~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/rust/kernel/list.rs

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 
  3 // Copyright (C) 2024 Google LLC.
  4 
  5 //! A linked list implementation.
  6 
  7 use crate::init::PinInit;
  8 use crate::sync::ArcBorrow;
  9 use crate::types::Opaque;
 10 use core::iter::{DoubleEndedIterator, FusedIterator};
 11 use core::marker::PhantomData;
 12 use core::ptr;
 13 
 14 mod impl_list_item_mod;
 15 pub use self::impl_list_item_mod::{
 16     impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
 17 };
 18 
 19 mod arc;
 20 pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
 21 
 22 mod arc_field;
 23 pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
 24 
 25 /// A linked list.
 26 ///
 27 /// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
 28 /// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
 29 /// prev/next pointers are not used for several linked lists.
 30 ///
 31 /// # Invariants
 32 ///
 33 /// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
 34 ///   field of the first element in the list.
 35 /// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
 36 /// * For every item in the list, the list owns the associated [`ListArc`] reference and has
 37 ///   exclusive access to the `ListLinks` field.
 38 pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
 39     first: *mut ListLinksFields,
 40     _ty: PhantomData<ListArc<T, ID>>,
 41 }
 42 
 43 // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
 44 // type of access to the `ListArc<T, ID>` elements.
 45 unsafe impl<T, const ID: u64> Send for List<T, ID>
 46 where
 47     ListArc<T, ID>: Send,
 48     T: ?Sized + ListItem<ID>,
 49 {
 50 }
 51 // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
 52 // type of access to the `ListArc<T, ID>` elements.
 53 unsafe impl<T, const ID: u64> Sync for List<T, ID>
 54 where
 55     ListArc<T, ID>: Sync,
 56     T: ?Sized + ListItem<ID>,
 57 {
 58 }
 59 
 60 /// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
 61 ///
 62 /// # Safety
 63 ///
 64 /// Implementers must ensure that they provide the guarantees documented on methods provided by
 65 /// this trait.
 66 ///
 67 /// [`ListArc<Self>`]: ListArc
 68 pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
 69     /// Views the [`ListLinks`] for this value.
 70     ///
 71     /// # Guarantees
 72     ///
 73     /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
 74     /// since the most recent such call, then this returns the same pointer as the one returned by
 75     /// the most recent call to `prepare_to_insert`.
 76     ///
 77     /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
 78     ///
 79     /// # Safety
 80     ///
 81     /// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
 82     unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
 83 
 84     /// View the full value given its [`ListLinks`] field.
 85     ///
 86     /// Can only be used when the value is in a list.
 87     ///
 88     /// # Guarantees
 89     ///
 90     /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
 91     /// * The returned pointer is valid until the next call to `post_remove`.
 92     ///
 93     /// # Safety
 94     ///
 95     /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
 96     ///   from a call to `view_links` that happened after the most recent call to
 97     ///   `prepare_to_insert`.
 98     /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
 99     ///   been called.
100     unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
101 
102     /// This is called when an item is inserted into a [`List`].
103     ///
104     /// # Guarantees
105     ///
106     /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
107     /// called.
108     ///
109     /// # Safety
110     ///
111     /// * The provided pointer must point at a valid value in an [`Arc`].
112     /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
113     /// * The caller must own the [`ListArc`] for this value.
114     /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
115     ///   called after this call to `prepare_to_insert`.
116     ///
117     /// [`Arc`]: crate::sync::Arc
118     unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
119 
120     /// This undoes a previous call to `prepare_to_insert`.
121     ///
122     /// # Guarantees
123     ///
124     /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
125     ///
126     /// # Safety
127     ///
128     /// The provided pointer must be the pointer returned by the most recent call to
129     /// `prepare_to_insert`.
130     unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
131 }
132 
133 #[repr(C)]
134 #[derive(Copy, Clone)]
135 struct ListLinksFields {
136     next: *mut ListLinksFields,
137     prev: *mut ListLinksFields,
138 }
139 
140 /// The prev/next pointers for an item in a linked list.
141 ///
142 /// # Invariants
143 ///
144 /// The fields are null if and only if this item is not in a list.
145 #[repr(transparent)]
146 pub struct ListLinks<const ID: u64 = 0> {
147     // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
148     // list.
149     inner: Opaque<ListLinksFields>,
150 }
151 
152 // SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
153 // associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
154 // move this an instance of this type to a different thread if the pointees are `!Send`.
