1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Common capabilities, needed by capability.o. 3 */ 4 5 #include <linux/capability.h> 6 #include <linux/audit.h> 7 #include <linux/init.h> 8 #include <linux/kernel.h> 9 #include <linux/lsm_hooks.h> 10 #include <linux/file.h> 11 #include <linux/mm.h> 12 #include <linux/mman.h> 13 #include <linux/pagemap.h> 14 #include <linux/swap.h> 15 #include <linux/skbuff.h> 16 #include <linux/netlink.h> 17 #include <linux/ptrace.h> 18 #include <linux/xattr.h> 19 #include <linux/hugetlb.h> 20 #include <linux/mount.h> 21 #include <linux/sched.h> 22 #include <linux/prctl.h> 23 #include <linux/securebits.h> 24 #include <linux/user_namespace.h> 25 #include <linux/binfmts.h> 26 #include <linux/personality.h> 27 #include <linux/mnt_idmapping.h> 28 #include <uapi/linux/lsm.h> 29 30 /* 31 * If a non-root user executes a setuid-root binary in 32 * !secure(SECURE_NOROOT) mode, then we raise capabilities. 33 * However if fE is also set, then the intent is for only 34 * the file capabilities to be applied, and the setuid-root 35 * bit is left on either to change the uid (plausible) or 36 * to get full privilege on a kernel without file capabilities 37 * support. So in that case we do not raise capabilities. 38 * 39 * Warn if that happens, once per boot. 40 */ 41 static void warn_setuid_and_fcaps_mixed(const char *fname) 42 { 43 static int warned; 44 if (!warned) { 45 printk(KERN_INFO "warning: `%s' has both setuid-root and" 46 " effective capabilities. Therefore not raising all" 47 " capabilities.\n", fname); 48 warned = 1; 49 } 50 } 51 52 /** 53 * cap_capable - Determine whether a task has a particular effective capability 54 * @cred: The credentials to use 55 * @targ_ns: The user namespace in which we need the capability 56 * @cap: The capability to check for 57 * @opts: Bitmask of options defined in include/linux/security.h 58 * 59 * Determine whether the nominated task has the specified capability amongst 60 * its effective set, returning 0 if it does, -ve if it does not. 61 * 62 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable() 63 * and has_capability() functions. That is, it has the reverse semantics: 64 * cap_has_capability() returns 0 when a task has a capability, but the 65 * kernel's capable() and has_capability() returns 1 for this case. 66 */ 67 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns, 68 int cap, unsigned int opts) 69 { 70 struct user_namespace *ns = targ_ns; 71 72 /* See if cred has the capability in the target user namespace 73 * by examining the target user namespace and all of the target 74 * user namespace's parents. 75 */ 76 for (;;) { 77 /* Do we have the necessary capabilities? */ 78 if (ns == cred->user_ns) 79 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM; 80 81 /* 82 * If we're already at a lower level than we're looking for, 83 * we're done searching. 84 */ 85 if (ns->level <= cred->user_ns->level) 86 return -EPERM; 87 88 /* 89 * The owner of the user namespace in the parent of the 90 * user namespace has all caps. 91 */ 92 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid)) 93 return 0; 94 95 /* 96 * If you have a capability in a parent user ns, then you have 97 * it over all children user namespaces as well. 98 */ 99 ns = ns->parent; 100 } 101 102 /* We never get here */ 103 } 104 105 /** 106 * cap_settime - Determine whether the current process may set the system clock 107 * @ts: The time to set 108 * @tz: The timezone to set 109 * 110 * Determine whether the current process may set the system clock and timezone 111 * information, returning 0 if permission granted, -ve if denied. 112 */ 113 int cap_settime(const struct timespec64 *ts, const struct timezone *tz) 114 { 115 if (!capable(CAP_SYS_TIME)) 116 return -EPERM; 117 return 0; 118 } 119 120 /** 121 * cap_ptrace_access_check - Determine whether the current process may access 122 * another 123 * @child: The process to be accessed 124 * @mode: The mode of attachment. 125 * 126 * If we are in the same or an ancestor user_ns and have all the target 127 * task's capabilities, then ptrace access is allowed. 128 * If we have the ptrace capability to the target user_ns, then ptrace 129 * access is allowed. 130 * Else denied. 131 * 132 * Determine whether a process may access another, returning 0 if permission 133 * granted, -ve if denied. 134 */ 135 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode) 136 { 137 int ret = 0; 138 const struct cred *cred, *child_cred; 139 const kernel_cap_t *caller_caps; 140 141 rcu_read_lock(); 142 cred = current_cred(); 143 child_cred = __task_cred(child); 144 if (mode & PTRACE_MODE_FSCREDS) 145 caller_caps = &cred->cap_effective; 146 else 147 caller_caps = &cred->cap_permitted; 148 if (cred->user_ns == child_cred->user_ns && 149 cap_issubset(child_cred->cap_permitted, *caller_caps)) 150 goto out; 151 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE)) 152 goto out; 153 ret = -EPERM; 154 out: 155 rcu_read_unlock(); 156 return ret; 157 } 158 159 /** 160 * cap_ptrace_traceme - Determine whether another process may trace the current 161 * @parent: The task proposed to be the tracer 162 * 163 * If parent is in the same or an ancestor user_ns and has all current's 164 * capabilities, then ptrace access is allowed. 165 * If parent has the ptrace capability to current's user_ns, then ptrace 166 * access is allowed. 167 * Else denied. 168 * 169 * Determine whether the nominated task is permitted to trace the current 170 * process, returning 0 if permission is granted, -ve if denied. 