~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/scripts/generate_builtin_ranges.awk

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #!/usr/bin/gawk -f
  2 # SPDX-License-Identifier: GPL-2.0
  3 # generate_builtin_ranges.awk: Generate address range data for builtin modules
  4 # Written by Kris Van Hees <kris.van.hees@oracle.com>
  5 #
  6 # Usage: generate_builtin_ranges.awk modules.builtin vmlinux.map \
  7 #               vmlinux.o.map > modules.builtin.ranges
  8 #
  9 
 10 # Return the module name(s) (if any) associated with the given object.
 11 #
 12 # If we have seen this object before, return information from the cache.
 13 # Otherwise, retrieve it from the corresponding .cmd file.
 14 #
 15 function get_module_info(fn, mod, obj, s) {
 16         if (fn in omod)
 17                 return omod[fn];
 18 
 19         if (match(fn, /\/[^/]+$/) == 0)
 20                 return "";
 21 
 22         obj = fn;
 23         mod = "";
 24         fn = substr(fn, 1, RSTART) "." substr(fn, RSTART + 1) ".cmd";
 25         if (getline s <fn == 1) {
 26                 if (match(s, /DKBUILD_MODFILE=['"]+[^'"]+/) > 0) {
 27                         mod = substr(s, RSTART + 16, RLENGTH - 16);
 28                         gsub(/['"]/, "", mod);
 29                 } else if (match(s, /RUST_MODFILE=[^ ]+/) > 0)
 30                         mod = substr(s, RSTART + 13, RLENGTH - 13);
 31         }
 32         close(fn);
 33 
 34         # A single module (common case) also reflects objects that are not part
 35         # of a module.  Some of those objects have names that are also a module
 36         # name (e.g. core).  We check the associated module file name, and if
 37         # they do not match, the object is not part of a module.
 38         if (mod !~ / /) {
 39                 if (!(mod in mods))
 40                         mod = "";
 41         }
 42 
 43         gsub(/([^/ ]*\/)+/, "", mod);
 44         gsub(/-/, "_", mod);
 45 
 46         # At this point, mod is a single (valid) module name, or a list of
 47         # module names (that do not need validation).
 48         omod[obj] = mod;
 49 
 50         return mod;
 51 }
 52 
 53 # Update the ranges entry for the given module 'mod' in section 'osect'.
 54 #
 55 # We use a modified absolute start address (soff + base) as index because we
 56 # may need to insert an anchor record later that must be at the start of the
 57 # section data, and the first module may very well start at the same address.
 58 # So, we use (addr << 1) + 1 to allow a possible anchor record to be placed at
 59 # (addr << 1).  This is safe because the index is only used to sort the entries
 60 # before writing them out.
 61 #
 62 function update_entry(osect, mod, soff, eoff, sect, idx) {
 63         sect = sect_in[osect];
 64         idx = sprintf("%016x", (soff + sect_base[osect]) * 2 + 1);
 65         entries[idx] = sprintf("%s %08x-%08x %s", sect, soff, eoff, mod);
 66         count[sect]++;
 67 }
 68 
 69 # (1) Build a lookup map of built-in module names.
 70 #
 71 # The first file argument is used as input (modules.builtin).
 72 #
 73 # Lines will be like:
 74 #       kernel/crypto/lzo-rle.ko
 75 # and we record the object name "crypto/lzo-rle".
 76 #
 77 ARGIND == 1 {
 78         sub(/kernel\//, "");                    # strip off "kernel/" prefix
 79         sub(/\.ko$/, "");                       # strip off .ko suffix
 80 
 81         mods[$1] = 1;
 82         next;
 83 }
 84 
 85 # (2) Collect address information for each section.
 86 #
 87 # The second file argument is used as input (vmlinux.map).
 88 #
 89 # We collect the base address of the section in order to convert all addresses
 90 # in the section into offset values.
