~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/security/security.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Security plug functions
  4  *
  5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  8  * Copyright (C) 2016 Mellanox Technologies
  9  * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
 10  */
 11 
 12 #define pr_fmt(fmt) "LSM: " fmt
 13 
 14 #include <linux/bpf.h>
 15 #include <linux/capability.h>
 16 #include <linux/dcache.h>
 17 #include <linux/export.h>
 18 #include <linux/init.h>
 19 #include <linux/kernel.h>
 20 #include <linux/kernel_read_file.h>
 21 #include <linux/lsm_hooks.h>
 22 #include <linux/fsnotify.h>
 23 #include <linux/mman.h>
 24 #include <linux/mount.h>
 25 #include <linux/personality.h>
 26 #include <linux/backing-dev.h>
 27 #include <linux/string.h>
 28 #include <linux/xattr.h>
 29 #include <linux/msg.h>
 30 #include <linux/overflow.h>
 31 #include <net/flow.h>
 32 
 33 /* How many LSMs were built into the kernel? */
 34 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
 35 
 36 /*
 37  * How many LSMs are built into the kernel as determined at
 38  * build time. Used to determine fixed array sizes.
 39  * The capability module is accounted for by CONFIG_SECURITY
 40  */
 41 #define LSM_CONFIG_COUNT ( \
 42         (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \
 43         (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \
 44         (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \
 45         (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \
 46         (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \
 47         (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \
 48         (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \
 49         (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \
 50         (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \
 51         (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \
 52         (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \
 53         (IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \
 54         (IS_ENABLED(CONFIG_EVM) ? 1 : 0))
 55 
 56 /*
 57  * These are descriptions of the reasons that can be passed to the
 58  * security_locked_down() LSM hook. Placing this array here allows
 59  * all security modules to use the same descriptions for auditing
 60  * purposes.
 61  */
 62 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
 63         [LOCKDOWN_NONE] = "none",
 64         [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
 65         [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
 66         [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
 67         [LOCKDOWN_KEXEC] = "kexec of unsigned images",
 68         [LOCKDOWN_HIBERNATION] = "hibernation",
 69         [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
 70         [LOCKDOWN_IOPORT] = "raw io port access",
 71         [LOCKDOWN_MSR] = "raw MSR access",
 72         [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
 73         [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
 74         [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
 75         [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
 76         [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
 77         [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
 78         [LOCKDOWN_DEBUGFS] = "debugfs access",
 79         [LOCKDOWN_XMON_WR] = "xmon write access",
 80         [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
 81         [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
 82         [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
 83         [LOCKDOWN_INTEGRITY_MAX] = "integrity",
 84         [LOCKDOWN_KCORE] = "/proc/kcore access",
 85         [LOCKDOWN_KPROBES] = "use of kprobes",
 86         [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
 87         [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
 88         [LOCKDOWN_PERF] = "unsafe use of perf",
 89         [LOCKDOWN_TRACEFS] = "use of tracefs",
 90         [LOCKDOWN_XMON_RW] = "xmon read and write access",
 91         [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
 92         [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
 93 };
 94 
 95 struct security_hook_heads security_hook_heads __ro_after_init;
 96 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
 97 
 98 static struct kmem_cache *lsm_file_cache;
 99 static struct kmem_cache *lsm_inode_cache;
100 
101 char *lsm_names;
102 static struct lsm_blob_sizes blob_sizes __ro_after_init;
103 
104 /* Boot-time LSM user choice */
105 static __initdata const char *chosen_lsm_order;
106 static __initdata const char *chosen_major_lsm;
107 
108 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
109 
110 /* Ordered list of LSMs to initialize. */
111 static __initdata struct lsm_info **ordered_lsms;
112 static __initdata struct lsm_info *exclusive;
113 
114 static __initdata bool debug;
115 #define init_debug(...)                                         \
116         do {                                                    \
117                 if (debug)                                      \
118                         pr_info(__VA_ARGS__);                   \
119         } while (0)
120 
121 static bool __init is_enabled(struct lsm_info *lsm)
122 {
123         if (!lsm->enabled)
124                 return false;
125 
126         return *lsm->enabled;
127 }
128 
129 /* Mark an LSM's enabled flag. */
130 static int lsm_enabled_true __initdata = 1;
131 static int lsm_enabled_false __initdata = 0;
132 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
133 {
134         /*
135          * When an LSM hasn't configured an enable variable, we can use
136          * a hard-coded location for storing the default enabled state.
