~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/wireless/scan.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * cfg80211 scan result handling
  4  *
  5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
  6  * Copyright 2013-2014  Intel Mobile Communications GmbH
  7  * Copyright 2016       Intel Deutschland GmbH
  8  * Copyright (C) 2018-2024 Intel Corporation
  9  */
 10 #include <linux/kernel.h>
 11 #include <linux/slab.h>
 12 #include <linux/module.h>
 13 #include <linux/netdevice.h>
 14 #include <linux/wireless.h>
 15 #include <linux/nl80211.h>
 16 #include <linux/etherdevice.h>
 17 #include <linux/crc32.h>
 18 #include <linux/bitfield.h>
 19 #include <net/arp.h>
 20 #include <net/cfg80211.h>
 21 #include <net/cfg80211-wext.h>
 22 #include <net/iw_handler.h>
 23 #include <kunit/visibility.h>
 24 #include "core.h"
 25 #include "nl80211.h"
 26 #include "wext-compat.h"
 27 #include "rdev-ops.h"
 28 
 29 /**
 30  * DOC: BSS tree/list structure
 31  *
 32  * At the top level, the BSS list is kept in both a list in each
 33  * registered device (@bss_list) as well as an RB-tree for faster
 34  * lookup. In the RB-tree, entries can be looked up using their
 35  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
 36  * for other BSSes.
 37  *
 38  * Due to the possibility of hidden SSIDs, there's a second level
 39  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
 40  * The hidden_list connects all BSSes belonging to a single AP
 41  * that has a hidden SSID, and connects beacon and probe response
 42  * entries. For a probe response entry for a hidden SSID, the
 43  * hidden_beacon_bss pointer points to the BSS struct holding the
 44  * beacon's information.
 45  *
 46  * Reference counting is done for all these references except for
 47  * the hidden_list, so that a beacon BSS struct that is otherwise
 48  * not referenced has one reference for being on the bss_list and
 49  * one for each probe response entry that points to it using the
 50  * hidden_beacon_bss pointer. When a BSS struct that has such a
 51  * pointer is get/put, the refcount update is also propagated to
 52  * the referenced struct, this ensure that it cannot get removed
 53  * while somebody is using the probe response version.
 54  *
 55  * Note that the hidden_beacon_bss pointer never changes, due to
 56  * the reference counting. Therefore, no locking is needed for
 57  * it.
 58  *
 59  * Also note that the hidden_beacon_bss pointer is only relevant
 60  * if the driver uses something other than the IEs, e.g. private
 61  * data stored in the BSS struct, since the beacon IEs are
 62  * also linked into the probe response struct.
 63  */
 64 
 65 /*
 66  * Limit the number of BSS entries stored in mac80211. Each one is
 67  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
 68  * If somebody wants to really attack this though, they'd likely
 69  * use small beacons, and only one type of frame, limiting each of
 70  * the entries to a much smaller size (in order to generate more
 71  * entries in total, so overhead is bigger.)
 72  */
 73 static int bss_entries_limit = 1000;
 74 module_param(bss_entries_limit, int, 0644);
 75 MODULE_PARM_DESC(bss_entries_limit,
 76                  "limit to number of scan BSS entries (per wiphy, default 1000)");
 77 
 78 #define IEEE80211_SCAN_RESULT_EXPIRE    (30 * HZ)
 79 
 80 static void bss_free(struct cfg80211_internal_bss *bss)
 81 {
 82         struct cfg80211_bss_ies *ies;
 83 
 84         if (WARN_ON(atomic_read(&bss->hold)))
 85                 return;
 86 
 87         ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
 88         if (ies && !bss->pub.hidden_beacon_bss)
 89                 kfree_rcu(ies, rcu_head);
 90         ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
 91         if (ies)
 92                 kfree_rcu(ies, rcu_head);
 93 
 94         /*
 95          * This happens when the module is removed, it doesn't
 96          * really matter any more save for completeness
 97          */
 98         if (!list_empty(&bss->hidden_list))
 99                 list_del(&bss->hidden_list);
100 
101         kfree(bss);
102 }
103 
104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105                                struct cfg80211_internal_bss *bss)
106 {
107         lockdep_assert_held(&rdev->bss_lock);
108 
109         bss->refcount++;
110 
111         if (bss->pub.hidden_beacon_bss)
112                 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113 
114         if (bss->pub.transmitted_bss)
115                 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116 }
117 
118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119                                struct cfg80211_internal_bss *bss)
120 {
121         lockdep_assert_held(&rdev->bss_lock);
122 
123         if (bss->pub.hidden_beacon_bss) {
124                 struct cfg80211_internal_bss *hbss;
125 
126                 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127                 hbss->refcount--;
128                 if (hbss->refcount == 0)
129                         bss_free(hbss);
130         }
131 
132         if (bss->pub.transmitted_bss) {
133                 struct cfg80211_internal_bss *tbss;
134 
135                 tbss = bss_from_pub(bss->pub.transmitted_bss);
136                 tbss->refcount--;
137                 if (tbss->refcount == 0)
138                         bss_free(tbss);
139         }
140 
141         bss->refcount--;
142         if (bss->refcount == 0)
143                 bss_free(bss);
144 }
145 
146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147                                   struct cfg80211_internal_bss *bss)
148 {
149         lockdep_assert_held(&rdev->bss_lock);
150 
151         if (!list_empty(&bss->hidden_list)) {
152                 /*
153                  * don't remove the beacon entry if it has
154                  * probe responses associated with it
155                  */
156                 if (!bss->pub.hidden_beacon_bss)
157                         return false;
158                 /*
159                  * if it's a probe response entry break its
160                  * link to the other entries in the group
161                  */
162                 list_del_init(&bss->hidden_list);
163         }
164 
165         list_del_init(&bss->list);
166         list_del_init(&bss->pub.nontrans_list);
167         rb_erase(&bss->rbn, &rdev->bss_tree);
168         rdev->bss_entries--;
169         WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170                   "rdev bss entries[%d]/list[empty:%d] corruption\n",
171                   rdev->bss_entries, list_empty(&rdev->bss_list));
172         bss_ref_put(rdev, bss);
173         return true;
174 }
175 
176 bool cfg80211_is_element_inherited(const struct element *elem,
177                                    const struct element *non_inherit_elem)
178 {
179         u8 id_len, ext_id_len, i, loop_len, id;
180         const u8 *list;
181 
182         if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183                 return false;
184 
185         if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186             elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187                 return false;
188 
189         if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190                 return true;
191 
192         /*
193          * non inheritance element format is:
194          * ext ID (56) | IDs list len | list | extension IDs list len | list
195          * Both lists are optional. Both lengths are mandatory.
196          * This means valid length is:
197          * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198          */
199         id_len = non_inherit_elem->data[1];
200         if (non_inherit_elem->datalen < 3 + id_len)
201                 return true;
202 
203         ext_id_len = non_inherit_elem->data[2 + id_len];
204         if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205                 return true;
206 
207         if (elem->id == WLAN_EID_EXTENSION) {
208                 if (!ext_id_len)
209                         return true;
210                 loop_len = ext_id_len;
211                 list = &non_inherit_elem->data[3 + id_len];
212                 id = elem->data[0];
213         } else {
214                 if (!id_len)
215                         return true;
216                 loop_len = id_len;
217                 list = &non_inherit_elem->data[2];
218                 id = elem->id;
219         }
220 
221         for (i = 0; i < loop_len; i++) {
222                 if (list[i] == id)
223                         return false;
224         }
225 
226         return true;
227 }
228 EXPORT_SYMBOL(cfg80211_is_element_inherited);
229 
230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231                                             const u8 *ie, size_t ie_len,
232                                             u8 **pos, u8 *buf, size_t buf_len)
233 {
234         if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235                     elem->data + elem->datalen > ie + ie_len))
236                 return 0;
237 
238         if (elem->datalen + 2 > buf + buf_len - *pos)
239                 return 0;
240 
241         memcpy(*pos, elem, elem->datalen + 2);
242         *pos += elem->datalen + 2;
243 
244         /* Finish if it is not fragmented  */
245         if (elem->datalen != 255)
246                 return *pos - buf;
247 
248         ie_len = ie + ie_len - elem->data - elem->datalen;
249         ie = (const u8 *)elem->data + elem->datalen;
250 
251         for_each_element(elem, ie, ie_len) {
252                 if (elem->id != WLAN_EID_FRAGMENT)
253                         break;
254 
255                 if (elem->datalen + 2 > buf + buf_len - *pos)
256                         return 0;
257 
258                 memcpy(*pos, elem, elem->datalen + 2);
259                 *pos += elem->datalen + 2;
260 
261                 if (elem->datalen != 255)
262                         break;
263         }
264 
265         return *pos - buf;
266 }
267 
268 VISIBLE_IF_CFG80211_KUNIT size_t
269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270                     const u8 *subie, size_t subie_len,
271                     u8 *new_ie, size_t new_ie_len)
272 {
273         const struct element *non_inherit_elem, *parent, *sub;
274         u8 *pos = new_ie;
275         u8 id, ext_id;
276         unsigned int match_len;
277 
278         non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279                                                   subie, subie_len);
280 
281         /* We copy the elements one by one from the parent to the generated
282          * elements.
283          * If they are not inherited (included in subie or in the non
284          * inheritance element), then we copy all occurrences the first time
285          * we see this element type.
286          */
287         for_each_element(parent, ie, ielen) {
288                 if (parent->id == WLAN_EID_FRAGMENT)
289                         continue;
290 
291                 if (parent->id == WLAN_EID_EXTENSION) {
292                         if (parent->datalen < 1)
293                                 continue;
294 
295                         id = WLAN_EID_EXTENSION;
296                         ext_id = parent->data[0];
297                         match_len = 1;
298                 } else {
299                         id = parent->id;
300                         match_len = 0;
301                 }
302 
303                 /* Find first occurrence in subie */
304                 sub = cfg80211_find_elem_match(id, subie, subie_len,
305                                                &ext_id, match_len, 0);
306 
307                 /* Copy from parent if not in subie and inherited */
308                 if (!sub &&
309                     cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310                         if (!cfg80211_copy_elem_with_frags(parent,
311                                                            ie, ielen,
312                                                            &pos, new_ie,
313                                                            new_ie_len))
314                                 return 0;
315 
316                         continue;
317                 }
318 
319                 /* Already copied if an earlier element had the same type */
320                 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321                                              &ext_id, match_len, 0))
322                         continue;
323 
324                 /* Not inheriting, copy all similar elements from subie */
325                 while (sub) {
326                         if (!cfg80211_copy_elem_with_frags(sub,
327                                                            subie, subie_len,
328                                                            &pos, new_ie,
329                                                            new_ie_len))
330                                 return 0;
331 
332                         sub = cfg80211_find_elem_match(id,
333                                                        sub->data + sub->datalen,
334                                                        subie_len + subie -
335                                                        (sub->data +
336                                                         sub->datalen),
337                                                        &ext_id, match_len, 0);
338                 }
339         }
340 
341         /* The above misses elements that are included in subie but not in the
342          * parent, so do a pass over subie and append those.
343          * Skip the non-tx BSSID caps and non-inheritance element.
344          */
345         for_each_element(sub, subie, subie_len) {
346                 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347                         continue;
348 
349                 if (sub->id == WLAN_EID_FRAGMENT)
350                         continue;
351 
352                 if (sub->id == WLAN_EID_EXTENSION) {
353                         if (sub->datalen < 1)
354                                 continue;
355 
356                         id = WLAN_EID_EXTENSION;
357                         ext_id = sub->data[0];
358                         match_len = 1;
359 
360                         if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361                                 continue;
362                 } else {
363                         id = sub->id;
364                         match_len = 0;
365                 }
366 
367                 /* Processed if one was included in the parent */
368                 if (cfg80211_find_elem_match(id, ie, ielen,
369                                              &ext_id, match_len, 0))
370                         continue;
371 
372                 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373                                                    &pos, new_ie, new_ie_len))
374                         return 0;
375         }
376 
377         return pos - new_ie;
378 }
379 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380 
381 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382                    const u8 *ssid, size_t ssid_len)
383 {
384         const struct cfg80211_bss_ies *ies;
385         const struct element *ssid_elem;
386 
387         if (bssid && !ether_addr_equal(a->bssid, bssid))
388                 return false;
389 
390         if (!ssid)
391                 return true;
392 
393         ies = rcu_access_pointer(a->ies);
394         if (!ies)
395                 return false;
396         ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397         if (!ssid_elem)
398                 return false;
399         if (ssid_elem->datalen != ssid_len)
400                 return false;
401         return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402 }
403 
404 static int
405 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406                            struct cfg80211_bss *nontrans_bss)
407 {
408         const struct element *ssid_elem;
409         struct cfg80211_bss *bss = NULL;
410 
411         rcu_read_lock();
412         ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413         if (!ssid_elem) {
414                 rcu_read_unlock();
415                 return -EINVAL;
416         }
417 
418         /* check if nontrans_bss is in the list */
419         list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420                 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421                            ssid_elem->datalen)) {
422                         rcu_read_unlock();
423                         return 0;
424                 }
425         }
426 
427         rcu_read_unlock();
428 
429         /*
430          * This is a bit weird - it's not on the list, but already on another
431          * one! The only way that could happen is if there's some BSSID/SSID
432          * shared by multiple APs in their multi-BSSID profiles, potentially
433          * with hidden SSID mixed in ... ignore it.
434          */
435         if (!list_empty(&nontrans_bss->nontrans_list))
436                 return -EINVAL;
437 
438         /* add to the list */
439         list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440         return 0;
441 }
442 
443 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444                                   unsigned long expire_time)
445 {
446         struct cfg80211_internal_bss *bss, *tmp;
447         bool expired = false;
448 
449         lockdep_assert_held(&rdev->bss_lock);
450 
451         list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452                 if (atomic_read(&bss->hold))
453                         continue;
454                 if (!time_after(expire_time, bss->ts))
455                         continue;
456 
457                 if (__cfg80211_unlink_bss(rdev, bss))
458                         expired = true;
459         }
460 
461         if (expired)
462                 rdev->bss_generation++;
463 }
464 
465 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466 {
467         struct cfg80211_internal_bss *bss, *oldest = NULL;
468         bool ret;
469 
470         lockdep_assert_held(&rdev->bss_lock);
471 
472         list_for_each_entry(bss, &rdev->bss_list, list) {
473                 if (atomic_read(&bss->hold))
474                         continue;
475 
476                 if (!list_empty(&bss->hidden_list) &&
477                     !bss->pub.hidden_beacon_bss)
478                         continue;
479 
480                 if (oldest && time_before(oldest->ts, bss->ts))
481                         continue;
482                 oldest = bss;
483         }
484 
485         if (WARN_ON(!oldest))
486                 return false;
487 
488         /*
489          * The callers make sure to increase rdev->bss_generation if anything
490          * gets removed (and a new entry added), so there's no need to also do
491          * it here.