 91 #
 92 # We collect the address of the anchor (or first symbol in the section if there
 93 # is no explicit anchor) to allow users of the range data to calculate address
 94 # ranges based on the actual load address of the section in the running kernel.
 95 #
 96 # We collect the start address of any sub-section (section included in the top
 97 # level section being processed).  This is needed when the final linking was
 98 # done using vmlinux.a because then the list of objects contained in each
 99 # section is to be obtained from vmlinux.o.map.  The offset of the sub-section
100 # is recorded here, to be used as an addend when processing vmlinux.o.map
101 # later.
102 #
103 
104 # Both GNU ld and LLVM lld linker map format are supported by converting LLVM
105 # lld linker map records into equivalent GNU ld linker map records.
106 #
107 # The first record of the vmlinux.map file provides enough information to know
108 # which format we are dealing with.
109 #
110 ARGIND == 2 && FNR == 1 && NF == 7 && $1 == "VMA" && $7 == "Symbol" {
111         map_is_lld = 1;
112         if (dbg)
113                 printf "NOTE: %s uses LLVM lld linker map format\n", FILENAME >"/dev/stderr";
114         next;
115 }
116 
117 # (LLD) Convert a section record fronm lld format to ld format.
118 #
119 # lld: ffffffff82c00000          2c00000   2493c0  8192 .data
120 #  ->
121 # ld:  .data           0xffffffff82c00000   0x2493c0 load address 0x0000000002c00000
122 #
123 ARGIND == 2 && map_is_lld && NF == 5 && /[0-9] [^ ]+$/ {
124         $0 = $5 " 0x"$1 " 0x"$3 " load address 0x"$2;
125 }
126 
127 # (LLD) Convert an anchor record from lld format to ld format.
128 #
129 # lld: ffffffff81000000          1000000        0     1         _text = .
130 #  ->
131 # ld:                  0xffffffff81000000                _text = .
132 #
133 ARGIND == 2 && map_is_lld && !anchor && NF == 7 && raw_addr == "0x"$1 && $6 == "=" && $7 == "." {
134         $0 = "  0x"$1 " " $5 " = .";
135 }
136 
137 # (LLD) Convert an object record from lld format to ld format.
138 #
139 # lld:            11480            11480     1f07    16         vmlinux.a(arch/x86/events/amd/uncore.o):(.text)
140 #  ->
141 # ld:   .text          0x0000000000011480     0x1f07 arch/x86/events/amd/uncore.o
142 #
143 ARGIND == 2 && map_is_lld && NF == 5 && $5 ~ /:\(/ {
144         gsub(/\)/, "");
145         sub(/ vmlinux\.a\(/, " ");
146         sub(/:\(/, " ");
147         $0 = " "$6 " 0x"$1 " 0x"$3 " " $5;
148 }
149 
150 # (LLD) Convert a symbol record from lld format to ld format.
151 #
152 # We only care about these while processing a section for which no anchor has
153 # been determined yet.
154 #
155 # lld: ffffffff82a859a4          2a859a4        0     1                 btf_ksym_iter_id
156 #  ->
157 # ld:                  0xffffffff82a859a4                btf_ksym_iter_id
158 #
159 ARGIND == 2 && map_is_lld && sect && !anchor && NF == 5 && $5 ~ /^[_A-Za-z][_A-Za-z0-9]*$/ {
160         $0 = "  0x"$1 " " $5;
161 }
162 
163 # (LLD) We do not need any other ldd linker map records.
164 #
165 ARGIND == 2 && map_is_lld && /^[0-9a-f]{16} / {
166         next;
167 }
168 
169 # (LD) Section records with just the section name at the start of the line
170 #      need to have the next line pulled in to determine whether it is a
171 #      loadable section.  If it is, the next line will contains a hex value
172 #      as first and second items.
173 #
174 ARGIND == 2 && !map_is_lld && NF == 1 && /^[^ ]/ {
175         s = $0;
176         getline;
177         if ($1 !~ /^0x/ || $2 !~ /^0x/)
178                 next;
179 
180         $0 = s " " $0;
181 }
182 
183 # (LD) Object records with just the section name denote records with a long
184 #      section name for which the remainder of the record can be found on the
185 #      next line.
