1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Work queues. 4 //! 5 //! This file has two components: The raw work item API, and the safe work item API. 6 //! 7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single 8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field, 9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as 10 //! long as you use different values for different fields of the same struct.) Since these IDs are 11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary. 12 //! 13 //! # The raw API 14 //! 15 //! The raw API consists of the [`RawWorkItem`] trait, where the work item needs to provide an 16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used 17 //! directly, but if you want to, you can use it without using the pieces from the safe API. 18 //! 19 //! # The safe API 20 //! 21 //! The safe API is used via the [`Work`] struct and [`WorkItem`] traits. Furthermore, it also 22 //! includes a trait called [`WorkItemPointer`], which is usually not used directly by the user. 23 //! 24 //! * The [`Work`] struct is the Rust wrapper for the C `work_struct` type. 25 //! * The [`WorkItem`] trait is implemented for structs that can be enqueued to a workqueue. 26 //! * The [`WorkItemPointer`] trait is implemented for the pointer type that points at a something 27 //! that implements [`WorkItem`]. 28 //! 29 //! ## Example 30 //! 31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When 32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field, 33 //! we do not need to specify ids for the fields. 34 //! 35 //! ``` 36 //! use kernel::sync::Arc; 37 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem}; 38 //! 39 //! #[pin_data] 40 //! struct MyStruct { 41 //! value: i32, 42 //! #[pin] 43 //! work: Work<MyStruct>, 44 //! } 45 //! 46 //! impl_has_work! { 47 //! impl HasWork<Self> for MyStruct { self.work } 48 //! } 49 //! 50 //! impl MyStruct { 51 //! fn new(value: i32) -> Result<Arc<Self>> { 52 //! Arc::pin_init(pin_init!(MyStruct { 53 //! value, 54 //! work <- new_work!("MyStruct::work"), 55 //! }), GFP_KERNEL) 56 //! } 57 //! } 58 //! 59 //! impl WorkItem for MyStruct { 60 //! type Pointer = Arc<MyStruct>; 61 //! 62 //! fn run(this: Arc<MyStruct>) { 63 //! pr_info!("The value is: {}", this.value); 64 //! } 65 //! } 66 //! 67 //! /// This method will enqueue the struct for execution on the system workqueue, where its value 68 //! /// will be printed. 69 //! fn print_later(val: Arc<MyStruct>) { 70 //! let _ = workqueue::system().enqueue(val); 71 //! } 72 //! ``` 73 //! 74 //! The following example shows how multiple `work_struct` fields can be used: 75 //! 76 //! ``` 77 //! use kernel::sync::Arc; 78 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem}; 79 //! 80 //! #[pin_data] 81 //! struct MyStruct { 82 //! value_1: i32, 83 //! value_2: i32, 84 //! #[pin] 85 //! work_1: Work<MyStruct, 1>, 86 //! #[pin] 87 //! work_2: Work<MyStruct, 2>, 88 //! } 89 //! 90 //! impl_has_work! { 91 //! impl HasWork<Self, 1> for MyStruct { self.work_1 } 92 //! impl HasWork<Self, 2> for MyStruct { self.work_2 } 93 //! } 94 //! 95 //! impl MyStruct { 96 //! fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> { 97 //! Arc::pin_init(pin_init!(MyStruct { 98 //! value_1, 99 //! value_2, 100 //! work_1 <- new_work!("MyStruct::work_1"), 101 //! work_2 <- new_work!("MyStruct::work_2"), 102 //! }), GFP_KERNEL) 103 //! } 104 //! } 105 //! 106 //! impl WorkItem<1> for MyStruct { 107 //! type Pointer = Arc<MyStruct>; 108 //! 109 //! fn run(this: Arc<MyStruct>) { 110 //! pr_info!("The value is: {}", this.value_1); 111 //! } 112 //! } 113 //! 114 //! impl WorkItem<2> for MyStruct { 115 //! type Pointer = Arc<MyStruct>; 116 //! 117 //! fn run(this: Arc<MyStruct>) { 118 //! pr_info!("The second value is: {}", this.value_2); 119 //! } 120 //! } 121 //! 122 //! fn print_1_later(val: Arc<MyStruct>) { 123 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val); 124 //! } 125 //! 126 //! fn print_2_later(val: Arc<MyStruct>) { 127 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val); 128 //! } 129 //! ``` 130 //! 131 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h) 132 133 use crate::alloc::{AllocError, Flags}; 134 use crate::{prelude::*, sync::Arc, sync::LockClassKey, types::Opaque}; 135 use core::marker::PhantomData; 136 137 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class. 138 #[macro_export] 139 macro_rules! new_work { 140 ($($name:literal)?) => { 141 $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!()) 142 }; 143 } 144 pub use new_work; 145 146 /// A kernel work queue. 147 /// 148 /// Wraps the kernel's C `struct workqueue_struct`. 