492          */
493 
494         ret = __cfg80211_unlink_bss(rdev, oldest);
495         WARN_ON(!ret);
496         return ret;
497 }
498 
499 static u8 cfg80211_parse_bss_param(u8 data,
500                                    struct cfg80211_colocated_ap *coloc_ap)
501 {
502         coloc_ap->oct_recommended =
503                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504         coloc_ap->same_ssid =
505                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506         coloc_ap->multi_bss =
507                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508         coloc_ap->transmitted_bssid =
509                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510         coloc_ap->unsolicited_probe =
511                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512         coloc_ap->colocated_ess =
513                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514 
515         return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516 }
517 
518 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519                                     const struct element **elem, u32 *s_ssid)
520 {
521 
522         *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523         if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524                 return -EINVAL;
525 
526         *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527         return 0;
528 }
529 
530 VISIBLE_IF_CFG80211_KUNIT void
531 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532 {
533         struct cfg80211_colocated_ap *ap, *tmp_ap;
534 
535         list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536                 list_del(&ap->list);
537                 kfree(ap);
538         }
539 }
540 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541 
542 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543                                   const u8 *pos, u8 length,
544                                   const struct element *ssid_elem,
545                                   u32 s_ssid_tmp)
546 {
547         u8 bss_params;
548 
549         entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550 
551         /* The length is already verified by the caller to contain bss_params */
552         if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553                 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554 
555                 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556                 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557                 entry->short_ssid_valid = true;
558 
559                 bss_params = tbtt_info->bss_params;
560 
561                 /* Ignore disabled links */
562                 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563                         if (le16_get_bits(tbtt_info->mld_params.params,
564                                           IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565                                 return -EINVAL;
566                 }
567 
568                 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569                                           psd_20))
570                         entry->psd_20 = tbtt_info->psd_20;
571         } else {
572                 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573 
574                 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575 
576                 bss_params = tbtt_info->bss_params;
577 
578                 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579                                           psd_20))
580                         entry->psd_20 = tbtt_info->psd_20;
581         }
582 
583         /* ignore entries with invalid BSSID */
584         if (!is_valid_ether_addr(entry->bssid))
585                 return -EINVAL;
586 
587         /* skip non colocated APs */
588         if (!cfg80211_parse_bss_param(bss_params, entry))
589                 return -EINVAL;
590 
591         /* no information about the short ssid. Consider the entry valid
592          * for now. It would later be dropped in case there are explicit
593          * SSIDs that need to be matched
594          */
595         if (!entry->same_ssid && !entry->short_ssid_valid)
596                 return 0;
597 
598         if (entry->same_ssid) {
599                 entry->short_ssid = s_ssid_tmp;
600                 entry->short_ssid_valid = true;
601 
602                 /*
603                  * This is safe because we validate datalen in
604                  * cfg80211_parse_colocated_ap(), before calling this
605                  * function.
606                  */
607                 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608                 entry->ssid_len = ssid_elem->datalen;
609         }
610 
611         return 0;
612 }
613 
614 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615                        enum cfg80211_rnr_iter_ret
616                        (*iter)(void *data, u8 type,
617                                const struct ieee80211_neighbor_ap_info *info,
618                                const u8 *tbtt_info, u8 tbtt_info_len),
619                        void *iter_data)
620 {
621         const struct element *rnr;
622         const u8 *pos, *end;
623 
624         for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625                             elems, elems_len) {
626                 const struct ieee80211_neighbor_ap_info *info;
627 
628                 pos = rnr->data;
629                 end = rnr->data + rnr->datalen;
630 
631                 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632                 while (sizeof(*info) <= end - pos) {
633                         u8 length, i, count;
634                         u8 type;
635 
636                         info = (void *)pos;
637                         count = u8_get_bits(info->tbtt_info_hdr,
638                                             IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639                                 1;
640                         length = info->tbtt_info_len;
641 
642                         pos += sizeof(*info);
643 
644                         if (count * length > end - pos)
645                                 return false;
646 
647                         type = u8_get_bits(info->tbtt_info_hdr,
648                                            IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649 
650                         for (i = 0; i < count; i++) {
651                                 switch (iter(iter_data, type, info,
652                                              pos, length)) {
653                                 case RNR_ITER_CONTINUE:
654                                         break;
655                                 case RNR_ITER_BREAK:
656                                         return true;
657                                 case RNR_ITER_ERROR:
658                                         return false;
659                                 }
660 
661                                 pos += length;
662                         }
663                 }
664 
665                 if (pos != end)
666                         return false;
667         }
668 
669         return true;
670 }
671 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672 
673 struct colocated_ap_data {
674         const struct element *ssid_elem;
675         struct list_head ap_list;
676         u32 s_ssid_tmp;
677         int n_coloc;
678 };
679 
680 static enum cfg80211_rnr_iter_ret
681 cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682                                  const struct ieee80211_neighbor_ap_info *info,
683                                  const u8 *tbtt_info, u8 tbtt_info_len)
684 {
685         struct colocated_ap_data *data = _data;
686         struct cfg80211_colocated_ap *entry;
687         enum nl80211_band band;
688 
689         if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690                 return RNR_ITER_CONTINUE;
691 
692         if (!ieee80211_operating_class_to_band(info->op_class, &band))
693                 return RNR_ITER_CONTINUE;
694 
695         /* TBTT info must include bss param + BSSID + (short SSID or
696          * same_ssid bit to be set). Ignore other options, and move to
697          * the next AP info
698          */
699         if (band != NL80211_BAND_6GHZ ||
700             !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701                                            bss_params) ||
702               tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703               tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704                                            bss_params)))
705                 return RNR_ITER_CONTINUE;
706 
707         entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708         if (!entry)
709                 return RNR_ITER_ERROR;
710 
711         entry->center_freq =
712                 ieee80211_channel_to_frequency(info->channel, band);
713 
714         if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715                                     data->ssid_elem, data->s_ssid_tmp)) {
716                 data->n_coloc++;
717                 list_add_tail(&entry->list, &data->ap_list);
718         } else {
719                 kfree(entry);
720         }
721 
722         return RNR_ITER_CONTINUE;
723 }
724 
725 VISIBLE_IF_CFG80211_KUNIT int
726 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727                             struct list_head *list)
728 {
729         struct colocated_ap_data data = {};
730         int ret;
731 
732         INIT_LIST_HEAD(&data.ap_list);
733 
734         ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735         if (ret)
736                 return 0;
737 
738         if (!cfg80211_iter_rnr(ies->data, ies->len,
739                                cfg80211_parse_colocated_ap_iter, &data)) {
740                 cfg80211_free_coloc_ap_list(&data.ap_list);
741                 return 0;
742         }
743 
744         list_splice_tail(&data.ap_list, list);
745         return data.n_coloc;
746 }
747 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748 
749 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750                                         struct ieee80211_channel *chan,
751                                         bool add_to_6ghz)
752 {
753         int i;
754         u32 n_channels = request->n_channels;
755         struct cfg80211_scan_6ghz_params *params =
756                 &request->scan_6ghz_params[request->n_6ghz_params];
757 
758         for (i = 0; i < n_channels; i++) {
759                 if (request->channels[i] == chan) {
760                         if (add_to_6ghz)
761                                 params->channel_idx = i;
762                         return;
763                 }
764         }
765 
766         request->channels[n_channels] = chan;
767         if (add_to_6ghz)
768                 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
769                         n_channels;
770 
771         request->n_channels++;
772 }
773 
774 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
775                                      struct cfg80211_scan_request *request)
776 {
777         int i;
778         u32 s_ssid;
779 
780         for (i = 0; i < request->n_ssids; i++) {
781                 /* wildcard ssid in the scan request */
782                 if (!request->ssids[i].ssid_len) {
783                         if (ap->multi_bss && !ap->transmitted_bssid)
784                                 continue;
785 
786                         return true;
787                 }
788 
789                 if (ap->ssid_len &&
790                     ap->ssid_len == request->ssids[i].ssid_len) {
791                         if (!memcmp(request->ssids[i].ssid, ap->ssid,
792                                     ap->ssid_len))
793                                 return true;
794                 } else if (ap->short_ssid_valid) {
795                         s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
796                                            request->ssids[i].ssid_len);
797 
798                         if (ap->short_ssid == s_ssid)
799                                 return true;
800                 }
801         }
802 
803         return false;
804 }
805 
806 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
807 {
808         u8 i;
809         struct cfg80211_colocated_ap *ap;
810         int n_channels, count = 0, err;
811         struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
812         LIST_HEAD(coloc_ap_list);
813         bool need_scan_psc = true;
814         const struct ieee80211_sband_iftype_data *iftd;
815         size_t size, offs_ssids, offs_6ghz_params, offs_ies;
816 
817         rdev_req->scan_6ghz = true;
818 
819         if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
820                 return -EOPNOTSUPP;
821 
822         iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
823                                                rdev_req->wdev->iftype);
824         if (!iftd || !iftd->he_cap.has_he)
825                 return -EOPNOTSUPP;
826 
827         n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
828 
829         if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
830                 struct cfg80211_internal_bss *intbss;
831 
832                 spin_lock_bh(&rdev->bss_lock);
833                 list_for_each_entry(intbss, &rdev->bss_list, list) {
834                         struct cfg80211_bss *res = &intbss->pub;
835                         const struct cfg80211_bss_ies *ies;
836                         const struct element *ssid_elem;
837                         struct cfg80211_colocated_ap *entry;
838                         u32 s_ssid_tmp;
839                         int ret;
840 
841                         ies = rcu_access_pointer(res->ies);
842                         count += cfg80211_parse_colocated_ap(ies,
843                                                              &coloc_ap_list);
844 
845                         /* In case the scan request specified a specific BSSID
846                          * and the BSS is found and operating on 6GHz band then
847                          * add this AP to the collocated APs list.
848                          * This is relevant for ML probe requests when the lower
849                          * band APs have not been discovered.
850                          */
851                         if (is_broadcast_ether_addr(rdev_req->bssid) ||
852                             !ether_addr_equal(rdev_req->bssid, res->bssid) ||
853                             res->channel->band != NL80211_BAND_6GHZ)
854                                 continue;
855 
856                         ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
857                                                        &s_ssid_tmp);
858                         if (ret)
859                                 continue;
860 
861                         entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
862                                         GFP_ATOMIC);
863 
864                         if (!entry)
865                                 continue;
866 
867                         memcpy(entry->bssid, res->bssid, ETH_ALEN);
868                         entry->short_ssid = s_ssid_tmp;
869                         memcpy(entry->ssid, ssid_elem->data,
870                                ssid_elem->datalen);
871                         entry->ssid_len = ssid_elem->datalen;
872                         entry->short_ssid_valid = true;
873                         entry->center_freq = res->channel->center_freq;
874 
875                         list_add_tail(&entry->list, &coloc_ap_list);
876                         count++;
877                 }
878                 spin_unlock_bh(&rdev->bss_lock);
879         }
880 
881         size = struct_size(request, channels, n_channels);
882         offs_ssids = size;
883         size += sizeof(*request->ssids) * rdev_req->n_ssids;
884         offs_6ghz_params = size;
885         size += sizeof(*request->scan_6ghz_params) * count;
886         offs_ies = size;
887         size += rdev_req->ie_len;
888 
889         request = kzalloc(size, GFP_KERNEL);
890         if (!request) {
891                 cfg80211_free_coloc_ap_list(&coloc_ap_list);
892                 return -ENOMEM;
893         }
894 
895         *request = *rdev_req;
896         request->n_channels = 0;
897         request->n_6ghz_params = 0;
898         if (rdev_req->n_ssids) {
899                 /*
900                  * Add the ssids from the parent scan request to the new
901                  * scan request, so the driver would be able to use them
902                  * in its probe requests to discover hidden APs on PSC
903                  * channels.
904                  */
905                 request->ssids = (void *)request + offs_ssids;
906                 memcpy(request->ssids, rdev_req->ssids,
907                        sizeof(*request->ssids) * request->n_ssids);
908         }
909         request->scan_6ghz_params = (void *)request + offs_6ghz_params;
910 
911         if (rdev_req->ie_len) {
912                 void *ie = (void *)request + offs_ies;
913 
914                 memcpy(ie, rdev_req->ie, rdev_req->ie_len);
915                 request->ie = ie;
916         }
917 
918         /*
919          * PSC channels should not be scanned in case of direct scan with 1 SSID
920          * and at least one of the reported co-located APs with same SSID
921          * indicating that all APs in the same ESS are co-located
922          */
923         if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
924                 list_for_each_entry(ap, &coloc_ap_list, list) {
925                         if (ap->colocated_ess &&
926                             cfg80211_find_ssid_match(ap, request)) {
927                                 need_scan_psc = false;
928                                 break;
929                         }
930                 }
931         }
932 
933         /*
934          * add to the scan request the channels that need to be scanned
935          * regardless of the collocated APs (PSC channels or all channels
936          * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
937          */
938         for (i = 0; i < rdev_req->n_channels; i++) {
939                 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
940                     ((need_scan_psc &&
941                       cfg80211_channel_is_psc(rdev_req->channels[i])) ||
942                      !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
943                         cfg80211_scan_req_add_chan(request,
944                                                    rdev_req->channels[i],
945                                                    false);
946                 }
947         }
948 
949         if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
950                 goto skip;
951 
952         list_for_each_entry(ap, &coloc_ap_list, list) {
953                 bool found = false;
954                 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
955                         &request->scan_6ghz_params[request->n_6ghz_params];
956                 struct ieee80211_channel *chan =
957                         ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
958 
959                 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
960                         continue;
961 
962                 for (i = 0; i < rdev_req->n_channels; i++) {
963                         if (rdev_req->channels[i] == chan)
964                                 found = true;
965                 }
966 
967                 if (!found)
968                         continue;
969 
970                 if (request->n_ssids > 0 &&
971                     !cfg80211_find_ssid_match(ap, request))
972                         continue;
973 
974                 if (!is_broadcast_ether_addr(request->bssid) &&
975                     !ether_addr_equal(request->bssid, ap->bssid))
976                         continue;
977 
978                 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
979                         continue;
980 
981                 cfg80211_scan_req_add_chan(request, chan, true);
982                 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
983                 scan_6ghz_params->short_ssid = ap->short_ssid;
984                 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
985                 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
986                 scan_6ghz_params->psd_20 = ap->psd_20;
987 
988                 /*
989                  * If a PSC channel is added to the scan and 'need_scan_psc' is
990                  * set to false, then all the APs that the scan logic is
991                  * interested with on the channel are collocated and thus there
992                  * is no need to perform the initial PSC channel listen.
