1 // SPDX-License-Identifier: GPL-2.0 2 3 //! String representations. 4 5 use crate::alloc::{flags::*, vec_ext::VecExt, AllocError}; 6 use alloc::vec::Vec; 7 use core::fmt::{self, Write}; 8 use core::ops::{self, Deref, DerefMut, Index}; 9 10 use crate::error::{code::*, Error}; 11 12 /// Byte string without UTF-8 validity guarantee. 13 #[repr(transparent)] 14 pub struct BStr([u8]); 15 16 impl BStr { 17 /// Returns the length of this string. 18 #[inline] 19 pub const fn len(&self) -> usize { 20 self.0.len() 21 } 22 23 /// Returns `true` if the string is empty. 24 #[inline] 25 pub const fn is_empty(&self) -> bool { 26 self.len() == 0 27 } 28 29 /// Creates a [`BStr`] from a `[u8]`. 30 #[inline] 31 pub const fn from_bytes(bytes: &[u8]) -> &Self { 32 // SAFETY: `BStr` is transparent to `[u8]`. 33 unsafe { &*(bytes as *const [u8] as *const BStr) } 34 } 35 } 36 37 impl fmt::Display for BStr { 38 /// Formats printable ASCII characters, escaping the rest. 39 /// 40 /// ``` 41 /// # use kernel::{fmt, b_str, str::{BStr, CString}}; 42 /// let ascii = b_str!("Hello, BStr!"); 43 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); 44 /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes()); 45 /// 46 /// let non_ascii = b_str!("🦀"); 47 /// let s = CString::try_from_fmt(fmt!("{}", non_ascii)).unwrap(); 48 /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes()); 49 /// ``` 50 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 51 for &b in &self.0 { 52 match b { 53 // Common escape codes. 54 b'\t' => f.write_str("\\t")?, 55 b'\n' => f.write_str("\\n")?, 56 b'\r' => f.write_str("\\r")?, 57 // Printable characters. 58 0x20..=0x7e => f.write_char(b as char)?, 59 _ => write!(f, "\\x{:02x}", b)?, 60 } 61 } 62 Ok(()) 63 } 64 } 65 66 impl fmt::Debug for BStr { 67 /// Formats printable ASCII characters with a double quote on either end, 68 /// escaping the rest. 69 /// 70 /// ``` 71 /// # use kernel::{fmt, b_str, str::{BStr, CString}}; 72 /// // Embedded double quotes are escaped. 73 /// let ascii = b_str!("Hello, \"BStr\"!"); 74 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); 75 /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes()); 76 /// 77 /// let non_ascii = b_str!("😺"); 78 /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii)).unwrap(); 79 /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes()); 80 /// ``` 81 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 82 f.write_char('"')?; 83 for &b in &self.0 { 84 match b { 85 // Common escape codes. 86 b'\t' => f.write_str("\\t")?, 87 b'\n' => f.write_str("\\n")?, 88 b'\r' => f.write_str("\\r")?, 89 // String escape characters. 90 b'\"' => f.write_str("\\\"")?, 91 b'\\' => f.write_str("\\\\")?, 92 // Printable characters. 93 0x20..=0x7e => f.write_char(b as char)?, 94 _ => write!(f, "\\x{:02x}", b)?, 95 } 96 } 97 f.write_char('"') 98 } 99 } 100 101 impl Deref for BStr { 102 type Target = [u8]; 103 104 #[inline] 105 fn deref(&self) -> &Self::Target { 106 &self.0 107 } 108 } 109 110 /// Creates a new [`BStr`] from a string literal. 111 /// 112 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII 113 /// characters can be included. 114 /// 115 /// # Examples 116 /// 117 /// ``` 118 /// # use kernel::b_str; 119 /// # use kernel::str::BStr; 120 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); 121 /// ``` 122 #[macro_export] 123 macro_rules! b_str { 124 ($str:literal) => {{ 125 const S: &'static str = $str; 126 const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes()); 127 C 128 }}; 129 } 130 131 /// Possible errors when using conversion functions in [`CStr`]. 132 #[derive(Debug, Clone, Copy)] 133 pub enum CStrConvertError { 134 /// Supplied bytes contain an interior `NUL`. 135 InteriorNul, 136 137 /// Supplied bytes are not terminated by `NUL`. 138 NotNulTerminated, 139 } 140 141 impl From<CStrConvertError> for Error { 142 #[inline] 143 fn from(_: CStrConvertError) -> Error { 144 EINVAL 145 } 146 } 147 148 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the 149 /// end. 150 /// 151 /// Used for interoperability with kernel APIs that take C strings. 152 #[repr(transparent)] 153 pub struct CStr([u8]); 154 155 impl CStr { 156 /// Returns the length of this string excluding `NUL`. 157 #[inline] 158 pub const fn len(&self) -> usize { 159 self.len_with_nul() - 1 160 } 161 162 /// Returns the length of this string with `NUL`. 163 #[inline] 164 pub const fn len_with_nul(&self) -> usize { 165 // SAFETY: This is one of the invariant of `CStr`. 