~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/security/keys/keyctl.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /* Userspace key control operations
  3  *
  4  * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
  5  * Written by David Howells (dhowells@redhat.com)
  6  */
  7 
  8 #include <linux/init.h>
  9 #include <linux/sched.h>
 10 #include <linux/sched/task.h>
 11 #include <linux/slab.h>
 12 #include <linux/syscalls.h>
 13 #include <linux/key.h>
 14 #include <linux/keyctl.h>
 15 #include <linux/fs.h>
 16 #include <linux/capability.h>
 17 #include <linux/cred.h>
 18 #include <linux/string.h>
 19 #include <linux/err.h>
 20 #include <linux/vmalloc.h>
 21 #include <linux/security.h>
 22 #include <linux/uio.h>
 23 #include <linux/uaccess.h>
 24 #include <keys/request_key_auth-type.h>
 25 #include "internal.h"
 26 
 27 #define KEY_MAX_DESC_SIZE 4096
 28 
 29 static const unsigned char keyrings_capabilities[2] = {
 30         [0] = (KEYCTL_CAPS0_CAPABILITIES |
 31                (IS_ENABLED(CONFIG_PERSISTENT_KEYRINGS)  ? KEYCTL_CAPS0_PERSISTENT_KEYRINGS : 0) |
 32                (IS_ENABLED(CONFIG_KEY_DH_OPERATIONS)    ? KEYCTL_CAPS0_DIFFIE_HELLMAN : 0) |
 33                (IS_ENABLED(CONFIG_ASYMMETRIC_KEY_TYPE)  ? KEYCTL_CAPS0_PUBLIC_KEY : 0) |
 34                (IS_ENABLED(CONFIG_BIG_KEYS)             ? KEYCTL_CAPS0_BIG_KEY : 0) |
 35                KEYCTL_CAPS0_INVALIDATE |
 36                KEYCTL_CAPS0_RESTRICT_KEYRING |
 37                KEYCTL_CAPS0_MOVE
 38                ),
 39         [1] = (KEYCTL_CAPS1_NS_KEYRING_NAME |
 40                KEYCTL_CAPS1_NS_KEY_TAG |
 41                (IS_ENABLED(CONFIG_KEY_NOTIFICATIONS)    ? KEYCTL_CAPS1_NOTIFICATIONS : 0)
 42                ),
 43 };
 44 
 45 static int key_get_type_from_user(char *type,
 46                                   const char __user *_type,
 47                                   unsigned len)
 48 {
 49         int ret;
 50 
 51         ret = strncpy_from_user(type, _type, len);
 52         if (ret < 0)
 53                 return ret;
 54         if (ret == 0 || ret >= len)
 55                 return -EINVAL;
 56         if (type[0] == '.')
 57                 return -EPERM;
 58         type[len - 1] = '\0';
 59         return 0;
 60 }
 61 
 62 /*
 63  * Extract the description of a new key from userspace and either add it as a
 64  * new key to the specified keyring or update a matching key in that keyring.
 65  *
 66  * If the description is NULL or an empty string, the key type is asked to
 67  * generate one from the payload.
 68  *
 69  * The keyring must be writable so that we can attach the key to it.
 70  *
 71  * If successful, the new key's serial number is returned, otherwise an error
 72  * code is returned.
 73  */
 74 SYSCALL_DEFINE5(add_key, const char __user *, _type,
 75                 const char __user *, _description,
 76                 const void __user *, _payload,
 77                 size_t, plen,
 78                 key_serial_t, ringid)
 79 {
 80         key_ref_t keyring_ref, key_ref;
 81         char type[32], *description;
 82         void *payload;
 83         long ret;
 84 
 85         ret = -EINVAL;
 86         if (plen > 1024 * 1024 - 1)
 87                 goto error;
 88 
 89         /* draw all the data into kernel space */
 90         ret = key_get_type_from_user(type, _type, sizeof(type));
 91         if (ret < 0)
 92                 goto error;
 93 
 94         description = NULL;
 95         if (_description) {
 96                 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
 97                 if (IS_ERR(description)) {
 98                         ret = PTR_ERR(description);
 99                         goto error;
100                 }
101                 if (!*description) {
102                         kfree(description);
103                         description = NULL;
104                 } else if ((description[0] == '.') &&
105                            (strncmp(type, "keyring", 7) == 0)) {
106                         ret = -EPERM;
107                         goto error2;
108                 }
109         }
110 
111         /* pull the payload in if one was supplied */
112         payload = NULL;
113 
114         if (plen) {
115                 ret = -ENOMEM;
116                 payload = kvmalloc(plen, GFP_KERNEL);
117                 if (!payload)
118                         goto error2;
119 
120                 ret = -EFAULT;
121                 if (copy_from_user(payload, _payload, plen) != 0)
122                         goto error3;
123         }
124 
125         /* find the target keyring (which must be writable) */
126         keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
127         if (IS_ERR(keyring_ref)) {
128                 ret = PTR_ERR(keyring_ref);
129                 goto error3;
130         }
131 
132         /* create or update the requested key and add it to the target
133          * keyring */
134         key_ref = key_create_or_update(keyring_ref, type, description,
135                                        payload, plen, KEY_PERM_UNDEF,
136                                        KEY_ALLOC_IN_QUOTA);
137         if (!IS_ERR(key_ref)) {
138                 ret = key_ref_to_ptr(key_ref)->serial;
139                 key_ref_put(key_ref);
140         }
141         else {
142                 ret = PTR_ERR(key_ref);
143         }
144 
145         key_ref_put(keyring_ref);
146  error3:
147         kvfree_sensitive(payload, plen);
148  error2:
149         kfree(description);
150  error:
151         return ret;
152 }
153 
154 /*
155  * Search the process keyrings and keyring trees linked from those for a
156  * matching key.  Keyrings must have appropriate Search permission to be
157  * searched.
158  *
159  * If a key is found, it will be attached to the destination keyring if there's
160  * one specified and the serial number of the key will be returned.
161  *
162  * If no key is found, /sbin/request-key will be invoked if _callout_info is
163  * non-NULL in an attempt to create a key.  The _callout_info string will be
164  * passed to /sbin/request-key to aid with completing the request.  If the
165  * _callout_info string is "" then it will be changed to "-".
166  */
167 SYSCALL_DEFINE4(request_key, const char __user *, _type,
168                 const char __user *, _description,
169                 const char __user *, _callout_info,
170                 key_serial_t, destringid)
171 {
172         struct key_type *ktype;
173         struct key *key;
174         key_ref_t dest_ref;
175         size_t callout_len;
176         char type[32], *description, *callout_info;
177         long ret;
178 
179         /* pull the type into kernel space */
180         ret = key_get_type_from_user(type, _type, sizeof(type));
181         if (ret < 0)
182                 goto error;
183 
184         /* pull the description into kernel space */
185         description = strndup_user(_description, KEY_MAX_DESC_SIZE);
186         if (IS_ERR(description)) {
187                 ret = PTR_ERR(description);
188                 goto error;
189         }
190 
191         /* pull the callout info into kernel space */
192         callout_info = NULL;
193         callout_len = 0;
194         if (_callout_info) {
195                 callout_info = strndup_user(_callout_info, PAGE_SIZE);
196                 if (IS_ERR(callout_info)) {
197                         ret = PTR_ERR(callout_info);
198                         goto error2;
199                 }
200                 callout_len = strlen(callout_info);
201         }
202 
203         /* get the destination keyring if specified */
204         dest_ref = NULL;
205         if (destringid) {
206                 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
207                                            KEY_NEED_WRITE);
208                 if (IS_ERR(dest_ref)) {
209                         ret = PTR_ERR(dest_ref);
210                         goto error3;
211                 }
212         }
213 
214         /* find the key type */
215         ktype = key_type_lookup(type);
216         if (IS_ERR(ktype)) {
217                 ret = PTR_ERR(ktype);
218                 goto error4;
219         }
220 
221         /* do the search */
222         key = request_key_and_link(ktype, description, NULL, callout_info,
223                                    callout_len, NULL, key_ref_to_ptr(dest_ref),
224                                    KEY_ALLOC_IN_QUOTA);
225         if (IS_ERR(key)) {
226                 ret = PTR_ERR(key);
227                 goto error5;
228         }
229 
230         /* wait for the key to finish being constructed */
231         ret = wait_for_key_construction(key, 1);
232         if (ret < 0)
233                 goto error6;
234 
235         ret = key->serial;
236 
237 error6:
238         key_put(key);
239 error5:
240         key_type_put(ktype);
241 error4:
242         key_ref_put(dest_ref);
243 error3:
244         kfree(callout_info);
245 error2:
246         kfree(description);
247 error:
248         return ret;
249 }
250 
251 /*
252  * Get the ID of the specified process keyring.