993                  */
994                 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
995                         scan_6ghz_params->psc_no_listen = true;
996 
997                 request->n_6ghz_params++;
998         }
999 
1000 skip:
1001         cfg80211_free_coloc_ap_list(&coloc_ap_list);
1002 
1003         if (request->n_channels) {
1004                 struct cfg80211_scan_request *old = rdev->int_scan_req;
1005 
1006                 rdev->int_scan_req = request;
1007 
1008                 /*
1009                  * If this scan follows a previous scan, save the scan start
1010                  * info from the first part of the scan
1011                  */
1012                 if (old)
1013                         rdev->int_scan_req->info = old->info;
1014 
1015                 err = rdev_scan(rdev, request);
1016                 if (err) {
1017                         rdev->int_scan_req = old;
1018                         kfree(request);
1019                 } else {
1020                         kfree(old);
1021                 }
1022 
1023                 return err;
1024         }
1025 
1026         kfree(request);
1027         return -EINVAL;
1028 }
1029 
1030 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1031 {
1032         struct cfg80211_scan_request *request;
1033         struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1034         u32 n_channels = 0, idx, i;
1035 
1036         if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1037                 return rdev_scan(rdev, rdev_req);
1038 
1039         for (i = 0; i < rdev_req->n_channels; i++) {
1040                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1041                         n_channels++;
1042         }
1043 
1044         if (!n_channels)
1045                 return cfg80211_scan_6ghz(rdev);
1046 
1047         request = kzalloc(struct_size(request, channels, n_channels),
1048                           GFP_KERNEL);
1049         if (!request)
1050                 return -ENOMEM;
1051 
1052         *request = *rdev_req;
1053         request->n_channels = n_channels;
1054 
1055         for (i = idx = 0; i < rdev_req->n_channels; i++) {
1056                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1057                         request->channels[idx++] = rdev_req->channels[i];
1058         }
1059 
1060         rdev_req->scan_6ghz = false;
1061         rdev->int_scan_req = request;
1062         return rdev_scan(rdev, request);
1063 }
1064 
1065 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1066                            bool send_message)
1067 {
1068         struct cfg80211_scan_request *request, *rdev_req;
1069         struct wireless_dev *wdev;
1070         struct sk_buff *msg;
1071 #ifdef CONFIG_CFG80211_WEXT
1072         union iwreq_data wrqu;
1073 #endif
1074 
1075         lockdep_assert_held(&rdev->wiphy.mtx);
1076 
1077         if (rdev->scan_msg) {
1078                 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1079                 rdev->scan_msg = NULL;
1080                 return;
1081         }
1082 
1083         rdev_req = rdev->scan_req;
1084         if (!rdev_req)
1085                 return;
1086 
1087         wdev = rdev_req->wdev;
1088         request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1089 
1090         if (wdev_running(wdev) &&
1091             (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1092             !rdev_req->scan_6ghz && !request->info.aborted &&
1093             !cfg80211_scan_6ghz(rdev))
1094                 return;
1095 
1096         /*
1097          * This must be before sending the other events!
1098          * Otherwise, wpa_supplicant gets completely confused with
1099          * wext events.
1100          */
1101         if (wdev->netdev)
1102                 cfg80211_sme_scan_done(wdev->netdev);
1103 
1104         if (!request->info.aborted &&
1105             request->flags & NL80211_SCAN_FLAG_FLUSH) {
1106                 /* flush entries from previous scans */
1107                 spin_lock_bh(&rdev->bss_lock);
1108                 __cfg80211_bss_expire(rdev, request->scan_start);
1109                 spin_unlock_bh(&rdev->bss_lock);
1110         }
1111 
1112         msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1113 
1114 #ifdef CONFIG_CFG80211_WEXT
1115         if (wdev->netdev && !request->info.aborted) {
1116                 memset(&wrqu, 0, sizeof(wrqu));
1117 
1118                 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1119         }
1120 #endif
1121 
1122         dev_put(wdev->netdev);
1123 
1124         kfree(rdev->int_scan_req);
1125         rdev->int_scan_req = NULL;
1126 
1127         kfree(rdev->scan_req);
1128         rdev->scan_req = NULL;
1129 
1130         if (!send_message)
1131                 rdev->scan_msg = msg;
1132         else
1133                 nl80211_send_scan_msg(rdev, msg);
1134 }
1135 
1136 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1137 {
1138         ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1139 }
1140 
1141 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1142                         struct cfg80211_scan_info *info)
1143 {
1144         struct cfg80211_scan_info old_info = request->info;
1145 
1146         trace_cfg80211_scan_done(request, info);
1147         WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1148                 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1149 
1150         request->info = *info;
1151 
1152         /*
1153          * In case the scan is split, the scan_start_tsf and tsf_bssid should
1154          * be of the first part. In such a case old_info.scan_start_tsf should
1155          * be non zero.
1156          */
1157         if (request->scan_6ghz && old_info.scan_start_tsf) {
1158                 request->info.scan_start_tsf = old_info.scan_start_tsf;
1159                 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1160                        sizeof(request->info.tsf_bssid));
1161         }
1162 
1163         request->notified = true;
1164         wiphy_work_queue(request->wiphy,
1165                          &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1166 }
1167 EXPORT_SYMBOL(cfg80211_scan_done);
1168 
1169 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1170                                  struct cfg80211_sched_scan_request *req)
1171 {
1172         lockdep_assert_held(&rdev->wiphy.mtx);
1173 
1174         list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1175 }
1176 
1177 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1178                                         struct cfg80211_sched_scan_request *req)
1179 {
1180         lockdep_assert_held(&rdev->wiphy.mtx);
1181 
1182         list_del_rcu(&req->list);
1183         kfree_rcu(req, rcu_head);
1184 }
1185 
1186 static struct cfg80211_sched_scan_request *
1187 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1188 {
1189         struct cfg80211_sched_scan_request *pos;
1190 
1191         list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1192                                 lockdep_is_held(&rdev->wiphy.mtx)) {
1193                 if (pos->reqid == reqid)
1194                         return pos;
1195         }
1196         return NULL;
1197 }
1198 
1199 /*
1200  * Determines if a scheduled scan request can be handled. When a legacy
1201  * scheduled scan is running no other scheduled scan is allowed regardless
1202  * whether the request is for legacy or multi-support scan. When a multi-support
1203  * scheduled scan is running a request for legacy scan is not allowed. In this
1204  * case a request for multi-support scan can be handled if resources are
1205  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1206  */
1207 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1208                                      bool want_multi)
1209 {
1210         struct cfg80211_sched_scan_request *pos;
1211         int i = 0;
1212 
1213         list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1214                 /* request id zero means legacy in progress */
1215                 if (!i && !pos->reqid)
1216                         return -EINPROGRESS;
1217                 i++;
1218         }
1219 
1220         if (i) {
1221                 /* no legacy allowed when multi request(s) are active */
1222                 if (!want_multi)
1223                         return -EINPROGRESS;
1224 
1225                 /* resource limit reached */
1226                 if (i == rdev->wiphy.max_sched_scan_reqs)
1227                         return -ENOSPC;
1228         }
1229         return 0;
1230 }
1231 
1232 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1233 {
1234         struct cfg80211_registered_device *rdev;
1235         struct cfg80211_sched_scan_request *req, *tmp;
1236 
1237         rdev = container_of(work, struct cfg80211_registered_device,
1238                            sched_scan_res_wk);
1239 
1240         wiphy_lock(&rdev->wiphy);
1241         list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1242                 if (req->report_results) {
1243                         req->report_results = false;
1244                         if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1245                                 /* flush entries from previous scans */
1246                                 spin_lock_bh(&rdev->bss_lock);
1247                                 __cfg80211_bss_expire(rdev, req->scan_start);
1248                                 spin_unlock_bh(&rdev->bss_lock);
1249                                 req->scan_start = jiffies;
1250                         }
1251                         nl80211_send_sched_scan(req,
1252                                                 NL80211_CMD_SCHED_SCAN_RESULTS);
1253                 }
1254         }
1255         wiphy_unlock(&rdev->wiphy);
1256 }
1257 
1258 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1259 {
1260         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1261         struct cfg80211_sched_scan_request *request;
1262 
1263         trace_cfg80211_sched_scan_results(wiphy, reqid);
1264         /* ignore if we're not scanning */
1265 
1266         rcu_read_lock();
1267         request = cfg80211_find_sched_scan_req(rdev, reqid);
1268         if (request) {
1269                 request->report_results = true;
1270                 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1271         }
1272         rcu_read_unlock();
1273 }
1274 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1275 
1276 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1277 {
1278         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1279 
1280         lockdep_assert_held(&wiphy->mtx);
1281 
1282         trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1283 
1284         __cfg80211_stop_sched_scan(rdev, reqid, true);
1285 }
1286 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1287 
1288 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1289 {
1290         wiphy_lock(wiphy);
1291         cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1292         wiphy_unlock(wiphy);
1293 }
1294 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1295 
1296 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1297                                  struct cfg80211_sched_scan_request *req,
1298                                  bool driver_initiated)
1299 {
1300         lockdep_assert_held(&rdev->wiphy.mtx);
1301 
1302         if (!driver_initiated) {
1303                 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1304                 if (err)
1305                         return err;
1306         }
1307 
1308         nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1309 
1310         cfg80211_del_sched_scan_req(rdev, req);
1311 
1312         return 0;
1313 }
1314 
1315 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1316                                u64 reqid, bool driver_initiated)
1317 {
1318         struct cfg80211_sched_scan_request *sched_scan_req;
1319 
1320         lockdep_assert_held(&rdev->wiphy.mtx);
1321 
1322         sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1323         if (!sched_scan_req)
1324                 return -ENOENT;
1325 
1326         return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1327                                             driver_initiated);
1328 }
1329 
1330 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1331                       unsigned long age_secs)
1332 {
1333         struct cfg80211_internal_bss *bss;
1334         unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1335 
1336         spin_lock_bh(&rdev->bss_lock);
1337         list_for_each_entry(bss, &rdev->bss_list, list)
1338                 bss->ts -= age_jiffies;
1339         spin_unlock_bh(&rdev->bss_lock);
1340 }
1341 
1342 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1343 {
1344         __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1345 }
1346 
1347 void cfg80211_bss_flush(struct wiphy *wiphy)
1348 {
1349         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1350 
1351         spin_lock_bh(&rdev->bss_lock);
1352         __cfg80211_bss_expire(rdev, jiffies);
1353         spin_unlock_bh(&rdev->bss_lock);
1354 }
1355 EXPORT_SYMBOL(cfg80211_bss_flush);
1356 
1357 const struct element *
1358 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1359                          const u8 *match, unsigned int match_len,
1360                          unsigned int match_offset)
1361 {
1362         const struct element *elem;
1363 
1364         for_each_element_id(elem, eid, ies, len) {
1365                 if (elem->datalen >= match_offset + match_len &&
1366                     !memcmp(elem->data + match_offset, match, match_len))
1367                         return elem;
1368         }
1369 
1370         return NULL;
1371 }
1372 EXPORT_SYMBOL(cfg80211_find_elem_match);
1373 
1374 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1375                                                 const u8 *ies,
1376                                                 unsigned int len)
1377 {
1378         const struct element *elem;
1379         u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1380         int match_len = (oui_type < 0) ? 3 : sizeof(match);
1381 
1382         if (WARN_ON(oui_type > 0xff))
1383                 return NULL;
1384 
1385         elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1386                                         match, match_len, 0);
1387 
1388         if (!elem || elem->datalen < 4)
1389                 return NULL;
1390 
1391         return elem;
1392 }
1393 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1394 
1395 /**
1396  * enum bss_compare_mode - BSS compare mode
1397  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1398  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1399  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1400  */
1401 enum bss_compare_mode {
1402         BSS_CMP_REGULAR,
1403         BSS_CMP_HIDE_ZLEN,
1404         BSS_CMP_HIDE_NUL,
1405 };
1406 
1407 static int cmp_bss(struct cfg80211_bss *a,
1408                    struct cfg80211_bss *b,
1409                    enum bss_compare_mode mode)
1410 {
1411         const struct cfg80211_bss_ies *a_ies, *b_ies;
1412         const u8 *ie1 = NULL;
1413         const u8 *ie2 = NULL;
1414         int i, r;
1415 
1416         if (a->channel != b->channel)
1417                 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1418                        (a->channel->center_freq * 1000 + a->channel->freq_offset);
1419 
1420         a_ies = rcu_access_pointer(a->ies);
1421         if (!a_ies)
1422                 return -1;
1423         b_ies = rcu_access_pointer(b->ies);
1424         if (!b_ies)
1425                 return 1;
1426 
1427         if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1428                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1429                                        a_ies->data, a_ies->len);
1430         if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1431                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1432                                        b_ies->data, b_ies->len);
1433         if (ie1 && ie2) {
1434                 int mesh_id_cmp;
1435 
1436                 if (ie1[1] == ie2[1])
1437                         mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1438                 else
1439                         mesh_id_cmp = ie2[1] - ie1[1];
1440 
1441                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1442                                        a_ies->data, a_ies->len);
1443                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1444                                        b_ies->data, b_ies->len);
1445                 if (ie1 && ie2) {
1446                         if (mesh_id_cmp)
1447                                 return mesh_id_cmp;
1448                         if (ie1[1] != ie2[1])
1449                                 return ie2[1] - ie1[1];
1450                         return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1451                 }
1452         }
1453 
1454         r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1455         if (r)
1456                 return r;
1457 
1458         ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1459         ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1460 
1461         if (!ie1 && !ie2)
1462                 return 0;
1463 
1464         /*
1465          * Note that with "hide_ssid", the function returns a match if
1466          * the already-present BSS ("b") is a hidden SSID beacon for
1467          * the new BSS ("a").
1468          */
1469 
1470         /* sort missing IE before (left of) present IE */
1471         if (!ie1)
1472                 return -1;
1473         if (!ie2)
1474                 return 1;
1475 
1476         switch (mode) {
1477         case BSS_CMP_HIDE_ZLEN:
1478                 /*
1479                  * In ZLEN mode we assume the BSS entry we're
1480                  * looking for has a zero-length SSID. So if
1481                  * the one we're looking at right now has that,
1482                  * return 0. Otherwise, return the difference
1483                  * in length, but since we're looking for the
1484                  * 0-length it's really equivalent to returning
1485                  * the length of the one we're looking at.
1486                  *
1487                  * No content comparison is needed as we assume
1488                  * the content length is zero.