186 #
187 # (This is also needed for vmlinux.o.map, when used.)
188 #
189 ARGIND >= 2 && !map_is_lld && NF == 1 && /^ [^ \*]/ {
190         s = $0;
191         getline;
192         $0 = s " " $0;
193 }
194 
195 # Beginning a new section - done with the previous one (if any).
196 #
197 ARGIND == 2 && /^[^ ]/ {
198         sect = 0;
199 }
200 
201 # Process a loadable section (we only care about .-sections).
202 #
203 # Record the section name and its base address.
204 # We also record the raw (non-stripped) address of the section because it can
205 # be used to identify an anchor record.
206 #
207 # Note:
208 # Since some AWK implementations cannot handle large integers, we strip off the
209 # first 4 hex digits from the address.  This is safe because the kernel space
210 # is not large enough for addresses to extend into those digits.  The portion
211 # to strip off is stored in addr_prefix as a regexp, so further clauses can
212 # perform a simple substitution to do the address stripping.
213 #
214 ARGIND == 2 && /^\./ {
215         # Explicitly ignore a few sections that are not relevant here.
216         if ($1 ~ /^\.orc_/ || $1 ~ /_sites$/ || $1 ~ /\.percpu/)
217                 next;
218 
219         # Sections with a 0-address can be ignored as well.
220         if ($2 ~ /^0x0+$/)
221                 next;
222 
223         raw_addr = $2;
224         addr_prefix = "^" substr($2, 1, 6);
225         base = $2;
226         sub(addr_prefix, "0x", base);
227         base = strtonum(base);
228         sect = $1;
229         anchor = 0;
230         sect_base[sect] = base;
231         sect_size[sect] = strtonum($3);
232 
233         if (dbg)
234                 printf "[%s] BASE   %016x\n", sect, base >"/dev/stderr";
235 
236         next;
237 }
238 
239 # If we are not in a section we care about, we ignore the record.
240 #
241 ARGIND == 2 && !sect {
242         next;
243 }
244 
245 # Record the first anchor symbol for the current section.
246 #
247 # An anchor record for the section bears the same raw address as the section
248 # record.
249 #
250 ARGIND == 2 && !anchor && NF == 4 && raw_addr == $1 && $3 == "=" && $4 == "." {
251         anchor = sprintf("%s %08x-%08x = %s", sect, 0, 0, $2);
252         sect_anchor[sect] = anchor;
253 
254         if (dbg)
255                 printf "[%s] ANCHOR %016x = %s (.)\n", sect, 0, $2 >"/dev/stderr";
256 
257         next;
258 }
259 
260 # If no anchor record was found for the current section, use the first symbol
261 # in the section as anchor.
262 #
263 ARGIND == 2 && !anchor && NF == 2 && $1 ~ /^0x/ && $2 !~ /^0x/ {
264         addr = $1;
265         sub(addr_prefix, "0x", addr);
266         addr = strtonum(addr) - base;
267         anchor = sprintf("%s %08x-%08x = %s", sect, addr, addr, $2);
268         sect_anchor[sect] = anchor;
269 
270         if (dbg)
271                 printf "[%s] ANCHOR %016x = %s\n", sect, addr, $2 >"/dev/stderr";
272 
273         next;
274 }
275 
276 # The first occurrence of a section name in an object record establishes the
277 # addend (often 0) for that section.  This information is needed to handle
278 # sections that get combined in the final linking of vmlinux (e.g. .head.text
279 # getting included at the start of .text).
280 #
281 # If the section does not have a base yet, use the base of the encapsulating
282 # section.