253  *
254  * The requested keyring must have search permission to be found.
255  *
256  * If successful, the ID of the requested keyring will be returned.
257  */
258 long keyctl_get_keyring_ID(key_serial_t id, int create)
259 {
260         key_ref_t key_ref;
261         unsigned long lflags;
262         long ret;
263 
264         lflags = create ? KEY_LOOKUP_CREATE : 0;
265         key_ref = lookup_user_key(id, lflags, KEY_NEED_SEARCH);
266         if (IS_ERR(key_ref)) {
267                 ret = PTR_ERR(key_ref);
268                 goto error;
269         }
270 
271         ret = key_ref_to_ptr(key_ref)->serial;
272         key_ref_put(key_ref);
273 error:
274         return ret;
275 }
276 
277 /*
278  * Join a (named) session keyring.
279  *
280  * Create and join an anonymous session keyring or join a named session
281  * keyring, creating it if necessary.  A named session keyring must have Search
282  * permission for it to be joined.  Session keyrings without this permit will
283  * be skipped over.  It is not permitted for userspace to create or join
284  * keyrings whose name begin with a dot.
285  *
286  * If successful, the ID of the joined session keyring will be returned.
287  */
288 long keyctl_join_session_keyring(const char __user *_name)
289 {
290         char *name;
291         long ret;
292 
293         /* fetch the name from userspace */
294         name = NULL;
295         if (_name) {
296                 name = strndup_user(_name, KEY_MAX_DESC_SIZE);
297                 if (IS_ERR(name)) {
298                         ret = PTR_ERR(name);
299                         goto error;
300                 }
301 
302                 ret = -EPERM;
303                 if (name[0] == '.')
304                         goto error_name;
305         }
306 
307         /* join the session */
308         ret = join_session_keyring(name);
309 error_name:
310         kfree(name);
311 error:
312         return ret;
313 }
314 
315 /*
316  * Update a key's data payload from the given data.
317  *
318  * The key must grant the caller Write permission and the key type must support
319  * updating for this to work.  A negative key can be positively instantiated
320  * with this call.
321  *
322  * If successful, 0 will be returned.  If the key type does not support
323  * updating, then -EOPNOTSUPP will be returned.
324  */
325 long keyctl_update_key(key_serial_t id,
326                        const void __user *_payload,
327                        size_t plen)
328 {
329         key_ref_t key_ref;
330         void *payload;
331         long ret;
332 
333         ret = -EINVAL;
334         if (plen > PAGE_SIZE)
335                 goto error;
336 
337         /* pull the payload in if one was supplied */
338         payload = NULL;
339         if (plen) {
340                 ret = -ENOMEM;
341                 payload = kvmalloc(plen, GFP_KERNEL);
342                 if (!payload)
343                         goto error;
344 
345                 ret = -EFAULT;
346                 if (copy_from_user(payload, _payload, plen) != 0)
347                         goto error2;
348         }
349 
350         /* find the target key (which must be writable) */
351         key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
352         if (IS_ERR(key_ref)) {
353                 ret = PTR_ERR(key_ref);
354                 goto error2;
355         }
356 
357         /* update the key */
358         ret = key_update(key_ref, payload, plen);
359 
360         key_ref_put(key_ref);
361 error2:
362         kvfree_sensitive(payload, plen);
363 error:
364         return ret;
365 }
366 
367 /*
368  * Revoke a key.
369  *
370  * The key must be grant the caller Write or Setattr permission for this to
371  * work.  The key type should give up its quota claim when revoked.  The key
372  * and any links to the key will be automatically garbage collected after a
373  * certain amount of time (/proc/sys/kernel/keys/gc_delay).
374  *
375  * Keys with KEY_FLAG_KEEP set should not be revoked.
376  *
377  * If successful, 0 is returned.
378  */
379 long keyctl_revoke_key(key_serial_t id)
380 {
381         key_ref_t key_ref;
382         struct key *key;
383         long ret;
384 
385         key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
386         if (IS_ERR(key_ref)) {
387                 ret = PTR_ERR(key_ref);
388                 if (ret != -EACCES)
389                         goto error;
390                 key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
391                 if (IS_ERR(key_ref)) {
392                         ret = PTR_ERR(key_ref);
393                         goto error;
394                 }
395         }
396 
397         key = key_ref_to_ptr(key_ref);
398         ret = 0;
399         if (test_bit(KEY_FLAG_KEEP, &key->flags))
400                 ret = -EPERM;
401         else
402                 key_revoke(key);
403 
404         key_ref_put(key_ref);
405 error:
406         return ret;
407 }
408 
409 /*
410  * Invalidate a key.
411  *
412  * The key must be grant the caller Invalidate permission for this to work.
413  * The key and any links to the key will be automatically garbage collected
414  * immediately.
415  *
416  * Keys with KEY_FLAG_KEEP set should not be invalidated.
417  *
418  * If successful, 0 is returned.
419  */
420 long keyctl_invalidate_key(key_serial_t id)
421 {
422         key_ref_t key_ref;
423         struct key *key;
424         long ret;
425 
426         kenter("%d", id);
427 
428         key_ref = lookup_user_key(id, 0, KEY_NEED_SEARCH);
429         if (IS_ERR(key_ref)) {
430                 ret = PTR_ERR(key_ref);
431 
432                 /* Root is permitted to invalidate certain special keys */
433                 if (capable(CAP_SYS_ADMIN)) {
434                         key_ref = lookup_user_key(id, 0, KEY_SYSADMIN_OVERRIDE);
435                         if (IS_ERR(key_ref))
436                                 goto error;
437                         if (test_bit(KEY_FLAG_ROOT_CAN_INVAL,
438                                      &key_ref_to_ptr(key_ref)->flags))
439                                 goto invalidate;
440                         goto error_put;
441                 }
442 
443                 goto error;
444         }
445 
446 invalidate:
447         key = key_ref_to_ptr(key_ref);
448         ret = 0;
449         if (test_bit(KEY_FLAG_KEEP, &key->flags))
450                 ret = -EPERM;
451         else
452                 key_invalidate(key);
453 error_put:
454         key_ref_put(key_ref);
455 error:
456         kleave(" = %ld", ret);
457         return ret;
458 }
459 
460 /*
461  * Clear the specified keyring, creating an empty process keyring if one of the
462  * special keyring IDs is used.
463  *
464  * The keyring must grant the caller Write permission and not have
465  * KEY_FLAG_KEEP set for this to work.  If successful, 0 will be returned.
466  */
467 long keyctl_keyring_clear(key_serial_t ringid)
468 {
469         key_ref_t keyring_ref;
470         struct key *keyring;
471         long ret;
472 
473         keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
474         if (IS_ERR(keyring_ref)) {
475                 ret = PTR_ERR(keyring_ref);
476 
477                 /* Root is permitted to invalidate certain special keyrings */
478                 if (capable(CAP_SYS_ADMIN)) {
479                         keyring_ref = lookup_user_key(ringid, 0,
480                                                       KEY_SYSADMIN_OVERRIDE);
481                         if (IS_ERR(keyring_ref))
482                                 goto error;
483                         if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
484                                      &key_ref_to_ptr(keyring_ref)->flags))
485                                 goto clear;
486                         goto error_put;
487                 }
488 
489                 goto error;
490         }
491 
492 clear:
493         keyring = key_ref_to_ptr(keyring_ref);
494         if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
495                 ret = -EPERM;
496         else
497                 ret = keyring_clear(keyring);
498 error_put:
499         key_ref_put(keyring_ref);
500 error:
501         return ret;
502 }
503 
504 /*
505  * Create a link from a keyring to a key if there's no matching key in the
506  * keyring, otherwise replace the link to the matching key with a link to the
507  * new key.
508  *
509  * The key must grant the caller Link permission and the keyring must grant
510  * the caller Write permission.  Furthermore, if an additional link is created,
511  * the keyring's quota will be extended.
512  *
513  * If successful, 0 will be returned.
514  */
515 long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
516 {
517         key_ref_t keyring_ref, key_ref;
518         long ret;
519 
520         keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
521         if (IS_ERR(keyring_ref)) {
522                 ret = PTR_ERR(keyring_ref);
523                 goto error;
524         }
525 
526         key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
527         if (IS_ERR(key_ref)) {
528                 ret = PTR_ERR(key_ref);
529                 goto error2;
530         }
531 
532         ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
533 
534         key_ref_put(key_ref);
535 error2:
536         key_ref_put(keyring_ref);
537 error:
538         return ret;
539 }
540 
541 /*
542  * Unlink a key from a keyring.