171 */ 172 int cap_ptrace_traceme(struct task_struct *parent) 173 { 174 int ret = 0; 175 const struct cred *cred, *child_cred; 176 177 rcu_read_lock(); 178 cred = __task_cred(parent); 179 child_cred = current_cred(); 180 if (cred->user_ns == child_cred->user_ns && 181 cap_issubset(child_cred->cap_permitted, cred->cap_permitted)) 182 goto out; 183 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE)) 184 goto out; 185 ret = -EPERM; 186 out: 187 rcu_read_unlock(); 188 return ret; 189 } 190 191 /** 192 * cap_capget - Retrieve a task's capability sets 193 * @target: The task from which to retrieve the capability sets 194 * @effective: The place to record the effective set 195 * @inheritable: The place to record the inheritable set 196 * @permitted: The place to record the permitted set 197 * 198 * This function retrieves the capabilities of the nominated task and returns 199 * them to the caller. 200 */ 201 int cap_capget(const struct task_struct *target, kernel_cap_t *effective, 202 kernel_cap_t *inheritable, kernel_cap_t *permitted) 203 { 204 const struct cred *cred; 205 206 /* Derived from kernel/capability.c:sys_capget. */ 207 rcu_read_lock(); 208 cred = __task_cred(target); 209 *effective = cred->cap_effective; 210 *inheritable = cred->cap_inheritable; 211 *permitted = cred->cap_permitted; 212 rcu_read_unlock(); 213 return 0; 214 } 215 216 /* 217 * Determine whether the inheritable capabilities are limited to the old 218 * permitted set. Returns 1 if they are limited, 0 if they are not. 219 */ 220 static inline int cap_inh_is_capped(void) 221 { 222 /* they are so limited unless the current task has the CAP_SETPCAP 223 * capability 224 */ 225 if (cap_capable(current_cred(), current_cred()->user_ns, 226 CAP_SETPCAP, CAP_OPT_NONE) == 0) 227 return 0; 228 return 1; 229 } 230 231 /** 232 * cap_capset - Validate and apply proposed changes to current's capabilities 233 * @new: The proposed new credentials; alterations should be made here 234 * @old: The current task's current credentials 235 * @effective: A pointer to the proposed new effective capabilities set 236 * @inheritable: A pointer to the proposed new inheritable capabilities set 237 * @permitted: A pointer to the proposed new permitted capabilities set 238 * 239 * This function validates and applies a proposed mass change to the current 240 * process's capability sets. The changes are made to the proposed new 241 * credentials, and assuming no error, will be committed by the caller of LSM. 242 */ 243 int cap_capset(struct cred *new, 244 const struct cred *old, 245 const kernel_cap_t *effective, 246 const kernel_cap_t *inheritable, 247 const kernel_cap_t *permitted) 248 { 249 if (cap_inh_is_capped() && 250 !cap_issubset(*inheritable, 251 cap_combine(old->cap_inheritable, 252 old->cap_permitted))) 253 /* incapable of using this inheritable set */ 254 return -EPERM; 255 256 if (!cap_issubset(*inheritable, 257 cap_combine(old->cap_inheritable, 258 old->cap_bset))) 259 /* no new pI capabilities outside bounding set */ 260 return -EPERM; 261 262 /* verify restrictions on target's new Permitted set */ 263 if (!cap_issubset(*permitted, old->cap_permitted)) 264 return -EPERM; 265 266 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ 267 if (!cap_issubset(*effective, *permitted)) 268 return -EPERM; 269 270 new->cap_effective = *effective; 271 new->cap_inheritable = *inheritable; 272 new->cap_permitted = *permitted; 273 274 /* 275 * Mask off ambient bits that are no longer both permitted and 276 * inheritable. 277 */ 278 new->cap_ambient = cap_intersect(new->cap_ambient, 279 cap_intersect(*permitted, 280 *inheritable)); 281 if (WARN_ON(!cap_ambient_invariant_ok(new))) 282 return -EINVAL; 283 return 0; 284 } 285 286 /** 287 * cap_inode_need_killpriv - Determine if inode change affects privileges 288 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV 289 * 290 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV 291 * affects the security markings on that inode, and if it is, should 292 * inode_killpriv() be invoked or the change rejected. 293 * 294 * Return: 1 if security.capability has a value, meaning inode_killpriv() 295 * is required, 0 otherwise, meaning inode_killpriv() is not required. 296 */ 297 int cap_inode_need_killpriv(struct dentry *dentry) 298 { 299 struct inode *inode = d_backing_inode(dentry); 300 int error; 301 302 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0); 303 return error > 0; 304 } 305 306 /** 307 * cap_inode_killpriv - Erase the security markings on an inode 308 * 309 * @idmap: idmap of the mount the inode was found from 310 * @dentry: The inode/dentry to alter 311 * 312 * Erase the privilege-enhancing security markings on an inode. 313 * 314 * If the inode has been found through an idmapped mount the idmap of 315 * the vfsmount must be passed through @idmap. This function will then 316 * take care to map the inode according to @idmap before checking 317 * permissions. On non-idmapped mounts or if permission checking is to be 318 * performed on the raw inode simply pass @nop_mnt_idmap. 319 * 320 * Return: 0 if successful, -ve on error. 321 */ 322 int cap_inode_killpriv(struct mnt_idmap *idmap, struct dentry *dentry) 323 { 324 int error; 325 326 error = __vfs_removexattr(idmap, dentry, XATTR_NAME_CAPS); 327 if (error == -EOPNOTSUPP) 328 error = 0; 329 return error; 330 } 331 332 static bool rootid_owns_currentns(vfsuid_t rootvfsuid) 333 { 334 struct user_namespace *ns; 335 kuid_t kroot; 336 337 if (!vfsuid_valid(rootvfsuid)) 338 return false; 339 340 kroot = vfsuid_into_kuid(rootvfsuid); 341 for (ns = current_user_ns();; ns = ns->parent) { 342 if (from_kuid(ns, kroot) == 0) 343 return true; 344 if (ns == &init_user_ns) 345 break; 346 } 347 348 return false; 349 } 350 351 static __u32 sansflags(__u32 m) 352 { 353 return m & ~VFS_CAP_FLAGS_EFFECTIVE; 354 } 355 356 static bool is_v2header(int size, const struct vfs_cap_data *cap) 357 { 358 if (size != XATTR_CAPS_SZ_2) 359 return false; 360 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2; 361 } 362 363 static bool is_v3header(int size, const struct vfs_cap_data *cap) 364 { 365 if (size != XATTR_CAPS_SZ_3) 366 return false; 367 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3; 368 } 369 370 /* 371 * getsecurity: We are called for security.