283 #
284 ARGIND == 2 && sect && NF == 4 && /^ [^ \*]/ && !($1 in sect_addend) {
285         if (!($1 in sect_base)) {
286                 sect_base[$1] = base;
287 
288                 if (dbg)
289                         printf "[%s] BASE   %016x\n", $1, base >"/dev/stderr";
290         }
291 
292         addr = $2;
293         sub(addr_prefix, "0x", addr);
294         addr = strtonum(addr);
295         sect_addend[$1] = addr - sect_base[$1];
296         sect_in[$1] = sect;
297 
298         if (dbg)
299                 printf "[%s] ADDEND %016x - %016x = %016x\n",  $1, addr, base, sect_addend[$1] >"/dev/stderr";
300 
301         # If the object is vmlinux.o then we will need vmlinux.o.map to get the
302         # actual offsets of objects.
303         if ($4 == "vmlinux.o")
304                 need_o_map = 1;
305 }
306 
307 # (3) Collect offset ranges (relative to the section base address) for built-in
308 # modules.
309 #
310 # If the final link was done using the actual objects, vmlinux.map contains all
311 # the information we need (see section (3a)).
312 # If linking was done using vmlinux.a as intermediary, we will need to process
313 # vmlinux.o.map (see section (3b)).
314 
315 # (3a) Determine offset range info using vmlinux.map.
316 #
317 # Since we are already processing vmlinux.map, the top level section that is
318 # being processed is already known.  If we do not have a base address for it,
319 # we do not need to process records for it.
320 #
321 # Given the object name, we determine the module(s) (if any) that the current
322 # object is associated with.
323 #
324 # If we were already processing objects for a (list of) module(s):
325 #  - If the current object belongs to the same module(s), update the range data
326 #    to include the current object.
327 #  - Otherwise, ensure that the end offset of the range is valid.
328 #
329 # If the current object does not belong to a built-in module, ignore it.
330 #
331 # If it does, we add a new built-in module offset range record.
332 #
333 ARGIND == 2 && !need_o_map && /^ [^ ]/ && NF == 4 && $3 != "0x0" {
334         if (!(sect in sect_base))
335                 next;
336 
337         # Turn the address into an offset from the section base.
338         soff = $2;
339         sub(addr_prefix, "0x", soff);
340         soff = strtonum(soff) - sect_base[sect];
341         eoff = soff + strtonum($3);
342 
343         # Determine which (if any) built-in modules the object belongs to.
344         mod = get_module_info($4);
345 
346         # If we are processing a built-in module:
347         #   - If the current object is within the same module, we update its
348         #     entry by extending the range and move on
349         #   - Otherwise:
350         #       + If we are still processing within the same main section, we
351         #         validate the end offset against the start offset of the
352         #         current object (e.g. .rodata.str1.[18] objects are often
353         #         listed with an incorrect size in the linker map)
354         #       + Otherwise, we validate the end offset against the section
355         #         size
356         if (mod_name) {
357                 if (mod == mod_name) {
358                         mod_eoff = eoff;
359                         update_entry(mod_sect, mod_name, mod_soff, eoff);
360 
361                         next;
362                 } else if (sect == sect_in[mod_sect]) {
363                         if (mod_eoff > soff)
364                                 update_entry(mod_sect, mod_name, mod_soff, soff);
365                 } else {
366                         v = sect_size[sect_in[mod_sect]];
367                         if (mod_eoff > v)
368                                 update_entry(mod_sect, mod_name, mod_soff, v);
369                 }
370         }
371 
372         mod_name = mod;
373 
374         # If we encountered an object that is not part of a built-in module, we
375         # do not need to record any data.
376         if (!mod)
377                 next;
378 
379         # At this point, we encountered the start of a new built-in module.
380         mod_name = mod;
381         mod_soff = soff;
382         mod_eoff = eoff;
383         mod_sect = $1;
384         update_entry($1, mod, soff, mod_eoff);
385 
386         next;
387 }
388 
389 # If we do not need to parse the vmlinux.o.map file, we are done.