155 unsafe impl<const ID: u64> Send for ListLinks<ID> {}
156 // SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
157 // okay to have immutable access to a ListLinks from several threads at once.
158 unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
159 
160 impl<const ID: u64> ListLinks<ID> {
161     /// Creates a new initializer for this type.
162     pub fn new() -> impl PinInit<Self> {
163         // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
164         // not be constructed in an `Arc` that already has a `ListArc`.
165         ListLinks {
166             inner: Opaque::new(ListLinksFields {
167                 prev: ptr::null_mut(),
168                 next: ptr::null_mut(),
169             }),
170         }
171     }
172 
173     /// # Safety
174     ///
175     /// `me` must be dereferenceable.
176     #[inline]
177     unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
178         // SAFETY: The caller promises that the pointer is valid.
179         unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
180     }
181 
182     /// # Safety
183     ///
184     /// `me` must be dereferenceable.
185     #[inline]
186     unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
187         me.cast()
188     }
189 }
190 
191 /// Similar to [`ListLinks`], but also contains a pointer to the full value.
192 ///
193 /// This type can be used instead of [`ListLinks`] to support lists with trait objects.
194 #[repr(C)]
195 pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
196     /// The `ListLinks` field inside this value.
197     ///
198     /// This is public so that it can be used with `impl_has_list_links!`.
199     pub inner: ListLinks<ID>,
200     // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
201     // `ptr::null()` doesn't work for `T: ?Sized`.
202     self_ptr: Opaque<*const T>,
203 }
204 
205 // SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
206 unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
207 // SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
208 // it's okay to have immutable access to a ListLinks from several threads at once.
209 //
210 // Note that `inner` being a public field does not prevent this type from being opaque, since
211 // `inner` is a opaque type.
212 unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
213 
214 impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
215     /// The offset from the [`ListLinks`] to the self pointer field.
216     pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr);
217 
218     /// Creates a new initializer for this type.
219     pub fn new() -> impl PinInit<Self> {
220         // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
221         // not be constructed in an `Arc` that already has a `ListArc`.
222         Self {
223             inner: ListLinks {
224                 inner: Opaque::new(ListLinksFields {
225                     prev: ptr::null_mut(),
226                     next: ptr::null_mut(),
227                 }),
228             },
229             self_ptr: Opaque::uninit(),
230         }
231     }
232 }
233 
234 impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
235     /// Creates a new empty list.
236     pub const fn new() -> Self {
237         Self {
238             first: ptr::null_mut(),
239             _ty: PhantomData,
240         }
241     }
242 
243     /// Returns whether this list is empty.
244     pub fn is_empty(&self) -> bool {
245         self.first.is_null()
246     }
247 
248     /// Add the provided item to the back of the list.
249     pub fn push_back(&mut self, item: ListArc<T, ID>) {
250         let raw_item = ListArc::into_raw(item);
251         // SAFETY:
252         // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
253         // * Since we have ownership of the `ListArc`, `post_remove` must have been called after
254         //   the most recent call to `prepare_to_insert`, if any.
255         // * We own the `ListArc`.
256         // * Removing items from this list is always done using `remove_internal_inner`, which
257         //   calls `post_remove` before giving up ownership.
258         let list_links = unsafe { T::prepare_to_insert(raw_item) };
259         // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
260         let item = unsafe { ListLinks::fields(list_links) };
261 
262         if self.first.is_null() {
263             self.first = item;
264             // SAFETY: The caller just gave us ownership of these fields.
265             // INVARIANT: A linked list with one item should be cyclic.
266             unsafe {
267                 (*item).next = item;
268                 (*item).prev = item;
269             }
270         } else {
271             let next = self.first;
272             // SAFETY: By the type invariant, this pointer is valid or null. We just checked that
273             // it's not null, so it must be valid.
274             let prev = unsafe { (*next).prev };
275             // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
276             // ownership of the fields on `item`.
277             // INVARIANT: This correctly inserts `item` between `prev` and `next`.
278             unsafe {
279                 (*item).next = next;
280                 (*item).prev = prev;
281                 (*prev).next = item;
282                 (*next).prev = item;
283             }
284         }
285     }
286 
287     /// Add the provided item to the front of the list.