149 /// 150 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are 151 /// always available, for example, `system`, `system_highpri`, `system_long`, etc. 152 #[repr(transparent)] 153 pub struct Queue(Opaque<bindings::workqueue_struct>); 154 155 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 156 unsafe impl Send for Queue {} 157 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 158 unsafe impl Sync for Queue {} 159 160 impl Queue { 161 /// Use the provided `struct workqueue_struct` with Rust. 162 /// 163 /// # Safety 164 /// 165 /// The caller must ensure that the provided raw pointer is not dangling, that it points at a 166 /// valid workqueue, and that it remains valid until the end of `'a`. 167 pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue { 168 // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The 169 // caller promises that the pointer is not dangling. 170 unsafe { &*(ptr as *const Queue) } 171 } 172 173 /// Enqueues a work item. 174 /// 175 /// This may fail if the work item is already enqueued in a workqueue. 176 /// 177 /// The work item will be submitted using `WORK_CPU_UNBOUND`. 178 pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput 179 where 180 W: RawWorkItem<ID> + Send + 'static, 181 { 182 let queue_ptr = self.0.get(); 183 184 // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other 185 // `__enqueue` requirements are not relevant since `W` is `Send` and static. 186 // 187 // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which 188 // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this 189 // closure. 190 // 191 // Furthermore, if the C workqueue code accesses the pointer after this call to 192 // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on` 193 // will have returned true. In this case, `__enqueue` promises that the raw pointer will 194 // stay valid until we call the function pointer in the `work_struct`, so the access is ok. 195 unsafe { 196 w.__enqueue(move |work_ptr| { 197 bindings::queue_work_on( 198 bindings::wq_misc_consts_WORK_CPU_UNBOUND as _, 199 queue_ptr, 200 work_ptr, 201 ) 202 }) 203 } 204 } 205 206 /// Tries to spawn the given function or closure as a work item. 207 /// 208 /// This method can fail because it allocates memory to store the work item. 209 pub fn try_spawn<T: 'static + Send + FnOnce()>( 210 &self, 211 flags: Flags, 212 func: T, 213 ) -> Result<(), AllocError> { 214 let init = pin_init!(ClosureWork { 215 work <- new_work!("Queue::try_spawn"), 216 func: Some(func), 217 }); 218 219 self.enqueue(Box::pin_init(init, flags).map_err(|_| AllocError)?); 220 Ok(()) 221 } 222 } 223 224 /// A helper type used in [`try_spawn`]. 225 /// 226 /// [`try_spawn`]: Queue::try_spawn 227 #[pin_data] 228 struct ClosureWork<T> { 229 #[pin] 230 work: Work<ClosureWork<T>>, 231 func: Option<T>, 232 } 233 234 impl<T> ClosureWork<T> { 235 fn project(self: Pin<&mut Self>) -> &mut Option<T> { 236 // SAFETY: The `func` field is not structurally pinned. 237 unsafe { &mut self.get_unchecked_mut().func } 238 } 239 } 240 241 impl<T: FnOnce()> WorkItem for ClosureWork<T> { 242 type Pointer = Pin<Box<Self>>; 243 244 fn run(mut this: Pin<Box<Self>>) { 245 if let Some(func) = this.as_mut().project().take() { 246 (func)() 247 } 248 } 249 } 250 251 /// A raw work item. 252 /// 253 /// This is the low-level trait that is designed for being as general as possible. 254 /// 255 /// The `ID` parameter to this trait exists so that a single type can provide multiple 256 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then 257 /// you will implement this trait once for each field, using a different id for each field. The 258 /// actual value of the id is not important as long as you use different ids for different fields 259 /// of the same struct. (Fields of different structs need not use different ids.) 260 /// 261 /// Note that the id is used only to select the right method to call during compilation. It won't be 262 /// part of the final executable. 263 /// 264 /// # Safety 265 /// 266 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by [`__enqueue`] 267 /// remain valid for the duration specified in the guarantees section of the documentation for 268 /// [`__enqueue`]. 269 /// 270 /// [`__enqueue`]: RawWorkItem::__enqueue 271 pub unsafe trait RawWorkItem<const ID: u64> { 272 /// The return type of [`Queue::enqueue`]. 273 type EnqueueOutput; 274 275 /// Enqueues this work item on a queue using the provided `queue_work_on` method. 276 /// 277 /// # Guarantees 278 /// 279 /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a 280 /// valid `work_struct` for the duration of the call to the closure. If the closure returns 281 /// true, then it is further guaranteed that the pointer remains valid until someone calls the 282 /// function pointer stored in the `work_struct`. 