543  *
544  * The keyring must grant the caller Write permission for this to work; the key
545  * itself need not grant the caller anything.  If the last link to a key is
546  * removed then that key will be scheduled for destruction.
547  *
548  * Keys or keyrings with KEY_FLAG_KEEP set should not be unlinked.
549  *
550  * If successful, 0 will be returned.
551  */
552 long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
553 {
554         key_ref_t keyring_ref, key_ref;
555         struct key *keyring, *key;
556         long ret;
557 
558         keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_WRITE);
559         if (IS_ERR(keyring_ref)) {
560                 ret = PTR_ERR(keyring_ref);
561                 goto error;
562         }
563 
564         key_ref = lookup_user_key(id, KEY_LOOKUP_PARTIAL, KEY_NEED_UNLINK);
565         if (IS_ERR(key_ref)) {
566                 ret = PTR_ERR(key_ref);
567                 goto error2;
568         }
569 
570         keyring = key_ref_to_ptr(keyring_ref);
571         key = key_ref_to_ptr(key_ref);
572         if (test_bit(KEY_FLAG_KEEP, &keyring->flags) &&
573             test_bit(KEY_FLAG_KEEP, &key->flags))
574                 ret = -EPERM;
575         else
576                 ret = key_unlink(keyring, key);
577 
578         key_ref_put(key_ref);
579 error2:
580         key_ref_put(keyring_ref);
581 error:
582         return ret;
583 }
584 
585 /*
586  * Move a link to a key from one keyring to another, displacing any matching
587  * key from the destination keyring.
588  *
589  * The key must grant the caller Link permission and both keyrings must grant
590  * the caller Write permission.  There must also be a link in the from keyring
591  * to the key.  If both keyrings are the same, nothing is done.
592  *
593  * If successful, 0 will be returned.
594  */
595 long keyctl_keyring_move(key_serial_t id, key_serial_t from_ringid,
596                          key_serial_t to_ringid, unsigned int flags)
597 {
598         key_ref_t key_ref, from_ref, to_ref;
599         long ret;
600 
601         if (flags & ~KEYCTL_MOVE_EXCL)
602                 return -EINVAL;
603 
604         key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
605         if (IS_ERR(key_ref))
606                 return PTR_ERR(key_ref);
607 
608         from_ref = lookup_user_key(from_ringid, 0, KEY_NEED_WRITE);
609         if (IS_ERR(from_ref)) {
610                 ret = PTR_ERR(from_ref);
611                 goto error2;
612         }
613 
614         to_ref = lookup_user_key(to_ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
615         if (IS_ERR(to_ref)) {
616                 ret = PTR_ERR(to_ref);
617                 goto error3;
618         }
619 
620         ret = key_move(key_ref_to_ptr(key_ref), key_ref_to_ptr(from_ref),
621                        key_ref_to_ptr(to_ref), flags);
622 
623         key_ref_put(to_ref);
624 error3:
625         key_ref_put(from_ref);
626 error2:
627         key_ref_put(key_ref);
628         return ret;
629 }
630 
631 /*
632  * Return a description of a key to userspace.
633  *
634  * The key must grant the caller View permission for this to work.
635  *
636  * If there's a buffer, we place up to buflen bytes of data into it formatted
637  * in the following way:
638  *
639  *      type;uid;gid;perm;description<NUL>
640  *
641  * If successful, we return the amount of description available, irrespective
642  * of how much we may have copied into the buffer.
643  */
644 long keyctl_describe_key(key_serial_t keyid,
645                          char __user *buffer,
646                          size_t buflen)
647 {
648         struct key *key, *instkey;
649         key_ref_t key_ref;
650         char *infobuf;
651         long ret;
652         int desclen, infolen;
653 
654         key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
655         if (IS_ERR(key_ref)) {
656                 /* viewing a key under construction is permitted if we have the
657                  * authorisation token handy */
658                 if (PTR_ERR(key_ref) == -EACCES) {
659                         instkey = key_get_instantiation_authkey(keyid);
660                         if (!IS_ERR(instkey)) {
661                                 key_put(instkey);
662                                 key_ref = lookup_user_key(keyid,
663                                                           KEY_LOOKUP_PARTIAL,
664                                                           KEY_AUTHTOKEN_OVERRIDE);
665                                 if (!IS_ERR(key_ref))
666                                         goto okay;
667                         }
668                 }
669 
670                 ret = PTR_ERR(key_ref);
671                 goto error;
672         }
673 
674 okay:
675         key = key_ref_to_ptr(key_ref);
676         desclen = strlen(key->description);
677 
678         /* calculate how much information we're going to return */
679         ret = -ENOMEM;
680         infobuf = kasprintf(GFP_KERNEL,
681                             "%s;%d;%d;%08x;",
682                             key->type->name,
683                             from_kuid_munged(current_user_ns(), key->uid),
684                             from_kgid_munged(current_user_ns(), key->gid),
685                             key->perm);
686         if (!infobuf)
687                 goto error2;
688         infolen = strlen(infobuf);
689         ret = infolen + desclen + 1;
690 
691         /* consider returning the data */
692         if (buffer && buflen >= ret) {
693                 if (copy_to_user(buffer, infobuf, infolen) != 0 ||
694                     copy_to_user(buffer + infolen, key->description,
695                                  desclen + 1) != 0)
696                         ret = -EFAULT;
697         }
698 
699         kfree(infobuf);
700 error2:
701         key_ref_put(key_ref);
702 error:
703         return ret;
704 }
705 
706 /*
707  * Search the specified keyring and any keyrings it links to for a matching
708  * key.  Only keyrings that grant the caller Search permission will be searched
709  * (this includes the starting keyring).  Only keys with Search permission can
710  * be found.
711  *
712  * If successful, the found key will be linked to the destination keyring if
713  * supplied and the key has Link permission, and the found key ID will be
714  * returned.
715  */
716 long keyctl_keyring_search(key_serial_t ringid,
717                            const char __user *_type,
718                            const char __user *_description,
719                            key_serial_t destringid)
720 {
721         struct key_type *ktype;
722         key_ref_t keyring_ref, key_ref, dest_ref;
723         char type[32], *description;
724         long ret;
725 
726         /* pull the type and description into kernel space */
727         ret = key_get_type_from_user(type, _type, sizeof(type));
728         if (ret < 0)
729                 goto error;
730 
731         description = strndup_user(_description, KEY_MAX_DESC_SIZE);
732         if (IS_ERR(description)) {
733                 ret = PTR_ERR(description);
734                 goto error;
735         }
736 
737         /* get the keyring at which to begin the search */
738         keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_SEARCH);
739         if (IS_ERR(keyring_ref)) {
740                 ret = PTR_ERR(keyring_ref);
741                 goto error2;
742         }
743 
744         /* get the destination keyring if specified */
745         dest_ref = NULL;
746         if (destringid) {
747                 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
748                                            KEY_NEED_WRITE);
749                 if (IS_ERR(dest_ref)) {
750                         ret = PTR_ERR(dest_ref);
751                         goto error3;
752                 }
753         }
754 
755         /* find the key type */
756         ktype = key_type_lookup(type);
757         if (IS_ERR(ktype)) {
758                 ret = PTR_ERR(ktype);
759                 goto error4;
760         }
761 
762         /* do the search */
763         key_ref = keyring_search(keyring_ref, ktype, description, true);
764         if (IS_ERR(key_ref)) {
765                 ret = PTR_ERR(key_ref);
766 
767                 /* treat lack or presence of a negative key the same */
768                 if (ret == -EAGAIN)
769                         ret = -ENOKEY;
770                 goto error5;
771         }
772 
773         /* link the resulting key to the destination keyring if we can */
774         if (dest_ref) {
775                 ret = key_permission(key_ref, KEY_NEED_LINK);
776                 if (ret < 0)
777                         goto error6;
778 
779                 ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
780                 if (ret < 0)
781                         goto error6;
782         }
783 
784         ret = key_ref_to_ptr(key_ref)->serial;
785 
786 error6:
787         key_ref_put(key_ref);
788 error5:
789         key_type_put(ktype);
790 error4:
791         key_ref_put(dest_ref);
792 error3:
793         key_ref_put(keyring_ref);
794 error2:
795         kfree(description);
796 error:
797         return ret;
798 }
799 
800 /*
801  * Call the read method
802  */
803 static long __keyctl_read_key(struct key *key, char *buffer, size_t buflen)
804 {
805         long ret;
806 
807         down_read(&key->sem);
808         ret = key_validate(key);
809         if (ret == 0)
810                 ret = key->type->read(key, buffer, buflen);
811         up_read(&key->sem);
812         return ret;
813 }
814 
815 /*
816  * Read a key's payload.