137          */
138         if (!lsm->enabled) {
139                 if (enabled)
140                         lsm->enabled = &lsm_enabled_true;
141                 else
142                         lsm->enabled = &lsm_enabled_false;
143         } else if (lsm->enabled == &lsm_enabled_true) {
144                 if (!enabled)
145                         lsm->enabled = &lsm_enabled_false;
146         } else if (lsm->enabled == &lsm_enabled_false) {
147                 if (enabled)
148                         lsm->enabled = &lsm_enabled_true;
149         } else {
150                 *lsm->enabled = enabled;
151         }
152 }
153 
154 /* Is an LSM already listed in the ordered LSMs list? */
155 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
156 {
157         struct lsm_info **check;
158 
159         for (check = ordered_lsms; *check; check++)
160                 if (*check == lsm)
161                         return true;
162 
163         return false;
164 }
165 
166 /* Append an LSM to the list of ordered LSMs to initialize. */
167 static int last_lsm __initdata;
168 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
169 {
170         /* Ignore duplicate selections. */
171         if (exists_ordered_lsm(lsm))
172                 return;
173 
174         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
175                 return;
176 
177         /* Enable this LSM, if it is not already set. */
178         if (!lsm->enabled)
179                 lsm->enabled = &lsm_enabled_true;
180         ordered_lsms[last_lsm++] = lsm;
181 
182         init_debug("%s ordered: %s (%s)\n", from, lsm->name,
183                    is_enabled(lsm) ? "enabled" : "disabled");
184 }
185 
186 /* Is an LSM allowed to be initialized? */
187 static bool __init lsm_allowed(struct lsm_info *lsm)
188 {
189         /* Skip if the LSM is disabled. */
190         if (!is_enabled(lsm))
191                 return false;
192 
193         /* Not allowed if another exclusive LSM already initialized. */
194         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
195                 init_debug("exclusive disabled: %s\n", lsm->name);
196                 return false;
197         }
198 
199         return true;
200 }
201 
202 static void __init lsm_set_blob_size(int *need, int *lbs)
203 {
204         int offset;
205 
206         if (*need <= 0)
207                 return;
208 
209         offset = ALIGN(*lbs, sizeof(void *));
210         *lbs = offset + *need;
211         *need = offset;
212 }
213 
214 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
215 {
216         if (!needed)
217                 return;
218 
219         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
220         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
221         /*
222          * The inode blob gets an rcu_head in addition to
223          * what the modules might need.
224          */
225         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
226                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
227         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
228         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
229         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
230         lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
231         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
232         lsm_set_blob_size(&needed->lbs_xattr_count,
233                           &blob_sizes.lbs_xattr_count);
234 }
235 
236 /* Prepare LSM for initialization. */
237 static void __init prepare_lsm(struct lsm_info *lsm)
238 {
239         int enabled = lsm_allowed(lsm);
240 
241         /* Record enablement (to handle any following exclusive LSMs). */
242         set_enabled(lsm, enabled);
243 
244         /* If enabled, do pre-initialization work. */
245         if (enabled) {
246                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
247                         exclusive = lsm;
248                         init_debug("exclusive chosen:   %s\n", lsm->name);
249                 }
250 
251                 lsm_set_blob_sizes(lsm->blobs);
252         }
253 }
254 
255 /* Initialize a given LSM, if it is enabled. */
256 static void __init initialize_lsm(struct lsm_info *lsm)
257 {
258         if (is_enabled(lsm)) {
259                 int ret;
260 
261                 init_debug("initializing %s\n", lsm->name);
262                 ret = lsm->init();
263                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
264         }
265 }
266 
267 /*
268  * Current index to use while initializing the lsm id list.
269  */
270 u32 lsm_active_cnt __ro_after_init;
271 const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT];
272 
273 /* Populate ordered LSMs list from comma-separated LSM name list. */
274 static void __init ordered_lsm_parse(const char *order, const char *origin)
275 {
276         struct lsm_info *lsm;
277         char *sep, *name, *next;
278 
279         /* LSM_ORDER_FIRST is always first. */
280         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
281                 if (lsm->order == LSM_ORDER_FIRST)
282                         append_ordered_lsm(lsm, "  first");
283         }
284 
285         /* Process "security=", if given. */
286         if (chosen_major_lsm) {
287                 struct lsm_info *major;
288 
289                 /*
290                  * To match the original "security=" behavior, this
291                  * explicitly does NOT fallback to another Legacy Major
292                  * if the selected one was separately disabled: disable
293                  * all non-matching Legacy Major LSMs.