283 /// 284 /// # Safety 285 /// 286 /// The provided closure may only return `false` if the `work_struct` is already in a workqueue. 287 /// 288 /// If the work item type is annotated with any lifetimes, then you must not call the function 289 /// pointer after any such lifetime expires. (Never calling the function pointer is okay.) 290 /// 291 /// If the work item type is not [`Send`], then the function pointer must be called on the same 292 /// thread as the call to `__enqueue`. 293 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 294 where 295 F: FnOnce(*mut bindings::work_struct) -> bool; 296 } 297 298 /// Defines the method that should be called directly when a work item is executed. 299 /// 300 /// This trait is implemented by `Pin<Box<T>>` and [`Arc<T>`], and is mainly intended to be 301 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`] 302 /// instead. The [`run`] method on this trait will usually just perform the appropriate 303 /// `container_of` translation and then call into the [`run`][WorkItem::run] method from the 304 /// [`WorkItem`] trait. 305 /// 306 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 307 /// 308 /// # Safety 309 /// 310 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`] 311 /// method of this trait as the function pointer. 312 /// 313 /// [`__enqueue`]: RawWorkItem::__enqueue 314 /// [`run`]: WorkItemPointer::run 315 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> { 316 /// Run this work item. 317 /// 318 /// # Safety 319 /// 320 /// The provided `work_struct` pointer must originate from a previous call to [`__enqueue`] 321 /// where the `queue_work_on` closure returned true, and the pointer must still be valid. 322 /// 323 /// [`__enqueue`]: RawWorkItem::__enqueue 324 unsafe extern "C" fn run(ptr: *mut bindings::work_struct); 325 } 326 327 /// Defines the method that should be called when this work item is executed. 328 /// 329 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 330 pub trait WorkItem<const ID: u64 = 0> { 331 /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or 332 /// `Pin<Box<Self>>`. 333 type Pointer: WorkItemPointer<ID>; 334 335 /// The method that should be called when this work item is executed. 336 fn run(this: Self::Pointer); 337 } 338 339 /// Links for a work item. 340 /// 341 /// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`] 342 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue. 343 /// 344 /// Wraps the kernel's C `struct work_struct`. 345 /// 346 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it. 347 /// 348 /// [`run`]: WorkItemPointer::run 349 #[pin_data] 350 #[repr(transparent)] 351 pub struct Work<T: ?Sized, const ID: u64 = 0> { 352 #[pin] 353 work: Opaque<bindings::work_struct>, 354 _inner: PhantomData<T>, 355 } 356 357 // SAFETY: Kernel work items are usable from any thread. 358 // 359 // We do not need to constrain `T` since the work item does not actually contain a `T`. 360 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {} 361 // SAFETY: Kernel work items are usable from any thread. 362 // 363 // We do not need to constrain `T` since the work item does not actually contain a `T`. 364 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {} 365 366 impl<T: ?Sized, const ID: u64> Work<T, ID> { 367 /// Creates a new instance of [`Work`]. 368 #[inline] 369 #[allow(clippy::new_ret_no_self)] 370 pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> 371 where 372 T: WorkItem<ID>, 373 { 374 pin_init!(Self { 375 work <- Opaque::ffi_init(|slot| { 376 // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as 377 // the work item function. 378 unsafe { 379 bindings::init_work_with_key( 380 slot, 381 Some(T::Pointer::run), 382 false, 383 name.as_char_ptr(), 384 key.as_ptr(), 385 ) 386 } 387 }), 388 _inner: PhantomData, 389 }) 390 } 391 392 /// Get a pointer to the inner `work_struct`. 393 /// 394 /// # Safety 395 /// 396 /// The provided pointer must not be dangling and must be properly aligned. (But the memory 397 /// need not be initialized.) 398 #[inline] 399 pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct { 400 // SAFETY: The caller promises that the pointer is aligned and not dangling. 401 // 402 // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that 403 // the compiler does not complain that the `work` field is unused. 404 unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) } 405 } 406 } 407 408 /// Declares that a type has a [`Work<T, ID>`] field. 