p; 3836 break; 3837 } 3838 rem -= ie[1] + 2; 3839 ie += ie[1] + 2; 3840 } 3841 3842 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3843 ismesh) { 3844 memset(&iwe, 0, sizeof(iwe)); 3845 iwe.cmd = SIOCGIWMODE; 3846 if (ismesh) 3847 iwe.u.mode = IW_MODE_MESH; 3848 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3849 iwe.u.mode = IW_MODE_MASTER; 3850 else 3851 iwe.u.mode = IW_MODE_ADHOC; 3852 current_ev = iwe_stream_add_event_check(info, current_ev, 3853 end_buf, &iwe, 3854 IW_EV_UINT_LEN); 3855 if (IS_ERR(current_ev)) 3856 goto unlock; 3857 } 3858 3859 memset(&iwe, 0, sizeof(iwe)); 3860 iwe.cmd = IWEVCUSTOM; 3861 iwe.u.data.length = sprintf(buf, "tsf=%016llx", 3862 (unsigned long long)(ies->tsf)); 3863 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3864 &iwe, buf); 3865 if (IS_ERR(current_ev)) 3866 goto unlock; 3867 memset(&iwe, 0, sizeof(iwe)); 3868 iwe.cmd = IWEVCUSTOM; 3869 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago", 3870 elapsed_jiffies_msecs(bss->ts)); 3871 current_ev = iwe_stream_add_point_check(info, current_ev, 3872 end_buf, &iwe, buf); 3873 if (IS_ERR(current_ev)) 3874 goto unlock; 3875 3876 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3877 3878 unlock: 3879 rcu_read_unlock(); 3880 return current_ev; 3881 } 3882 3883 3884 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3885 struct iw_request_info *info, 3886 char *buf, size_t len) 3887 { 3888 char *current_ev = buf; 3889 char *end_buf = buf + len; 3890 struct cfg80211_internal_bss *bss; 3891 int err = 0; 3892 3893 spin_lock_bh(&rdev->bss_lock); 3894 cfg80211_bss_expire(rdev); 3895 3896 list_for_each_entry(bss, &rdev->bss_list, list) { 3897 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3898 err = -E2BIG; 3899 break; 3900 } 3901 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3902 current_ev, end_buf); 3903 if (IS_ERR(current_ev)) { 3904 err = PTR_ERR(current_ev); 3905 break; 3906 } 3907 } 3908 spin_unlock_bh(&rdev->bss_lock); 3909 3910 if (err) 3911 return err; 3912 return current_ev - buf; 3913 } 3914 3915 3916 int cfg80211_wext_giwscan(struct net_device *dev, 3917 struct iw_request_info *info, 3918 union iwreq_data *wrqu, char *extra) 3919 { 3920 struct iw_point *data = &wrqu->data; 3921 struct cfg80211_registered_device *rdev; 3922 int res; 3923 3924 if (!netif_running(dev)) 3925 return -ENETDOWN; 3926 3927 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3928 3929 if (IS_ERR(rdev)) 3930 return PTR_ERR(rdev); 3931 3932 if (rdev->scan_req || rdev->scan_msg) 3933 return -EAGAIN; 3934 3935 res = ieee80211_scan_results(rdev, info, extra, data->length); 3936 data->length = 0; 3937 if (res >= 0) { 3938 data->length = res; 3939 res = 0; 3940 } 3941 3942 return res; 3943 } 3944 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3945 #endif 3946
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.