294                  */
295                 for (major = __start_lsm_info; major < __end_lsm_info;
296                      major++) {
297                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
298                             strcmp(major->name, chosen_major_lsm) != 0) {
299                                 set_enabled(major, false);
300                                 init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
301                                            chosen_major_lsm, major->name);
302                         }
303                 }
304         }
305 
306         sep = kstrdup(order, GFP_KERNEL);
307         next = sep;
308         /* Walk the list, looking for matching LSMs. */
309         while ((name = strsep(&next, ",")) != NULL) {
310                 bool found = false;
311 
312                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
313                         if (strcmp(lsm->name, name) == 0) {
314                                 if (lsm->order == LSM_ORDER_MUTABLE)
315                                         append_ordered_lsm(lsm, origin);
316                                 found = true;
317                         }
318                 }
319 
320                 if (!found)
321                         init_debug("%s ignored: %s (not built into kernel)\n",
322                                    origin, name);
323         }
324 
325         /* Process "security=", if given. */
326         if (chosen_major_lsm) {
327                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
328                         if (exists_ordered_lsm(lsm))
329                                 continue;
330                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
331                                 append_ordered_lsm(lsm, "security=");
332                 }
333         }
334 
335         /* LSM_ORDER_LAST is always last. */
336         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
337                 if (lsm->order == LSM_ORDER_LAST)
338                         append_ordered_lsm(lsm, "   last");
339         }
340 
341         /* Disable all LSMs not in the ordered list. */
342         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
343                 if (exists_ordered_lsm(lsm))
344                         continue;
345                 set_enabled(lsm, false);
346                 init_debug("%s skipped: %s (not in requested order)\n",
347                            origin, lsm->name);
348         }
349 
350         kfree(sep);
351 }
352 
353 static void __init lsm_early_cred(struct cred *cred);
354 static void __init lsm_early_task(struct task_struct *task);
355 
356 static int lsm_append(const char *new, char **result);
357 
358 static void __init report_lsm_order(void)
359 {
360         struct lsm_info **lsm, *early;
361         int first = 0;
362 
363         pr_info("initializing lsm=");
364 
365         /* Report each enabled LSM name, comma separated. */
366         for (early = __start_early_lsm_info;
367              early < __end_early_lsm_info; early++)
368                 if (is_enabled(early))
369                         pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
370         for (lsm = ordered_lsms; *lsm; lsm++)
371                 if (is_enabled(*lsm))
372                         pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
373 
374         pr_cont("\n");
375 }
376 
377 static void __init ordered_lsm_init(void)
378 {
379         struct lsm_info **lsm;
380 
381         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
382                                GFP_KERNEL);
383 
384         if (chosen_lsm_order) {
385                 if (chosen_major_lsm) {
386                         pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
387                                 chosen_major_lsm, chosen_lsm_order);
388                         chosen_major_lsm = NULL;
389                 }
390                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
391         } else
392                 ordered_lsm_parse(builtin_lsm_order, "builtin");
393 
394         for (lsm = ordered_lsms; *lsm; lsm++)
395                 prepare_lsm(*lsm);
396 
397         report_lsm_order();
398 
399         init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
400         init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
401         init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
402         init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
403         init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
404         init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
405         init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
406         init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
407 
408         /*
409          * Create any kmem_caches needed for blobs
410          */
411         if (blob_sizes.lbs_file)
412                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
413                                                    blob_sizes.lbs_file, 0,
414                                                    SLAB_PANIC, NULL);
415         if (blob_sizes.lbs_inode)
416                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
417                                                     blob_sizes.lbs_inode, 0,
418                                                     SLAB_PANIC, NULL);
419 
420         lsm_early_cred((struct cred *) current->cred);
421         lsm_early_task(current);
422         for (lsm = ordered_lsms; *lsm; lsm++)
423                 initialize_lsm(*lsm);
424 
425         kfree(ordered_lsms);
426 }
427 
428 int __init early_security_init(void)
429 {
430         struct lsm_info *lsm;
431 
432 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
433         INIT_HLIST_HEAD(&security_hook_heads.NAME);
434 #include "linux/lsm_hook_defs.h"
435 #undef LSM_HOOK
436 
437         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
438                 if (!lsm->enabled)
439                         lsm->enabled = &lsm_enabled_true;
440                 prepare_lsm(lsm);
441                 initialize_lsm(lsm);
442         }
443 
444         return 0;
445 }
446 
447 /**
448  * security_init - initializes the security framework
449  *
450  * This should be called early in the kernel initialization sequence.