288     pub fn push_front(&mut self, item: ListArc<T, ID>) {
289         let raw_item = ListArc::into_raw(item);
290         // SAFETY:
291         // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
292         // * If this requirement is violated, then the previous caller of `prepare_to_insert`
293         //   violated the safety requirement that they can't give up ownership of the `ListArc`
294         //   until they call `post_remove`.
295         // * We own the `ListArc`.
296         // * Removing items] from this list is always done using `remove_internal_inner`, which
297         //   calls `post_remove` before giving up ownership.
298         let list_links = unsafe { T::prepare_to_insert(raw_item) };
299         // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
300         let item = unsafe { ListLinks::fields(list_links) };
301 
302         if self.first.is_null() {
303             // SAFETY: The caller just gave us ownership of these fields.
304             // INVARIANT: A linked list with one item should be cyclic.
305             unsafe {
306                 (*item).next = item;
307                 (*item).prev = item;
308             }
309         } else {
310             let next = self.first;
311             // SAFETY: We just checked that `next` is non-null.
312             let prev = unsafe { (*next).prev };
313             // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
314             // ownership of the fields on `item`.
315             // INVARIANT: This correctly inserts `item` between `prev` and `next`.
316             unsafe {
317                 (*item).next = next;
318                 (*item).prev = prev;
319                 (*prev).next = item;
320                 (*next).prev = item;
321             }
322         }
323         self.first = item;
324     }
325 
326     /// Removes the last item from this list.
327     pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
328         if self.first.is_null() {
329             return None;
330         }
331 
332         // SAFETY: We just checked that the list is not empty.
333         let last = unsafe { (*self.first).prev };
334         // SAFETY: The last item of this list is in this list.
335         Some(unsafe { self.remove_internal(last) })
336     }
337 
338     /// Removes the first item from this list.
339     pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
340         if self.first.is_null() {
341             return None;
342         }
343 
344         // SAFETY: The first item of this list is in this list.
345         Some(unsafe { self.remove_internal(self.first) })
346     }
347 
348     /// Removes the provided item from this list and returns it.
349     ///
350     /// This returns `None` if the item is not in the list. (Note that by the safety requirements,
351     /// this means that the item is not in any list.)
352     ///
353     /// # Safety
354     ///
355     /// `item` must not be in a different linked list (with the same id).
356     pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
357         let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
358         // SAFETY: The user provided a reference, and reference are never dangling.
359         //
360         // As for why this is not a data race, there are two cases:
361         //
362         //  * If `item` is not in any list, then these fields are read-only and null.
363         //  * If `item` is in this list, then we have exclusive access to these fields since we
364         //    have a mutable reference to the list.
365         //
366         // In either case, there's no race.
367         let ListLinksFields { next, prev } = unsafe { *item };
368 
369         debug_assert_eq!(next.is_null(), prev.is_null());
370         if !next.is_null() {
371             // This is really a no-op, but this ensures that `item` is a raw pointer that was
372             // obtained without going through a pointer->reference->pointer conversion roundtrip.
373             // This ensures that the list is valid under the more restrictive strict provenance
374             // ruleset.
375             //
376             // SAFETY: We just checked that `next` is not null, and it's not dangling by the
377             // list invariants.
378             unsafe {
379                 debug_assert_eq!(item, (*next).prev);
380                 item = (*next).prev;
381             }
382 
383             // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
384             // is in this list. The pointers are in the right order.
385             Some(unsafe { self.remove_internal_inner(item, next, prev) })
386         } else {
387             None
388         }
389     }
390 
391     /// Removes the provided item from the list.
392     ///
393     /// # Safety
394     ///
395     /// `item` must point at an item in this list.
396     unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
397         // SAFETY: The caller promises that this pointer is not dangling, and there's no data race
398         // since we have a mutable reference to the list containing `item`.
399         let ListLinksFields { next, prev } = unsafe { *item };
400         // SAFETY: The pointers are ok and in the right order.
401         unsafe { self.remove_internal_inner(item, next, prev) }
402     }
403 
404     /// Removes the provided item from the list.
405     ///
406     /// # Safety
407     ///
408     /// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
409     /// next` and `(*item).prev == prev`.
410     unsafe fn remove_internal_inner(
411         &mut self,
412         item: *mut ListLinksFields,
413         next: *mut ListLinksFields,
414         prev: *mut ListLinksFields,
415     ) -> ListArc<T, ID> {
416         // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
417         // pointers are always valid for items in a list.
