~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/xdp/xsk_queue.h

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /* XDP user-space ring structure
  3  * Copyright(c) 2018 Intel Corporation.
  4  */
  5 
  6 #ifndef _LINUX_XSK_QUEUE_H
  7 #define _LINUX_XSK_QUEUE_H
  8 
  9 #include <linux/types.h>
 10 #include <linux/if_xdp.h>
 11 #include <net/xdp_sock.h>
 12 #include <net/xsk_buff_pool.h>
 13 
 14 #include "xsk.h"
 15 
 16 struct xdp_ring {
 17         u32 producer ____cacheline_aligned_in_smp;
 18         /* Hinder the adjacent cache prefetcher to prefetch the consumer
 19          * pointer if the producer pointer is touched and vice versa.
 20          */
 21         u32 pad1 ____cacheline_aligned_in_smp;
 22         u32 consumer ____cacheline_aligned_in_smp;
 23         u32 pad2 ____cacheline_aligned_in_smp;
 24         u32 flags;
 25         u32 pad3 ____cacheline_aligned_in_smp;
 26 };
 27 
 28 /* Used for the RX and TX queues for packets */
 29 struct xdp_rxtx_ring {
 30         struct xdp_ring ptrs;
 31         struct xdp_desc desc[] ____cacheline_aligned_in_smp;
 32 };
 33 
 34 /* Used for the fill and completion queues for buffers */
 35 struct xdp_umem_ring {
 36         struct xdp_ring ptrs;
 37         u64 desc[] ____cacheline_aligned_in_smp;
 38 };
 39 
 40 struct xsk_queue {
 41         u32 ring_mask;
 42         u32 nentries;
 43         u32 cached_prod;
 44         u32 cached_cons;
 45         struct xdp_ring *ring;
 46         u64 invalid_descs;
 47         u64 queue_empty_descs;
 48         size_t ring_vmalloc_size;
 49 };
 50 
 51 struct parsed_desc {
 52         u32 mb;
 53         u32 valid;
 54 };
 55 
 56 /* The structure of the shared state of the rings are a simple
 57  * circular buffer, as outlined in
 58  * Documentation/core-api/circular-buffers.rst. For the Rx and
 59  * completion ring, the kernel is the producer and user space is the
 60  * consumer. For the Tx and fill rings, the kernel is the consumer and
 61  * user space is the producer.
 62  *
 63  * producer                         consumer
 64  *
 65  * if (LOAD ->consumer) {  (A)      LOAD.acq ->producer  (C)
 66  *    STORE $data                   LOAD $data
 67  *    STORE.rel ->producer (B)      STORE.rel ->consumer (D)
 68  * }
 69  *
 70  * (A) pairs with (D), and (B) pairs with (C).
 71  *
 72  * Starting with (B), it protects the data from being written after
 73  * the producer pointer. If this barrier was missing, the consumer
 74  * could observe the producer pointer being set and thus load the data
 75  * before the producer has written the new data. The consumer would in
 76  * this case load the old data.
 77  *
 78  * (C) protects the consumer from speculatively loading the data before
 79  * the producer pointer actually has been read. If we do not have this
 80  * barrier, some architectures could load old data as speculative loads
 81  * are not discarded as the CPU does not know there is a dependency
 82  * between ->producer and data.
 83  *
 84  * (A) is a control dependency that separates the load of ->consumer
 85  * from the stores of $data. In case ->consumer indicates there is no
 86  * room in the buffer to store $data we do not. The dependency will
 87  * order both of the stores after the loads. So no barrier is needed.
 88  *
 89  * (D) protects the load of the data to be observed to happen after the
 90  * store of the consumer pointer. If we did not have this memory
 91  * barrier, the producer could observe the consumer pointer being set
 92  * and overwrite the data with a new value before the consumer got the
 93  * chance to read the old value. The consumer would thus miss reading
 94  * the old entry and very likely read the new entry twice, once right
 95  * now and again after circling through the ring.
 96  */
 97 
 98 /* The operations on the rings are the following:
 99  *
100  * producer                           consumer
101  *
102  * RESERVE entries                    PEEK in the ring for entries
103  * WRITE data into the ring           READ data from the ring
104  * SUBMIT entries                     RELEASE entries
105  *
106  * The producer reserves one or more entries in the ring. It can then
107  * fill in these entries and finally submit them so that they can be
108  * seen and read by the consumer.
109  *
110  * The consumer peeks into the ring to see if the producer has written
111  * any new entries. If so, the consumer can then read these entries
112  * and when it is done reading them release them back to the producer
113  * so that the producer can use these slots to fill in new entries.
114  *
115  * The function names below reflect these operations.