817  *
818  * The key must either grant the caller Read permission, or it must grant the
819  * caller Search permission when searched for from the process keyrings.
820  *
821  * If successful, we place up to buflen bytes of data into the buffer, if one
822  * is provided, and return the amount of data that is available in the key,
823  * irrespective of how much we copied into the buffer.
824  */
825 long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
826 {
827         struct key *key;
828         key_ref_t key_ref;
829         long ret;
830         char *key_data = NULL;
831         size_t key_data_len;
832 
833         /* find the key first */
834         key_ref = lookup_user_key(keyid, 0, KEY_DEFER_PERM_CHECK);
835         if (IS_ERR(key_ref)) {
836                 ret = -ENOKEY;
837                 goto out;
838         }
839 
840         key = key_ref_to_ptr(key_ref);
841 
842         ret = key_read_state(key);
843         if (ret < 0)
844                 goto key_put_out; /* Negatively instantiated */
845 
846         /* see if we can read it directly */
847         ret = key_permission(key_ref, KEY_NEED_READ);
848         if (ret == 0)
849                 goto can_read_key;
850         if (ret != -EACCES)
851                 goto key_put_out;
852 
853         /* we can't; see if it's searchable from this process's keyrings
854          * - we automatically take account of the fact that it may be
855          *   dangling off an instantiation key
856          */
857         if (!is_key_possessed(key_ref)) {
858                 ret = -EACCES;
859                 goto key_put_out;
860         }
861 
862         /* the key is probably readable - now try to read it */
863 can_read_key:
864         if (!key->type->read) {
865                 ret = -EOPNOTSUPP;
866                 goto key_put_out;
867         }
868 
869         if (!buffer || !buflen) {
870                 /* Get the key length from the read method */
871                 ret = __keyctl_read_key(key, NULL, 0);
872                 goto key_put_out;
873         }
874 
875         /*
876          * Read the data with the semaphore held (since we might sleep)
877          * to protect against the key being updated or revoked.
878          *
879          * Allocating a temporary buffer to hold the keys before
880          * transferring them to user buffer to avoid potential
881          * deadlock involving page fault and mmap_lock.
882          *
883          * key_data_len = (buflen <= PAGE_SIZE)
884          *              ? buflen : actual length of key data
885          *
886          * This prevents allocating arbitrary large buffer which can
887          * be much larger than the actual key length. In the latter case,
888          * at least 2 passes of this loop is required.
889          */
890         key_data_len = (buflen <= PAGE_SIZE) ? buflen : 0;
891         for (;;) {
892                 if (key_data_len) {
893                         key_data = kvmalloc(key_data_len, GFP_KERNEL);
894                         if (!key_data) {
895                                 ret = -ENOMEM;
896                                 goto key_put_out;
897                         }
898                 }
899 
900                 ret = __keyctl_read_key(key, key_data, key_data_len);
901 
902                 /*
903                  * Read methods will just return the required length without
904                  * any copying if the provided length isn't large enough.
905                  */
906                 if (ret <= 0 || ret > buflen)
907                         break;
908 
909                 /*
910                  * The key may change (unlikely) in between 2 consecutive
911                  * __keyctl_read_key() calls. In this case, we reallocate
912                  * a larger buffer and redo the key read when
913                  * key_data_len < ret <= buflen.
914                  */
915                 if (ret > key_data_len) {
916                         if (unlikely(key_data))
917                                 kvfree_sensitive(key_data, key_data_len);
918                         key_data_len = ret;
919                         continue;       /* Allocate buffer */
920                 }
921 
922                 if (copy_to_user(buffer, key_data, ret))
923                         ret = -EFAULT;
924                 break;
925         }
926         kvfree_sensitive(key_data, key_data_len);
927 
928 key_put_out:
929         key_put(key);
930 out:
931         return ret;
932 }
933 
934 /*
935  * Change the ownership of a key
936  *
937  * The key must grant the caller Setattr permission for this to work, though
938  * the key need not be fully instantiated yet.  For the UID to be changed, or
939  * for the GID to be changed to a group the caller is not a member of, the
940  * caller must have sysadmin capability.  If either uid or gid is -1 then that
941  * attribute is not changed.
942  *
943  * If the UID is to be changed, the new user must have sufficient quota to
944  * accept the key.  The quota deduction will be removed from the old user to
945  * the new user should the attribute be changed.
946  *
947  * If successful, 0 will be returned.
948  */
949 long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
950 {
951         struct key_user *newowner, *zapowner = NULL;
952         struct key *key;
953         key_ref_t key_ref;
954         long ret;
955         kuid_t uid;
956         kgid_t gid;
957         unsigned long flags;
958 
959         uid = make_kuid(current_user_ns(), user);
960         gid = make_kgid(current_user_ns(), group);
961         ret = -EINVAL;
962         if ((user != (uid_t) -1) && !uid_valid(uid))
963                 goto error;
964         if ((group != (gid_t) -1) && !gid_valid(gid))
965                 goto error;
966 
967         ret = 0;
968         if (user == (uid_t) -1 && group == (gid_t) -1)
969                 goto error;
970 
971         key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
972                                   KEY_NEED_SETATTR);
973         if (IS_ERR(key_ref)) {
974                 ret = PTR_ERR(key_ref);
975                 goto error;
976         }
977 
978         key = key_ref_to_ptr(key_ref);
979 
980         /* make the changes with the locks held to prevent chown/chown races */
981         ret = -EACCES;
982         down_write(&key->sem);
983 
984         {
985                 bool is_privileged_op = false;
986 
987                 /* only the sysadmin can chown a key to some other UID */
988                 if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
989                         is_privileged_op = true;
990 
991                 /* only the sysadmin can set the key's GID to a group other
992                  * than one of those that the current process subscribes to */
993                 if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
994                         is_privileged_op = true;
995 
996                 if (is_privileged_op && !capable(CAP_SYS_ADMIN))
997                         goto error_put;
998         }
999 
1000         /* change the UID */
1001         if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
1002                 ret = -ENOMEM;
1003                 newowner = key_user_lookup(uid);
1004                 if (!newowner)
1005                         goto error_put;
1006 
1007                 /* transfer the quota burden to the new user */
1008                 if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
1009                         unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
1010                                 key_quota_root_maxkeys : key_quota_maxkeys;
1011                         unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
1012                                 key_quota_root_maxbytes : key_quota_maxbytes;
1013 
1014                         spin_lock_irqsave(&newowner->lock, flags);
1015                         if (newowner->qnkeys + 1 > maxkeys ||
1016                             newowner->qnbytes + key->quotalen > maxbytes ||
1017                             newowner->qnbytes + key->quotalen <
1018                             newowner->qnbytes)
1019                                 goto quota_overrun;
1020 
1021                         newowner->qnkeys++;
1022                         newowner->qnbytes += key->quotalen;
1023                         spin_unlock_irqrestore(&newowner->lock, flags);
1024 
1025                         spin_lock_irqsave(&key->user->lock, flags);
1026                         key->user->qnkeys--;
1027                         key->user->qnbytes -= key->quotalen;
1028                         spin_unlock_irqrestore(&key->user->lock, flags);
1029                 }
1030 
1031                 atomic_dec(&key->user->nkeys);
1032                 atomic_inc(&newowner->nkeys);
1033 
1034                 if (key->state != KEY_IS_UNINSTANTIATED) {
1035                         atomic_dec(&key->user->nikeys);
1036                         atomic_inc(&newowner->nikeys);
1037                 }
1038 
1039                 zapowner = key->user;
1040                 key->user = newowner;
1041                 key->uid = uid;
1042         }
1043 
1044         /* change the GID */
1045         if (group != (gid_t) -1)
1046                 key->gid = gid;
1047 
1048         notify_key(key, NOTIFY_KEY_SETATTR, 0);
1049         ret = 0;
1050 
1051 error_put:
1052         up_write(&key->sem);
1053         key_put(key);
1054         if (zapowner)
1055                 key_user_put(zapowner);
1056 error:
1057         return ret;
1058 
1059 quota_overrun:
1060         spin_unlock_irqrestore(&newowner->lock, flags);
1061         zapowner = newowner;
1062         ret = -EDQUOT;
1063         goto error_put;
1064 }
1065 
1066 /*
1067  * Change the permission mask on a key.