451  */
452 int __init security_init(void)
453 {
454         struct lsm_info *lsm;
455 
456         init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
457         init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
458         init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
459 
460         /*
461          * Append the names of the early LSM modules now that kmalloc() is
462          * available
463          */
464         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
465                 init_debug("  early started: %s (%s)\n", lsm->name,
466                            is_enabled(lsm) ? "enabled" : "disabled");
467                 if (lsm->enabled)
468                         lsm_append(lsm->name, &lsm_names);
469         }
470 
471         /* Load LSMs in specified order. */
472         ordered_lsm_init();
473 
474         return 0;
475 }
476 
477 /* Save user chosen LSM */
478 static int __init choose_major_lsm(char *str)
479 {
480         chosen_major_lsm = str;
481         return 1;
482 }
483 __setup("security=", choose_major_lsm);
484 
485 /* Explicitly choose LSM initialization order. */
486 static int __init choose_lsm_order(char *str)
487 {
488         chosen_lsm_order = str;
489         return 1;
490 }
491 __setup("lsm=", choose_lsm_order);
492 
493 /* Enable LSM order debugging. */
494 static int __init enable_debug(char *str)
495 {
496         debug = true;
497         return 1;
498 }
499 __setup("lsm.debug", enable_debug);
500 
501 static bool match_last_lsm(const char *list, const char *lsm)
502 {
503         const char *last;
504 
505         if (WARN_ON(!list || !lsm))
506                 return false;
507         last = strrchr(list, ',');
508         if (last)
509                 /* Pass the comma, strcmp() will check for '\0' */
510                 last++;
511         else
512                 last = list;
513         return !strcmp(last, lsm);
514 }
515 
516 static int lsm_append(const char *new, char **result)
517 {
518         char *cp;
519 
520         if (*result == NULL) {
521                 *result = kstrdup(new, GFP_KERNEL);
522                 if (*result == NULL)
523                         return -ENOMEM;
524         } else {
525                 /* Check if it is the last registered name */
526                 if (match_last_lsm(*result, new))
527                         return 0;
528                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
529                 if (cp == NULL)
530                         return -ENOMEM;
531                 kfree(*result);
532                 *result = cp;
533         }
534         return 0;
535 }
536 
537 /**
538  * security_add_hooks - Add a modules hooks to the hook lists.
539  * @hooks: the hooks to add
540  * @count: the number of hooks to add
541  * @lsmid: the identification information for the security module
542  *
543  * Each LSM has to register its hooks with the infrastructure.
544  */
545 void __init security_add_hooks(struct security_hook_list *hooks, int count,
546                                const struct lsm_id *lsmid)
547 {
548         int i;
549 
550         /*
551          * A security module may call security_add_hooks() more
552          * than once during initialization, and LSM initialization
553          * is serialized. Landlock is one such case.
554          * Look at the previous entry, if there is one, for duplication.
555          */
556         if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
557                 if (lsm_active_cnt >= LSM_CONFIG_COUNT)
558                         panic("%s Too many LSMs registered.\n", __func__);
559                 lsm_idlist[lsm_active_cnt++] = lsmid;
560         }
561 
562         for (i = 0; i < count; i++) {
563                 hooks[i].lsmid = lsmid;
564                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
565         }
566 
567         /*
568          * Don't try to append during early_security_init(), we'll come back
569          * and fix this up afterwards.
570          */
571         if (slab_is_available()) {
572                 if (lsm_append(lsmid->name, &lsm_names) < 0)
573                         panic("%s - Cannot get early memory.\n", __func__);
574         }
575 }
576 
577 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
578 {
579         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
580                                             event, data);
581 }
582 EXPORT_SYMBOL(call_blocking_lsm_notifier);
583 
584 int register_blocking_lsm_notifier(struct notifier_block *nb)
585 {
586         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
587                                                 nb);
588 }
589 EXPORT_SYMBOL(register_blocking_lsm_notifier);
590 
591 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
592 {
593         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
594                                                   nb);
595 }
596 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
597 
598 /**
599  * lsm_cred_alloc - allocate a composite cred blob
600  * @cred: the cred that needs a blob
601  * @gfp: allocation type
602  *
603  * Allocate the cred blob for all the modules
604  *
605  * Returns 0, or -ENOMEM if memory can't be allocated.