* before any attempt to read the 372 * xattr from the inode itself. 373 * 374 * This gives us a chance to read the on-disk value and convert it. If we 375 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler. 376 * 377 * Note we are not called by vfs_getxattr_alloc(), but that is only called 378 * by the integrity subsystem, which really wants the unconverted values - 379 * so that's good. 380 */ 381 int cap_inode_getsecurity(struct mnt_idmap *idmap, 382 struct inode *inode, const char *name, void **buffer, 383 bool alloc) 384 { 385 int size; 386 kuid_t kroot; 387 vfsuid_t vfsroot; 388 u32 nsmagic, magic; 389 uid_t root, mappedroot; 390 char *tmpbuf = NULL; 391 struct vfs_cap_data *cap; 392 struct vfs_ns_cap_data *nscap = NULL; 393 struct dentry *dentry; 394 struct user_namespace *fs_ns; 395 396 if (strcmp(name, "capability") != 0) 397 return -EOPNOTSUPP; 398 399 dentry = d_find_any_alias(inode); 400 if (!dentry) 401 return -EINVAL; 402 size = vfs_getxattr_alloc(idmap, dentry, XATTR_NAME_CAPS, &tmpbuf, 403 sizeof(struct vfs_ns_cap_data), GFP_NOFS); 404 dput(dentry); 405 /* gcc11 complains if we don't check for !tmpbuf */ 406 if (size < 0 || !tmpbuf) 407 goto out_free; 408 409 fs_ns = inode->i_sb->s_user_ns; 410 cap = (struct vfs_cap_data *) tmpbuf; 411 if (is_v2header(size, cap)) { 412 root = 0; 413 } else if (is_v3header(size, cap)) { 414 nscap = (struct vfs_ns_cap_data *) tmpbuf; 415 root = le32_to_cpu(nscap->rootid); 416 } else { 417 size = -EINVAL; 418 goto out_free; 419 } 420 421 kroot = make_kuid(fs_ns, root); 422 423 /* If this is an idmapped mount shift the kuid. */ 424 vfsroot = make_vfsuid(idmap, fs_ns, kroot); 425 426 /* If the root kuid maps to a valid uid in current ns, then return 427 * this as a nscap. */ 428 mappedroot = from_kuid(current_user_ns(), vfsuid_into_kuid(vfsroot)); 429 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) { 430 size = sizeof(struct vfs_ns_cap_data); 431 if (alloc) { 432 if (!nscap) { 433 /* v2 -> v3 conversion */ 434 nscap = kzalloc(size, GFP_ATOMIC); 435 if (!nscap) { 436 size = -ENOMEM; 437 goto out_free; 438 } 439 nsmagic = VFS_CAP_REVISION_3; 440 magic = le32_to_cpu(cap->magic_etc); 441 if (magic & VFS_CAP_FLAGS_EFFECTIVE) 442 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE; 443 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32); 444 nscap->magic_etc = cpu_to_le32(nsmagic); 445 } else { 446 /* use allocated v3 buffer */ 447 tmpbuf = NULL; 448 } 449 nscap->rootid = cpu_to_le32(mappedroot); 450 *buffer = nscap; 451 } 452 goto out_free; 453 } 454 455 if (!rootid_owns_currentns(vfsroot)) { 456 size = -EOVERFLOW; 457 goto out_free; 458 } 459 460 /* This comes from a parent namespace. Return as a v2 capability */ 461 size = sizeof(struct vfs_cap_data); 462 if (alloc) { 463 if (nscap) { 464 /* v3 -> v2 conversion */ 465 cap = kzalloc(size, GFP_ATOMIC); 466 if (!cap) { 467 size = -ENOMEM; 468 goto out_free; 469 } 470 magic = VFS_CAP_REVISION_2; 471 nsmagic = le32_to_cpu(nscap->magic_etc); 472 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE) 473 magic |= VFS_CAP_FLAGS_EFFECTIVE; 474 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32); 475 cap->magic_etc = cpu_to_le32(magic); 476 } else { 477 /* use unconverted v2 */ 478 tmpbuf = NULL; 479 } 480 *buffer = cap; 481 } 482 out_free: 483 kfree(tmpbuf); 484 return size; 485 } 486 487 /** 488 * rootid_from_xattr - translate root uid of vfs caps 489 * 490 * @value: vfs caps value which may be modified by this function 491 * @size: size of @ivalue 492 * @task_ns: user namespace of the caller 493 */ 494 static vfsuid_t rootid_from_xattr(const void *value, size_t size, 495 struct user_namespace *task_ns) 496 { 497 const struct vfs_ns_cap_data *nscap = value; 498 uid_t rootid = 0; 499 500 if (size == XATTR_CAPS_SZ_3) 501 rootid = le32_to_cpu(nscap->rootid); 502 503 return VFSUIDT_INIT(make_kuid(task_ns, rootid)); 504 } 505 506 static bool validheader(size_t size, const struct vfs_cap_data *cap) 507 { 508 return is_v2header(size, cap) || is_v3header(size, cap); 509 } 510 511 /** 512 * cap_convert_nscap - check vfs caps 513 * 514 * @idmap: idmap of the mount the inode was found from 515 * @dentry: used to retrieve inode to check permissions on 516 * @ivalue: vfs caps value which may be modified by this function 517 * @size: size of @ivalue 518 * 519 * User requested a write of security.capability. If needed, update the 520 * xattr to change from v2 to v3, or to fixup the v3 rootid. 521 * 522 * If the inode has been found through an idmapped mount the idmap of 523 * the vfsmount must be passed through @idmap. This function will then 524 * take care to map the inode according to @idmap before checking 525 * permissions. On non-idmapped mounts or if permission checking is to be 526 * performed on the raw inode simply pass @nop_mnt_idmap. 527 * 528 * Return: On success, return the new size; on error, return < 0. 529 */ 530 int cap_convert_nscap(struct mnt_idmap *idmap, struct dentry *dentry, 531 const void **ivalue, size_t size) 532 { 533 struct vfs_ns_cap_data *nscap; 534 uid_t nsrootid; 535 const struct vfs_cap_data *cap = *ivalue; 536 __u32 magic, nsmagic; 537 struct inode *inode = d_backing_inode(dentry); 538 struct user_namespace *task_ns = current_user_ns(), 539 *fs_ns = inode->i_sb->s_user_ns; 540 kuid_t rootid; 541 vfsuid_t vfsrootid; 542 size_t newsize; 543 544 if (!