1068  *
1069  * The key must grant the caller Setattr permission for this to work, though
1070  * the key need not be fully instantiated yet.  If the caller does not have
1071  * sysadmin capability, it may only change the permission on keys that it owns.
1072  */
1073 long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
1074 {
1075         struct key *key;
1076         key_ref_t key_ref;
1077         long ret;
1078 
1079         ret = -EINVAL;
1080         if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
1081                 goto error;
1082 
1083         key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1084                                   KEY_NEED_SETATTR);
1085         if (IS_ERR(key_ref)) {
1086                 ret = PTR_ERR(key_ref);
1087                 goto error;
1088         }
1089 
1090         key = key_ref_to_ptr(key_ref);
1091 
1092         /* make the changes with the locks held to prevent chown/chmod races */
1093         ret = -EACCES;
1094         down_write(&key->sem);
1095 
1096         /* if we're not the sysadmin, we can only change a key that we own */
1097         if (uid_eq(key->uid, current_fsuid()) || capable(CAP_SYS_ADMIN)) {
1098                 key->perm = perm;
1099                 notify_key(key, NOTIFY_KEY_SETATTR, 0);
1100                 ret = 0;
1101         }
1102 
1103         up_write(&key->sem);
1104         key_put(key);
1105 error:
1106         return ret;
1107 }
1108 
1109 /*
1110  * Get the destination keyring for instantiation and check that the caller has
1111  * Write permission on it.
1112  */
1113 static long get_instantiation_keyring(key_serial_t ringid,
1114                                       struct request_key_auth *rka,
1115                                       struct key **_dest_keyring)
1116 {
1117         key_ref_t dkref;
1118 
1119         *_dest_keyring = NULL;
1120 
1121         /* just return a NULL pointer if we weren't asked to make a link */
1122         if (ringid == 0)
1123                 return 0;
1124 
1125         /* if a specific keyring is nominated by ID, then use that */
1126         if (ringid > 0) {
1127                 dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
1128                 if (IS_ERR(dkref))
1129                         return PTR_ERR(dkref);
1130                 *_dest_keyring = key_ref_to_ptr(dkref);
1131                 return 0;
1132         }
1133 
1134         if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
1135                 return -EINVAL;
1136 
1137         /* otherwise specify the destination keyring recorded in the
1138          * authorisation key (any KEY_SPEC_*_KEYRING) */
1139         if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
1140                 *_dest_keyring = key_get(rka->dest_keyring);
1141                 return 0;
1142         }
1143 
1144         return -ENOKEY;
1145 }
1146 
1147 /*
1148  * Change the request_key authorisation key on the current process.
1149  */
1150 static int keyctl_change_reqkey_auth(struct key *key)
1151 {
1152         struct cred *new;
1153 
1154         new = prepare_creds();
1155         if (!new)
1156                 return -ENOMEM;
1157 
1158         key_put(new->request_key_auth);
1159         new->request_key_auth = key_get(key);
1160 
1161         return commit_creds(new);
1162 }
1163 
1164 /*
1165  * Instantiate a key with the specified payload and link the key into the
1166  * destination keyring if one is given.
1167  *
1168  * The caller must have the appropriate instantiation permit set for this to
1169  * work (see keyctl_assume_authority).  No other permissions are required.
1170  *
1171  * If successful, 0 will be returned.
1172  */
1173 static long keyctl_instantiate_key_common(key_serial_t id,
1174                                    struct iov_iter *from,
1175                                    key_serial_t ringid)
1176 {
1177         const struct cred *cred = current_cred();
1178         struct request_key_auth *rka;
1179         struct key *instkey, *dest_keyring;
1180         size_t plen = from ? iov_iter_count(from) : 0;
1181         void *payload;
1182         long ret;
1183 
1184         kenter("%d,,%zu,%d", id, plen, ringid);
1185 
1186         if (!plen)
1187                 from = NULL;
1188 
1189         ret = -EINVAL;
1190         if (plen > 1024 * 1024 - 1)
1191                 goto error;
1192 
1193         /* the appropriate instantiation authorisation key must have been
1194          * assumed before calling this */
1195         ret = -EPERM;
1196         instkey = cred->request_key_auth;
1197         if (!instkey)
1198                 goto error;
1199 
1200         rka = instkey->payload.data[0];
1201         if (rka->target_key->serial != id)
1202                 goto error;
1203 
1204         /* pull the payload in if one was supplied */
1205         payload = NULL;
1206 
1207         if (from) {
1208                 ret = -ENOMEM;
1209                 payload = kvmalloc(plen, GFP_KERNEL);
1210                 if (!payload)
1211                         goto error;
1212 
1213                 ret = -EFAULT;
1214                 if (!copy_from_iter_full(payload, plen, from))
1215                         goto error2;
1216         }
1217 
1218         /* find the destination keyring amongst those belonging to the
1219          * requesting task */
1220         ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1221         if (ret < 0)
1222                 goto error2;
1223 
1224         /* instantiate the key and link it into a keyring */
1225         ret = key_instantiate_and_link(rka->target_key, payload, plen,
1226                                        dest_keyring, instkey);
1227 
1228         key_put(dest_keyring);
1229 
1230         /* discard the assumed authority if it's just been disabled by
1231          * instantiation of the key */
1232         if (ret == 0)
1233                 keyctl_change_reqkey_auth(NULL);
1234 
1235 error2:
1236         kvfree_sensitive(payload, plen);
1237 error:
1238         return ret;
1239 }
1240 
1241 /*
1242  * Instantiate a key with the specified payload and link the key into the
1243  * destination keyring if one is given.
1244  *
1245  * The caller must have the appropriate instantiation permit set for this to
1246  * work (see keyctl_assume_authority).  No other permissions are required.
1247  *
1248  * If successful, 0 will be returned.
1249  */
1250 long keyctl_instantiate_key(key_serial_t id,
1251                             const void __user *_payload,
1252                             size_t plen,
1253                             key_serial_t ringid)
1254 {
1255         if (_payload && plen) {
1256                 struct iov_iter from;
1257                 int ret;
1258 
1259                 ret = import_ubuf(ITER_SOURCE, (void __user *)_payload, plen,
1260                                   &from);
1261                 if (unlikely(ret))
1262                         return ret;
1263 
1264                 return keyctl_instantiate_key_common(id, &from, ringid);
1265         }
1266 
1267         return keyctl_instantiate_key_common(id, NULL, ringid);
1268 }
1269 
1270 /*
1271  * Instantiate a key with the specified multipart payload and link the key into
1272  * the destination keyring if one is given.
1273  *
1274  * The caller must have the appropriate instantiation permit set for this to
1275  * work (see keyctl_assume_authority).  No other permissions are required.
1276  *
1277  * If successful, 0 will be returned.
1278  */
1279 long keyctl_instantiate_key_iov(key_serial_t id,
1280                                 const struct iovec __user *_payload_iov,
1281                                 unsigned ioc,
1282                                 key_serial_t ringid)
1283 {
1284         struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1285         struct iov_iter from;
1286         long ret;
1287 
1288         if (!_payload_iov)
1289                 ioc = 0;
1290 
1291         ret = import_iovec(ITER_SOURCE, _payload_iov, ioc,
1292                                     ARRAY_SIZE(iovstack), &iov, &from);
1293         if (ret < 0)
1294                 return ret;
1295         ret = keyctl_instantiate_key_common(id, &from, ringid);
1296         kfree(iov);
1297         return ret;
1298 }
1299 
1300 /*
1301  * Negatively instantiate the key with the given timeout (in seconds) and link
1302  * the key into the destination keyring if one is given.
1303  *
1304  * The caller must have the appropriate instantiation permit set for this to
1305  * work (see keyctl_assume_authority).  No other permissions are required.
1306  *
1307  * The key and any links to the key will be automatically garbage collected
1308  * after the timeout expires.
1309  *
1310  * Negative keys are used to rate limit repeated request_key() calls by causing
1311  * them to return -ENOKEY until the negative key expires.
1312  *
1313  * If successful, 0 will be returned.
1314  */
1315 long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
1316 {
1317         return keyctl_reject_key(id, timeout, ENOKEY, ringid);
1318 }
1319 
1320 /*
1321  * Negatively instantiate the key with the given timeout (in seconds) and error
1322  * code and link the key into the destination keyring if one is given.