166 // We add a `unreachable_unchecked` here to hint the optimizer that 167 // the value returned from this function is non-zero. 168 if self.0.is_empty() { 169 unsafe { core::hint::unreachable_unchecked() }; 170 } 171 self.0.len() 172 } 173 174 /// Returns `true` if the string only includes `NUL`. 175 #[inline] 176 pub const fn is_empty(&self) -> bool { 177 self.len() == 0 178 } 179 180 /// Wraps a raw C string pointer. 181 /// 182 /// # Safety 183 /// 184 /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must 185 /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` 186 /// must not be mutated. 187 #[inline] 188 pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self { 189 // SAFETY: The safety precondition guarantees `ptr` is a valid pointer 190 // to a `NUL`-terminated C string. 191 let len = unsafe { bindings::strlen(ptr) } + 1; 192 // SAFETY: Lifetime guaranteed by the safety precondition. 193 let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) }; 194 // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`. 195 // As we have added 1 to `len`, the last byte is known to be `NUL`. 196 unsafe { Self::from_bytes_with_nul_unchecked(bytes) } 197 } 198 199 /// Creates a [`CStr`] from a `[u8]`. 200 /// 201 /// The provided slice must be `NUL`-terminated, does not contain any 202 /// interior `NUL` bytes. 203 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> { 204 if bytes.is_empty() { 205 return Err(CStrConvertError::NotNulTerminated); 206 } 207 if bytes[bytes.len() - 1] != 0 { 208 return Err(CStrConvertError::NotNulTerminated); 209 } 210 let mut i = 0; 211 // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking, 212 // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`. 213 while i + 1 < bytes.len() { 214 if bytes[i] == 0 { 215 return Err(CStrConvertError::InteriorNul); 216 } 217 i += 1; 218 } 219 // SAFETY: We just checked that all properties hold. 220 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) 221 } 222 223 /// Creates a [`CStr`] from a `[u8]` without performing any additional 224 /// checks. 225 /// 226 /// # Safety 227 /// 228 /// `bytes` *must* end with a `NUL` byte, and should only have a single 229 /// `NUL` byte (or the string will be truncated). 230 #[inline] 231 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { 232 // SAFETY: Properties of `bytes` guaranteed by the safety precondition. 233 unsafe { core::mem::transmute(bytes) } 234 } 235 236 /// Creates a mutable [`CStr`] from a `[u8]` without performing any 237 /// additional checks. 238 /// 239 /// # Safety 240 /// 241 /// `bytes` *must* end with a `NUL` byte, and should only have a single 242 /// `NUL` byte (or the string will be truncated). 243 #[inline] 244 pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr { 245 // SAFETY: Properties of `bytes` guaranteed by the safety precondition. 246 unsafe { &mut *(bytes as *mut [u8] as *mut CStr) } 247 } 248 249 /// Returns a C pointer to the string. 250 #[inline] 251 pub const fn as_char_ptr(&self) -> *const core::ffi::c_char { 252 self.0.as_ptr() as _ 253 } 254 255 /// Convert the string to a byte slice without the trailing `NUL` byte. 256 #[inline] 257 pub fn as_bytes(&self) -> &[u8] { 258 &self.0[..self.len()] 259 } 260 261 /// Convert the string to a byte slice containing the trailing `NUL` byte. 262 #[inline] 263 pub const fn as_bytes_with_nul(&self) -> &[u8] { 264 &self.0 265 } 266 267 /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8. 268 /// 269 /// If the contents of the [`CStr`] are valid UTF-8 data, this 270 /// function will return the corresponding [`&str`] slice. Otherwise, 271 /// it will return an error with details of where UTF-8 validation failed. 272 /// 273 /// # Examples 274 /// 275 /// ``` 276 /// # use kernel::str::CStr; 277 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap(); 278 /// assert_eq!(cstr.to_str(), Ok("foo")); 279 /// ``` 280 #[inline] 281 pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> { 282 core::str::from_utf8(self.as_bytes()) 283 } 284 285 /// Unsafely convert this [`CStr`] into a [`&str`], without checking for 286 /// valid UTF-8. 287 /// 288 /// # Safety 289 /// 290 /// The contents must be valid UTF-8. 291 /// 292 /// # Examples 293 /// 294 /// ``` 295 /// # use kernel::c_str; 296 /// # use kernel::str::CStr; 297 /// let bar = c_str!("ツ"); 298 /// // SAFETY: String literals are guaranteed to be valid UTF-8 299 /// // by the Rust compiler. 