~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/rust/kernel/sync/lock.rs

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 
  3 //! Generic kernel lock and guard.
  4 //!
  5 //! It contains a generic Rust lock and guard that allow for different backends (e.g., mutexes,
  6 //! spinlocks, raw spinlocks) to be provided with minimal effort.
  7 
  8 use super::LockClassKey;
  9 use crate::{init::PinInit, pin_init, str::CStr, types::Opaque, types::ScopeGuard};
 10 use core::{cell::UnsafeCell, marker::PhantomData, marker::PhantomPinned};
 11 use macros::pin_data;
 12 
 13 pub mod mutex;
 14 pub mod spinlock;
 15 
 16 /// The "backend" of a lock.
 17 ///
 18 /// It is the actual implementation of the lock, without the need to repeat patterns used in all
 19 /// locks.
 20 ///
 21 /// # Safety
 22 ///
 23 /// - Implementers must ensure that only one thread/CPU may access the protected data once the lock
 24 ///   is owned, that is, between calls to [`lock`] and [`unlock`].
 25 /// - Implementers must also ensure that [`relock`] uses the same locking method as the original
 26 ///   lock operation.
 27 ///
 28 /// [`lock`]: Backend::lock
 29 /// [`unlock`]: Backend::unlock
 30 /// [`relock`]: Backend::relock
 31 pub unsafe trait Backend {
 32     /// The state required by the lock.
 33     type State;
 34 
 35     /// The state required to be kept between [`lock`] and [`unlock`].
 36     ///
 37     /// [`lock`]: Backend::lock
 38     /// [`unlock`]: Backend::unlock
 39     type GuardState;
 40 
 41     /// Initialises the lock.
 42     ///
 43     /// # Safety
 44     ///
 45     /// `ptr` must be valid for write for the duration of the call, while `name` and `key` must
 46     /// remain valid for read indefinitely.
 47     unsafe fn init(
 48         ptr: *mut Self::State,
 49         name: *const core::ffi::c_char,
 50         key: *mut bindings::lock_class_key,
 51     );
 52 
 53     /// Acquires the lock, making the caller its owner.
 54     ///
 55     /// # Safety
 56     ///
 57     /// Callers must ensure that [`Backend::init`] has been previously called.
 58     #[must_use]
 59     unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState;
 60 
 61     /// Releases the lock, giving up its ownership.
 62     ///
 63     /// # Safety
 64     ///
 65     /// It must only be called by the current owner of the lock.
 66     unsafe fn unlock(ptr: *mut Self::State, guard_state: &Self::GuardState);
 67 
 68     /// Reacquires the lock, making the caller its owner.
 69     ///
 70     /// # Safety
 71     ///
 72     /// Callers must ensure that `guard_state` comes from a previous call to [`Backend::lock`] (or
 73     /// variant) that has been unlocked with [`Backend::unlock`] and will be relocked now.
 74     unsafe fn relock(ptr: *mut Self::State, guard_state: &mut Self::GuardState) {
 75         // SAFETY: The safety requirements ensure that the lock is initialised.
 76         *guard_state = unsafe { Self::lock(ptr) };
 77     }
 78 }
 79 
 80 /// A mutual exclusion primitive.
 81 ///
 82 /// Exposes one of the kernel locking primitives. Which one is exposed depends on the lock
 83 /// [`Backend`] specified as the generic parameter `B`.
 84 #[pin_data]
 85 pub struct Lock<T: ?Sized, B: Backend> {
 86     /// The kernel lock object.
 87     #[pin]
 88     state: Opaque<B::State>,
 89 
 90     /// Some locks are known to be self-referential (e.g., mutexes), while others are architecture
 91     /// or config defined (e.g., spinlocks). So we conservatively require them to be pinned in case
 92     /// some architecture uses self-references now or in the future.
 93     #[pin]
 94     _pin: PhantomPinned,
 95 
 96     /// The data protected by the lock.
 97     pub(crate) data: UnsafeCell<T>,
 98 }
 99 
100 // SAFETY: `Lock` can be transferred across thread boundaries iff the data it protects can.