*ivalue) 545 return -EINVAL; 546 if (!validheader(size, cap)) 547 return -EINVAL; 548 if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP)) 549 return -EPERM; 550 if (size == XATTR_CAPS_SZ_2 && (idmap == &nop_mnt_idmap)) 551 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP)) 552 /* user is privileged, just write the v2 */ 553 return size; 554 555 vfsrootid = rootid_from_xattr(*ivalue, size, task_ns); 556 if (!vfsuid_valid(vfsrootid)) 557 return -EINVAL; 558 559 rootid = from_vfsuid(idmap, fs_ns, vfsrootid); 560 if (!uid_valid(rootid)) 561 return -EINVAL; 562 563 nsrootid = from_kuid(fs_ns, rootid); 564 if (nsrootid == -1) 565 return -EINVAL; 566 567 newsize = sizeof(struct vfs_ns_cap_data); 568 nscap = kmalloc(newsize, GFP_ATOMIC); 569 if (!nscap) 570 return -ENOMEM; 571 nscap->rootid = cpu_to_le32(nsrootid); 572 nsmagic = VFS_CAP_REVISION_3; 573 magic = le32_to_cpu(cap->magic_etc); 574 if (magic & VFS_CAP_FLAGS_EFFECTIVE) 575 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE; 576 nscap->magic_etc = cpu_to_le32(nsmagic); 577 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32); 578 579 *ivalue = nscap; 580 return newsize; 581 } 582 583 /* 584 * Calculate the new process capability sets from the capability sets attached 585 * to a file. 586 */ 587 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps, 588 struct linux_binprm *bprm, 589 bool *effective, 590 bool *has_fcap) 591 { 592 struct cred *new = bprm->cred; 593 int ret = 0; 594 595 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE) 596 *effective = true; 597 598 if (caps->magic_etc & VFS_CAP_REVISION_MASK) 599 *has_fcap = true; 600 601 /* 602 * pP' = (X & fP) | (pI & fI) 603 * The addition of pA' is handled later. 604 */ 605 new->cap_permitted.val = 606 (new->cap_bset.val & caps->permitted.val) | 607 (new->cap_inheritable.val & caps->inheritable.val); 608 609 if (caps->permitted.val & ~new->cap_permitted.val) 610 /* insufficient to execute correctly */ 611 ret = -EPERM; 612 613 /* 614 * For legacy apps, with no internal support for recognizing they 615 * do not have enough capabilities, we return an error if they are 616 * missing some "forced" (aka file-permitted) capabilities. 617 */ 618 return *effective ? ret : 0; 619 } 620 621 /** 622 * get_vfs_caps_from_disk - retrieve vfs caps from disk 623 * 624 * @idmap: idmap of the mount the inode was found from 625 * @dentry: dentry from which @inode is retrieved 626 * @cpu_caps: vfs capabilities 627 * 628 * Extract the on-exec-apply capability sets for an executable file. 629 * 630 * If the inode has been found through an idmapped mount the idmap of 631 * the vfsmount must be passed through @idmap. This function will then 632 * take care to map the inode according to @idmap before checking 633 * permissions. On non-idmapped mounts or if permission checking is to be 634 * performed on the raw inode simply pass @nop_mnt_idmap. 635 */ 636 int get_vfs_caps_from_disk(struct mnt_idmap *idmap, 637 const struct dentry *dentry, 638 struct cpu_vfs_cap_data *cpu_caps) 639 { 640 struct inode *inode = d_backing_inode(dentry); 641 __u32 magic_etc; 642 int size; 643 struct vfs_ns_cap_data data, *nscaps = &data; 644 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data; 645 kuid_t rootkuid; 646 vfsuid_t rootvfsuid; 647 struct user_namespace *fs_ns; 648 649 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data)); 650 651 if (!inode) 652 return -ENODATA; 653 654 fs_ns = inode->i_sb->s_user_ns; 655 size = __vfs_getxattr((struct dentry *)dentry, inode, 656 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ); 657 if (size == -ENODATA || size == -EOPNOTSUPP) 658 /* no data, that's ok */ 659 return -ENODATA; 660 661 if (size < 0) 662 return size; 663 664 if (size < sizeof(magic_etc)) 665 return -EINVAL; 666 667 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc); 668 669 rootkuid = make_kuid(fs_ns, 0); 670 switch (magic_etc & VFS_CAP_REVISION_MASK) { 671 case VFS_CAP_REVISION_1: 672 if (size != XATTR_CAPS_SZ_1) 673 return -EINVAL; 674 break; 675 case VFS_CAP_REVISION_2: 676 if (size != XATTR_CAPS_SZ_2) 677 return -EINVAL; 678 break; 679 case VFS_CAP_REVISION_3: 680 if (size != XATTR_CAPS_SZ_3) 681 return -EINVAL; 682 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid)); 683 break; 684 685 default: 686 return -EINVAL; 687 } 688 689 rootvfsuid = make_vfsuid(idmap, fs_ns, rootkuid); 690 if (!vfsuid_valid(rootvfsuid)) 691 return -ENODATA; 692 693 /* Limit the caps to the mounter of the filesystem 694 * or the more limited uid specified in the xattr. 695 */ 696 if (!rootid_owns_currentns(rootvfsuid)) 697 return -ENODATA; 698 699 cpu_caps->permitted.val = le32_to_cpu(caps->data[0].permitted); 700 cpu_caps->inheritable.val = le32_to_cpu(caps->data[0].inheritable); 701 702 /* 703 * Rev1 had just a single 32-bit word, later expanded 704 * to a second one for the high bits 705 */ 706 if ((magic_etc & VFS_CAP_REVISION_MASK) != VFS_CAP_REVISION_1) { 707 cpu_caps->permitted.val += (u64)le32_to_cpu(caps->data[1].permitted) << 32; 708 cpu_caps->inheritable.val += (u64)le32_to_cpu(caps->data[1].inheritable) << 32; 709 } 710 711 cpu_caps->permitted.val &= CAP_VALID_MASK; 712 cpu_caps->inheritable.val &= CAP_VALID_MASK; 713 714 cpu_caps->rootid = vfsuid_into_kuid(rootvfsuid); 715 716 return 0; 717 } 718 719 /* 720 * Attempt to get the on-exec apply capability sets for an executable file from 721 * its xattrs and, if present, apply them to the proposed credentials being 722 * constructed by execve(). 723 */ 724 static int get_file_caps(struct linux_binprm *bprm, const struct file *file, 725 bool *effective, bool *has_fcap) 726 { 727 int rc = 0; 728 struct cpu_vfs_cap_data vcaps; 729 730 cap_clear(bprm->cred->cap_permitted); 731 732 if (!file_caps_enabled) 733 return 0; 734 735 if (!mnt_may_suid(file->f_path.mnt)) 736 return 0; 737 738 /* 739 * This check is redundant with mnt_may_suid() but is kept to make 740 * explicit that capability bits are limited to s_user_ns and its 741 * descendants. 