1489                  */
1490                 return ie2[1];
1491         case BSS_CMP_REGULAR:
1492         default:
1493                 /* sort by length first, then by contents */
1494                 if (ie1[1] != ie2[1])
1495                         return ie2[1] - ie1[1];
1496                 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1497         case BSS_CMP_HIDE_NUL:
1498                 if (ie1[1] != ie2[1])
1499                         return ie2[1] - ie1[1];
1500                 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1501                 for (i = 0; i < ie2[1]; i++)
1502                         if (ie2[i + 2])
1503                                 return -1;
1504                 return 0;
1505         }
1506 }
1507 
1508 static bool cfg80211_bss_type_match(u16 capability,
1509                                     enum nl80211_band band,
1510                                     enum ieee80211_bss_type bss_type)
1511 {
1512         bool ret = true;
1513         u16 mask, val;
1514 
1515         if (bss_type == IEEE80211_BSS_TYPE_ANY)
1516                 return ret;
1517 
1518         if (band == NL80211_BAND_60GHZ) {
1519                 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1520                 switch (bss_type) {
1521                 case IEEE80211_BSS_TYPE_ESS:
1522                         val = WLAN_CAPABILITY_DMG_TYPE_AP;
1523                         break;
1524                 case IEEE80211_BSS_TYPE_PBSS:
1525                         val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1526                         break;
1527                 case IEEE80211_BSS_TYPE_IBSS:
1528                         val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1529                         break;
1530                 default:
1531                         return false;
1532                 }
1533         } else {
1534                 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1535                 switch (bss_type) {
1536                 case IEEE80211_BSS_TYPE_ESS:
1537                         val = WLAN_CAPABILITY_ESS;
1538                         break;
1539                 case IEEE80211_BSS_TYPE_IBSS:
1540                         val = WLAN_CAPABILITY_IBSS;
1541                         break;
1542                 case IEEE80211_BSS_TYPE_MBSS:
1543                         val = 0;
1544                         break;
1545                 default:
1546                         return false;
1547                 }
1548         }
1549 
1550         ret = ((capability & mask) == val);
1551         return ret;
1552 }
1553 
1554 /* Returned bss is reference counted and must be cleaned up appropriately. */
1555 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1556                                         struct ieee80211_channel *channel,
1557                                         const u8 *bssid,
1558                                         const u8 *ssid, size_t ssid_len,
1559                                         enum ieee80211_bss_type bss_type,
1560                                         enum ieee80211_privacy privacy,
1561                                         u32 use_for)
1562 {
1563         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1564         struct cfg80211_internal_bss *bss, *res = NULL;
1565         unsigned long now = jiffies;
1566         int bss_privacy;
1567 
1568         trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1569                                privacy);
1570 
1571         spin_lock_bh(&rdev->bss_lock);
1572 
1573         list_for_each_entry(bss, &rdev->bss_list, list) {
1574                 if (!cfg80211_bss_type_match(bss->pub.capability,
1575                                              bss->pub.channel->band, bss_type))
1576                         continue;
1577 
1578                 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1579                 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1580                     (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1581                         continue;
1582                 if (channel && bss->pub.channel != channel)
1583                         continue;
1584                 if (!is_valid_ether_addr(bss->pub.bssid))
1585                         continue;
1586                 if ((bss->pub.use_for & use_for) != use_for)
1587                         continue;
1588                 /* Don't get expired BSS structs */
1589                 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1590                     !atomic_read(&bss->hold))
1591                         continue;
1592                 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1593                         res = bss;
1594                         bss_ref_get(rdev, res);
1595                         break;
1596                 }
1597         }
1598 
1599         spin_unlock_bh(&rdev->bss_lock);
1600         if (!res)
1601                 return NULL;
1602         trace_cfg80211_return_bss(&res->pub);
1603         return &res->pub;
1604 }
1605 EXPORT_SYMBOL(__cfg80211_get_bss);
1606 
1607 static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1608                           struct cfg80211_internal_bss *bss)
1609 {
1610         struct rb_node **p = &rdev->bss_tree.rb_node;
1611         struct rb_node *parent = NULL;
1612         struct cfg80211_internal_bss *tbss;
1613         int cmp;
1614 
1615         while (*p) {
1616                 parent = *p;
1617                 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1618 
1619                 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1620 
1621                 if (WARN_ON(!cmp)) {
1622                         /* will sort of leak this BSS */
1623                         return false;
1624                 }
1625 
1626                 if (cmp < 0)
1627                         p = &(*p)->rb_left;
1628                 else
1629                         p = &(*p)->rb_right;
1630         }
1631 
1632         rb_link_node(&bss->rbn, parent, p);
1633         rb_insert_color(&bss->rbn, &rdev->bss_tree);
1634         return true;
1635 }
1636 
1637 static struct cfg80211_internal_bss *
1638 rb_find_bss(struct cfg80211_registered_device *rdev,
1639             struct cfg80211_internal_bss *res,
1640             enum bss_compare_mode mode)
1641 {
1642         struct rb_node *n = rdev->bss_tree.rb_node;
1643         struct cfg80211_internal_bss *bss;
1644         int r;
1645 
1646         while (n) {
1647                 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1648                 r = cmp_bss(&res->pub, &bss->pub, mode);
1649 
1650                 if (r == 0)
1651                         return bss;
1652                 else if (r < 0)
1653                         n = n->rb_left;
1654                 else
1655                         n = n->rb_right;
1656         }
1657 
1658         return NULL;
1659 }
1660 
1661 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1662                                 struct cfg80211_internal_bss *bss)
1663 {
1664         lockdep_assert_held(&rdev->bss_lock);
1665 
1666         if (!rb_insert_bss(rdev, bss))
1667                 return;
1668         list_add_tail(&bss->list, &rdev->bss_list);
1669         rdev->bss_entries++;
1670 }
1671 
1672 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1673                                 struct cfg80211_internal_bss *bss)
1674 {
1675         lockdep_assert_held(&rdev->bss_lock);
1676 
1677         rb_erase(&bss->rbn, &rdev->bss_tree);
1678         if (!rb_insert_bss(rdev, bss)) {
1679                 list_del(&bss->list);
1680                 if (!list_empty(&bss->hidden_list))
1681                         list_del_init(&bss->hidden_list);
1682                 if (!list_empty(&bss->pub.nontrans_list))
1683                         list_del_init(&bss->pub.nontrans_list);
1684                 rdev->bss_entries--;
1685         }
1686         rdev->bss_generation++;
1687 }
1688 
1689 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1690                                    struct cfg80211_internal_bss *new)
1691 {
1692         const struct cfg80211_bss_ies *ies;
1693         struct cfg80211_internal_bss *bss;
1694         const u8 *ie;
1695         int i, ssidlen;
1696         u8 fold = 0;
1697         u32 n_entries = 0;
1698 
1699         ies = rcu_access_pointer(new->pub.beacon_ies);
1700         if (WARN_ON(!ies))
1701                 return false;
1702 
1703         ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1704         if (!ie) {
1705                 /* nothing to do */
1706                 return true;
1707         }
1708 
1709         ssidlen = ie[1];
1710         for (i = 0; i < ssidlen; i++)
1711                 fold |= ie[2 + i];
1712 
1713         if (fold) {
1714                 /* not a hidden SSID */
1715                 return true;
1716         }
1717 
1718         /* This is the bad part ... */
1719 
1720         list_for_each_entry(bss, &rdev->bss_list, list) {
1721                 /*
1722                  * we're iterating all the entries anyway, so take the
1723                  * opportunity to validate the list length accounting
1724                  */
1725                 n_entries++;
1726 
1727                 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1728                         continue;
1729                 if (bss->pub.channel != new->pub.channel)
1730                         continue;
1731                 if (rcu_access_pointer(bss->pub.beacon_ies))
1732                         continue;
1733                 ies = rcu_access_pointer(bss->pub.ies);
1734                 if (!ies)
1735                         continue;
1736                 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1737                 if (!ie)
1738                         continue;
1739                 if (ssidlen && ie[1] != ssidlen)
1740                         continue;
1741                 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1742                         continue;
1743                 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1744                         list_del(&bss->hidden_list);
1745                 /* combine them */
1746                 list_add(&bss->hidden_list, &new->hidden_list);
1747                 bss->pub.hidden_beacon_bss = &new->pub;
1748                 new->refcount += bss->refcount;
1749                 rcu_assign_pointer(bss->pub.beacon_ies,
1750                                    new->pub.beacon_ies);
1751         }
1752 
1753         WARN_ONCE(n_entries != rdev->bss_entries,
1754                   "rdev bss entries[%d]/list[len:%d] corruption\n",
1755                   rdev->bss_entries, n_entries);
1756 
1757         return true;
1758 }
1759 
1760 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1761                                          const struct cfg80211_bss_ies *new_ies,
1762                                          const struct cfg80211_bss_ies *old_ies)
1763 {
1764         struct cfg80211_internal_bss *bss;
1765 
1766         /* Assign beacon IEs to all sub entries */
1767         list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1768                 const struct cfg80211_bss_ies *ies;
1769 
1770                 ies = rcu_access_pointer(bss->pub.beacon_ies);
1771                 WARN_ON(ies != old_ies);
1772 
1773                 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1774         }
1775 }
1776 
1777 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1778                                       struct cfg80211_internal_bss *known,
1779                                       const struct cfg80211_bss_ies *old)
1780 {
1781         const struct ieee80211_ext_chansw_ie *ecsa;
1782         const struct element *elem_new, *elem_old;
1783         const struct cfg80211_bss_ies *new, *bcn;
1784 
1785         if (known->pub.proberesp_ecsa_stuck)
1786                 return;
1787 
1788         new = rcu_dereference_protected(known->pub.proberesp_ies,
1789                                         lockdep_is_held(&rdev->bss_lock));
1790         if (WARN_ON(!new))
1791                 return;
1792 
1793         if (new->tsf - old->tsf < USEC_PER_SEC)
1794                 return;
1795 
1796         elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1797                                       old->data, old->len);
1798         if (!elem_old)
1799                 return;
1800 
1801         elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1802                                       new->data, new->len);
1803         if (!elem_new)
1804                 return;
1805 
1806         bcn = rcu_dereference_protected(known->pub.beacon_ies,
1807                                         lockdep_is_held(&rdev->bss_lock));
1808         if (bcn &&
1809             cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1810                                bcn->data, bcn->len))
1811                 return;
1812 
1813         if (elem_new->datalen != elem_old->datalen)
1814                 return;
1815         if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1816                 return;
1817         if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1818                 return;
1819 
1820         ecsa = (void *)elem_new->data;
1821 
1822         if (!ecsa->mode)
1823                 return;
1824 
1825         if (ecsa->new_ch_num !=
1826             ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1827                 return;
1828 
1829         known->pub.proberesp_ecsa_stuck = 1;
1830 }
1831 
1832 static bool
1833 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1834                           struct cfg80211_internal_bss *known,
1835                           struct cfg80211_internal_bss *new,
1836                           bool signal_valid)
1837 {
1838         lockdep_assert_held(&rdev->bss_lock);
1839 
1840         /* Update IEs */
1841         if (rcu_access_pointer(new->pub.proberesp_ies)) {
1842                 const struct cfg80211_bss_ies *old;
1843 
1844                 old = rcu_access_pointer(known->pub.proberesp_ies);
1845 
1846                 rcu_assign_pointer(known->pub.proberesp_ies,
1847                                    new->pub.proberesp_ies);
1848                 /* Override possible earlier Beacon frame IEs */
1849                 rcu_assign_pointer(known->pub.ies,
1850                                    new->pub.proberesp_ies);
1851                 if (old) {
1852                         cfg80211_check_stuck_ecsa(rdev, known, old);
1853                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1854                 }
1855         }
1856 
1857         if (rcu_access_pointer(new->pub.beacon_ies)) {
1858                 const struct cfg80211_bss_ies *old;
1859 
1860                 if (known->pub.hidden_beacon_bss &&
1861                     !list_empty(&known->hidden_list)) {
1862                         const struct cfg80211_bss_ies *f;
1863 
1864                         /* The known BSS struct is one of the probe
1865                          * response members of a group, but we're
1866                          * receiving a beacon (beacon_ies in the new
1867                          * bss is used). This can only mean that the
1868                          * AP changed its beacon from not having an
1869                          * SSID to showing it, which is confusing so
1870                          * drop this information.
1871                          */
1872 
1873                         f = rcu_access_pointer(new->pub.beacon_ies);
1874                         kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1875                         return false;
1876                 }
1877 
1878                 old = rcu_access_pointer(known->pub.beacon_ies);
1879 
1880                 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1881 
1882                 /* Override IEs if they were from a beacon before */
1883                 if (old == rcu_access_pointer(known->pub.ies))
1884                         rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1885 
1886                 cfg80211_update_hidden_bsses(known,
1887                                              rcu_access_pointer(new->pub.beacon_ies),
1888                                              old);
1889 
1890                 if (old)
1891                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1892         }
1893 
1894         known->pub.beacon_interval = new->pub.beacon_interval;
1895 
1896         /* don't update the signal if beacon was heard on
1897          * adjacent channel.
1898          */
1899         if (signal_valid)
1900                 known->pub.signal = new->pub.signal;
1901         known->pub.capability = new->pub.capability;
1902         known->ts = new->ts;
1903         known->ts_boottime = new->ts_boottime;
1904         known->parent_tsf = new->parent_tsf;
1905         known->pub.chains = new->pub.chains;
1906         memcpy(known->pub.chain_signal, new->pub.chain_signal,
1907                IEEE80211_MAX_CHAINS);
1908         ether_addr_copy(known->parent_bssid, new->parent_bssid);
1909         known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1910         known->pub.bssid_index = new->pub.bssid_index;
1911         known->pub.use_for &= new->pub.use_for;
1912         known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1913 
1914         return true;
1915 }
1916 
1917 /* Returned bss is reference counted and must be cleaned up appropriately. */
1918 static struct cfg80211_internal_bss *
1919 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1920                       struct cfg80211_internal_bss *tmp,
1921                       bool signal_valid, unsigned long ts)
1922 {
1923         struct cfg80211_internal_bss *found = NULL;
1924         struct cfg80211_bss_ies *ies;
1925 
1926         if (WARN_ON(!tmp->pub.channel))
1927                 goto free_ies;
1928 
1929         tmp->ts = ts;
1930 
1931         if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1932                 goto free_ies;
1933 
1934         found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1935 
1936         if (found) {
1937                 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1938                         return NULL;
1939         } else {
1940                 struct cfg80211_internal_bss *new;
1941                 struct cfg80211_internal_bss *hidden;
1942 
1943                 /*
1944                  * create a copy -- the "res" variable that is passed in
1945                  * is allocated on the stack since it's not needed in the
1946                  * more common case of an update
1947                  */
1948                 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1949                               GFP_ATOMIC);
1950                 if (!new)
1951                         goto free_ies;
1952                 memcpy(new, tmp, sizeof(*new));
1953                 new->refcount = 1;
1954                 INIT_LIST_HEAD(&new->hidden_list);
1955                 INIT_LIST_HEAD(&new->pub.nontrans_list);
1956                 /* we'll set this later if it was non-NULL */
1957                 new->pub.transmitted_bss = NULL;
1958 
1959                 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1960                         hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1961                         if (!hidden)
1962                                 hidden = rb_find_bss(rdev, tmp,
1963                                                      BSS_CMP_HIDE_NUL);
1964                         if (hidden) {
1965                                 new->pub.hidden_beacon_bss = &hidden->pub;
1966                                 list_add(&new->hidden_list,
1967                                          &hidden->hidden_list);
1968                                 hidden->refcount++;
1969 
1970                                 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1971                                 rcu_assign_pointer(new->pub.beacon_ies,
1972                                                    hidden->pub.beacon_ies);
1973                                 if (ies)
1974                                         kfree_rcu(ies, rcu_head);
1975                         }
1976                 } else {
1977                         /*
1978                          * Ok so we found a beacon, and don't have an entry. If
1979                          * it's a beacon with hidden SSID, we might be in for an
1980                          * expensive search for any probe responses that should
1981                          * be grouped with this beacon for updates ...
1982                          */
1983                         if (!cfg80211_combine_bsses(rdev, new)) {
1984                                 bss_ref_put(rdev, new);
1985                                 return NULL;
1986                         }
1987                 }
1988 
1989                 if (rdev->bss_entries >= bss_entries_limit &&
1990                     !cfg80211_bss_expire_oldest(rdev)) {
1991                         bss_ref_put(rdev, new);
1992                         return NULL;
1993                 }
1994 
1995                 /* This must be before the call to bss_ref_get */
1996                 if (tmp->pub.transmitted_bss) {
1997                         new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1998                         bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1999                 }
2000 
2001                 cfg80211_insert_bss(rdev, new);
2002                 found = new;
2003         }
2004 
2005         rdev->bss_generation++;
2006         bss_ref_get(rdev, found);
2007 
2008         return found;
2009 
2010 free_ies:
2011         ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
2012         if (ies)
2013                 kfree_rcu(ies, rcu_head);
2014         ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
2015         if (ies)
2016                 kfree_rcu(ies, rcu_head);
2017 
2018         return NULL;
2019 }
2020 
2021 struct cfg80211_internal_bss *
2022 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2023                     struct cfg80211_internal_bss *tmp,
2024                     bool signal_valid, unsigned long ts)
2025 {
2026         struct cfg80211_internal_bss *res;
2027 
2028         spin_lock_bh(&rdev->bss_lock);
2029         res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2030         spin_unlock_bh(&rdev->bss_lock);
2031 
2032         return res;
2033 }
2034 
2035 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2036                                     enum nl80211_band band)
2037 {
2038         const struct element *tmp;
2039 
2040         if (band == NL80211_BAND_6GHZ) {
2041                 struct ieee80211_he_operation *he_oper;
2042 
2043                 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2044                                              ielen);
2045                 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2046                     tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2047                         const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2048 
2049                         he_oper = (void *)&tmp->data[1];
2050 
2051                         he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2052                         if (!he_6ghz_oper)
2053                                 return -1;
2054 
2055                         return he_6ghz_oper->primary;
2056                 }
2057         } else if (band == NL80211_BAND_S1GHZ) {
2058                 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2059                 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2060                         struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2061 
2062                         return s1gop->oper_ch;
2063                 }
2064         } else {
2065                 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2066                 if (tmp && tmp->datalen == 1)
2067                         return tmp->data[0];
2068 
2069                 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2070                 if (tmp &&
2071                     tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2072                         struct ieee80211_ht_operation *htop = (void *)tmp->data;
2073 
2074                         return htop->primary_chan;
2075                 }
2076         }
2077 
2078         return -1;
2079 }
2080 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2081 
2082 /*
2083  * Update RX channel information based on the available frame payload
2084  * information. This is mainly for the 2.4 GHz band where frames can be received
2085  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2086  * element to indicate the current (transmitting) channel, but this might also
2087  * be needed on other bands if RX frequency does not match with the actual
2088  * operating channel of a BSS, or if the AP reports a different primary channel.