409 /// 410 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro 411 /// like this: 412 /// 413 /// ```no_run 414 /// use kernel::workqueue::{impl_has_work, Work}; 415 /// 416 /// struct MyWorkItem { 417 /// work_field: Work<MyWorkItem, 1>, 418 /// } 419 /// 420 /// impl_has_work! { 421 /// impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field } 422 /// } 423 /// ``` 424 /// 425 /// Note that since the [`Work`] type is annotated with an id, you can have several `work_struct` 426 /// fields by using a different id for each one. 427 /// 428 /// # Safety 429 /// 430 /// The [`OFFSET`] constant must be the offset of a field in `Self` of type [`Work<T, ID>`]. The 431 /// methods on this trait must have exactly the behavior that the definitions given below have. 432 /// 433 /// [`impl_has_work!`]: crate::impl_has_work 434 /// [`OFFSET`]: HasWork::OFFSET 435 pub unsafe trait HasWork<T, const ID: u64 = 0> { 436 /// The offset of the [`Work<T, ID>`] field. 437 const OFFSET: usize; 438 439 /// Returns the offset of the [`Work<T, ID>`] field. 440 /// 441 /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not 442 /// [`Sized`]. 443 /// 444 /// [`OFFSET`]: HasWork::OFFSET 445 #[inline] 446 fn get_work_offset(&self) -> usize { 447 Self::OFFSET 448 } 449 450 /// Returns a pointer to the [`Work<T, ID>`] field. 451 /// 452 /// # Safety 453 /// 454 /// The provided pointer must point at a valid struct of type `Self`. 455 #[inline] 456 unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> { 457 // SAFETY: The caller promises that the pointer is valid. 458 unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> } 459 } 460 461 /// Returns a pointer to the struct containing the [`Work<T, ID>`] field. 462 /// 463 /// # Safety 464 /// 465 /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`. 466 #[inline] 467 unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self 468 where 469 Self: Sized, 470 { 471 // SAFETY: The caller promises that the pointer points at a field of the right type in the 472 // right kind of struct. 473 unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self } 474 } 475 } 476 477 /// Used to safely implement the [`HasWork<T, ID>`] trait. 478 /// 479 /// # Examples 480 /// 481 /// ``` 482 /// use kernel::sync::Arc; 483 /// use kernel::workqueue::{self, impl_has_work, Work}; 484 /// 485 /// struct MyStruct<'a, T, const N: usize> { 486 /// work_field: Work<MyStruct<'a, T, N>, 17>, 487 /// f: fn(&'a [T; N]), 488 /// } 489 /// 490 /// impl_has_work! { 491 /// impl{'a, T, const N: usize} HasWork<MyStruct<'a, T, N>, 17> 492 /// for MyStruct<'a, T, N> { self.work_field } 493 /// } 494 /// ``` 495 #[macro_export] 496 macro_rules! impl_has_work { 497 ($(impl$({$($generics:tt)*})? 498 HasWork<$work_type:ty $(, $id:tt)?> 499 for $self:ty 500 { self.$field:ident } 501 )*) => {$( 502 // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right 503 // type. 504 unsafe impl$(<$($generics)+>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self { 505 const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize; 506 507 #[inline] 508 unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> { 509 // SAFETY: The caller promises that the pointer is not dangling. 510 unsafe { 511 ::core::ptr::addr_of_mut!((*ptr).$field) 512 } 513 } 514 } 515 )*}; 516 } 517 pub use impl_has_work; 518 519 impl_has_work! { 520 impl{T} HasWork<Self> for ClosureWork<T> { self.work } 521 } 522 523 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T> 524 where 525 T: WorkItem<ID, Pointer = Self>, 526 T: HasWork<T, ID>, 527 { 528 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 529 // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 530 let ptr = ptr as *mut Work<T, ID>; 531 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 532 let ptr = unsafe { T::work_container_of(ptr) }; 533 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 534 let arc = unsafe { Arc::from_raw(ptr) }; 535 536 T::run(arc) 537 } 538 } 539 540 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T> 541 where 542 T: WorkItem<ID, Pointer = Self>, 543 T: HasWork<T, ID>, 544 { 545 type EnqueueOutput = Result<(), Self>; 546 547 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 548 where 549 F: FnOnce(*mut bindings::work_struct) -> bool, 550 { 551 // Casting between const and mut is not a problem as long as the pointer is a raw pointer. 552 let ptr = Arc::into_raw(self).cast_mut(); 553 554 // SAFETY: Pointers into an `Arc` point at a valid value. 555 let work_ptr = unsafe { T::raw_get_work(ptr) }; 556 // SAFETY: `raw_get_work` returns a pointer to a valid value. 557 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 558 559 if queue_work_on(work_ptr) { 560 Ok(()) 561 } else { 562 // SAFETY: The work queue has not taken ownership of the pointer. 