742 */ 743 if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns)) 744 return 0; 745 746 rc = get_vfs_caps_from_disk(file_mnt_idmap(file), 747 file->f_path.dentry, &vcaps); 748 if (rc < 0) { 749 if (rc == -EINVAL) 750 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n", 751 bprm->filename); 752 else if (rc == -ENODATA) 753 rc = 0; 754 goto out; 755 } 756 757 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap); 758 759 out: 760 if (rc) 761 cap_clear(bprm->cred->cap_permitted); 762 763 return rc; 764 } 765 766 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); } 767 768 static inline bool __is_real(kuid_t uid, struct cred *cred) 769 { return uid_eq(cred->uid, uid); } 770 771 static inline bool __is_eff(kuid_t uid, struct cred *cred) 772 { return uid_eq(cred->euid, uid); } 773 774 static inline bool __is_suid(kuid_t uid, struct cred *cred) 775 { return !__is_real(uid, cred) && __is_eff(uid, cred); } 776 777 /* 778 * handle_privileged_root - Handle case of privileged root 779 * @bprm: The execution parameters, including the proposed creds 780 * @has_fcap: Are any file capabilities set? 781 * @effective: Do we have effective root privilege? 782 * @root_uid: This namespace' root UID WRT initial USER namespace 783 * 784 * Handle the case where root is privileged and hasn't been neutered by 785 * SECURE_NOROOT. If file capabilities are set, they won't be combined with 786 * set UID root and nothing is changed. If we are root, cap_permitted is 787 * updated. If we have become set UID root, the effective bit is set. 788 */ 789 static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap, 790 bool *effective, kuid_t root_uid) 791 { 792 const struct cred *old = current_cred(); 793 struct cred *new = bprm->cred; 794 795 if (!root_privileged()) 796 return; 797 /* 798 * If the legacy file capability is set, then don't set privs 799 * for a setuid root binary run by a non-root user. Do set it 800 * for a root user just to cause least surprise to an admin. 801 */ 802 if (has_fcap && __is_suid(root_uid, new)) { 803 warn_setuid_and_fcaps_mixed(bprm->filename); 804 return; 805 } 806 /* 807 * To support inheritance of root-permissions and suid-root 808 * executables under compatibility mode, we override the 809 * capability sets for the file. 810 */ 811 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) { 812 /* pP' = (cap_bset & ~0) | (pI & ~0) */ 813 new->cap_permitted = cap_combine(old->cap_bset, 814 old->cap_inheritable); 815 } 816 /* 817 * If only the real uid is 0, we do not set the effective bit. 818 */ 819 if (__is_eff(root_uid, new)) 820 *effective = true; 821 } 822 823 #define __cap_gained(field, target, source) \ 824 !cap_issubset(target->cap_##field, source->cap_##field) 825 #define __cap_grew(target, source, cred) \ 826 !cap_issubset(cred->cap_##target, cred->cap_##source) 827 #define __cap_full(field, cred) \ 828 cap_issubset(CAP_FULL_SET, cred->cap_##field) 829 830 static inline bool __is_setuid(struct cred *new, const struct cred *old) 831 { return !uid_eq(new->euid, old->uid); } 832 833 static inline bool __is_setgid(struct cred *new, const struct cred *old) 834 { return !gid_eq(new->egid, old->gid); } 835 836 /* 837 * 1) Audit candidate if current->cap_effective is set 838 * 839 * We do not bother to audit if 3 things are true: 840 * 1) cap_effective has all caps 841 * 2) we became root *OR* are were already root 842 * 3) root is supposed to have all caps (SECURE_NOROOT) 843 * Since this is just a normal root execing a process. 844 * 845 * Number 1 above might fail if you don't have a full bset, but I think 846 * that is interesting information to audit. 847 * 848 * A number of other conditions require logging: 849 * 2) something prevented setuid root getting all caps 850 * 3) non-setuid root gets fcaps 851 * 4) non-setuid root gets ambient 852 */ 853 static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old, 854 kuid_t root, bool has_fcap) 855 { 856 bool ret = false; 857 858 if ((__cap_grew(effective, ambient, new) && 859 !(__cap_full(effective, new) && 860 (__is_eff(root, new) || __is_real(root, new)) && 861 root_privileged())) || 862 (root_privileged() && 863 __is_suid(root, new) && 864 !__cap_full(effective, new)) || 865 (!__is_setuid(new, old) && 866 ((has_fcap && 867 __cap_gained(permitted, new, old)) || 868 __cap_gained(ambient, new, old)))) 869 870 ret = true; 871 872 return ret; 873 } 874 875 /** 876 * cap_bprm_creds_from_file - Set up the proposed credentials for execve(). 877 * @bprm: The execution parameters, including the proposed creds 878 * @file: The file to pull the credentials from 879 * 880 * Set up the proposed credentials for a new execution context being 881 * constructed by execve(). The proposed creds in @bprm->cred is altered, 882 * which won't take effect immediately. 883 * 884 * Return: 0 if successful, -ve on error. 885 */ 886 int cap_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) 887 { 888 /* Process setpcap binaries and capabilities for uid 0 */ 889 const struct cred *old = current_cred(); 890 struct cred *new = bprm->cred; 891 bool effective = false, has_fcap = false, is_setid; 892 int ret; 893 kuid_t root_uid; 894 895 if (WARN_ON(!cap_ambient_invariant_ok(old))) 896 return -EPERM; 897 898 ret = get_file_caps(bprm, file, &effective, &has_fcap); 899 if (ret < 0) 900 return ret; 901 902 root_uid = make_kuid(new->user_ns, 0); 903 904 handle_privileged_root(bprm, has_fcap, &effective, root_uid); 905 906 /* if we have fs caps, clear dangerous personality flags */ 907 if (__cap_gained(permitted, new, old)) 908 bprm->per_clear |= PER_CLEAR_ON_SETID; 909 910 /* Don't let someone trace a set[ug]id/setpcap binary with the revised 911 * credentials unless they have the appropriate permit. 912 * 913 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs. 914 */ 915 is_setid = __is_setuid(new, old) || __is_setgid(new, old); 916 917 if ((is_setid || __cap_gained(permitted, new, old)) && 918 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) || 919 !ptracer_capable(current, new->user_ns))) { 920 /* downgrade; they get no more than they had, and maybe less */ 921 if (!ns_capable(new->user_ns, CAP_SETUID) || 922 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) { 923 new->euid = new->uid; 924 new->egid = new->gid; 925 } 926 new->cap_permitted = cap_intersect(new->cap_permitted, 927 old->cap_permitted); 928 } 929 930 new->suid = new->fsuid = new->euid; 931 new->sgid = new->fsgid = new->egid; 932 933 /* File caps or setid cancels ambient. */ 934 if (has_fcap || is_setid) 935 cap_clear(new->cap_ambient); 936 937 /* 938 * Now that we've computed pA', update pP' to give: 939 * pP' = (X & fP) | (pI & fI) | pA' 940 */ 941 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient); 942 943 /* 944 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set, 945 * this is the same as pE' = (fE ? pP' : 0) | pA'. 