2089  */
2090 static struct ieee80211_channel *
2091 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2092                          struct ieee80211_channel *channel)
2093 {
2094         u32 freq;
2095         int channel_number;
2096         struct ieee80211_channel *alt_channel;
2097 
2098         channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2099                                                          channel->band);
2100 
2101         if (channel_number < 0) {
2102                 /* No channel information in frame payload */
2103                 return channel;
2104         }
2105 
2106         freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2107 
2108         /*
2109          * Frame info (beacon/prob res) is the same as received channel,
2110          * no need for further processing.
2111          */
2112         if (freq == ieee80211_channel_to_khz(channel))
2113                 return channel;
2114 
2115         alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2116         if (!alt_channel) {
2117                 if (channel->band == NL80211_BAND_2GHZ ||
2118                     channel->band == NL80211_BAND_6GHZ) {
2119                         /*
2120                          * Better not allow unexpected channels when that could
2121                          * be going beyond the 1-11 range (e.g., discovering
2122                          * BSS on channel 12 when radio is configured for
2123                          * channel 11) or beyond the 6 GHz channel range.
2124                          */
2125                         return NULL;
2126                 }
2127 
2128                 /* No match for the payload channel number - ignore it */
2129                 return channel;
2130         }
2131 
2132         /*
2133          * Use the channel determined through the payload channel number
2134          * instead of the RX channel reported by the driver.
2135          */
2136         if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2137                 return NULL;
2138         return alt_channel;
2139 }
2140 
2141 struct cfg80211_inform_single_bss_data {
2142         struct cfg80211_inform_bss *drv_data;
2143         enum cfg80211_bss_frame_type ftype;
2144         struct ieee80211_channel *channel;
2145         u8 bssid[ETH_ALEN];
2146         u64 tsf;
2147         u16 capability;
2148         u16 beacon_interval;
2149         const u8 *ie;
2150         size_t ielen;
2151 
2152         enum {
2153                 BSS_SOURCE_DIRECT = 0,
2154                 BSS_SOURCE_MBSSID,
2155                 BSS_SOURCE_STA_PROFILE,
2156         } bss_source;
2157         /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2158         struct cfg80211_bss *source_bss;
2159         u8 max_bssid_indicator;
2160         u8 bssid_index;
2161 
2162         u8 use_for;
2163         u64 cannot_use_reasons;
2164 };
2165 
2166 enum ieee80211_ap_reg_power
2167 cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
2168 {
2169         const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2170         struct ieee80211_he_operation *he_oper;
2171         const struct element *tmp;
2172 
2173         tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2174                                      elems, elems_len);
2175         if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2176             tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2177                 return IEEE80211_REG_UNSET_AP;
2178 
2179         he_oper = (void *)&tmp->data[1];
2180         he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2181 
2182         if (!he_6ghz_oper)
2183                 return IEEE80211_REG_UNSET_AP;
2184 
2185         switch (u8_get_bits(he_6ghz_oper->control,
2186                             IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2187         case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2188         case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2189                 return IEEE80211_REG_LPI_AP;
2190         case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2191         case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2192                 return IEEE80211_REG_SP_AP;
2193         case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2194                 return IEEE80211_REG_VLP_AP;
2195         default:
2196                 return IEEE80211_REG_UNSET_AP;
2197         }
2198 }
2199 
2200 static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2201                                            const u32 flags)
2202 {
2203         switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
2204         case IEEE80211_REG_LPI_AP:
2205                 return true;
2206         case IEEE80211_REG_SP_AP:
2207                 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2208         case IEEE80211_REG_VLP_AP:
2209                 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2210         default:
2211                 return false;
2212         }
2213 }
2214 
2215 /* Returned bss is reference counted and must be cleaned up appropriately. */
2216 static struct cfg80211_bss *
2217 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2218                                 struct cfg80211_inform_single_bss_data *data,
2219                                 gfp_t gfp)
2220 {
2221         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2222         struct cfg80211_inform_bss *drv_data = data->drv_data;
2223         struct cfg80211_bss_ies *ies;
2224         struct ieee80211_channel *channel;
2225         struct cfg80211_internal_bss tmp = {}, *res;
2226         int bss_type;
2227         bool signal_valid;
2228         unsigned long ts;
2229 
2230         if (WARN_ON(!wiphy))
2231                 return NULL;
2232 
2233         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2234                     (drv_data->signal < 0 || drv_data->signal > 100)))
2235                 return NULL;
2236 
2237         if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2238                 return NULL;
2239 
2240         channel = data->channel;
2241         if (!channel)
2242                 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2243                                                    drv_data->chan);
2244         if (!channel)
2245                 return NULL;
2246 
2247         if (channel->band == NL80211_BAND_6GHZ &&
2248             !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2249                                             channel->flags)) {
2250                 data->use_for = 0;
2251                 data->cannot_use_reasons =
2252                         NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2253         }
2254 
2255         memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2256         tmp.pub.channel = channel;
2257         if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2258                 tmp.pub.signal = drv_data->signal;
2259         else
2260                 tmp.pub.signal = 0;
2261         tmp.pub.beacon_interval = data->beacon_interval;
2262         tmp.pub.capability = data->capability;
2263         tmp.ts_boottime = drv_data->boottime_ns;
2264         tmp.parent_tsf = drv_data->parent_tsf;
2265         ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2266         tmp.pub.chains = drv_data->chains;
2267         memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2268                IEEE80211_MAX_CHAINS);
2269         tmp.pub.use_for = data->use_for;
2270         tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2271 
2272         switch (data->bss_source) {
2273         case BSS_SOURCE_MBSSID:
2274                 tmp.pub.transmitted_bss = data->source_bss;
2275                 fallthrough;
2276         case BSS_SOURCE_STA_PROFILE:
2277                 ts = bss_from_pub(data->source_bss)->ts;
2278                 tmp.pub.bssid_index = data->bssid_index;
2279                 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2280                 break;
2281         case BSS_SOURCE_DIRECT:
2282                 ts = jiffies;
2283 
2284                 if (channel->band == NL80211_BAND_60GHZ) {
2285                         bss_type = data->capability &
2286                                    WLAN_CAPABILITY_DMG_TYPE_MASK;
2287                         if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2288                             bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2289                                 regulatory_hint_found_beacon(wiphy, channel,
2290                                                              gfp);
2291                 } else {
2292                         if (data->capability & WLAN_CAPABILITY_ESS)
2293                                 regulatory_hint_found_beacon(wiphy, channel,
2294                                                              gfp);
2295                 }
2296                 break;
2297         }
2298 
2299         /*
2300          * If we do not know here whether the IEs are from a Beacon or Probe
2301          * Response frame, we need to pick one of the options and only use it
2302          * with the driver that does not provide the full Beacon/Probe Response
2303          * frame. Use Beacon frame pointer to avoid indicating that this should
2304          * override the IEs pointer should we have received an earlier
2305          * indication of Probe Response data.
2306          */
2307         ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2308         if (!ies)
2309                 return NULL;
2310         ies->len = data->ielen;
2311         ies->tsf = data->tsf;
2312         ies->from_beacon = false;
2313         memcpy(ies->data, data->ie, data->ielen);
2314 
2315         switch (data->ftype) {
2316         case CFG80211_BSS_FTYPE_BEACON:
2317         case CFG80211_BSS_FTYPE_S1G_BEACON:
2318                 ies->from_beacon = true;
2319                 fallthrough;
2320         case CFG80211_BSS_FTYPE_UNKNOWN:
2321                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2322                 break;
2323         case CFG80211_BSS_FTYPE_PRESP:
2324                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2325                 break;
2326         }
2327         rcu_assign_pointer(tmp.pub.ies, ies);
2328 
2329         signal_valid = drv_data->chan == channel;
2330         spin_lock_bh(&rdev->bss_lock);
2331         res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2332         if (!res)
2333                 goto drop;
2334 
2335         rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2336 
2337         if (data->bss_source == BSS_SOURCE_MBSSID) {
2338                 /* this is a nontransmitting bss, we need to add it to
2339                  * transmitting bss' list if it is not there
2340                  */
2341                 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2342                         if (__cfg80211_unlink_bss(rdev, res)) {
2343                                 rdev->bss_generation++;
2344                                 res = NULL;
2345                         }
2346                 }
2347 
2348                 if (!res)
2349                         goto drop;
2350         }
2351         spin_unlock_bh(&rdev->bss_lock);
2352 
2353         trace_cfg80211_return_bss(&res->pub);
2354         /* __cfg80211_bss_update gives us a referenced result */
2355         return &res->pub;
2356 
2357 drop:
2358         spin_unlock_bh(&rdev->bss_lock);
2359         return NULL;
2360 }
2361 
2362 static const struct element
2363 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2364                                    const struct element *mbssid_elem,
2365                                    const struct element *sub_elem)
2366 {
2367         const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2368         const struct element *next_mbssid;
2369         const struct element *next_sub;
2370 
2371         next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2372                                          mbssid_end,
2373                                          ielen - (mbssid_end - ie));
2374 
2375         /*
2376          * If it is not the last subelement in current MBSSID IE or there isn't
2377          * a next MBSSID IE - profile is complete.
2378         */
2379         if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2380             !next_mbssid)
2381                 return NULL;
2382 
2383         /* For any length error, just return NULL */
2384 
2385         if (next_mbssid->datalen < 4)
2386                 return NULL;
2387 
2388         next_sub = (void *)&next_mbssid->data[1];
2389 
2390         if (next_mbssid->data + next_mbssid->datalen <
2391             next_sub->data + next_sub->datalen)
2392                 return NULL;
2393 
2394         if (next_sub->id != 0 || next_sub->datalen < 2)
2395                 return NULL;
2396 
2397         /*
2398          * Check if the first element in the next sub element is a start
2399          * of a new profile
2400          */
2401         return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2402                NULL : next_mbssid;
2403 }
2404 
2405 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2406                               const struct element *mbssid_elem,
2407                               const struct element *sub_elem,
2408                               u8 *merged_ie, size_t max_copy_len)
2409 {
2410         size_t copied_len = sub_elem->datalen;
2411         const struct element *next_mbssid;
2412 
2413         if (sub_elem->datalen > max_copy_len)
2414                 return 0;
2415 
2416         memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2417 
2418         while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2419                                                                 mbssid_elem,
2420                                                                 sub_elem))) {
2421                 const struct element *next_sub = (void *)&next_mbssid->data[1];
2422 
2423                 if (copied_len + next_sub->datalen > max_copy_len)
2424                         break;
2425                 memcpy(merged_ie + copied_len, next_sub->data,
2426                        next_sub->datalen);
2427                 copied_len += next_sub->datalen;
2428         }
2429 
2430         return copied_len;
2431 }
2432 EXPORT_SYMBOL(cfg80211_merge_profile);
2433 
2434 static void
2435 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2436                            struct cfg80211_inform_single_bss_data *tx_data,
2437                            struct cfg80211_bss *source_bss,
2438                            gfp_t gfp)
2439 {
2440         struct cfg80211_inform_single_bss_data data = {
2441                 .drv_data = tx_data->drv_data,
2442                 .ftype = tx_data->ftype,
2443                 .tsf = tx_data->tsf,
2444                 .beacon_interval = tx_data->beacon_interval,
2445                 .source_bss = source_bss,
2446                 .bss_source = BSS_SOURCE_MBSSID,
2447                 .use_for = tx_data->use_for,
2448                 .cannot_use_reasons = tx_data->cannot_use_reasons,
2449         };
2450         const u8 *mbssid_index_ie;
2451         const struct element *elem, *sub;
2452         u8 *new_ie, *profile;
2453         u64 seen_indices = 0;
2454         struct cfg80211_bss *bss;
2455 
2456         if (!source_bss)
2457                 return;
2458         if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2459                                 tx_data->ie, tx_data->ielen))
2460                 return;
2461         if (!wiphy->support_mbssid)
2462                 return;
2463         if (wiphy->support_only_he_mbssid &&
2464             !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2465                                     tx_data->ie, tx_data->ielen))
2466                 return;
2467 
2468         new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2469         if (!new_ie)
2470                 return;
2471 
2472         profile = kmalloc(tx_data->ielen, gfp);
2473         if (!profile)
2474                 goto out;
2475 
2476         for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2477                             tx_data->ie, tx_data->ielen) {
2478                 if (elem->datalen < 4)
2479                         continue;
2480                 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2481                         continue;
2482                 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2483                         u8 profile_len;
2484 
2485                         if (sub->id != 0 || sub->datalen < 4) {
2486                                 /* not a valid BSS profile */
2487                                 continue;
2488                         }
2489 
2490                         if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2491                             sub->data[1] != 2) {
2492                                 /* The first element within the Nontransmitted
2493                                  * BSSID Profile is not the Nontransmitted
2494                                  * BSSID Capability element.