563 Err(unsafe { Arc::from_raw(ptr) }) 564 } 565 } 566 } 567 568 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<Box<T>> 569 where 570 T: WorkItem<ID, Pointer = Self>, 571 T: HasWork<T, ID>, 572 { 573 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 574 // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 575 let ptr = ptr as *mut Work<T, ID>; 576 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 577 let ptr = unsafe { T::work_container_of(ptr) }; 578 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 579 let boxed = unsafe { Box::from_raw(ptr) }; 580 // SAFETY: The box was already pinned when it was enqueued. 581 let pinned = unsafe { Pin::new_unchecked(boxed) }; 582 583 T::run(pinned) 584 } 585 } 586 587 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<Box<T>> 588 where 589 T: WorkItem<ID, Pointer = Self>, 590 T: HasWork<T, ID>, 591 { 592 type EnqueueOutput = (); 593 594 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 595 where 596 F: FnOnce(*mut bindings::work_struct) -> bool, 597 { 598 // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily 599 // remove the `Pin` wrapper. 600 let boxed = unsafe { Pin::into_inner_unchecked(self) }; 601 let ptr = Box::into_raw(boxed); 602 603 // SAFETY: Pointers into a `Box` point at a valid value. 604 let work_ptr = unsafe { T::raw_get_work(ptr) }; 605 // SAFETY: `raw_get_work` returns a pointer to a valid value. 606 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 607 608 if !queue_work_on(work_ptr) { 609 // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a 610 // workqueue. 611 unsafe { ::core::hint::unreachable_unchecked() } 612 } 613 } 614 } 615 616 /// Returns the system work queue (`system_wq`). 617 /// 618 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are 619 /// users which expect relatively short queue flush time. 620 /// 621 /// Callers shouldn't queue work items which can run for too long. 622 pub fn system() -> &'static Queue { 623 // SAFETY: `system_wq` is a C global, always available. 624 unsafe { Queue::from_raw(bindings::system_wq) } 625 } 626 627 /// Returns the system high-priority work queue (`system_highpri_wq`). 628 /// 629 /// It is similar to the one returned by [`system`] but for work items which require higher 630 /// scheduling priority. 631 pub fn system_highpri() -> &'static Queue { 632 // SAFETY: `system_highpri_wq` is a C global, always available. 633 unsafe { Queue::from_raw(bindings::system_highpri_wq) } 634 } 635 636 /// Returns the system work queue for potentially long-running work items (`system_long_wq`). 637 /// 638 /// It is similar to the one returned by [`system`] but may host long running work items. Queue 639 /// flushing might take relatively long. 640 pub fn system_long() -> &'static Queue { 641 // SAFETY: `system_long_wq` is a C global, always available. 642 unsafe { Queue::from_raw(bindings::system_long_wq) } 643 } 644 645 /// Returns the system unbound work queue (`system_unbound_wq`). 646 /// 647 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items 648 /// are executed immediately as long as `max_active` limit is not reached and resources are 649 /// available. 650 pub fn system_unbound() -> &'static Queue { 651 // SAFETY: `system_unbound_wq` is a C global, always available. 652 unsafe { Queue::from_raw(bindings::system_unbound_wq) } 653 } 654 655 /// Returns the system freezable work queue (`system_freezable_wq`). 656 /// 657 /// It is equivalent to the one returned by [`system`] except that it's freezable. 658 /// 659 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 660 /// items on the workqueue are drained and no new work item starts execution until thawed. 661 pub fn system_freezable() -> &'static Queue { 662 // SAFETY: `system_freezable_wq` is a C global, always available. 663 unsafe { Queue::from_raw(bindings::system_freezable_wq) } 664 } 665 666 /// Returns the system power-efficient work queue (`system_power_efficient_wq`). 667 /// 668 /// It is inclined towards saving power and is converted to "unbound" variants if the 669 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one 670 /// returned by [`system`]. 671 pub fn system_power_efficient() -> &'static Queue { 672 // SAFETY: `system_power_efficient_wq` is a C global, always available. 673 unsafe { Queue::from_raw(bindings::system_power_efficient_wq) } 674 } 675 676 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`). 677 /// 678 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable. 679 /// 680 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 681 /// items on the workqueue are drained and no new work item starts execution until thawed. 682 pub fn system_freezable_power_efficient() -> &'static Queue { 683 // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available. 684 unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) } 685 }
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.