946 */ 947 if (effective) 948 new->cap_effective = new->cap_permitted; 949 else 950 new->cap_effective = new->cap_ambient; 951 952 if (WARN_ON(!cap_ambient_invariant_ok(new))) 953 return -EPERM; 954 955 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) { 956 ret = audit_log_bprm_fcaps(bprm, new, old); 957 if (ret < 0) 958 return ret; 959 } 960 961 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); 962 963 if (WARN_ON(!cap_ambient_invariant_ok(new))) 964 return -EPERM; 965 966 /* Check for privilege-elevated exec. */ 967 if (is_setid || 968 (!__is_real(root_uid, new) && 969 (effective || 970 __cap_grew(permitted, ambient, new)))) 971 bprm->secureexec = 1; 972 973 return 0; 974 } 975 976 /** 977 * cap_inode_setxattr - Determine whether an xattr may be altered 978 * @dentry: The inode/dentry being altered 979 * @name: The name of the xattr to be changed 980 * @value: The value that the xattr will be changed to 981 * @size: The size of value 982 * @flags: The replacement flag 983 * 984 * Determine whether an xattr may be altered or set on an inode, returning 0 if 985 * permission is granted, -ve if denied. 986 * 987 * This is used to make sure security xattrs don't get updated or set by those 988 * who aren't privileged to do so. 989 */ 990 int cap_inode_setxattr(struct dentry *dentry, const char *name, 991 const void *value, size_t size, int flags) 992 { 993 struct user_namespace *user_ns = dentry->d_sb->s_user_ns; 994 995 /* Ignore non-security xattrs */ 996 if (strncmp(name, XATTR_SECURITY_PREFIX, 997 XATTR_SECURITY_PREFIX_LEN) != 0) 998 return 0; 999 1000 /* 1001 * For XATTR_NAME_CAPS the check will be done in 1002 * cap_convert_nscap(), called by setxattr() 1003 */ 1004 if (strcmp(name, XATTR_NAME_CAPS) == 0) 1005 return 0; 1006 1007 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 1008 return -EPERM; 1009 return 0; 1010 } 1011 1012 /** 1013 * cap_inode_removexattr - Determine whether an xattr may be removed 1014 * 1015 * @idmap: idmap of the mount the inode was found from 1016 * @dentry: The inode/dentry being altered 1017 * @name: The name of the xattr to be changed 1018 * 1019 * Determine whether an xattr may be removed from an inode, returning 0 if 1020 * permission is granted, -ve if denied. 1021 * 1022 * If the inode has been found through an idmapped mount the idmap of 1023 * the vfsmount must be passed through @idmap. This function will then 1024 * take care to map the inode according to @idmap before checking 1025 * permissions. On non-idmapped mounts or if permission checking is to be 1026 * performed on the raw inode simply pass @nop_mnt_idmap. 1027 * 1028 * This is used to make sure security xattrs don't get removed by those who 1029 * aren't privileged to remove them. 1030 */ 1031 int cap_inode_removexattr(struct mnt_idmap *idmap, 1032 struct dentry *dentry, const char *name) 1033 { 1034 struct user_namespace *user_ns = dentry->d_sb->s_user_ns; 1035 1036 /* Ignore non-security xattrs */ 1037 if (strncmp(name, XATTR_SECURITY_PREFIX, 1038 XATTR_SECURITY_PREFIX_LEN) != 0) 1039 return 0; 1040 1041 if (strcmp(name, XATTR_NAME_CAPS) == 0) { 1042 /* security.capability gets namespaced */ 1043 struct inode *inode = d_backing_inode(dentry); 1044 if (!inode) 1045 return -EINVAL; 1046 if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP)) 1047 return -EPERM; 1048 return 0; 1049 } 1050 1051 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 1052 return -EPERM; 1053 return 0; 1054 } 1055 1056 /* 1057 * cap_emulate_setxuid() fixes the effective / permitted capabilities of 1058 * a process after a call to setuid, setreuid, or setresuid. 1059 * 1060 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of 1061 * {r,e,s}uid != 0, the permitted and effective capabilities are 1062 * cleared. 1063 * 1064 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective 1065 * capabilities of the process are cleared. 1066 * 1067 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective 1068 * capabilities are set to the permitted capabilities. 1069 * 1070 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should 1071 * never happen. 1072 * 1073 * -astor 1074 * 1075 * cevans - New behaviour, Oct '99 1076 * A process may, via prctl(), elect to keep its capabilities when it 1077 * calls setuid() and switches away from uid==0. Both permitted and 1078 * effective sets will be retained. 1079 * Without this change, it was impossible for a daemon to drop only some 1080 * of its privilege. The call to setuid(!=0) would drop all privileges! 1081 * Keeping uid 0 is not an option because uid 0 owns too many vital 1082 * files.. 1083 * Thanks to Olaf Kirch and Peter Benie for spotting this. 1084 */ 1085 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old) 1086 { 1087 kuid_t root_uid = make_kuid(old->user_ns, 0); 1088 1089 if ((uid_eq(old->uid, root_uid) || 1090 uid_eq(old->euid, root_uid) || 1091 uid_eq(old->suid, root_uid)) && 1092 (!uid_eq(new->uid, root_uid) && 1093 !uid_eq(new->euid, root_uid) && 1094 !uid_eq(new->suid, root_uid))) { 1095 if (!issecure(SECURE_KEEP_CAPS)) { 1096 cap_clear(new->cap_permitted); 1097 cap_clear(new->cap_effective); 1098 } 1099 1100 /* 1101 * Pre-ambient programs expect setresuid to nonroot followed 1102 * by exec to drop capabilities. We should make sure that 1103 * this remains the case. 1104 */ 1105 cap_clear(new->cap_ambient); 1106 } 1107 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid)) 1108 cap_clear(new->cap_effective); 1109 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid)) 1110 new->cap_effective = new->cap_permitted; 1111 } 1112 1113 /** 1114 * cap_task_fix_setuid - Fix up the results of setuid() call 1115 * @new: The proposed credentials 1116 * @old: The current task's current credentials 1117 * @flags: Indications of what has changed 1118 * 1119 * Fix up the results of setuid() call before the credential changes are 1120 * actually applied. 