390 #
391 ARGIND == 3 && !need_o_map {
392         if (dbg)
393                 printf "Note: %s is not needed.\n", FILENAME >"/dev/stderr";
394         exit;
395 }
396 
397 # (3) Collect offset ranges (relative to the section base address) for built-in
398 # modules.
399 #
400 
401 # (LLD) Convert an object record from lld format to ld format.
402 #
403 ARGIND == 3 && map_is_lld && NF == 5 && $5 ~ /:\(/ {
404         gsub(/\)/, "");
405         sub(/:\(/, " ");
406 
407         sect = $6;
408         if (!(sect in sect_addend))
409                 next;
410 
411         sub(/ vmlinux\.a\(/, " ");
412         $0 = " "sect " 0x"$1 " 0x"$3 " " $5;
413 }
414 
415 # (3b) Determine offset range info using vmlinux.o.map.
416 #
417 # If we do not know an addend for the object's section, we are interested in
418 # anything within that section.
419 #
420 # Determine the top-level section that the object's section was included in
421 # during the final link.  This is the section name offset range data will be
422 # associated with for this object.
423 #
424 # The remainder of the processing of the current object record follows the
425 # procedure outlined in (3a).
426 #
427 ARGIND == 3 && /^ [^ ]/ && NF == 4 && $3 != "0x0" {
428         osect = $1;
429         if (!(osect in sect_addend))
430                 next;
431 
432         # We need to work with the main section.
433         sect = sect_in[osect];
434 
435         # Turn the address into an offset from the section base.
436         soff = $2;
437         sub(addr_prefix, "0x", soff);
438         soff = strtonum(soff) + sect_addend[osect];
439         eoff = soff + strtonum($3);
440 
441         # Determine which (if any) built-in modules the object belongs to.
442         mod = get_module_info($4);
443 
444         # If we are processing a built-in module:
445         #   - If the current object is within the same module, we update its
446         #     entry by extending the range and move on
447         #   - Otherwise:
448         #       + If we are still processing within the same main section, we
449         #         validate the end offset against the start offset of the
450         #         current object (e.g. .rodata.str1.[18] objects are often
451         #         listed with an incorrect size in the linker map)
452         #       + Otherwise, we validate the end offset against the section
453         #         size
454         if (mod_name) {
455                 if (mod == mod_name) {
456                         mod_eoff = eoff;
457                         update_entry(mod_sect, mod_name, mod_soff, eoff);
458 
459                         next;
460                 } else if (sect == sect_in[mod_sect]) {
461                         if (mod_eoff > soff)
462                                 update_entry(mod_sect, mod_name, mod_soff, soff);
463                 } else {
464                         v = sect_size[sect_in[mod_sect]];
465                         if (mod_eoff > v)
466                                 update_entry(mod_sect, mod_name, mod_soff, v);
467                 }
468         }
469 
470         mod_name = mod;
471 
472         # If we encountered an object that is not part of a built-in module, we
473         # do not need to record any data.
474         if (!mod)
475                 next;
476 
477         # At this point, we encountered the start of a new built-in module.
478         mod_name = mod;
479         mod_soff = soff;
480         mod_eoff = eoff;
481         mod_sect = osect;
482         update_entry(osect, mod, soff, mod_eoff);
483 
484         next;
485 }
486 
487 # (4) Generate the output.
488 #
489 # Anchor records are added for each section that contains offset range data
490 # records.  They are added at an adjusted section base address (base << 1) to
491 # ensure they come first in the second records (see update_entry() above for
492 # more information).
493 #
494 # All entries are sorted by (adjusted) address to ensure that the output can be
495 # parsed in strict ascending address order.
496 #
497 END {
498         for (sect in count) {
499                 if (sect in sect_anchor) {
500                         idx = sprintf("%016x", sect_base[sect] * 2);
501                         entries[idx] = sect_anchor[sect];
502                 }
503         }
504 
505         n = asorti(entries, indices);
506         for (i = 1; i <= n; i++)
507                 print entries[indices[i]];
508 }

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php