1323  *
1324  * The caller must have the appropriate instantiation permit set for this to
1325  * work (see keyctl_assume_authority).  No other permissions are required.
1326  *
1327  * The key and any links to the key will be automatically garbage collected
1328  * after the timeout expires.
1329  *
1330  * Negative keys are used to rate limit repeated request_key() calls by causing
1331  * them to return the specified error code until the negative key expires.
1332  *
1333  * If successful, 0 will be returned.
1334  */
1335 long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
1336                        key_serial_t ringid)
1337 {
1338         const struct cred *cred = current_cred();
1339         struct request_key_auth *rka;
1340         struct key *instkey, *dest_keyring;
1341         long ret;
1342 
1343         kenter("%d,%u,%u,%d", id, timeout, error, ringid);
1344 
1345         /* must be a valid error code and mustn't be a kernel special */
1346         if (error <= 0 ||
1347             error >= MAX_ERRNO ||
1348             error == ERESTARTSYS ||
1349             error == ERESTARTNOINTR ||
1350             error == ERESTARTNOHAND ||
1351             error == ERESTART_RESTARTBLOCK)
1352                 return -EINVAL;
1353 
1354         /* the appropriate instantiation authorisation key must have been
1355          * assumed before calling this */
1356         ret = -EPERM;
1357         instkey = cred->request_key_auth;
1358         if (!instkey)
1359                 goto error;
1360 
1361         rka = instkey->payload.data[0];
1362         if (rka->target_key->serial != id)
1363                 goto error;
1364 
1365         /* find the destination keyring if present (which must also be
1366          * writable) */
1367         ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1368         if (ret < 0)
1369                 goto error;
1370 
1371         /* instantiate the key and link it into a keyring */
1372         ret = key_reject_and_link(rka->target_key, timeout, error,
1373                                   dest_keyring, instkey);
1374 
1375         key_put(dest_keyring);
1376 
1377         /* discard the assumed authority if it's just been disabled by
1378          * instantiation of the key */
1379         if (ret == 0)
1380                 keyctl_change_reqkey_auth(NULL);
1381 
1382 error:
1383         return ret;
1384 }
1385 
1386 /*
1387  * Read or set the default keyring in which request_key() will cache keys and
1388  * return the old setting.
1389  *
1390  * If a thread or process keyring is specified then it will be created if it
1391  * doesn't yet exist.  The old setting will be returned if successful.
1392  */
1393 long keyctl_set_reqkey_keyring(int reqkey_defl)
1394 {
1395         struct cred *new;
1396         int ret, old_setting;
1397 
1398         old_setting = current_cred_xxx(jit_keyring);
1399 
1400         if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
1401                 return old_setting;
1402 
1403         new = prepare_creds();
1404         if (!new)
1405                 return -ENOMEM;
1406 
1407         switch (reqkey_defl) {
1408         case KEY_REQKEY_DEFL_THREAD_KEYRING:
1409                 ret = install_thread_keyring_to_cred(new);
1410                 if (ret < 0)
1411                         goto error;
1412                 goto set;
1413 
1414         case KEY_REQKEY_DEFL_PROCESS_KEYRING:
1415                 ret = install_process_keyring_to_cred(new);
1416                 if (ret < 0)
1417                         goto error;
1418                 goto set;
1419 
1420         case KEY_REQKEY_DEFL_DEFAULT:
1421         case KEY_REQKEY_DEFL_SESSION_KEYRING:
1422         case KEY_REQKEY_DEFL_USER_KEYRING:
1423         case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
1424         case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
1425                 goto set;
1426 
1427         case KEY_REQKEY_DEFL_NO_CHANGE:
1428         case KEY_REQKEY_DEFL_GROUP_KEYRING:
1429         default:
1430                 ret = -EINVAL;
1431                 goto error;
1432         }
1433 
1434 set:
1435         new->jit_keyring = reqkey_defl;
1436         commit_creds(new);
1437         return old_setting;
1438 error:
1439         abort_creds(new);
1440         return ret;
1441 }
1442 
1443 /*
1444  * Set or clear the timeout on a key.
1445  *
1446  * Either the key must grant the caller Setattr permission or else the caller
1447  * must hold an instantiation authorisation token for the key.
1448  *
1449  * The timeout is either 0 to clear the timeout, or a number of seconds from
1450  * the current time.  The key and any links to the key will be automatically
1451  * garbage collected after the timeout expires.
1452  *
1453  * Keys with KEY_FLAG_KEEP set should not be timed out.
1454  *
1455  * If successful, 0 is returned.
1456  */
1457 long keyctl_set_timeout(key_serial_t id, unsigned timeout)
1458 {
1459         struct key *key, *instkey;
1460         key_ref_t key_ref;
1461         long ret;
1462 
1463         key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1464                                   KEY_NEED_SETATTR);
1465         if (IS_ERR(key_ref)) {
1466                 /* setting the timeout on a key under construction is permitted
1467                  * if we have the authorisation token handy */
1468                 if (PTR_ERR(key_ref) == -EACCES) {
1469                         instkey = key_get_instantiation_authkey(id);
1470                         if (!IS_ERR(instkey)) {
1471                                 key_put(instkey);
1472                                 key_ref = lookup_user_key(id,
1473                                                           KEY_LOOKUP_PARTIAL,
1474                                                           KEY_AUTHTOKEN_OVERRIDE);
1475                                 if (!IS_ERR(key_ref))
1476                                         goto okay;
1477                         }
1478                 }
1479 
1480                 ret = PTR_ERR(key_ref);
1481                 goto error;
1482         }
1483 
1484 okay:
1485         key = key_ref_to_ptr(key_ref);
1486         ret = 0;
1487         if (test_bit(KEY_FLAG_KEEP, &key->flags)) {
1488                 ret = -EPERM;
1489         } else {
1490                 key_set_timeout(key, timeout);
1491                 notify_key(key, NOTIFY_KEY_SETATTR, 0);
1492         }
1493         key_put(key);
1494 
1495 error:
1496         return ret;
1497 }
1498 
1499 /*
1500  * Assume (or clear) the authority to instantiate the specified key.
1501  *
1502  * This sets the authoritative token currently in force for key instantiation.
1503  * This must be done for a key to be instantiated.  It has the effect of making
1504  * available all the keys from the caller of the request_key() that created a
1505  * key to request_key() calls made by the caller of this function.
1506  *
1507  * The caller must have the instantiation key in their process keyrings with a
1508  * Search permission grant available to the caller.
1509  *
1510  * If the ID given is 0, then the setting will be cleared and 0 returned.
1511  *
1512  * If the ID given has a matching an authorisation key, then that key will be
1513  * set and its ID will be returned.  The authorisation key can be read to get
1514  * the callout information passed to request_key().
1515  */
1516 long keyctl_assume_authority(key_serial_t id)
1517 {
1518         struct key *authkey;
1519         long ret;
1520 
1521         /* special key IDs aren't permitted */
1522         ret = -EINVAL;
1523         if (id < 0)
1524                 goto error;
1525 
1526         /* we divest ourselves of authority if given an ID of 0 */
1527         if (id == 0) {
1528                 ret = keyctl_change_reqkey_auth(NULL);
1529                 goto error;
1530         }
1531 
1532         /* attempt to assume the authority temporarily granted to us whilst we
1533          * instantiate the specified key
1534          * - the authorisation key must be in the current task's keyrings
1535          *   somewhere
1536          */
1537         authkey = key_get_instantiation_authkey(id);
1538         if (IS_ERR(authkey)) {
1539                 ret = PTR_ERR(authkey);
1540                 goto error;
1541         }
1542 
1543         ret = keyctl_change_reqkey_auth(authkey);
1544         if (ret == 0)
1545                 ret = authkey->serial;
1546         key_put(authkey);
1547 error:
1548         return ret;
1549 }
1550 
1551 /*
1552  * Get a key's the LSM security label.
1553  *
1554  * The key must grant the caller View permission for this to work.
1555  *
1556  * If there's a buffer, then up to buflen bytes of data will be placed into it.
1557  *
1558  * If successful, the amount of information available will be returned,
1559  * irrespective of how much was copied (including the terminal NUL).