101 unsafe impl<T: ?Sized + Send, B: Backend> Send for Lock<T, B> {}
102 
103 // SAFETY: `Lock` serialises the interior mutability it provides, so it is `Sync` as long as the
104 // data it protects is `Send`.
105 unsafe impl<T: ?Sized + Send, B: Backend> Sync for Lock<T, B> {}
106 
107 impl<T, B: Backend> Lock<T, B> {
108     /// Constructs a new lock initialiser.
109     pub fn new(t: T, name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> {
110         pin_init!(Self {
111             data: UnsafeCell::new(t),
112             _pin: PhantomPinned,
113             // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have
114             // static lifetimes so they live indefinitely.
115             state <- Opaque::ffi_init(|slot| unsafe {
116                 B::init(slot, name.as_char_ptr(), key.as_ptr())
117             }),
118         })
119     }
120 }
121 
122 impl<T: ?Sized, B: Backend> Lock<T, B> {
123     /// Acquires the lock and gives the caller access to the data protected by it.
124     pub fn lock(&self) -> Guard<'_, T, B> {
125         // SAFETY: The constructor of the type calls `init`, so the existence of the object proves
126         // that `init` was called.
127         let state = unsafe { B::lock(self.state.get()) };
128         // SAFETY: The lock was just acquired.
129         unsafe { Guard::new(self, state) }
130     }
131 }
132 
133 /// A lock guard.
134 ///
135 /// Allows mutual exclusion primitives that implement the [`Backend`] trait to automatically unlock
136 /// when a guard goes out of scope. It also provides a safe and convenient way to access the data
137 /// protected by the lock.
138 #[must_use = "the lock unlocks immediately when the guard is unused"]
139 pub struct Guard<'a, T: ?Sized, B: Backend> {
140     pub(crate) lock: &'a Lock<T, B>,
141     pub(crate) state: B::GuardState,
142     _not_send: PhantomData<*mut ()>,
143 }
144 
145 // SAFETY: `Guard` is sync when the data protected by the lock is also sync.
146 unsafe impl<T: Sync + ?Sized, B: Backend> Sync for Guard<'_, T, B> {}
147 
148 impl<T: ?Sized, B: Backend> Guard<'_, T, B> {
149     pub(crate) fn do_unlocked<U>(&mut self, cb: impl FnOnce() -> U) -> U {
150         // SAFETY: The caller owns the lock, so it is safe to unlock it.
151         unsafe { B::unlock(self.lock.state.get(), &self.state) };
152 
153         // SAFETY: The lock was just unlocked above and is being relocked now.
154         let _relock =
155             ScopeGuard::new(|| unsafe { B::relock(self.lock.state.get(), &mut self.state) });
156 
157         cb()
158     }
159 }
160 
161 impl<T: ?Sized, B: Backend> core::ops::Deref for Guard<'_, T, B> {
162     type Target = T;
163 
164     fn deref(&self) -> &Self::Target {
165         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
166         unsafe { &*self.lock.data.get() }
167     }
168 }
169 
170 impl<T: ?Sized, B: Backend> core::ops::DerefMut for Guard<'_, T, B> {
171     fn deref_mut(&mut self) -> &mut Self::Target {
172         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
173         unsafe { &mut *self.lock.data.get() }
174     }
175 }
176 
177 impl<T: ?Sized, B: Backend> Drop for Guard<'_, T, B> {
178     fn drop(&mut self) {
179         // SAFETY: The caller owns the lock, so it is safe to unlock it.
180         unsafe { B::unlock(self.lock.state.get(), &self.state) };
181     }
182 }
183 
184 impl<'a, T: ?Sized, B: Backend> Guard<'a, T, B> {
185     /// Constructs a new immutable lock guard.
186     ///
187     /// # Safety
188     ///
189     /// The caller must ensure that it owns the lock.
190     pub(crate) unsafe fn new(lock: &'a Lock<T, B>, state: B::GuardState) -> Self {
191         Self {
192             lock,
193             state,
194             _not_send: PhantomData,
195         }
196     }
197 }

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php