606  */
607 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
608 {
609         if (blob_sizes.lbs_cred == 0) {
610                 cred->security = NULL;
611                 return 0;
612         }
613 
614         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
615         if (cred->security == NULL)
616                 return -ENOMEM;
617         return 0;
618 }
619 
620 /**
621  * lsm_early_cred - during initialization allocate a composite cred blob
622  * @cred: the cred that needs a blob
623  *
624  * Allocate the cred blob for all the modules
625  */
626 static void __init lsm_early_cred(struct cred *cred)
627 {
628         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
629 
630         if (rc)
631                 panic("%s: Early cred alloc failed.\n", __func__);
632 }
633 
634 /**
635  * lsm_file_alloc - allocate a composite file blob
636  * @file: the file that needs a blob
637  *
638  * Allocate the file blob for all the modules
639  *
640  * Returns 0, or -ENOMEM if memory can't be allocated.
641  */
642 static int lsm_file_alloc(struct file *file)
643 {
644         if (!lsm_file_cache) {
645                 file->f_security = NULL;
646                 return 0;
647         }
648 
649         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
650         if (file->f_security == NULL)
651                 return -ENOMEM;
652         return 0;
653 }
654 
655 /**
656  * lsm_inode_alloc - allocate a composite inode blob
657  * @inode: the inode that needs a blob
658  *
659  * Allocate the inode blob for all the modules
660  *
661  * Returns 0, or -ENOMEM if memory can't be allocated.
662  */
663 int lsm_inode_alloc(struct inode *inode)
664 {
665         if (!lsm_inode_cache) {
666                 inode->i_security = NULL;
667                 return 0;
668         }
669 
670         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
671         if (inode->i_security == NULL)
672                 return -ENOMEM;
673         return 0;
674 }
675 
676 /**
677  * lsm_task_alloc - allocate a composite task blob
678  * @task: the task that needs a blob
679  *
680  * Allocate the task blob for all the modules
681  *
682  * Returns 0, or -ENOMEM if memory can't be allocated.
683  */
684 static int lsm_task_alloc(struct task_struct *task)
685 {
686         if (blob_sizes.lbs_task == 0) {
687                 task->security = NULL;
688                 return 0;
689         }
690 
691         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
692         if (task->security == NULL)
693                 return -ENOMEM;
694         return 0;
695 }
696 
697 /**
698  * lsm_ipc_alloc - allocate a composite ipc blob
699  * @kip: the ipc that needs a blob
700  *
701  * Allocate the ipc blob for all the modules
702  *
703  * Returns 0, or -ENOMEM if memory can't be allocated.
704  */
705 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
706 {
707         if (blob_sizes.lbs_ipc == 0) {
708                 kip->security = NULL;
709                 return 0;
710         }
711 
712         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
713         if (kip->security == NULL)
714                 return -ENOMEM;
715         return 0;
716 }
717 
718 /**
719  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
720  * @mp: the msg_msg that needs a blob
721  *
722  * Allocate the ipc blob for all the modules
723  *
724  * Returns 0, or -ENOMEM if memory can't be allocated.
725  */
726 static int lsm_msg_msg_alloc(struct msg_msg *mp)
727 {
728         if (blob_sizes.lbs_msg_msg == 0) {
729                 mp->security = NULL;
730                 return 0;
731         }
732 
733         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
734         if (mp->security == NULL)
735                 return -ENOMEM;
736         return 0;
737 }
738 
739 /**
740  * lsm_early_task - during initialization allocate a composite task blob
741  * @task: the task that needs a blob
742  *
743  * Allocate the task blob for all the modules
744  */
745 static void __init lsm_early_task(struct task_struct *task)
746 {
747         int rc = lsm_task_alloc(task);
748 
749         if (rc)
750                 panic("%s: Early task alloc failed.\n", __func__);
751 }
752 
753 /**
754  * lsm_superblock_alloc - allocate a composite superblock blob
755  * @sb: the superblock that needs a blob
756  *
757  * Allocate the superblock blob for all the modules
758  *
759  * Returns 0, or -ENOMEM if memory can't be allocated.