1560  */
1561 long keyctl_get_security(key_serial_t keyid,
1562                          char __user *buffer,
1563                          size_t buflen)
1564 {
1565         struct key *key, *instkey;
1566         key_ref_t key_ref;
1567         char *context;
1568         long ret;
1569 
1570         key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
1571         if (IS_ERR(key_ref)) {
1572                 if (PTR_ERR(key_ref) != -EACCES)
1573                         return PTR_ERR(key_ref);
1574 
1575                 /* viewing a key under construction is also permitted if we
1576                  * have the authorisation token handy */
1577                 instkey = key_get_instantiation_authkey(keyid);
1578                 if (IS_ERR(instkey))
1579                         return PTR_ERR(instkey);
1580                 key_put(instkey);
1581 
1582                 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL,
1583                                           KEY_AUTHTOKEN_OVERRIDE);
1584                 if (IS_ERR(key_ref))
1585                         return PTR_ERR(key_ref);
1586         }
1587 
1588         key = key_ref_to_ptr(key_ref);
1589         ret = security_key_getsecurity(key, &context);
1590         if (ret == 0) {
1591                 /* if no information was returned, give userspace an empty
1592                  * string */
1593                 ret = 1;
1594                 if (buffer && buflen > 0 &&
1595                     copy_to_user(buffer, "", 1) != 0)
1596                         ret = -EFAULT;
1597         } else if (ret > 0) {
1598                 /* return as much data as there's room for */
1599                 if (buffer && buflen > 0) {
1600                         if (buflen > ret)
1601                                 buflen = ret;
1602 
1603                         if (copy_to_user(buffer, context, buflen) != 0)
1604                                 ret = -EFAULT;
1605                 }
1606 
1607                 kfree(context);
1608         }
1609 
1610         key_ref_put(key_ref);
1611         return ret;
1612 }
1613 
1614 /*
1615  * Attempt to install the calling process's session keyring on the process's
1616  * parent process.
1617  *
1618  * The keyring must exist and must grant the caller LINK permission, and the
1619  * parent process must be single-threaded and must have the same effective
1620  * ownership as this process and mustn't be SUID/SGID.
1621  *
1622  * The keyring will be emplaced on the parent when it next resumes userspace.
1623  *
1624  * If successful, 0 will be returned.
1625  */
1626 long keyctl_session_to_parent(void)
1627 {
1628         struct task_struct *me, *parent;
1629         const struct cred *mycred, *pcred;
1630         struct callback_head *newwork, *oldwork;
1631         key_ref_t keyring_r;
1632         struct cred *cred;
1633         int ret;
1634 
1635         keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_NEED_LINK);
1636         if (IS_ERR(keyring_r))
1637                 return PTR_ERR(keyring_r);
1638 
1639         ret = -ENOMEM;
1640 
1641         /* our parent is going to need a new cred struct, a new tgcred struct
1642          * and new security data, so we allocate them here to prevent ENOMEM in
1643          * our parent */
1644         cred = cred_alloc_blank();
1645         if (!cred)
1646                 goto error_keyring;
1647         newwork = &cred->rcu;
1648 
1649         cred->session_keyring = key_ref_to_ptr(keyring_r);
1650         keyring_r = NULL;
1651         init_task_work(newwork, key_change_session_keyring);
1652 
1653         me = current;
1654         rcu_read_lock();
1655         write_lock_irq(&tasklist_lock);
1656 
1657         ret = -EPERM;
1658         oldwork = NULL;
1659         parent = rcu_dereference_protected(me->real_parent,
1660                                            lockdep_is_held(&tasklist_lock));
1661 
1662         /* the parent mustn't be init and mustn't be a kernel thread */
1663         if (parent->pid <= 1 || !parent->mm)
1664                 goto unlock;
1665 
1666         /* the parent must be single threaded */
1667         if (!thread_group_empty(parent))
1668                 goto unlock;
1669 
1670         /* the parent and the child must have different session keyrings or
1671          * there's no point */
1672         mycred = current_cred();
1673         pcred = __task_cred(parent);
1674         if (mycred == pcred ||
1675             mycred->session_keyring == pcred->session_keyring) {
1676                 ret = 0;
1677                 goto unlock;
1678         }
1679 
1680         /* the parent must have the same effective ownership and mustn't be
1681          * SUID/SGID */
1682         if (!uid_eq(pcred->uid,  mycred->euid) ||
1683             !uid_eq(pcred->euid, mycred->euid) ||
1684             !uid_eq(pcred->suid, mycred->euid) ||
1685             !gid_eq(pcred->gid,  mycred->egid) ||
1686             !gid_eq(pcred->egid, mycred->egid) ||
1687             !gid_eq(pcred->sgid, mycred->egid))
1688                 goto unlock;
1689 
1690         /* the keyrings must have the same UID */
1691         if ((pcred->session_keyring &&
1692              !uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
1693             !uid_eq(mycred->session_keyring->uid, mycred->euid))
1694                 goto unlock;
1695 
1696         /* cancel an already pending keyring replacement */
1697         oldwork = task_work_cancel_func(parent, key_change_session_keyring);
1698 
1699         /* the replacement session keyring is applied just prior to userspace
1700          * restarting */
1701         ret = task_work_add(parent, newwork, TWA_RESUME);
1702         if (!ret)
1703                 newwork = NULL;
1704 unlock:
1705         write_unlock_irq(&tasklist_lock);
1706         rcu_read_unlock();
1707         if (oldwork)
1708                 put_cred(container_of(oldwork, struct cred, rcu));
1709         if (newwork)
1710                 put_cred(cred);
1711         return ret;
1712 
1713 error_keyring:
1714         key_ref_put(keyring_r);
1715         return ret;
1716 }
1717 
1718 /*
1719  * Apply a restriction to a given keyring.
1720  *
1721  * The caller must have Setattr permission to change keyring restrictions.
1722  *
1723  * The requested type name may be a NULL pointer to reject all attempts
1724  * to link to the keyring.  In this case, _restriction must also be NULL.
1725  * Otherwise, both _type and _restriction must be non-NULL.
1726  *
1727  * Returns 0 if successful.
1728  */
1729 long keyctl_restrict_keyring(key_serial_t id, const char __user *_type,
1730                              const char __user *_restriction)
1731 {
1732         key_ref_t key_ref;
1733         char type[32];
1734         char *restriction = NULL;
1735         long ret;
1736 
1737         key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
1738         if (IS_ERR(key_ref))
1739                 return PTR_ERR(key_ref);
1740 
1741         ret = -EINVAL;
1742         if (_type) {
1743                 if (!_restriction)
1744                         goto error;
1745 
1746                 ret = key_get_type_from_user(type, _type, sizeof(type));
1747                 if (ret < 0)
1748                         goto error;
1749 
1750                 restriction = strndup_user(_restriction, PAGE_SIZE);
1751                 if (IS_ERR(restriction)) {
1752                         ret = PTR_ERR(restriction);
1753                         goto error;
1754                 }
1755         } else {
1756                 if (_restriction)
1757                         goto error;
1758         }
1759 
1760         ret = keyring_restrict(key_ref, _type ? type : NULL, restriction);
1761         kfree(restriction);
1762 error:
1763         key_ref_put(key_ref);
1764         return ret;
1765 }
1766 
1767 #ifdef CONFIG_KEY_NOTIFICATIONS
1768 /*
1769  * Watch for changes to a key.
1770  *
1771  * The caller must have View permission to watch a key or keyring.
1772  */
1773 long keyctl_watch_key(key_serial_t id, int watch_queue_fd, int watch_id)
1774 {
1775         struct watch_queue *wqueue;
1776         struct watch_list *wlist = NULL;
1777         struct watch *watch = NULL;
1778         struct key *key;
1779         key_ref_t key_ref;
1780         long ret;
1781 
1782         if (watch_id < -1 || watch_id > 0xff)
1783                 return -EINVAL;
1784 
1785         key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_VIEW);
1786         if (IS_ERR(key_ref))
1787                 return PTR_ERR(key_ref);
1788         key = key_ref_to_ptr(key_ref);
1789 
1790         wqueue = get_watch_queue(watch_queue_fd);
1791         if (IS_ERR(wqueue)) {
1792                 ret = PTR_ERR(wqueue);
1793                 goto err_key;
1794         }
1795 
1796         if (watch_id >= 0) {
1797                 ret = -ENOMEM;
1798                 if (!key->watchers) {
1799                         wlist = kzalloc(sizeof(*wlist), GFP_KERNEL);
1800                         if (!wlist)
1801                                 goto err_wqueue;
1802                         init_watch_list(wlist, NULL);
1803                 }
1804 
1805                 watch = kzalloc(sizeof(*watch), GFP_KERNEL);
1806                 if (!watch)
1807                         goto err_wlist;
1808 
1809                 init_watch(watch, wqueue);
1810                 watch->id       = key->serial;
1811                 watch->info_id  = (u32)watch_id << WATCH_INFO_ID__SHIFT;
1812 
1813                 ret = security_watch_key(key);
1814                 if (ret < 0)
1815                         goto err_watch;
1816 
1817                 down_write(&key->sem);
1818                 if (!key->watchers) {
1819                         key->watchers = wlist;
1820                         wlist = NULL;
1821                 }
1822 
1823                 ret = add_watch_to_object(watch, key->watchers);
1824                 up_write(&key->sem);
1825 
1826                 if (ret == 0)
1827                         watch = NULL;
1828         } else {
1829                 ret = -EBADSLT;
1830                 if (key->watchers) {
1831                         down_write(&key->sem);
1832                         ret = remove_watch_from_object(key->watchers,
1833                                                        wqueue, key_serial(key),
1834                                                        false);
1835                         up_write(&key->sem);
1836                 }
1837         }
1838 
1839 err_watch:
1840         kfree(watch);
1841 err_wlist:
1842         kfree(wlist);
1843 err_wqueue:
1844         put_watch_queue(wqueue);
1845 err_key:
1846         key_put(key);
1847         return ret;
1848 }
1849 #endif /* CONFIG_KEY_NOTIFICATIONS */
1850 
1851 /*
1852  * Get keyrings subsystem capabilities.