116  */
117 
118 /* Functions that read and validate content from consumer rings. */
119 
120 static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr)
121 {
122         struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
123         u32 idx = cached_cons & q->ring_mask;
124 
125         *addr = ring->desc[idx];
126 }
127 
128 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
129 {
130         if (q->cached_cons != q->cached_prod) {
131                 __xskq_cons_read_addr_unchecked(q, q->cached_cons, addr);
132                 return true;
133         }
134 
135         return false;
136 }
137 
138 static inline bool xp_unused_options_set(u32 options)
139 {
140         return options & ~(XDP_PKT_CONTD | XDP_TX_METADATA);
141 }
142 
143 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
144                                             struct xdp_desc *desc)
145 {
146         u64 addr = desc->addr - pool->tx_metadata_len;
147         u64 len = desc->len + pool->tx_metadata_len;
148         u64 offset = addr & (pool->chunk_size - 1);
149 
150         if (!desc->len)
151                 return false;
152 
153         if (offset + len > pool->chunk_size)
154                 return false;
155 
156         if (addr >= pool->addrs_cnt)
157                 return false;
158 
159         if (xp_unused_options_set(desc->options))
160                 return false;
161         return true;
162 }
163 
164 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
165                                               struct xdp_desc *desc)
166 {
167         u64 addr = xp_unaligned_add_offset_to_addr(desc->addr) - pool->tx_metadata_len;
168         u64 len = desc->len + pool->tx_metadata_len;
169 
170         if (!desc->len)
171                 return false;
172 
173         if (len > pool->chunk_size)
174                 return false;
175 
176         if (addr >= pool->addrs_cnt || addr + len > pool->addrs_cnt ||
177             xp_desc_crosses_non_contig_pg(pool, addr, len))
178                 return false;
179 
180         if (xp_unused_options_set(desc->options))
181                 return false;
182         return true;
183 }
184 
185 static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
186                                     struct xdp_desc *desc)
187 {
188         return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
189                 xp_aligned_validate_desc(pool, desc);
190 }
191 
192 static inline bool xskq_has_descs(struct xsk_queue *q)
193 {
194         return q->cached_cons != q->cached_prod;
195 }
196 
197 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
198                                            struct xdp_desc *d,
199                                            struct xsk_buff_pool *pool)
200 {
201         if (!xp_validate_desc(pool, d)) {
202                 q->invalid_descs++;
203                 return false;
204         }
205         return true;
206 }
207 
208 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
209                                        struct xdp_desc *desc,
210                                        struct xsk_buff_pool *pool)
211 {
212         if (q->cached_cons != q->cached_prod) {
213                 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
214                 u32 idx = q->cached_cons & q->ring_mask;
215 
216                 *desc = ring->desc[idx];
217                 return xskq_cons_is_valid_desc(q, desc, pool);
218         }
219 
220         q->queue_empty_descs++;
221         return false;
222 }
223 
224 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
225 {
226         q->cached_cons += cnt;
227 }
228 
229 static inline void parse_desc(struct xsk_queue *q, struct xsk_buff_pool *pool,
230                               struct xdp_desc *desc, struct parsed_desc *parsed)
231 {
232         parsed->valid = xskq_cons_is_valid_desc(q, desc, pool);
233         parsed->mb = xp_mb_desc(desc);
234 }
235 
236 static inline
237 u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool,
238                               u32 max)
239 {
240         u32 cached_cons = q->cached_cons, nb_entries = 0;
241         struct xdp_desc *descs = pool->tx_descs;
242         u32 total_descs = 0, nr_frags = 0;
243 
244         /* track first entry, if stumble upon *any* invalid descriptor, rewind
245          * current packet that consists of frags and stop the processing
246          */
247         while (cached_cons != q->cached_prod && nb_entries < max) {
248                 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
249                 u32 idx = cached_cons & q->ring_mask;
250                 struct parsed_desc parsed;
251 
252                 descs[nb_entries] = ring->desc[idx];
253                 cached_cons++;
254                 parse_desc(q, pool, &descs[nb_entries], &parsed);
255                 if (unlikely(!parsed.valid))
256                         break;
257 
258                 if (likely(!parsed.mb)) {
259                         total_descs += (nr_frags + 1);
260                         nr_frags = 0;
261                 } else {
262                         nr_frags++;
263                         if (nr_frags == pool->netdev->xdp_zc_max_segs) {
264                                 nr_frags = 0;
265                                 break;
266                         }
267                 }
268                 nb_entries++;
269         }
270 
271         cached_cons -= nr_frags;
272         /* Release valid plus any invalid entries */
273         xskq_cons_release_n(q, cached_cons - q->cached_cons);
274         return total_descs;
275 }
276 
277 /* Functions for consumers */
278 
279 static inline void __xskq_cons_release(struct xsk_queue *q)
280 {
281         smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
282 }
283 
284 static inline void __xskq_cons_peek(struct xsk_queue *q)
285 {
286         /* Refresh the local pointer */
287         q->cached_prod = smp_load_acquire(&q->ring->producer);  /* C, matches B */
288 }
289 
290 static inline void xskq_cons_get_entries(struct xsk_queue *q)
291 {
292         __xskq_cons_release(q);
293         __xskq_cons_peek(q);
294 }
295 
296 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
297 {
298         u32 entries = q->cached_prod - q->cached_cons;
299 
300         if (entries >= max)
301                 return max;
302 
303         __xskq_cons_peek(q);
304         entries = q->cached_prod - q->cached_cons;
305 
306         return entries >= max ? max : entries;
307 }
308 
309 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
310 {
311         return xskq_cons_nb_entries(q, cnt) >= cnt;
312 }
313 
314 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
315 {
316         if (q->cached_prod == q->cached_cons)
317                 xskq_cons_get_entries(q);
318         return xskq_cons_read_addr_unchecked(q, addr);
319 }
320 
321 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
322                                        struct xdp_desc *desc,
323                                        struct xsk_buff_pool *pool)
324 {
325         if (q->cached_prod == q->cached_cons)
326                 xskq_cons_get_entries(q);
327         return xskq_cons_read_desc(q, desc, pool);
328 }
329 
330 /* To improve performance in the xskq_cons_release functions, only update local state here.