1121 * 1122 * Return: 0 to grant the changes, -ve to deny them. 1123 */ 1124 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags) 1125 { 1126 switch (flags) { 1127 case LSM_SETID_RE: 1128 case LSM_SETID_ID: 1129 case LSM_SETID_RES: 1130 /* juggle the capabilities to follow [RES]UID changes unless 1131 * otherwise suppressed */ 1132 if (!issecure(SECURE_NO_SETUID_FIXUP)) 1133 cap_emulate_setxuid(new, old); 1134 break; 1135 1136 case LSM_SETID_FS: 1137 /* juggle the capabilities to follow FSUID changes, unless 1138 * otherwise suppressed 1139 * 1140 * FIXME - is fsuser used for all CAP_FS_MASK capabilities? 1141 * if not, we might be a bit too harsh here. 1142 */ 1143 if (!issecure(SECURE_NO_SETUID_FIXUP)) { 1144 kuid_t root_uid = make_kuid(old->user_ns, 0); 1145 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid)) 1146 new->cap_effective = 1147 cap_drop_fs_set(new->cap_effective); 1148 1149 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid)) 1150 new->cap_effective = 1151 cap_raise_fs_set(new->cap_effective, 1152 new->cap_permitted); 1153 } 1154 break; 1155 1156 default: 1157 return -EINVAL; 1158 } 1159 1160 return 0; 1161 } 1162 1163 /* 1164 * Rationale: code calling task_setscheduler, task_setioprio, and 1165 * task_setnice, assumes that 1166 * . if capable(cap_sys_nice), then those actions should be allowed 1167 * . if not capable(cap_sys_nice), but acting on your own processes, 1168 * then those actions should be allowed 1169 * This is insufficient now since you can call code without suid, but 1170 * yet with increased caps. 1171 * So we check for increased caps on the target process. 1172 */ 1173 static int cap_safe_nice(struct task_struct *p) 1174 { 1175 int is_subset, ret = 0; 1176 1177 rcu_read_lock(); 1178 is_subset = cap_issubset(__task_cred(p)->cap_permitted, 1179 current_cred()->cap_permitted); 1180 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) 1181 ret = -EPERM; 1182 rcu_read_unlock(); 1183 1184 return ret; 1185 } 1186 1187 /** 1188 * cap_task_setscheduler - Determine if scheduler policy change is permitted 1189 * @p: The task to affect 1190 * 1191 * Determine if the requested scheduler policy change is permitted for the 1192 * specified task. 1193 * 1194 * Return: 0 if permission is granted, -ve if denied. 1195 */ 1196 int cap_task_setscheduler(struct task_struct *p) 1197 { 1198 return cap_safe_nice(p); 1199 } 1200 1201 /** 1202 * cap_task_setioprio - Determine if I/O priority change is permitted 1203 * @p: The task to affect 1204 * @ioprio: The I/O priority to set 1205 * 1206 * Determine if the requested I/O priority change is permitted for the specified 1207 * task. 1208 * 1209 * Return: 0 if permission is granted, -ve if denied. 1210 */ 1211 int cap_task_setioprio(struct task_struct *p, int ioprio) 1212 { 1213 return cap_safe_nice(p); 1214 } 1215 1216 /** 1217 * cap_task_setnice - Determine if task priority change is permitted 1218 * @p: The task to affect 1219 * @nice: The nice value to set 1220 * 1221 * Determine if the requested task priority change is permitted for the 1222 * specified task. 1223 * 1224 * Return: 0 if permission is granted, -ve if denied. 1225 */ 1226 int cap_task_setnice(struct task_struct *p, int nice) 1227 { 1228 return cap_safe_nice(p); 1229 } 1230 1231 /* 1232 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from 1233 * the current task's bounding set. Returns 0 on success, -ve on error. 1234 */ 1235 static int cap_prctl_drop(unsigned long cap) 1236 { 1237 struct cred *new; 1238 1239 if (!ns_capable(current_user_ns(), CAP_SETPCAP)) 1240 return -EPERM; 1241 if (!cap_valid(cap)) 1242 return -EINVAL; 1243 1244 new = prepare_creds(); 1245 if (!new) 1246 return -ENOMEM; 1247 cap_lower(new->cap_bset, cap); 1248 return commit_creds(new); 1249 } 1250 1251 /** 1252 * cap_task_prctl - Implement process control functions for this security module 1253 * @option: The process control function requested 1254 * @arg2: The argument data for this function 1255 * @arg3: The argument data for this function 1256 * @arg4: The argument data for this function 1257 * @arg5: The argument data for this function 1258 * 1259 * Allow process control functions (sys_prctl()) to alter capabilities; may 1260 * also deny access to other functions not otherwise implemented here. 1261 * 1262 * Return: 0 or +ve on success, -ENOSYS if this function is not implemented 1263 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM 1264 * modules will consider performing the function. 1265 */ 1266 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1267 unsigned long arg4, unsigned long arg5) 1268 { 1269 const struct cred *old = current_cred(); 1270 struct cred *new; 1271 1272 switch (option) { 1273 case PR_CAPBSET_READ: 1274 if (!cap_valid(arg2)) 1275 return -EINVAL; 1276 return !!cap_raised(old->cap_bset, arg2); 1277 1278 case PR_CAPBSET_DROP: 1279 return cap_prctl_drop(arg2); 1280 1281 /* 1282 * The next four prctl's remain to assist with transitioning a 1283 * system from legacy UID=0 based privilege (when filesystem 1284 * capabilities are not in use) to a system using filesystem 1285 * capabilities only - as the POSIX.1e draft intended. 1286 * 1287 * Note: 1288 * 1289 * PR_SET_SECUREBITS = 1290 * issecure_mask(SECURE_KEEP_CAPS_LOCKED) 1291 * | issecure_mask(SECURE_NOROOT) 1292 * | issecure_mask(SECURE_NOROOT_LOCKED) 1293 * | issecure_mask(SECURE_NO_SETUID_FIXUP) 1294 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED) 1295 * 1296 * will ensure that the current process and all of its 1297 * children will be locked into a pure 1298 * capability-based-privilege environment. 