1853  */
1854 long keyctl_capabilities(unsigned char __user *_buffer, size_t buflen)
1855 {
1856         size_t size = buflen;
1857 
1858         if (size > 0) {
1859                 if (size > sizeof(keyrings_capabilities))
1860                         size = sizeof(keyrings_capabilities);
1861                 if (copy_to_user(_buffer, keyrings_capabilities, size) != 0)
1862                         return -EFAULT;
1863                 if (size < buflen &&
1864                     clear_user(_buffer + size, buflen - size) != 0)
1865                         return -EFAULT;
1866         }
1867 
1868         return sizeof(keyrings_capabilities);
1869 }
1870 
1871 /*
1872  * The key control system call
1873  */
1874 SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
1875                 unsigned long, arg4, unsigned long, arg5)
1876 {
1877         switch (option) {
1878         case KEYCTL_GET_KEYRING_ID:
1879                 return keyctl_get_keyring_ID((key_serial_t) arg2,
1880                                              (int) arg3);
1881 
1882         case KEYCTL_JOIN_SESSION_KEYRING:
1883                 return keyctl_join_session_keyring((const char __user *) arg2);
1884 
1885         case KEYCTL_UPDATE:
1886                 return keyctl_update_key((key_serial_t) arg2,
1887                                          (const void __user *) arg3,
1888                                          (size_t) arg4);
1889 
1890         case KEYCTL_REVOKE:
1891                 return keyctl_revoke_key((key_serial_t) arg2);
1892 
1893         case KEYCTL_DESCRIBE:
1894                 return keyctl_describe_key((key_serial_t) arg2,
1895                                            (char __user *) arg3,
1896                                            (unsigned) arg4);
1897 
1898         case KEYCTL_CLEAR:
1899                 return keyctl_keyring_clear((key_serial_t) arg2);
1900 
1901         case KEYCTL_LINK:
1902                 return keyctl_keyring_link((key_serial_t) arg2,
1903                                            (key_serial_t) arg3);
1904 
1905         case KEYCTL_UNLINK:
1906                 return keyctl_keyring_unlink((key_serial_t) arg2,
1907                                              (key_serial_t) arg3);
1908 
1909         case KEYCTL_SEARCH:
1910                 return keyctl_keyring_search((key_serial_t) arg2,
1911                                              (const char __user *) arg3,
1912                                              (const char __user *) arg4,
1913                                              (key_serial_t) arg5);
1914 
1915         case KEYCTL_READ:
1916                 return keyctl_read_key((key_serial_t) arg2,
1917                                        (char __user *) arg3,
1918                                        (size_t) arg4);
1919 
1920         case KEYCTL_CHOWN:
1921                 return keyctl_chown_key((key_serial_t) arg2,
1922                                         (uid_t) arg3,
1923                                         (gid_t) arg4);
1924 
1925         case KEYCTL_SETPERM:
1926                 return keyctl_setperm_key((key_serial_t) arg2,
1927                                           (key_perm_t) arg3);
1928 
1929         case KEYCTL_INSTANTIATE:
1930                 return keyctl_instantiate_key((key_serial_t) arg2,
1931                                               (const void __user *) arg3,
1932                                               (size_t) arg4,
1933                                               (key_serial_t) arg5);
1934 
1935         case KEYCTL_NEGATE:
1936                 return keyctl_negate_key((key_serial_t) arg2,
1937                                          (unsigned) arg3,
1938                                          (key_serial_t) arg4);
1939 
1940         case KEYCTL_SET_REQKEY_KEYRING:
1941                 return keyctl_set_reqkey_keyring(arg2);
1942 
1943         case KEYCTL_SET_TIMEOUT:
1944                 return keyctl_set_timeout((key_serial_t) arg2,
1945                                           (unsigned) arg3);
1946 
1947         case KEYCTL_ASSUME_AUTHORITY:
1948                 return keyctl_assume_authority((key_serial_t) arg2);
1949 
1950         case KEYCTL_GET_SECURITY:
1951                 return keyctl_get_security((key_serial_t) arg2,
1952                                            (char __user *) arg3,
1953                                            (size_t) arg4);
1954 
1955         case KEYCTL_SESSION_TO_PARENT:
1956                 return keyctl_session_to_parent();
1957 
1958         case KEYCTL_REJECT:
1959                 return keyctl_reject_key((key_serial_t) arg2,
1960                                          (unsigned) arg3,
1961                                          (unsigned) arg4,
1962                                          (key_serial_t) arg5);
1963 
1964         case KEYCTL_INSTANTIATE_IOV:
1965                 return keyctl_instantiate_key_iov(
1966                         (key_serial_t) arg2,
1967                         (const struct iovec __user *) arg3,
1968                         (unsigned) arg4,
1969                         (key_serial_t) arg5);
1970 
1971         case KEYCTL_INVALIDATE:
1972                 return keyctl_invalidate_key((key_serial_t) arg2);
1973 
1974         case KEYCTL_GET_PERSISTENT:
1975                 return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
1976 
1977         case KEYCTL_DH_COMPUTE:
1978                 return keyctl_dh_compute((struct keyctl_dh_params __user *) arg2,
1979                                          (char __user *) arg3, (size_t) arg4,
1980                                          (struct keyctl_kdf_params __user *) arg5);
1981 
1982         case KEYCTL_RESTRICT_KEYRING:
1983                 return keyctl_restrict_keyring((key_serial_t) arg2,
1984                                                (const char __user *) arg3,
1985                                                (const char __user *) arg4);
1986 
1987         case KEYCTL_PKEY_QUERY:
1988                 if (arg3 != 0)
1989                         return -EINVAL;
1990                 return keyctl_pkey_query((key_serial_t)arg2,
1991                                          (const char __user *)arg4,
1992                                          (struct keyctl_pkey_query __user *)arg5);
1993 
1994         case KEYCTL_PKEY_ENCRYPT:
1995         case KEYCTL_PKEY_DECRYPT:
1996         case KEYCTL_PKEY_SIGN:
1997                 return keyctl_pkey_e_d_s(
1998                         option,
1999                         (const struct keyctl_pkey_params __user *)arg2,
2000                         (const char __user *)arg3,
2001                         (const void __user *)arg4,
2002                         (void __user *)arg5);
2003 
2004         case KEYCTL_PKEY_VERIFY:
2005                 return keyctl_pkey_verify(
2006                         (const struct keyctl_pkey_params __user *)arg2,
2007                         (const char __user *)arg3,
2008                         (const void __user *)arg4,
2009                         (const void __user *)arg5);
2010 
2011         case KEYCTL_MOVE:
2012                 return keyctl_keyring_move((key_serial_t)arg2,
2013                                            (key_serial_t)arg3,
2014                                            (key_serial_t)arg4,
2015                                            (unsigned int)arg5);
2016 
2017         case KEYCTL_CAPABILITIES:
2018                 return keyctl_capabilities((unsigned char __user *)arg2, (size_t)arg3);
2019 
2020         case KEYCTL_WATCH_KEY:
2021                 return keyctl_watch_key((key_serial_t)arg2, (int)arg3, (int)arg4);
2022 
2023         default:
2024                 return -EOPNOTSUPP;
2025         }
2026 }
2027 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php