331  * Reflect this to global state when we get new entries from the ring in
332  * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
333  */
334 static inline void xskq_cons_release(struct xsk_queue *q)
335 {
336         q->cached_cons++;
337 }
338 
339 static inline void xskq_cons_cancel_n(struct xsk_queue *q, u32 cnt)
340 {
341         q->cached_cons -= cnt;
342 }
343 
344 static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
345 {
346         /* No barriers needed since data is not accessed */
347         return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
348 }
349 
350 /* Functions for producers */
351 
352 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
353 {
354         u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
355 
356         if (free_entries >= max)
357                 return max;
358 
359         /* Refresh the local tail pointer */
360         q->cached_cons = READ_ONCE(q->ring->consumer);
361         free_entries = q->nentries - (q->cached_prod - q->cached_cons);
362 
363         return free_entries >= max ? max : free_entries;
364 }
365 
366 static inline bool xskq_prod_is_full(struct xsk_queue *q)
367 {
368         return xskq_prod_nb_free(q, 1) ? false : true;
369 }
370 
371 static inline void xskq_prod_cancel_n(struct xsk_queue *q, u32 cnt)
372 {
373         q->cached_prod -= cnt;
374 }
375 
376 static inline int xskq_prod_reserve(struct xsk_queue *q)
377 {
378         if (xskq_prod_is_full(q))
379                 return -ENOSPC;
380 
381         /* A, matches D */
382         q->cached_prod++;
383         return 0;
384 }
385 
386 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
387 {
388         struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
389 
390         if (xskq_prod_is_full(q))
391                 return -ENOSPC;
392 
393         /* A, matches D */
394         ring->desc[q->cached_prod++ & q->ring_mask] = addr;
395         return 0;
396 }
397 
398 static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
399                                               u32 nb_entries)
400 {
401         struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
402         u32 i, cached_prod;
403 
404         /* A, matches D */
405         cached_prod = q->cached_prod;
406         for (i = 0; i < nb_entries; i++)
407                 ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
408         q->cached_prod = cached_prod;
409 }
410 
411 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
412                                          u64 addr, u32 len, u32 flags)
413 {
414         struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
415         u32 idx;
416 
417         if (xskq_prod_is_full(q))
418                 return -ENOBUFS;
419 
420         /* A, matches D */
421         idx = q->cached_prod++ & q->ring_mask;
422         ring->desc[idx].addr = addr;
423         ring->desc[idx].len = len;
424         ring->desc[idx].options = flags;
425 
426         return 0;
427 }
428 
429 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
430 {
431         smp_store_release(&q->ring->producer, idx); /* B, matches C */
432 }
433 
434 static inline void xskq_prod_submit(struct xsk_queue *q)
435 {
436         __xskq_prod_submit(q, q->cached_prod);
437 }
438 
439 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
440 {
441         __xskq_prod_submit(q, q->ring->producer + nb_entries);
442 }
443 
444 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
445 {
446         /* No barriers needed since data is not accessed */
447         return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
448 }
449 
450 /* For both producers and consumers */
451 
452 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
453 {
454         return q ? q->invalid_descs : 0;
455 }
456 
457 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
458 {
459         return q ? q->queue_empty_descs : 0;
460 }
461 
462 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
463 void xskq_destroy(struct xsk_queue *q_ops);
464 
465 #endif /* _LINUX_XSK_QUEUE_H */
466 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php