1299 */ 1300 case PR_SET_SECUREBITS: 1301 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1) 1302 & (old->securebits ^ arg2)) /*[1]*/ 1303 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/ 1304 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/ 1305 || (cap_capable(current_cred(), 1306 current_cred()->user_ns, 1307 CAP_SETPCAP, 1308 CAP_OPT_NONE) != 0) /*[4]*/ 1309 /* 1310 * [1] no changing of bits that are locked 1311 * [2] no unlocking of locks 1312 * [3] no setting of unsupported bits 1313 * [4] doing anything requires privilege (go read about 1314 * the "sendmail capabilities bug") 1315 */ 1316 ) 1317 /* cannot change a locked bit */ 1318 return -EPERM; 1319 1320 new = prepare_creds(); 1321 if (!new) 1322 return -ENOMEM; 1323 new->securebits = arg2; 1324 return commit_creds(new); 1325 1326 case PR_GET_SECUREBITS: 1327 return old->securebits; 1328 1329 case PR_GET_KEEPCAPS: 1330 return !!issecure(SECURE_KEEP_CAPS); 1331 1332 case PR_SET_KEEPCAPS: 1333 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ 1334 return -EINVAL; 1335 if (issecure(SECURE_KEEP_CAPS_LOCKED)) 1336 return -EPERM; 1337 1338 new = prepare_creds(); 1339 if (!new) 1340 return -ENOMEM; 1341 if (arg2) 1342 new->securebits |= issecure_mask(SECURE_KEEP_CAPS); 1343 else 1344 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); 1345 return commit_creds(new); 1346 1347 case PR_CAP_AMBIENT: 1348 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) { 1349 if (arg3 | arg4 | arg5) 1350 return -EINVAL; 1351 1352 new = prepare_creds(); 1353 if (!new) 1354 return -ENOMEM; 1355 cap_clear(new->cap_ambient); 1356 return commit_creds(new); 1357 } 1358 1359 if (((!cap_valid(arg3)) | arg4 | arg5)) 1360 return -EINVAL; 1361 1362 if (arg2 == PR_CAP_AMBIENT_IS_SET) { 1363 return !!cap_raised(current_cred()->cap_ambient, arg3); 1364 } else if (arg2 != PR_CAP_AMBIENT_RAISE && 1365 arg2 != PR_CAP_AMBIENT_LOWER) { 1366 return -EINVAL; 1367 } else { 1368 if (arg2 == PR_CAP_AMBIENT_RAISE && 1369 (!cap_raised(current_cred()->cap_permitted, arg3) || 1370 !cap_raised(current_cred()->cap_inheritable, 1371 arg3) || 1372 issecure(SECURE_NO_CAP_AMBIENT_RAISE))) 1373 return -EPERM; 1374 1375 new = prepare_creds(); 1376 if (!new) 1377 return -ENOMEM; 1378 if (arg2 == PR_CAP_AMBIENT_RAISE) 1379 cap_raise(new->cap_ambient, arg3); 1380 else 1381 cap_lower(new->cap_ambient, arg3); 1382 return commit_creds(new); 1383 } 1384 1385 default: 1386 /* No functionality available - continue with default */ 1387 return -ENOSYS; 1388 } 1389 } 1390 1391 /** 1392 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted 1393 * @mm: The VM space in which the new mapping is to be made 1394 * @pages: The size of the mapping 1395 * 1396 * Determine whether the allocation of a new virtual mapping by the current 1397 * task is permitted. 1398 * 1399 * Return: 1 if permission is granted, 0 if not. 1400 */ 1401 int cap_vm_enough_memory(struct mm_struct *mm, long pages) 1402 { 1403 int cap_sys_admin = 0; 1404 1405 if (cap_capable(current_cred(), &init_user_ns, 1406 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0) 1407 cap_sys_admin = 1; 1408 1409 return cap_sys_admin; 1410 } 1411 1412 /** 1413 * cap_mmap_addr - check if able to map given addr 1414 * @addr: address attempting to be mapped 1415 * 1416 * If the process is attempting to map memory below dac_mmap_min_addr they need 1417 * CAP_SYS_RAWIO. The other parameters to this function are unused by the 1418 * capability security module. 1419 * 1420 * Return: 0 if this mapping should be allowed or -EPERM if not. 1421 */ 1422 int cap_mmap_addr(unsigned long addr) 1423 { 1424 int ret = 0; 1425 1426 if (addr < dac_mmap_min_addr) { 1427 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO, 1428 CAP_OPT_NONE); 1429 /* set PF_SUPERPRIV if it turns out we allow the low mmap */ 1430 if (ret == 0) 1431 current->flags |= PF_SUPERPRIV; 1432 } 1433 return ret; 1434 } 1435 1436 int cap_mmap_file(struct file *file, unsigned long reqprot, 1437 unsigned long prot, unsigned long flags) 1438 { 1439 return 0; 1440 } 1441 1442 #ifdef CONFIG_SECURITY 1443 1444 static const struct lsm_id capability_lsmid = { 1445 .name = "capability", 1446 .id = LSM_ID_CAPABILITY, 1447 }; 1448 1449 static struct security_hook_list capability_hooks[] __ro_after_init = { 1450 LSM_HOOK_INIT(capable, cap_capable), 1451 LSM_HOOK_INIT(settime, cap_settime), 1452 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check), 1453 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme), 1454 LSM_HOOK_INIT(capget, cap_capget), 1455 LSM_HOOK_INIT(capset, cap_capset), 1456 LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file), 1457 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv), 1458 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv), 1459 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity), 1460 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr), 1461 LSM_HOOK_INIT(mmap_file, cap_mmap_file), 1462 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid), 1463 LSM_HOOK_INIT(task_prctl, cap_task_prctl), 1464 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler), 1465 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio), 1466 LSM_HOOK_INIT(task_setnice, cap_task_setnice), 1467 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory), 1468 }; 1469 1470 static int __init capability_init(void) 1471 { 1472 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks), 1473 &capability_lsmid); 1474 return 0; 1475 } 1476 1477 DEFINE_LSM(capability) = { 1478 .name = "capability", 1479 .order = LSM_ORDER_FIRST, 1480 .init = capability_init, 1481 }; 1482 1483 #endif /* CONFIG_SECURITY */ 1484
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.