2495                                  */
2496                                 continue;
2497                         }
2498 
2499                         memset(profile, 0, tx_data->ielen);
2500                         profile_len = cfg80211_merge_profile(tx_data->ie,
2501                                                              tx_data->ielen,
2502                                                              elem,
2503                                                              sub,
2504                                                              profile,
2505                                                              tx_data->ielen);
2506 
2507                         /* found a Nontransmitted BSSID Profile */
2508                         mbssid_index_ie = cfg80211_find_ie
2509                                 (WLAN_EID_MULTI_BSSID_IDX,
2510                                  profile, profile_len);
2511                         if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2512                             mbssid_index_ie[2] == 0 ||
2513                             mbssid_index_ie[2] > 46 ||
2514                             mbssid_index_ie[2] >= (1 << elem->data[0])) {
2515                                 /* No valid Multiple BSSID-Index element */
2516                                 continue;
2517                         }
2518 
2519                         if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2520                                 /* We don't support legacy split of a profile */
2521                                 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2522                                                     mbssid_index_ie[2]);
2523 
2524                         seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2525 
2526                         data.bssid_index = mbssid_index_ie[2];
2527                         data.max_bssid_indicator = elem->data[0];
2528 
2529                         cfg80211_gen_new_bssid(tx_data->bssid,
2530                                                data.max_bssid_indicator,
2531                                                data.bssid_index,
2532                                                data.bssid);
2533 
2534                         memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2535                         data.ie = new_ie;
2536                         data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2537                                                          tx_data->ielen,
2538                                                          profile,
2539                                                          profile_len,
2540                                                          new_ie,
2541                                                          IEEE80211_MAX_DATA_LEN);
2542                         if (!data.ielen)
2543                                 continue;
2544 
2545                         data.capability = get_unaligned_le16(profile + 2);
2546                         bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2547                         if (!bss)
2548                                 break;
2549                         cfg80211_put_bss(wiphy, bss);
2550                 }
2551         }
2552 
2553 out:
2554         kfree(new_ie);
2555         kfree(profile);
2556 }
2557 
2558 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2559                                     size_t ieslen, u8 *data, size_t data_len,
2560                                     u8 frag_id)
2561 {
2562         const struct element *next;
2563         ssize_t copied;
2564         u8 elem_datalen;
2565 
2566         if (!elem)
2567                 return -EINVAL;
2568 
2569         /* elem might be invalid after the memmove */
2570         next = (void *)(elem->data + elem->datalen);
2571         elem_datalen = elem->datalen;
2572 
2573         if (elem->id == WLAN_EID_EXTENSION) {
2574                 copied = elem->datalen - 1;
2575 
2576                 if (data) {
2577                         if (copied > data_len)
2578                                 return -ENOSPC;
2579 
2580                         memmove(data, elem->data + 1, copied);
2581                 }
2582         } else {
2583                 copied = elem->datalen;
2584 
2585                 if (data) {
2586                         if (copied > data_len)
2587                                 return -ENOSPC;
2588 
2589                         memmove(data, elem->data, copied);
2590                 }
2591         }
2592 
2593         /* Fragmented elements must have 255 bytes */
2594         if (elem_datalen < 255)
2595                 return copied;
2596 
2597         for (elem = next;
2598              elem->data < ies + ieslen &&
2599                 elem->data + elem->datalen <= ies + ieslen;
2600              elem = next) {
2601                 /* elem might be invalid after the memmove */
2602                 next = (void *)(elem->data + elem->datalen);
2603 
2604                 if (elem->id != frag_id)
2605                         break;
2606 
2607                 elem_datalen = elem->datalen;
2608 
2609                 if (data) {
2610                         if (copied + elem_datalen > data_len)
2611                                 return -ENOSPC;
2612 
2613                         memmove(data + copied, elem->data, elem_datalen);
2614                 }
2615 
2616                 copied += elem_datalen;
2617 
2618                 /* Only the last fragment may be short */
2619                 if (elem_datalen != 255)
2620                         break;
2621         }
2622 
2623         return copied;
2624 }
2625 EXPORT_SYMBOL(cfg80211_defragment_element);
2626 
2627 struct cfg80211_mle {
2628         struct ieee80211_multi_link_elem *mle;
2629         struct ieee80211_mle_per_sta_profile
2630                 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2631         ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2632 
2633         u8 data[];
2634 };
2635 
2636 static struct cfg80211_mle *
2637 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2638                     gfp_t gfp)
2639 {
2640         const struct element *elem;
2641         struct cfg80211_mle *res;
2642         size_t buf_len;
2643         ssize_t mle_len;
2644         u8 common_size, idx;
2645 
2646         if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2647                 return NULL;
2648 
2649         /* Required length for first defragmentation */
2650         buf_len = mle->datalen - 1;
2651         for_each_element(elem, mle->data + mle->datalen,
2652                          ielen - sizeof(*mle) + mle->datalen) {
2653                 if (elem->id != WLAN_EID_FRAGMENT)
2654                         break;
2655 
2656                 buf_len += elem->datalen;
2657         }
2658 
2659         res = kzalloc(struct_size(res, data, buf_len), gfp);
2660         if (!res)
2661                 return NULL;
2662 
2663         mle_len = cfg80211_defragment_element(mle, ie, ielen,
2664                                               res->data, buf_len,
2665                                               WLAN_EID_FRAGMENT);
2666         if (mle_len < 0)
2667                 goto error;
2668 
2669         res->mle = (void *)res->data;
2670 
2671         /* Find the sub-element area in the buffer */
2672         common_size = ieee80211_mle_common_size((u8 *)res->mle);
2673         ie = res->data + common_size;
2674         ielen = mle_len - common_size;
2675 
2676         idx = 0;
2677         for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2678                             ie, ielen) {
2679                 res->sta_prof[idx] = (void *)elem->data;
2680                 res->sta_prof_len[idx] = elem->datalen;
2681 
2682                 idx++;
2683                 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2684                         break;
2685         }
2686         if (!for_each_element_completed(elem, ie, ielen))
2687                 goto error;
2688 
2689         /* Defragment sta_info in-place */
2690         for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2691              idx++) {
2692                 if (res->sta_prof_len[idx] < 255)
2693                         continue;
2694 
2695                 elem = (void *)res->sta_prof[idx] - 2;
2696 
2697                 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2698                     res->sta_prof[idx + 1])
2699                         buf_len = (u8 *)res->sta_prof[idx + 1] -
2700                                   (u8 *)res->sta_prof[idx];
2701                 else
2702                         buf_len = ielen + ie - (u8 *)elem;
2703 
2704                 res->sta_prof_len[idx] =
2705                         cfg80211_defragment_element(elem,
2706                                                     (u8 *)elem, buf_len,
2707                                                     (u8 *)res->sta_prof[idx],
2708                                                     buf_len,
2709                                                     IEEE80211_MLE_SUBELEM_FRAGMENT);
2710                 if (res->sta_prof_len[idx] < 0)
2711                         goto error;
2712         }
2713 
2714         return res;
2715 
2716 error:
2717         kfree(res);
2718         return NULL;
2719 }
2720 
2721 struct tbtt_info_iter_data {
2722         const struct ieee80211_neighbor_ap_info *ap_info;
2723         u8 param_ch_count;
2724         u32 use_for;
2725         u8 mld_id, link_id;
2726         bool non_tx;
2727 };
2728 
2729 static enum cfg80211_rnr_iter_ret
2730 cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2731                           const struct ieee80211_neighbor_ap_info *info,
2732                           const u8 *tbtt_info, u8 tbtt_info_len)
2733 {
2734         const struct ieee80211_rnr_mld_params *mld_params;
2735         struct tbtt_info_iter_data *data = _data;
2736         u8 link_id;
2737         bool non_tx = false;
2738 
2739         if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2740             tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2741                                          mld_params)) {
2742                 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2743                         (void *)tbtt_info;
2744 
2745                 non_tx = (tbtt_info_ge_11->bss_params &
2746                           (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2747                            IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2748                          IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2749                 mld_params = &tbtt_info_ge_11->mld_params;
2750         } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2751                  tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2752                 mld_params = (void *)tbtt_info;
2753         else
2754                 return RNR_ITER_CONTINUE;
2755 
2756         link_id = le16_get_bits(mld_params->params,
2757                                 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2758 
2759         if (data->mld_id != mld_params->mld_id)
2760                 return RNR_ITER_CONTINUE;
2761 
2762         if (data->link_id != link_id)
2763                 return RNR_ITER_CONTINUE;
2764 
2765         data->ap_info = info;
2766         data->param_ch_count =
2767                 le16_get_bits(mld_params->params,
2768                               IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2769         data->non_tx = non_tx;
2770 
2771         if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2772                 data->use_for = NL80211_BSS_USE_FOR_ALL;
2773         else
2774                 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2775         return RNR_ITER_BREAK;
2776 }
2777 
2778 static u8
2779 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2780                              const struct ieee80211_neighbor_ap_info **ap_info,
2781                              u8 *param_ch_count, bool *non_tx)
2782 {
2783         struct tbtt_info_iter_data data = {
2784                 .mld_id = mld_id,
2785                 .link_id = link_id,
2786         };
2787 
2788         cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2789 
2790         *ap_info = data.ap_info;
2791         *param_ch_count = data.param_ch_count;
2792         *non_tx = data.non_tx;
2793 
2794         return data.use_for;
2795 }
2796 
2797 static struct element *
2798 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2799                           bool same_mld, u8 link_id, u8 bss_change_count,
2800                           gfp_t gfp)
2801 {
2802         const struct cfg80211_bss_ies *ies;
2803         struct ieee80211_neighbor_ap_info ap_info;
2804         struct ieee80211_tbtt_info_ge_11 tbtt_info;
2805         u32 short_ssid;
2806         const struct element *elem;
2807         struct element *res;
2808 
2809         /*
2810          * We only generate the RNR to permit ML lookups. For that we do not
2811          * need an entry for the corresponding transmitting BSS, lets just skip
2812          * it even though it would be easy to add.
2813          */
2814         if (!same_mld)
2815                 return NULL;
2816 
2817         /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2818         rcu_read_lock();
2819         ies = rcu_dereference(source_bss->ies);
2820 
2821         ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2822         ap_info.tbtt_info_hdr =
2823                         u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2824                                        IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2825                         u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2826 
2827         ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2828 
2829         /* operating class */
2830         elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2831                                   ies->data, ies->len);
2832         if (elem && elem->datalen >= 1) {
2833                 ap_info.op_class = elem->data[0];
2834         } else {
2835                 struct cfg80211_chan_def chandef;
2836 
2837                 /* The AP is not providing us with anything to work with. So
2838                  * make up a somewhat reasonable operating class, but don't
2839                  * bother with it too much as no one will ever use the
2840                  * information.
2841                  */
2842                 cfg80211_chandef_create(&chandef, source_bss->channel,
2843                                         NL80211_CHAN_NO_HT);
2844 
2845                 if (!ieee80211_chandef_to_operating_class(&chandef,
2846                                                           &ap_info.op_class))
2847                         goto out_unlock;
2848         }
2849 
2850         /* Just set TBTT offset and PSD 20 to invalid/unknown */
2851         tbtt_info.tbtt_offset = 255;
2852         tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2853 
2854         memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2855         if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2856                 goto out_unlock;
2857 
2858         rcu_read_unlock();
2859 
2860         tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2861 
2862         tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2863 
2864         if (is_mbssid) {
2865                 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2866                 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2867         }
2868 
2869         tbtt_info.mld_params.mld_id = 0;
2870         tbtt_info.mld_params.params =
2871                 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2872                 le16_encode_bits(bss_change_count,
2873                                  IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2874 
2875         res = kzalloc(struct_size(res, data,
2876                                   sizeof(ap_info) + ap_info.tbtt_info_len),
2877                       gfp);
2878         if (!res)
2879                 return NULL;
2880 
2881         /* Copy the data */
2882         res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2883         res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2884         memcpy(res->data, &ap_info, sizeof(ap_info));
2885         memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2886 
2887         return res;
2888 
2889 out_unlock:
2890         rcu_read_unlock();
2891         return NULL;
2892 }
2893 
2894 static void
2895 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2896                                 struct cfg80211_inform_single_bss_data *tx_data,
2897                                 struct cfg80211_bss *source_bss,
2898                                 const struct element *elem,
2899                                 gfp_t gfp)
2900 {
2901         struct cfg80211_inform_single_bss_data data = {
2902                 .drv_data = tx_data->drv_data,
2903                 .ftype = tx_data->ftype,
2904                 .source_bss = source_bss,
2905                 .bss_source = BSS_SOURCE_STA_PROFILE,
2906         };
2907         struct element *reporter_rnr = NULL;
2908         struct ieee80211_multi_link_elem *ml_elem;
2909         struct cfg80211_mle *mle;
2910         u16 control;
2911         u8 ml_common_len;
2912         u8 *new_ie = NULL;
2913         struct cfg80211_bss *bss;
2914         u8 mld_id, reporter_link_id, bss_change_count;
2915         u16 seen_links = 0;
2916         u8 i;
2917 
2918         if (!ieee80211_mle_type_ok(elem->data + 1,
2919                                    IEEE80211_ML_CONTROL_TYPE_BASIC,
2920                                    elem->datalen - 1))
2921                 return;
2922 
2923         ml_elem = (void *)(elem->data + 1);
2924         control = le16_to_cpu(ml_elem->control);
2925         ml_common_len = ml_elem->variable[0];
2926 
2927         /* Must be present when transmitted by an AP (in a probe response) */
2928         if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2929             !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2930             !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2931                 return;
2932 
2933         reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2934         bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2935 
2936         /*
2937          * The MLD ID of the reporting AP is always zero. It is set if the AP
2938          * is part of an MBSSID set and will be non-zero for ML Elements
2939          * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2940          * Draft P802.11be_D3.2, 35.3.4.2)
2941          */
2942         mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2943 
2944         /* Fully defrag the ML element for sta information/profile iteration */
2945         mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2946         if (!mle)
2947                 return;
2948 
2949         /* No point in doing anything if there is no per-STA profile */
2950         if (!mle->sta_prof[0])
2951                 goto out;
2952 
2953         new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2954         if (!new_ie)
2955                 goto out;
2956 
2957         reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2958                                                  u16_get_bits(control,
2959                                                               IEEE80211_MLC_BASIC_PRES_MLD_ID),
2960                                                  mld_id == 0, reporter_link_id,
2961                                                  bss_change_count,
2962                                                  gfp);
2963 
2964         for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2965                 const struct ieee80211_neighbor_ap_info *ap_info;
2966                 enum nl80211_band band;
2967                 u32 freq;
2968                 const u8 *profile;
2969                 ssize_t profile_len;
2970                 u8 param_ch_count;
2971                 u8 link_id, use_for;
2972                 bool non_tx;
2973 
2974                 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2975                                                           mle->sta_prof_len[i]))
2976                         continue;
2977 
2978                 control = le16_to_cpu(mle->sta_prof[i]->control);
2979 
2980                 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2981                         continue;
2982 
2983                 link_id = u16_get_bits(control,
2984                                        IEEE80211_MLE_STA_CONTROL_LINK_ID);
2985                 if (seen_links & BIT(link_id))
2986                         break;
2987                 seen_links |= BIT(link_id);
2988 
2989                 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2990                     !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2991                     !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2992                         continue;
2993 
2994                 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2995                 data.beacon_interval =
2996                         get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2997                 data.tsf = tx_data->tsf +
2998                            get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2999 
3000                 /* sta_info_len counts itself */
3001                 profile = mle->sta_prof[i]->variable +
3002                           mle->sta_prof[i]->sta_info_len - 1;
3003                 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3004                               profile;
3005 
3006                 if (profile_len < 2)
3007                         continue;
3008 
3009                 data.capability = get_unaligned_le16(profile);
3010                 profile += 2;
3011                 profile_len -= 2;
3012 
3013                 /* Find in RNR to look up channel information */
3014                 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3015                                                        tx_data->ielen,
3016                                                        mld_id, link_id,
3017                                                        &ap_info,
3018                                                        &param_ch_count,
3019                                                        &non_tx);
3020                 if (!use_for)
3021                         continue;
3022 
3023                 /*
3024                  * As of 802.11be_D5.0, the specification does not give us any
3025                  * way of discovering both the MaxBSSID and the Multiple-BSSID
3026                  * Index. It does seem like the Multiple-BSSID Index element
3027                  * may be provided, but section 9.4.2.45 explicitly forbids
3028                  * including a Multiple-BSSID Element (in this case without any
3029                  * subelements).
3030                  * Without both pieces of information we cannot calculate the
3031                  * reference BSSID, so simply ignore the BSS.