300 /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ"); 301 /// ``` 302 #[inline] 303 pub unsafe fn as_str_unchecked(&self) -> &str { 304 unsafe { core::str::from_utf8_unchecked(self.as_bytes()) } 305 } 306 307 /// Convert this [`CStr`] into a [`CString`] by allocating memory and 308 /// copying over the string data. 309 pub fn to_cstring(&self) -> Result<CString, AllocError> { 310 CString::try_from(self) 311 } 312 313 /// Converts this [`CStr`] to its ASCII lower case equivalent in-place. 314 /// 315 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', 316 /// but non-ASCII letters are unchanged. 317 /// 318 /// To return a new lowercased value without modifying the existing one, use 319 /// [`to_ascii_lowercase()`]. 320 /// 321 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase 322 pub fn make_ascii_lowercase(&mut self) { 323 // INVARIANT: This doesn't introduce or remove NUL bytes in the C 324 // string. 325 self.0.make_ascii_lowercase(); 326 } 327 328 /// Converts this [`CStr`] to its ASCII upper case equivalent in-place. 329 /// 330 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', 331 /// but non-ASCII letters are unchanged. 332 /// 333 /// To return a new uppercased value without modifying the existing one, use 334 /// [`to_ascii_uppercase()`]. 335 /// 336 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase 337 pub fn make_ascii_uppercase(&mut self) { 338 // INVARIANT: This doesn't introduce or remove NUL bytes in the C 339 // string. 340 self.0.make_ascii_uppercase(); 341 } 342 343 /// Returns a copy of this [`CString`] where each character is mapped to its 344 /// ASCII lower case equivalent. 345 /// 346 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', 347 /// but non-ASCII letters are unchanged. 348 /// 349 /// To lowercase the value in-place, use [`make_ascii_lowercase`]. 350 /// 351 /// [`make_ascii_lowercase`]: str::make_ascii_lowercase 352 pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> { 353 let mut s = self.to_cstring()?; 354 355 s.make_ascii_lowercase(); 356 357 Ok(s) 358 } 359 360 /// Returns a copy of this [`CString`] where each character is mapped to its 361 /// ASCII upper case equivalent. 362 /// 363 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', 364 /// but non-ASCII letters are unchanged. 365 /// 366 /// To uppercase the value in-place, use [`make_ascii_uppercase`]. 367 /// 368 /// [`make_ascii_uppercase`]: str::make_ascii_uppercase 369 pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> { 370 let mut s = self.to_cstring()?; 371 372 s.make_ascii_uppercase(); 373 374 Ok(s) 375 } 376 } 377 378 impl fmt::Display for CStr { 379 /// Formats printable ASCII characters, escaping the rest. 380 /// 381 /// ``` 382 /// # use kernel::c_str; 383 /// # use kernel::fmt; 384 /// # use kernel::str::CStr; 385 /// # use kernel::str::CString; 386 /// let penguin = c_str!("🐧"); 387 /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap(); 388 /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); 389 /// 390 /// let ascii = c_str!("so \"cool\""); 391 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); 392 /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes()); 393 /// ``` 394 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 395 for &c in self.as_bytes() { 396 if (0x20..0x7f).contains(&c) { 397 // Printable character. 398 f.write_char(c as char)?; 399 } else { 400 write!(f, "\\x{:02x}", c)?; 401 } 402 } 403 Ok(()) 404 } 405 } 406 407 impl fmt::Debug for CStr { 408 /// Formats printable ASCII characters with a double quote on either end, escaping the rest. 409 /// 410 /// ``` 411 /// # use kernel::c_str; 412 /// # use kernel::fmt; 413 /// # use kernel::str::CStr; 414 /// # use kernel::str::CString; 415 /// let penguin = c_str!("🐧"); 416 /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap(); 417 /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes()); 418 /// 419 /// // Embedded double quotes are escaped. 420 /// let ascii = c_str!("so \"cool\""); 421 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); 422 /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes()); 423 /// ``` 424 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 425 f.write_str("\"")?; 426 for &c in self.as_bytes() { 427 match c { 428 // Printable characters. 429 b'\"' => f.write_str("\\\"")?, 430 0x20..=0x7e => f.write_char(c as char)?, 431 _ => write!