418         //
419         // INVARIANT: There are three cases:
420         //  * If the list has at least three items, then after removing the item, `prev` and `next`
421         //    will be next to each other.
422         //  * If the list has two items, then the remaining item will point at itself.
423         //  * If the list has one item, then `next == prev == item`, so these writes have no
424         //    effect. The list remains unchanged and `item` is still in the list for now.
425         unsafe {
426             (*next).prev = prev;
427             (*prev).next = next;
428         }
429         // SAFETY: We have exclusive access to items in the list.
430         // INVARIANT: `item` is being removed, so the pointers should be null.
431         unsafe {
432             (*item).prev = ptr::null_mut();
433             (*item).next = ptr::null_mut();
434         }
435         // INVARIANT: There are three cases:
436         //  * If `item` was not the first item, then `self.first` should remain unchanged.
437         //  * If `item` was the first item and there is another item, then we just updated
438         //    `prev->next` to `next`, which is the new first item, and setting `item->next` to null
439         //    did not modify `prev->next`.
440         //  * If `item` was the only item in the list, then `prev == item`, and we just set
441         //    `item->next` to null, so this correctly sets `first` to null now that the list is
442         //    empty.
443         if self.first == item {
444             // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
445             // list, so it must be valid. There is no race since `prev` is still in the list and we
446             // still have exclusive access to the list.
447             self.first = unsafe { (*prev).next };
448         }
449 
450         // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
451         // of `List`.
452         let list_links = unsafe { ListLinks::from_fields(item) };
453         // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
454         let raw_item = unsafe { T::post_remove(list_links) };
455         // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
456         unsafe { ListArc::from_raw(raw_item) }
457     }
458 
459     /// Moves all items from `other` into `self`.
460     ///
461     /// The items of `other` are added to the back of `self`, so the last item of `other` becomes
462     /// the last item of `self`.
463     pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
464         // First, we insert the elements into `self`. At the end, we make `other` empty.
465         if self.is_empty() {
466             // INVARIANT: All of the elements in `other` become elements of `self`.
467             self.first = other.first;
468         } else if !other.is_empty() {
469             let other_first = other.first;
470             // SAFETY: The other list is not empty, so this pointer is valid.
471             let other_last = unsafe { (*other_first).prev };
472             let self_first = self.first;
473             // SAFETY: The self list is not empty, so this pointer is valid.
474             let self_last = unsafe { (*self_first).prev };
475 
476             // SAFETY: We have exclusive access to both lists, so we can update the pointers.
477             // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
478             // update `self.first` because the first element of `self` does not change.
479             unsafe {
480                 (*self_first).prev = other_last;
481                 (*other_last).next = self_first;
482                 (*self_last).next = other_first;
483                 (*other_first).prev = self_last;
484             }
485         }
486 
487         // INVARIANT: The other list is now empty, so update its pointer.
488         other.first = ptr::null_mut();
489     }
490 
491     /// Returns a cursor to the first element of the list.
492     ///
493     /// If the list is empty, this returns `None`.
494     pub fn cursor_front(&mut self) -> Option<Cursor<'_, T, ID>> {
495         if self.first.is_null() {
496             None
497         } else {
498             Some(Cursor {
499                 current: self.first,
500                 list: self,
501             })
502         }
503     }
504 
505     /// Creates an iterator over the list.
506     pub fn iter(&self) -> Iter<'_, T, ID> {
507         // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
508         // at the first element of the same list.
509         Iter {
510             current: self.first,
511             stop: self.first,
512             _ty: PhantomData,
513         }
514     }
515 }
516 
517 impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
518     fn default() -> Self {
519         List::new()
520     }
521 }
522 
523 impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
524     fn drop(&mut self) {
525         while let Some(item) = self.pop_front() {
526             drop(item);
527         }
528     }
529 }
530 
531 /// An iterator over a [`List`].
532 ///
533 /// # Invariants
534 ///
535 /// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
536 /// * The `current` pointer is null or points at a value in that [`List`].
537 /// * The `stop` pointer is equal to the `first` field of that [`List`].
538 #[derive(Clone)]
539 pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
540     current: *mut ListLinksFields,
541     stop: *mut ListLinksFields,
542     _ty: PhantomData<&'a ListArc<T, ID>>,
543 }
544 
545 impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
546     type Item = ArcBorrow<'a, T>;
547 
548     fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
549         if self.current.is_null() {
550             return None;
551         }
552 
553         let current = self.current;
554 
555         // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
556         // dangling. There's no race because the iterator holds an immutable borrow to the list.