3032                  */
3033                 if (non_tx)
3034                         continue;
3035 
3036                 /* We could sanity check the BSSID is included */
3037 
3038                 if (!ieee80211_operating_class_to_band(ap_info->op_class,
3039                                                        &band))
3040                         continue;
3041 
3042                 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3043                 data.channel = ieee80211_get_channel_khz(wiphy, freq);
3044 
3045                 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3046                     !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3047                         use_for = 0;
3048                         data.cannot_use_reasons =
3049                                 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3050                 }
3051                 data.use_for = use_for;
3052 
3053                 /* Generate new elements */
3054                 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3055                 data.ie = new_ie;
3056                 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3057                                                  profile, profile_len,
3058                                                  new_ie,
3059                                                  IEEE80211_MAX_DATA_LEN);
3060                 if (!data.ielen)
3061                         continue;
3062 
3063                 /* The generated elements do not contain:
3064                  *  - Basic ML element
3065                  *  - A TBTT entry in the RNR for the transmitting AP
3066                  *
3067                  * This information is needed both internally and in userspace
3068                  * as such, we should append it here.
3069                  */
3070                 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3071                     IEEE80211_MAX_DATA_LEN)
3072                         continue;
3073 
3074                 /* Copy the Basic Multi-Link element including the common
3075                  * information, and then fix up the link ID and BSS param
3076                  * change count.
3077                  * Note that the ML element length has been verified and we
3078                  * also checked that it contains the link ID.
3079                  */
3080                 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3081                 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3082                 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3083                 memcpy(new_ie + data.ielen, ml_elem,
3084                        sizeof(*ml_elem) + ml_common_len);
3085 
3086                 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3087                 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3088                         param_ch_count;
3089 
3090                 data.ielen += sizeof(*ml_elem) + ml_common_len;
3091 
3092                 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3093                         if (data.ielen + sizeof(struct element) +
3094                             reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3095                                 continue;
3096 
3097                         memcpy(new_ie + data.ielen, reporter_rnr,
3098                                sizeof(struct element) + reporter_rnr->datalen);
3099                         data.ielen += sizeof(struct element) +
3100                                       reporter_rnr->datalen;
3101                 }
3102 
3103                 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3104                 if (!bss)
3105                         break;
3106                 cfg80211_put_bss(wiphy, bss);
3107         }
3108 
3109 out:
3110         kfree(reporter_rnr);
3111         kfree(new_ie);
3112         kfree(mle);
3113 }
3114 
3115 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3116                                        struct cfg80211_inform_single_bss_data *tx_data,
3117                                        struct cfg80211_bss *source_bss,
3118                                        gfp_t gfp)
3119 {
3120         const struct element *elem;
3121 
3122         if (!source_bss)
3123                 return;
3124 
3125         if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3126                 return;
3127 
3128         for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3129                                tx_data->ie, tx_data->ielen)
3130                 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3131                                                 elem, gfp);
3132 }
3133 
3134 struct cfg80211_bss *
3135 cfg80211_inform_bss_data(struct wiphy *wiphy,
3136                          struct cfg80211_inform_bss *data,
3137                          enum cfg80211_bss_frame_type ftype,
3138                          const u8 *bssid, u64 tsf, u16 capability,
3139                          u16 beacon_interval, const u8 *ie, size_t ielen,
3140                          gfp_t gfp)
3141 {
3142         struct cfg80211_inform_single_bss_data inform_data = {
3143                 .drv_data = data,
3144                 .ftype = ftype,
3145                 .tsf = tsf,
3146                 .capability = capability,
3147                 .beacon_interval = beacon_interval,
3148                 .ie = ie,
3149                 .ielen = ielen,
3150                 .use_for = data->restrict_use ?
3151                                 data->use_for :
3152                                 NL80211_BSS_USE_FOR_ALL,
3153                 .cannot_use_reasons = data->cannot_use_reasons,
3154         };
3155         struct cfg80211_bss *res;
3156 
3157         memcpy(inform_data.bssid, bssid, ETH_ALEN);
3158 
3159         res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3160         if (!res)
3161                 return NULL;
3162 
3163         /* don't do any further MBSSID/ML handling for S1G */
3164         if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3165                 return res;
3166 
3167         cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3168 
3169         cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3170 
3171         return res;
3172 }
3173 EXPORT_SYMBOL(cfg80211_inform_bss_data);
3174 
3175 struct cfg80211_bss *
3176 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3177                                struct cfg80211_inform_bss *data,
3178                                struct ieee80211_mgmt *mgmt, size_t len,
3179                                gfp_t gfp)
3180 {
3181         size_t min_hdr_len;
3182         struct ieee80211_ext *ext = NULL;
3183         enum cfg80211_bss_frame_type ftype;
3184         u16 beacon_interval;
3185         const u8 *bssid;
3186         u16 capability;
3187         const u8 *ie;
3188         size_t ielen;
3189         u64 tsf;
3190 
3191         if (WARN_ON(!mgmt))
3192                 return NULL;
3193 
3194         if (WARN_ON(!wiphy))
3195                 return NULL;
3196 
3197         BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3198                      offsetof(struct ieee80211_mgmt, u.beacon.variable));
3199 
3200         trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3201 
3202         if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3203                 ext = (void *) mgmt;
3204                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3205                         min_hdr_len = offsetof(struct ieee80211_ext,
3206                                                u.s1g_short_beacon.variable);
3207                 else
3208                         min_hdr_len = offsetof(struct ieee80211_ext,
3209                                                u.s1g_beacon.variable);
3210         } else {
3211                 /* same for beacons */
3212                 min_hdr_len = offsetof(struct ieee80211_mgmt,
3213                                        u.probe_resp.variable);
3214         }
3215 
3216         if (WARN_ON(len < min_hdr_len))
3217                 return NULL;
3218 
3219         ielen = len - min_hdr_len;
3220         ie = mgmt->u.probe_resp.variable;
3221         if (ext) {
3222                 const struct ieee80211_s1g_bcn_compat_ie *compat;
3223                 const struct element *elem;
3224 
3225                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3226                         ie = ext->u.s1g_short_beacon.variable;
3227                 else
3228                         ie = ext->u.s1g_beacon.variable;
3229 
3230                 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3231                 if (!elem)
3232                         return NULL;
3233                 if (elem->datalen < sizeof(*compat))
3234                         return NULL;
3235                 compat = (void *)elem->data;
3236                 bssid = ext->u.s1g_beacon.sa;
3237                 capability = le16_to_cpu(compat->compat_info);
3238                 beacon_interval = le16_to_cpu(compat->beacon_int);
3239         } else {
3240                 bssid = mgmt->bssid;
3241                 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3242                 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3243         }
3244 
3245         tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3246 
3247         if (ieee80211_is_probe_resp(mgmt->frame_control))
3248                 ftype = CFG80211_BSS_FTYPE_PRESP;
3249         else if (ext)
3250                 ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3251         else
3252                 ftype = CFG80211_BSS_FTYPE_BEACON;
3253 
3254         return cfg80211_inform_bss_data(wiphy, data, ftype,
3255                                         bssid, tsf, capability,
3256                                         beacon_interval, ie, ielen,
3257                                         gfp);
3258 }
3259 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3260 
3261 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3262 {
3263         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3264 
3265         if (!pub)
3266                 return;
3267 
3268         spin_lock_bh(&rdev->bss_lock);
3269         bss_ref_get(rdev, bss_from_pub(pub));
3270         spin_unlock_bh(&rdev->bss_lock);
3271 }
3272 EXPORT_SYMBOL(cfg80211_ref_bss);
3273 
3274 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3275 {
3276         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3277 
3278         if (!pub)
3279                 return;
3280 
3281         spin_lock_bh(&rdev->bss_lock);
3282         bss_ref_put(rdev, bss_from_pub(pub));
3283         spin_unlock_bh(&rdev->bss_lock);
3284 }
3285 EXPORT_SYMBOL(cfg80211_put_bss);
3286 
3287 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3288 {
3289         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3290         struct cfg80211_internal_bss *bss, *tmp1;
3291         struct cfg80211_bss *nontrans_bss, *tmp;
3292 
3293         if (WARN_ON(!pub))
3294                 return;
3295 
3296         bss = bss_from_pub(pub);
3297 
3298         spin_lock_bh(&rdev->bss_lock);
3299         if (list_empty(&bss->list))
3300                 goto out;
3301 
3302         list_for_each_entry_safe(nontrans_bss, tmp,
3303                                  &pub->nontrans_list,
3304                                  nontrans_list) {
3305                 tmp1 = bss_from_pub(nontrans_bss);
3306                 if (__cfg80211_unlink_bss(rdev, tmp1))
3307                         rdev->bss_generation++;
3308         }
3309 
3310         if (__cfg80211_unlink_bss(rdev, bss))
3311                 rdev->bss_generation++;
3312 out:
3313         spin_unlock_bh(&rdev->bss_lock);
3314 }
3315 EXPORT_SYMBOL(cfg80211_unlink_bss);
3316 
3317 void cfg80211_bss_iter(struct wiphy *wiphy,
3318                        struct cfg80211_chan_def *chandef,
3319                        void (*iter)(struct wiphy *wiphy,
3320                                     struct cfg80211_bss *bss,
3321                                     void *data),
3322                        void *iter_data)
3323 {
3324         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3325         struct cfg80211_internal_bss *bss;
3326 
3327         spin_lock_bh(&rdev->bss_lock);
3328 
3329         list_for_each_entry(bss, &rdev->bss_list, list) {
3330                 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3331                                                      false))
3332                         iter(wiphy, &bss->pub, iter_data);
3333         }
3334 
3335         spin_unlock_bh(&rdev->bss_lock);
3336 }
3337 EXPORT_SYMBOL(cfg80211_bss_iter);
3338 
3339 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3340                                      unsigned int link_id,
3341                                      struct ieee80211_channel *chan)
3342 {
3343         struct wiphy *wiphy = wdev->wiphy;
3344         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3345         struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3346         struct cfg80211_internal_bss *new = NULL;
3347         struct cfg80211_internal_bss *bss;
3348         struct cfg80211_bss *nontrans_bss;
3349         struct cfg80211_bss *tmp;
3350 
3351         spin_lock_bh(&rdev->bss_lock);
3352 
3353         /*
3354          * Some APs use CSA also for bandwidth changes, i.e., without actually
3355          * changing the control channel, so no need to update in such a case.
3356          */
3357         if (cbss->pub.channel == chan)
3358                 goto done;
3359 
3360         /* use transmitting bss */
3361         if (cbss->pub.transmitted_bss)
3362                 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3363 
3364         cbss->pub.channel = chan;
3365 
3366         list_for_each_entry(bss, &rdev->bss_list, list) {
3367                 if (!cfg80211_bss_type_match(bss->pub.capability,
3368                                              bss->pub.channel->band,
3369                                              wdev->conn_bss_type))
3370                         continue;
3371 
3372                 if (bss == cbss)
3373                         continue;
3374 
3375                 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3376                         new = bss;
3377                         break;
3378                 }
3379         }
3380 
3381         if (new) {
3382                 /* to save time, update IEs for transmitting bss only */
3383                 cfg80211_update_known_bss(rdev, cbss, new, false);
3384                 new->pub.proberesp_ies = NULL;
3385                 new->pub.beacon_ies = NULL;
3386 
3387                 list_for_each_entry_safe(nontrans_bss, tmp,
3388                                          &new->pub.nontrans_list,
3389                                          nontrans_list) {
3390                         bss = bss_from_pub(nontrans_bss);
3391                         if (__cfg80211_unlink_bss(rdev, bss))
3392                                 rdev->bss_generation++;
3393                 }
3394 
3395                 WARN_ON(atomic_read(&new->hold));
3396                 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3397                         rdev->bss_generation++;
3398         }
3399         cfg80211_rehash_bss(rdev, cbss);
3400 
3401         list_for_each_entry_safe(nontrans_bss, tmp,
3402                                  &cbss->pub.nontrans_list,
3403                                  nontrans_list) {
3404                 bss = bss_from_pub(nontrans_bss);
3405                 bss->pub.channel = chan;
3406                 cfg80211_rehash_bss(rdev, bss);
3407         }
3408 
3409 done:
3410         spin_unlock_bh(&rdev->bss_lock);
3411 }
3412 
3413 #ifdef CONFIG_CFG80211_WEXT
3414 static struct cfg80211_registered_device *
3415 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3416 {
3417         struct cfg80211_registered_device *rdev;
3418         struct net_device *dev;
3419 
3420         ASSERT_RTNL();
3421 
3422         dev = dev_get_by_index(net, ifindex);
3423         if (!dev)
3424                 return ERR_PTR(-ENODEV);
3425         if (dev->ieee80211_ptr)
3426                 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3427         else
3428                 rdev = ERR_PTR(-ENODEV);
3429         dev_put(dev);
3430         return rdev;
3431 }
3432 
3433 int cfg80211_wext_siwscan(struct net_device *dev,
3434                           struct iw_request_info *info,
3435                           union iwreq_data *wrqu, char *extra)
3436 {
3437         struct cfg80211_registered_device *rdev;
3438         struct wiphy *wiphy;
3439         struct iw_scan_req *wreq = NULL;
3440         struct cfg80211_scan_request *creq;
3441         int i, err, n_channels = 0;
3442         enum nl80211_band band;
3443 
3444         if (!netif_running(dev))
3445                 return -ENETDOWN;
3446 
3447         if (wrqu->data.length == sizeof(struct iw_scan_req))
3448                 wreq = (struct iw_scan_req *)extra;
3449 
3450         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3451 
3452         if (IS_ERR(rdev))
3453                 return PTR_ERR(rdev);
3454 
3455         if (rdev->scan_req || rdev->scan_msg)
3456                 return -EBUSY;
3457 
3458         wiphy = &rdev->wiphy;
3459 
3460         /* Determine number of channels, needed to allocate creq */
3461         if (wreq && wreq->num_channels) {
3462                 /* Passed from userspace so should be checked */
3463                 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3464                         return -EINVAL;
3465                 n_channels = wreq->num_channels;
3466         } else {
3467                 n_channels = ieee80211_get_num_supported_channels(wiphy);
3468         }
3469 
3470         creq = kzalloc(struct_size(creq, channels, n_channels) +
3471                        sizeof(struct cfg80211_ssid),
3472                        GFP_ATOMIC);
3473         if (!creq)
3474                 return -ENOMEM;
3475 
3476         creq->wiphy = wiphy;
3477         creq->wdev = dev->ieee80211_ptr;
3478         /* SSIDs come after channels */
3479         creq->ssids = (void *)creq + struct_size(creq, channels, n_channels);
3480         creq->n_channels = n_channels;
3481         creq->n_ssids = 1;
3482         creq->scan_start = jiffies;
3483 
3484         /* translate "Scan on frequencies" request */
3485         i = 0;
3486         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3487                 int j;
3488 
3489                 if (!wiphy->bands[band])
3490                         continue;
3491 
3492                 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3493                         /* ignore disabled channels */
3494                         if (wiphy->bands[band]->channels[j].flags &
3495                                                 IEEE80211_CHAN_DISABLED)
3496                                 continue;
3497 
3498                         /* If we have a wireless request structure and the
3499                          * wireless request specifies frequencies, then search
3500                          * for the matching hardware channel.