(f, "\\x{:02x}", c)?, 432 } 433 } 434 f.write_str("\"") 435 } 436 } 437 438 impl AsRef<BStr> for CStr { 439 #[inline] 440 fn as_ref(&self) -> &BStr { 441 BStr::from_bytes(self.as_bytes()) 442 } 443 } 444 445 impl Deref for CStr { 446 type Target = BStr; 447 448 #[inline] 449 fn deref(&self) -> &Self::Target { 450 self.as_ref() 451 } 452 } 453 454 impl Index<ops::RangeFrom<usize>> for CStr { 455 type Output = CStr; 456 457 #[inline] 458 fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output { 459 // Delegate bounds checking to slice. 460 // Assign to _ to mute clippy's unnecessary operation warning. 461 let _ = &self.as_bytes()[index.start..]; 462 // SAFETY: We just checked the bounds. 463 unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) } 464 } 465 } 466 467 impl Index<ops::RangeFull> for CStr { 468 type Output = CStr; 469 470 #[inline] 471 fn index(&self, _index: ops::RangeFull) -> &Self::Output { 472 self 473 } 474 } 475 476 mod private { 477 use core::ops; 478 479 // Marker trait for index types that can be forward to `BStr`. 480 pub trait CStrIndex {} 481 482 impl CStrIndex for usize {} 483 impl CStrIndex for ops::Range<usize> {} 484 impl CStrIndex for ops::RangeInclusive<usize> {} 485 impl CStrIndex for ops::RangeToInclusive<usize> {} 486 } 487 488 impl<Idx> Index<Idx> for CStr 489 where 490 Idx: private::CStrIndex, 491 BStr: Index<Idx>, 492 { 493 type Output = <BStr as Index<Idx>>::Output; 494 495 #[inline] 496 fn index(&self, index: Idx) -> &Self::Output { 497 &self.as_ref()[index] 498 } 499 } 500 501 /// Creates a new [`CStr`] from a string literal. 502 /// 503 /// The string literal should not contain any `NUL` bytes. 504 /// 505 /// # Examples 506 /// 507 /// ``` 508 /// # use kernel::c_str; 509 /// # use kernel::str::CStr; 510 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); 511 /// ``` 512 #[macro_export] 513 macro_rules! c_str { 514 ($str:expr) => {{ 515 const S: &str = concat!($str, "\0"); 516 const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) { 517 Ok(v) => v, 518 Err(_) => panic!("string contains interior NUL"), 519 }; 520 C 521 }}; 522 } 523 524 #[cfg(test)] 525 mod tests { 526 use super::*; 527 use alloc::format; 528 529 const ALL_ASCII_CHARS: &'static str = 530 "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\ 531 \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \ 532 !\"#$%&'()*+,-./0123456789:;<=>?@\ 533 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\ 534 \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\ 535 \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\ 536 \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\ 537 \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\ 538 \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\ 539 \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\ 540 \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\ 541 \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff"; 542 543 #[test] 544 fn test_cstr_to_str() { 545 let good_bytes = b"\xf0\x9f\xa6\x80\0"; 546 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 547 let checked_str = checked_cstr.to_str().unwrap(); 548 assert_eq!(checked_str, "🦀"); 549 } 550 551 #[test] 552 #[should_panic] 553 fn test_cstr_to_str_panic() { 554 let bad_bytes = b"\xc3\x28\0"; 555 let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap(); 556 checked_cstr.to_str().unwrap(); 557 } 558 559 #[test] 560 fn test_cstr_as_str_unchecked() { 561 let good_bytes = b"\xf0\x9f\x90\xA7\0"; 562 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 563 let unchecked_str = unsafe { checked_cstr.as_str_unchecked() }; 564 assert_eq!(unchecked_str, "🐧"); 565 } 566 567 #[test] 568 fn test_cstr_display() { 569 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); 570 assert_eq!(format!("{}", hello_world), "hello, world!"); 571 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); 572 assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a"); 573 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); 574 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); 575 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); 576 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); 577 } 578 579 #[test] 580 fn test_cstr_display_all_bytes() { 581 let mut bytes: [u8; 256] = [0; 256]; 582 // fill `bytes` with [1..=255] + [0] 583 for i in u8::MIN..