760  */
761 static int lsm_superblock_alloc(struct super_block *sb)
762 {
763         if (blob_sizes.lbs_superblock == 0) {
764                 sb->s_security = NULL;
765                 return 0;
766         }
767 
768         sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
769         if (sb->s_security == NULL)
770                 return -ENOMEM;
771         return 0;
772 }
773 
774 /**
775  * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
776  * @uctx: a userspace LSM context to be filled
777  * @uctx_len: available uctx size (input), used uctx size (output)
778  * @val: the new LSM context value
779  * @val_len: the size of the new LSM context value
780  * @id: LSM id
781  * @flags: LSM defined flags
782  *
783  * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
784  * simply calculate the required size to output via @utc_len and return
785  * success.
786  *
787  * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
788  * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
789  */
790 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
791                       void *val, size_t val_len,
792                       u64 id, u64 flags)
793 {
794         struct lsm_ctx *nctx = NULL;
795         size_t nctx_len;
796         int rc = 0;
797 
798         nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
799         if (nctx_len > *uctx_len) {
800                 rc = -E2BIG;
801                 goto out;
802         }
803 
804         /* no buffer - return success/0 and set @uctx_len to the req size */
805         if (!uctx)
806                 goto out;
807 
808         nctx = kzalloc(nctx_len, GFP_KERNEL);
809         if (nctx == NULL) {
810                 rc = -ENOMEM;
811                 goto out;
812         }
813         nctx->id = id;
814         nctx->flags = flags;
815         nctx->len = nctx_len;
816         nctx->ctx_len = val_len;
817         memcpy(nctx->ctx, val, val_len);
818 
819         if (copy_to_user(uctx, nctx, nctx_len))
820                 rc = -EFAULT;
821 
822 out:
823         kfree(nctx);
824         *uctx_len = nctx_len;
825         return rc;
826 }
827 
828 /*
829  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
830  * can be accessed with:
831  *
832  *      LSM_RET_DEFAULT(<hook_name>)
833  *
834  * The macros below define static constants for the default value of each
835  * LSM hook.
836  */
837 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
838 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
839 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
840         static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
841 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
842         DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
843 
844 #include <linux/lsm_hook_defs.h>
845 #undef LSM_HOOK
846 
847 /*
848  * Hook list operation macros.
849  *
850  * call_void_hook:
851  *      This is a hook that does not return a value.
852  *
853  * call_int_hook:
854  *      This is a hook that returns a value.
855  */
856 
857 #define call_void_hook(FUNC, ...)                               \
858         do {                                                    \
859                 struct security_hook_list *P;                   \
860                                                                 \
861                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
862                         P->hook.FUNC(__VA_ARGS__);              \
863         } while (0)
864 
865 #define call_int_hook(FUNC, ...) ({                             \
866         int RC = LSM_RET_DEFAULT(FUNC);                         \
867         do {                                                    \
868                 struct security_hook_list *P;                   \
869                                                                 \
870                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
871                         RC = P->hook.FUNC(__VA_ARGS__);         \
872                         if (RC != LSM_RET_DEFAULT(FUNC))        \
873                                 break;                          \
874                 }                                               \
875         } while (0);                                            \
876         RC;                                                     \
877 })
878 
879 /* Security operations */
880 
881 /**
882  * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
883  * @mgr: task credentials of current binder process
884  *
885  * Check whether @mgr is allowed to be the binder context manager.
886  *
887  * Return: Return 0 if permission is granted.
888  */
889 int security_binder_set_context_mgr(const struct cred *mgr)
890 {
891         return call_int_hook(binder_set_context_mgr, mgr);
892 }
893 
894 /**
895  * security_binder_transaction() - Check if a binder transaction is allowed
896  * @from: sending process
897  * @to: receiving process
898  *
899  * Check whether @from is allowed to invoke a binder transaction call to @to.
900  *
901  * Return: Returns 0 if permission is granted.
902  */
903 int security_binder_transaction(const struct cred *from,
904                                 const struct cred *to)
905 {
906         return call_int_hook(binder_transaction, from, to);
907 }
908 
909 /**
910  * security_binder_transfer_binder() - Check if a binder transfer is allowed
911  * @from: sending process
912  * @to: receiving process
913  *
914  * Check whether @from is allowed to transfer a binder reference to @to.
915  *
916  * Return: Returns 0 if permission is granted.