3501                          */
3502                         if (wreq && wreq->num_channels) {
3503                                 int k;
3504                                 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3505                                 for (k = 0; k < wreq->num_channels; k++) {
3506                                         struct iw_freq *freq =
3507                                                 &wreq->channel_list[k];
3508                                         int wext_freq =
3509                                                 cfg80211_wext_freq(freq);
3510 
3511                                         if (wext_freq == wiphy_freq)
3512                                                 goto wext_freq_found;
3513                                 }
3514                                 goto wext_freq_not_found;
3515                         }
3516 
3517                 wext_freq_found:
3518                         creq->channels[i] = &wiphy->bands[band]->channels[j];
3519                         i++;
3520                 wext_freq_not_found: ;
3521                 }
3522         }
3523         /* No channels found? */
3524         if (!i) {
3525                 err = -EINVAL;
3526                 goto out;
3527         }
3528 
3529         /* Set real number of channels specified in creq->channels[] */
3530         creq->n_channels = i;
3531 
3532         /* translate "Scan for SSID" request */
3533         if (wreq) {
3534                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3535                         if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3536                                 err = -EINVAL;
3537                                 goto out;
3538                         }
3539                         memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3540                         creq->ssids[0].ssid_len = wreq->essid_len;
3541                 }
3542                 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3543                         creq->ssids = NULL;
3544                         creq->n_ssids = 0;
3545                 }
3546         }
3547 
3548         for (i = 0; i < NUM_NL80211_BANDS; i++)
3549                 if (wiphy->bands[i])
3550                         creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3551 
3552         eth_broadcast_addr(creq->bssid);
3553 
3554         wiphy_lock(&rdev->wiphy);
3555 
3556         rdev->scan_req = creq;
3557         err = rdev_scan(rdev, creq);
3558         if (err) {
3559                 rdev->scan_req = NULL;
3560                 /* creq will be freed below */
3561         } else {
3562                 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3563                 /* creq now owned by driver */
3564                 creq = NULL;
3565                 dev_hold(dev);
3566         }
3567         wiphy_unlock(&rdev->wiphy);
3568  out:
3569         kfree(creq);
3570         return err;
3571 }
3572 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3573 
3574 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3575                                     const struct cfg80211_bss_ies *ies,
3576                                     char *current_ev, char *end_buf)
3577 {
3578         const u8 *pos, *end, *next;
3579         struct iw_event iwe;
3580 
3581         if (!ies)
3582                 return current_ev;
3583 
3584         /*
3585          * If needed, fragment the IEs buffer (at IE boundaries) into short
3586          * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3587          */
3588         pos = ies->data;
3589         end = pos + ies->len;
3590 
3591         while (end - pos > IW_GENERIC_IE_MAX) {
3592                 next = pos + 2 + pos[1];
3593                 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3594                         next = next + 2 + next[1];
3595 
3596                 memset(&iwe, 0, sizeof(iwe));
3597                 iwe.cmd = IWEVGENIE;
3598                 iwe.u.data.length = next - pos;
3599                 current_ev = iwe_stream_add_point_check(info, current_ev,
3600                                                         end_buf, &iwe,
3601                                                         (void *)pos);
3602                 if (IS_ERR(current_ev))
3603                         return current_ev;
3604                 pos = next;
3605         }
3606 
3607         if (end > pos) {
3608                 memset(&iwe, 0, sizeof(iwe));
3609                 iwe.cmd = IWEVGENIE;
3610                 iwe.u.data.length = end - pos;
3611                 current_ev = iwe_stream_add_point_check(info, current_ev,
3612                                                         end_buf, &iwe,
3613                                                         (void *)pos);
3614                 if (IS_ERR(current_ev))
3615                         return current_ev;
3616         }
3617 
3618         return current_ev;
3619 }
3620 
3621 static char *
3622 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3623               struct cfg80211_internal_bss *bss, char *current_ev,
3624               char *end_buf)
3625 {
3626         const struct cfg80211_bss_ies *ies;
3627         struct iw_event iwe;
3628         const u8 *ie;
3629         u8 buf[50];
3630         u8 *cfg, *p, *tmp;
3631         int rem, i, sig;
3632         bool ismesh = false;
3633 
3634         memset(&iwe, 0, sizeof(iwe));
3635         iwe.cmd = SIOCGIWAP;
3636         iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3637         memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3638         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3639                                                 IW_EV_ADDR_LEN);
3640         if (IS_ERR(current_ev))
3641                 return current_ev;
3642 
3643         memset(&iwe, 0, sizeof(iwe));
3644         iwe.cmd = SIOCGIWFREQ;
3645         iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3646         iwe.u.freq.e = 0;
3647         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3648                                                 IW_EV_FREQ_LEN);
3649         if (IS_ERR(current_ev))
3650                 return current_ev;
3651 
3652         memset(&iwe, 0, sizeof(iwe));
3653         iwe.cmd = SIOCGIWFREQ;
3654         iwe.u.freq.m = bss->pub.channel->center_freq;
3655         iwe.u.freq.e = 6;
3656         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3657                                                 IW_EV_FREQ_LEN);
3658         if (IS_ERR(current_ev))
3659                 return current_ev;
3660 
3661         if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3662                 memset(&iwe, 0, sizeof(iwe));
3663                 iwe.cmd = IWEVQUAL;
3664                 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3665                                      IW_QUAL_NOISE_INVALID |
3666                                      IW_QUAL_QUAL_UPDATED;
3667                 switch (wiphy->signal_type) {
3668                 case CFG80211_SIGNAL_TYPE_MBM:
3669                         sig = bss->pub.signal / 100;
3670                         iwe.u.qual.level = sig;
3671                         iwe.u.qual.updated |= IW_QUAL_DBM;
3672                         if (sig < -110)         /* rather bad */
3673                                 sig = -110;
3674                         else if (sig > -40)     /* perfect */
3675                                 sig = -40;
3676                         /* will give a range of 0 .. 70 */
3677                         iwe.u.qual.qual = sig + 110;
3678                         break;
3679                 case CFG80211_SIGNAL_TYPE_UNSPEC:
3680                         iwe.u.qual.level = bss->pub.signal;
3681                         /* will give range 0 .. 100 */
3682                         iwe.u.qual.qual = bss->pub.signal;
3683                         break;
3684                 default:
3685                         /* not reached */
3686                         break;
3687                 }
3688                 current_ev = iwe_stream_add_event_check(info, current_ev,
3689                                                         end_buf, &iwe,
3690                                                         IW_EV_QUAL_LEN);
3691                 if (IS_ERR(current_ev))
3692                         return current_ev;
3693         }
3694 
3695         memset(&iwe, 0, sizeof(iwe));
3696         iwe.cmd = SIOCGIWENCODE;
3697         if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3698                 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3699         else
3700                 iwe.u.data.flags = IW_ENCODE_DISABLED;
3701         iwe.u.data.length = 0;
3702         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3703                                                 &iwe, "");
3704         if (IS_ERR(current_ev))
3705                 return current_ev;
3706 
3707         rcu_read_lock();
3708         ies = rcu_dereference(bss->pub.ies);
3709         rem = ies->len;
3710         ie = ies->data;
3711 
3712         while (rem >= 2) {
3713                 /* invalid data */
3714                 if (ie[1] > rem - 2)
3715                         break;
3716 
3717                 switch (ie[0]) {
3718                 case WLAN_EID_SSID:
3719                         memset(&iwe, 0, sizeof(iwe));
3720                         iwe.cmd = SIOCGIWESSID;
3721                         iwe.u.data.length = ie[1];
3722                         iwe.u.data.flags = 1;
3723                         current_ev = iwe_stream_add_point_check(info,
3724                                                                 current_ev,
3725                                                                 end_buf, &iwe,
3726                                                                 (u8 *)ie + 2);
3727                         if (IS_ERR(current_ev))
3728                                 goto unlock;
3729                         break;
3730                 case WLAN_EID_MESH_ID:
3731                         memset(&iwe, 0, sizeof(iwe));
3732                         iwe.cmd = SIOCGIWESSID;
3733                         iwe.u.data.length = ie[1];
3734                         iwe.u.data.flags = 1;
3735                         current_ev = iwe_stream_add_point_check(info,
3736                                                                 current_ev,
3737                                                                 end_buf, &iwe,
3738                                                                 (u8 *)ie + 2);
3739                         if (IS_ERR(current_ev))
3740                                 goto unlock;
3741                         break;
3742                 case WLAN_EID_MESH_CONFIG:
3743                         ismesh = true;
3744                         if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3745                                 break;
3746                         cfg = (u8 *)ie + 2;
3747                         memset(&iwe, 0, sizeof(iwe));
3748                         iwe.cmd = IWEVCUSTOM;
3749                         iwe.u.data.length = sprintf(buf,
3750                                                     "Mesh Network Path Selection Protocol ID: 0x%02X",
3751                                                     cfg[0]);
3752                         current_ev = iwe_stream_add_point_check(info,
3753                                                                 current_ev,
3754                                                                 end_buf,
3755                                                                 &iwe, buf);
3756                         if (IS_ERR(current_ev))
3757                                 goto unlock;
3758                         iwe.u.data.length = sprintf(buf,
3759                                                     "Path Selection Metric ID: 0x%02X",
3760                                                     cfg[1]);
3761                         current_ev = iwe_stream_add_point_check(info,
3762                                                                 current_ev,
3763                                                                 end_buf,
3764                                                                 &iwe, buf);
3765                         if (IS_ERR(current_ev))
3766                                 goto unlock;
3767                         iwe.u.data.length = sprintf(buf,
3768                                                     "Congestion Control Mode ID: 0x%02X",
3769                                                     cfg[2]);
3770                         current_ev = iwe_stream_add_point_check(info,
3771                                                                 current_ev,
3772                                                                 end_buf,
3773                                                                 &iwe, buf);
3774                         if (IS_ERR(current_ev))
3775                                 goto unlock;
3776                         iwe.u.data.length = sprintf(buf,
3777                                                     "Synchronization ID: 0x%02X",
3778                                                     cfg[3]);
3779                         current_ev = iwe_stream_add_point_check(info,
3780                                                                 current_ev,
3781                                                                 end_buf,
3782                                                                 &iwe, buf);
3783                         if (IS_ERR(current_ev))
3784                                 goto unlock;
3785                         iwe.u.data.length = sprintf(buf,
3786                                                     "Authentication ID: 0x%02X",
3787                                                     cfg[4]);
3788                         current_ev = iwe_stream_add_point_check(info,
3789                                                                 current_ev,
3790                                                                 end_buf,
3791                                                                 &iwe, buf);
3792                         if (IS_ERR(current_ev))
3793                                 goto unlock;
3794                         iwe.u.data.length = sprintf(buf,
3795                                                     "Formation Info: 0x%02X",
3796                                                     cfg[5]);
3797                         current_ev = iwe_stream_add_point_check(info,
3798                                                                 current_ev,
3799                                                                 end_buf,
3800                                                                 &iwe, buf);
3801                         if (IS_ERR(current_ev))
3802                                 goto unlock;
3803                         iwe.u.data.length = sprintf(buf,
3804                                                     "Capabilities: 0x%02X",
3805                                                     cfg[6]);
3806                         current_ev = iwe_stream_add_point_check(info,
3807                                                                 current_ev,
3808                                                                 end_buf,
3809                                                                 &iwe, buf);
3810                         if (IS_ERR(current_ev))
3811                                 goto unlock;
3812                         break;
3813                 case WLAN_EID_SUPP_RATES:
3814                 case WLAN_EID_EXT_SUPP_RATES:
3815                         /* display all supported rates in readable format */
3816                         p = current_ev + iwe_stream_lcp_len(info);
3817 
3818                         memset(&iwe, 0, sizeof(iwe));
3819                         iwe.cmd = SIOCGIWRATE;
3820                         /* Those two flags are ignored... */
3821                         iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3822 
3823                         for (i = 0; i < ie[1]; i++) {
3824                                 iwe.u.bitrate.value =
3825                                         ((ie[i + 2] & 0x7f) * 500000);
3826                                 tmp = p;
3827                                 p = iwe_stream_add_value(info, current_ev, p,
3828                                                          end_buf, &iwe,
3829                                                          IW_EV_PARAM_LEN);
3830                                 if (p == tmp) {
3831                                         current_ev = ERR_PTR(-E2BIG);
3832                                         goto unlock;
3833                                 }
3834                         }
3835                         current_ev = p;
3836                         break;
3837                 }
3838                 rem -= ie[1] + 2;
3839                 ie += ie[1] + 2;
3840         }
3841 
3842         if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3843             ismesh) {
3844                 memset(&iwe, 0, sizeof(iwe));
3845                 iwe.cmd = SIOCGIWMODE;
3846                 if (ismesh)
3847                         iwe.u.mode = IW_MODE_MESH;
3848                 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3849                         iwe.u.mode = IW_MODE_MASTER;
3850                 else
3851                         iwe.u.mode = IW_MODE_ADHOC;
3852                 current_ev = iwe_stream_add_event_check(info, current_ev,
3853                                                         end_buf, &iwe,
3854                                                         IW_EV_UINT_LEN);
3855                 if (IS_ERR(current_ev))
3856                         goto unlock;
3857         }
3858 
3859         memset(&iwe, 0, sizeof(iwe));
3860         iwe.cmd = IWEVCUSTOM;
3861         iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3862                                     (unsigned long long)(ies->tsf));
3863         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3864                                                 &iwe, buf);
3865         if (IS_ERR(current_ev))
3866                 goto unlock;
3867         memset(&iwe, 0, sizeof(iwe));
3868         iwe.cmd = IWEVCUSTOM;
3869         iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3870                                     elapsed_jiffies_msecs(bss->ts));
3871         current_ev = iwe_stream_add_point_check(info, current_ev,
3872                                                 end_buf, &iwe, buf);
3873         if (IS_ERR(current_ev))
3874                 goto unlock;
3875 
3876         current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3877 
3878  unlock:
3879         rcu_read_unlock();
3880         return current_ev;
3881 }
3882 
3883 
3884 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3885                                   struct iw_request_info *info,
3886                                   char *buf, size_t len)
3887 {
3888         char *current_ev = buf;
3889         char *end_buf = buf + len;
3890         struct cfg80211_internal_bss *bss;
3891         int err = 0;
3892 
3893         spin_lock_bh(&rdev->bss_lock);
3894         cfg80211_bss_expire(rdev);
3895 
3896         list_for_each_entry(bss, &rdev->bss_list, list) {
3897                 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3898                         err = -E2BIG;
3899                         break;
3900                 }
3901                 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3902                                            current_ev, end_buf);
3903                 if (IS_ERR(current_ev)) {
3904                         err = PTR_ERR(current_ev);
3905                         break;
3906                 }
3907         }
3908         spin_unlock_bh(&rdev->bss_lock);
3909 
3910         if (err)
3911                 return err;
3912         return current_ev - buf;
3913 }
3914 
3915 
3916 int cfg80211_wext_giwscan(struct net_device *dev,
3917                           struct iw_request_info *info,
3918                           union iwreq_data *wrqu, char *extra)
3919 {
3920         struct iw_point *data = &wrqu->data;
3921         struct cfg80211_registered_device *rdev;
3922         int res;
3923 
3924         if (!netif_running(dev))
3925                 return -ENETDOWN;
3926 
3927         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3928 
3929         if (IS_ERR(rdev))
3930                 return PTR_ERR(rdev);
3931 
3932         if (rdev->scan_req || rdev->scan_msg)
3933                 return -EAGAIN;
3934 
3935         res = ieee80211_scan_results(rdev, info, extra, data->length);
3936         data->length = 0;
3937         if (res >= 0) {
3938                 data->length = res;
3939                 res = 0;
3940         }
3941 
3942         return res;
3943 }
3944 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3945 #endif
3946 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php