=u8::MAX { 584 bytes[i as usize] = i.wrapping_add(1); 585 } 586 let cstr = CStr::from_bytes_with_nul(&bytes).unwrap(); 587 assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS); 588 } 589 590 #[test] 591 fn test_cstr_debug() { 592 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); 593 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); 594 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); 595 assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\""); 596 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); 597 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); 598 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); 599 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); 600 } 601 602 #[test] 603 fn test_bstr_display() { 604 let hello_world = BStr::from_bytes(b"hello, world!"); 605 assert_eq!(format!("{}", hello_world), "hello, world!"); 606 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); 607 assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_"); 608 let others = BStr::from_bytes(b"\x01"); 609 assert_eq!(format!("{}", others), "\\x01"); 610 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); 611 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); 612 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); 613 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); 614 } 615 616 #[test] 617 fn test_bstr_debug() { 618 let hello_world = BStr::from_bytes(b"hello, world!"); 619 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); 620 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); 621 assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\""); 622 let others = BStr::from_bytes(b"\x01"); 623 assert_eq!(format!("{:?}", others), "\"\\x01\""); 624 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); 625 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); 626 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); 627 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); 628 } 629 } 630 631 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 632 /// 633 /// It does not fail if callers write past the end of the buffer so that they can calculate the 634 /// size required to fit everything. 635 /// 636 /// # Invariants 637 /// 638 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` 639 /// is less than `end`. 640 pub(crate) struct RawFormatter { 641 // Use `usize` to use `saturating_*` functions. 642 beg: usize, 643 pos: usize, 644 end: usize, 645 } 646 647 impl RawFormatter { 648 /// Creates a new instance of [`RawFormatter`] with an empty buffer. 649 fn new() -> Self { 650 // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. 651 Self { 652 beg: 0, 653 pos: 0, 654 end: 0, 655 } 656 } 657 658 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. 659 /// 660 /// # Safety 661 /// 662 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` 663 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. 664 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { 665 // INVARIANT: The safety requirements guarantee the type invariants. 666 Self { 667 beg: pos as _, 668 pos: pos as _, 669 end: end as _, 670 } 671 } 672 673 /// Creates a new instance of [`RawFormatter`] with the given buffer. 674 /// 675 /// # Safety 676 /// 677 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 678 /// for the lifetime of the returned [`RawFormatter`]. 679 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 680 let pos = buf as usize; 681 // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements 682 // guarantees that the memory region is valid for writes. 683 Self { 684 pos, 685 beg: pos, 686 end: pos.saturating_add(len), 687 } 688 } 689 690 /// Returns the current insert position. 691 /// 692 /// N.B. It may point to invalid memory. 693 pub(crate) fn pos(&self) -> *mut u8 { 694 self.pos as _ 695 } 696 697 /// Returns the number of bytes written to the formatter. 698 pub(crate) fn bytes_written(&self) -> usize { 699 self.pos - self.beg 700 } 701 } 702 703 impl fmt::Write for RawFormatter { 704 fn write_str(&mut self, s: &str) -> fmt::Result { 705 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we 706 // don't want it to wrap around to 0. 707 let pos_new = self.pos.saturating_add(s.len()); 708 709 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. 710 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); 711 712 if len_to_copy > 0 { 713 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` 714 // yet, so it is valid for write per the type invariants. 715 unsafe { 716 core::ptr::copy_nonoverlapping( 717 s.as_bytes().as_ptr(), 718 self.pos as *mut u8, 719 len_to_copy, 720 ) 721 }; 722 } 723 724 self.pos = pos_new; 725 Ok(()) 726 } 727 } 728 729 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 730 /// 731 /// Fails if callers attempt to write more than will fit in the buffer. 