917  */
918 int security_binder_transfer_binder(const struct cred *from,
919                                     const struct cred *to)
920 {
921         return call_int_hook(binder_transfer_binder, from, to);
922 }
923 
924 /**
925  * security_binder_transfer_file() - Check if a binder file xfer is allowed
926  * @from: sending process
927  * @to: receiving process
928  * @file: file being transferred
929  *
930  * Check whether @from is allowed to transfer @file to @to.
931  *
932  * Return: Returns 0 if permission is granted.
933  */
934 int security_binder_transfer_file(const struct cred *from,
935                                   const struct cred *to, const struct file *file)
936 {
937         return call_int_hook(binder_transfer_file, from, to, file);
938 }
939 
940 /**
941  * security_ptrace_access_check() - Check if tracing is allowed
942  * @child: target process
943  * @mode: PTRACE_MODE flags
944  *
945  * Check permission before allowing the current process to trace the @child
946  * process.  Security modules may also want to perform a process tracing check
947  * during an execve in the set_security or apply_creds hooks of tracing check
948  * during an execve in the bprm_set_creds hook of binprm_security_ops if the
949  * process is being traced and its security attributes would be changed by the
950  * execve.
951  *
952  * Return: Returns 0 if permission is granted.
953  */
954 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
955 {
956         return call_int_hook(ptrace_access_check, child, mode);
957 }
958 
959 /**
960  * security_ptrace_traceme() - Check if tracing is allowed
961  * @parent: tracing process
962  *
963  * Check that the @parent process has sufficient permission to trace the
964  * current process before allowing the current process to present itself to the
965  * @parent process for tracing.
966  *
967  * Return: Returns 0 if permission is granted.
968  */
969 int security_ptrace_traceme(struct task_struct *parent)
970 {
971         return call_int_hook(ptrace_traceme, parent);
972 }
973 
974 /**
975  * security_capget() - Get the capability sets for a process
976  * @target: target process
977  * @effective: effective capability set
978  * @inheritable: inheritable capability set
979  * @permitted: permitted capability set
980  *
981  * Get the @effective, @inheritable, and @permitted capability sets for the
982  * @target process.  The hook may also perform permission checking to determine
983  * if the current process is allowed to see the capability sets of the @target
984  * process.
985  *
986  * Return: Returns 0 if the capability sets were successfully obtained.
987  */
988 int security_capget(const struct task_struct *target,
989                     kernel_cap_t *effective,
990                     kernel_cap_t *inheritable,
991                     kernel_cap_t *permitted)
992 {
993         return call_int_hook(capget, target, effective, inheritable, permitted);
994 }
995 
996 /**
997  * security_capset() - Set the capability sets for a process
998  * @new: new credentials for the target process
999  * @old: current credentials of the target process
1000  * @effective: effective capability set
1001  * @inheritable: inheritable capability set
1002  * @permitted: permitted capability set
1003  *
1004  * Set the @effective, @inheritable, and @permitted capability sets for the
1005  * current process.
1006  *
1007  * Return: Returns 0 and update @new if permission is granted.
1008  */
1009 int security_capset(struct cred *new, const struct cred *old,
1010                     const kernel_cap_t *effective,
1011                     const kernel_cap_t *inheritable,
1012                     const kernel_cap_t *permitted)
1013 {
1014         return call_int_hook(capset, new, old, effective, inheritable,
1015                              permitted);
1016 }
1017 
1018 /**
1019  * security_capable() - Check if a process has the necessary capability
1020  * @cred: credentials to examine
1021  * @ns: user namespace
1022  * @cap: capability requested
1023  * @opts: capability check options
1024  *
1025  * Check whether the @tsk process has the @cap capability in the indicated
1026  * credentials.  @cap contains the capability <include/linux/capability.h>.
1027  * @opts contains options for the capable check <include/linux/security.h>.
1028  *
1029  * Return: Returns 0 if the capability is granted.
1030  */
1031 int security_capable(const struct cred *cred,
1032                      struct user_namespace *ns,
1033                      int cap,
1034                      unsigned int opts)
1035 {
1036         return call_int_hook(capable, cred, ns, cap, opts);
1037 }
1038 
1039 /**
1040  * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1041  * @cmds: commands
1042  * @type: type
1043  * @id: id
1044  * @sb: filesystem
1045  *
1046  * Check whether the quotactl syscall is allowed for this @sb.
1047  *
1048  * Return: Returns 0 if permission is granted.