557         let next = unsafe { (*current).next };
558         // INVARIANT: If `current` was the last element of the list, then this updates it to null.
559         // Otherwise, we update it to the next element.
560         self.current = if next != self.stop {
561             next
562         } else {
563             ptr::null_mut()
564         };
565 
566         // SAFETY: The `current` pointer points at a value in the list.
567         let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
568         // SAFETY:
569         // * All values in a list are stored in an `Arc`.
570         // * The value cannot be removed from the list for the duration of the lifetime annotated
571         //   on the returned `ArcBorrow`, because removing it from the list would require mutable
572         //   access to the list. However, the `ArcBorrow` is annotated with the iterator's
573         //   lifetime, and the list is immutably borrowed for that lifetime.
574         // * Values in a list never have a `UniqueArc` reference.
575         Some(unsafe { ArcBorrow::from_raw(item) })
576     }
577 }
578 
579 /// A cursor into a [`List`].
580 ///
581 /// # Invariants
582 ///
583 /// The `current` pointer points a value in `list`.
584 pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
585     current: *mut ListLinksFields,
586     list: &'a mut List<T, ID>,
587 }
588 
589 impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
590     /// Access the current element of this cursor.
591     pub fn current(&self) -> ArcBorrow<'_, T> {
592         // SAFETY: The `current` pointer points a value in the list.
593         let me = unsafe { T::view_value(ListLinks::from_fields(self.current)) };
594         // SAFETY:
595         // * All values in a list are stored in an `Arc`.
596         // * The value cannot be removed from the list for the duration of the lifetime annotated
597         //   on the returned `ArcBorrow`, because removing it from the list would require mutable
598         //   access to the cursor or the list. However, the `ArcBorrow` holds an immutable borrow
599         //   on the cursor, which in turn holds a mutable borrow on the list, so any such
600         //   mutable access requires first releasing the immutable borrow on the cursor.
601         // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
602         //   reference, and `UniqueArc` references must be unique.
603         unsafe { ArcBorrow::from_raw(me) }
604     }
605 
606     /// Move the cursor to the next element.
607     pub fn next(self) -> Option<Cursor<'a, T, ID>> {
608         // SAFETY: The `current` field is always in a list.
609         let next = unsafe { (*self.current).next };
610 
611         if next == self.list.first {
612             None
613         } else {
614             // INVARIANT: Since `self.current` is in the `list`, its `next` pointer is also in the
615             // `list`.
616             Some(Cursor {
617                 current: next,
618                 list: self.list,
619             })
620         }
621     }
622 
623     /// Move the cursor to the previous element.
624     pub fn prev(self) -> Option<Cursor<'a, T, ID>> {
625         // SAFETY: The `current` field is always in a list.
626         let prev = unsafe { (*self.current).prev };
627 
628         if self.current == self.list.first {
629             None
630         } else {
631             // INVARIANT: Since `self.current` is in the `list`, its `prev` pointer is also in the
632             // `list`.
633             Some(Cursor {
634                 current: prev,
635                 list: self.list,
636             })
637         }
638     }
639 
640     /// Remove the current element from the list.
641     pub fn remove(self) -> ListArc<T, ID> {
642         // SAFETY: The `current` pointer always points at a member of the list.
643         unsafe { self.list.remove_internal(self.current) }
644     }
645 }
646 
647 impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
648 
649 impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
650     type IntoIter = Iter<'a, T, ID>;
651     type Item = ArcBorrow<'a, T>;
652 
653     fn into_iter(self) -> Iter<'a, T, ID> {
654         self.iter()
655     }
656 }
657 
658 /// An owning iterator into a [`List`].
659 pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
660     list: List<T, ID>,
661 }
662 
663 impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
664     type Item = ListArc<T, ID>;
665 
666     fn next(&mut self) -> Option<ListArc<T, ID>> {
667         self.list.pop_front()
668     }
669 }
670 
671 impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
672 
673 impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
674     fn next_back(&mut self) -> Option<ListArc<T, ID>> {
675         self.list.pop_back()
676     }
677 }
678 
679 impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
680     type IntoIter = IntoIter<T, ID>;
681     type Item = ListArc<T, ID>;
682 
683     fn into_iter(self) -> IntoIter<T, ID> {
684         IntoIter { list: self }
685     }
686 }

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php