732 pub(crate) struct Formatter(RawFormatter); 733 734 impl Formatter { 735 /// Creates a new instance of [`Formatter`] with the given buffer. 736 /// 737 /// # Safety 738 /// 739 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 740 /// for the lifetime of the returned [`Formatter`]. 741 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 742 // SAFETY: The safety requirements of this function satisfy those of the callee. 743 Self(unsafe { RawFormatter::from_buffer(buf, len) }) 744 } 745 } 746 747 impl Deref for Formatter { 748 type Target = RawFormatter; 749 750 fn deref(&self) -> &Self::Target { 751 &self.0 752 } 753 } 754 755 impl fmt::Write for Formatter { 756 fn write_str(&mut self, s: &str) -> fmt::Result { 757 self.0.write_str(s)?; 758 759 // Fail the request if we go past the end of the buffer. 760 if self.0.pos > self.0.end { 761 Err(fmt::Error) 762 } else { 763 Ok(()) 764 } 765 } 766 } 767 768 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. 769 /// 770 /// Used for interoperability with kernel APIs that take C strings. 771 /// 772 /// # Invariants 773 /// 774 /// The string is always `NUL`-terminated and contains no other `NUL` bytes. 775 /// 776 /// # Examples 777 /// 778 /// ``` 779 /// use kernel::{str::CString, fmt}; 780 /// 781 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap(); 782 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes()); 783 /// 784 /// let tmp = "testing"; 785 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap(); 786 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes()); 787 /// 788 /// // This fails because it has an embedded `NUL` byte. 789 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); 790 /// assert_eq!(s.is_ok(), false); 791 /// ``` 792 pub struct CString { 793 buf: Vec<u8>, 794 } 795 796 impl CString { 797 /// Creates an instance of [`CString`] from the given formatted arguments. 798 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> { 799 // Calculate the size needed (formatted string plus `NUL` terminator). 800 let mut f = RawFormatter::new(); 801 f.write_fmt(args)?; 802 f.write_str("\0")?; 803 let size = f.bytes_written(); 804 805 // Allocate a vector with the required number of bytes, and write to it. 806 let mut buf = <Vec<_> as VecExt<_>>::with_capacity(size, GFP_KERNEL)?; 807 // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. 808 let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; 809 f.write_fmt(args)?; 810 f.write_str("\0")?; 811 812 // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is 813 // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. 814 unsafe { buf.set_len(f.bytes_written()) }; 815 816 // Check that there are no `NUL` bytes before the end. 817 // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` 818 // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) 819 // so `f.bytes_written() - 1` doesn't underflow. 820 let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) }; 821 if !ptr.is_null() { 822 return Err(EINVAL); 823 } 824 825 // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes 826 // exist in the buffer. 827 Ok(Self { buf }) 828 } 829 } 830 831 impl Deref for CString { 832 type Target = CStr; 833 834 fn deref(&self) -> &Self::Target { 835 // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no 836 // other `NUL` bytes exist. 837 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } 838 } 839 } 840 841 impl DerefMut for CString { 842 fn deref_mut(&mut self) -> &mut Self::Target { 843 // SAFETY: A `CString` is always NUL-terminated and contains no other 844 // NUL bytes. 845 unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) } 846 } 847 } 848 849 impl<'a> TryFrom<&'a CStr> for CString { 850 type Error = AllocError; 851 852 fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> { 853 let mut buf = Vec::new(); 854 855 <Vec<_> as VecExt<_>>::extend_from_slice(&mut buf, cstr.as_bytes_with_nul(), GFP_KERNEL) 856 .map_err(|_| AllocError)?; 857 858 // INVARIANT: The `CStr` and `CString` types have the same invariants for 859 // the string data, and we copied it over without changes. 860 Ok(CString { buf }) 861 } 862 } 863 864 impl fmt::Debug for CString { 865 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 866 fmt::Debug::fmt(&**self, f) 867 } 868 } 869 870 /// A convenience alias for [`core::format_args`]. 871 #[macro_export] 872 macro_rules! fmt { 873 ($($f:tt)*) => ( core::format_args!($($f)*) ) 874 }
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.