1049  */
1050 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1051 {
1052         return call_int_hook(quotactl, cmds, type, id, sb);
1053 }
1054 
1055 /**
1056  * security_quota_on() - Check if QUOTAON is allowed for a dentry
1057  * @dentry: dentry
1058  *
1059  * Check whether QUOTAON is allowed for @dentry.
1060  *
1061  * Return: Returns 0 if permission is granted.
1062  */
1063 int security_quota_on(struct dentry *dentry)
1064 {
1065         return call_int_hook(quota_on, dentry);
1066 }
1067 
1068 /**
1069  * security_syslog() - Check if accessing the kernel message ring is allowed
1070  * @type: SYSLOG_ACTION_* type
1071  *
1072  * Check permission before accessing the kernel message ring or changing
1073  * logging to the console.  See the syslog(2) manual page for an explanation of
1074  * the @type values.
1075  *
1076  * Return: Return 0 if permission is granted.
1077  */
1078 int security_syslog(int type)
1079 {
1080         return call_int_hook(syslog, type);
1081 }
1082 
1083 /**
1084  * security_settime64() - Check if changing the system time is allowed
1085  * @ts: new time
1086  * @tz: timezone
1087  *
1088  * Check permission to change the system time, struct timespec64 is defined in
1089  * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1090  *
1091  * Return: Returns 0 if permission is granted.
1092  */
1093 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1094 {
1095         return call_int_hook(settime, ts, tz);
1096 }
1097 
1098 /**
1099  * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1100  * @mm: mm struct
1101  * @pages: number of pages
1102  *
1103  * Check permissions for allocating a new virtual mapping.  If all LSMs return
1104  * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1105  * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1106  * called with cap_sys_admin cleared.
1107  *
1108  * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1109  *         caller.
1110  */
1111 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1112 {
1113         struct security_hook_list *hp;
1114         int cap_sys_admin = 1;
1115         int rc;
1116 
1117         /*
1118          * The module will respond with a positive value if
1119          * it thinks the __vm_enough_memory() call should be
1120          * made with the cap_sys_admin set. If all of the modules
1121          * agree that it should be set it will. If any module
1122          * thinks it should not be set it won't.
1123          */
1124         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
1125                 rc = hp->hook.vm_enough_memory(mm, pages);
1126                 if (rc <= 0) {
1127                         cap_sys_admin = 0;
1128                         break;
1129                 }
1130         }
1131         return __vm_enough_memory(mm, pages, cap_sys_admin);
1132 }
1133 
1134 /**
1135  * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1136  * @bprm: binary program information
1137  *
1138  * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1139  * properly for executing @bprm->file, update the LSM's portion of
1140  * @bprm->cred->security to be what commit_creds needs to install for the new
1141  * program.  This hook may also optionally check permissions (e.g. for
1142  * transitions between security domains).  The hook must set @bprm->secureexec
1143  * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1144  * contains the linux_binprm structure.
1145  *
1146  * Return: Returns 0 if the hook is successful and permission is granted.
1147  */
1148 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1149 {
1150         return call_int_hook(bprm_creds_for_exec, bprm);
1151 }
1152 
1153 /**
1154  * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1155  * @bprm: binary program information
1156  * @file: associated file
1157  *
1158  * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1159  * exec, update @bprm->cred to reflect that change. This is called after
1160  * finding the binary that will be executed without an interpreter.  This
1161  * ensures that the credentials will not be derived from a script that the
1162  * binary will need to reopen, which when reopend may end up being a completely
1163  * different file.  This hook may also optionally check permissions (e.g. for
1164  * transitions between security domains).  The hook must set @bprm->secureexec
1165  * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1166  * hook must add to @bprm->per_clear any personality flags that should be
1167  * cleared from current->personality.  @bprm contains the linux_binprm
1168  * structure.
1169  *
1170  * Return: Returns 0 if the hook is successful and permission is granted.
1171  */
1172 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1173 {
1174         return call_int_hook(bprm_creds_from_file, bprm, file);
1175 }
1176 
1177 /**
1178  * security_bprm_check() - Mediate binary handler search
1179  * @bprm: binary program information
1180  *
1181  * This hook mediates the point when a search for a binary handler will begin.
1182  * It allows a check against the @bprm->cred->security value which was set in
1183  * the preceding creds_for_exec call.  The argv list and envp list are reliably
1184  * available in @bprm.  This hook may be called multiple times during a single
1185  * execve.  @bprm contains the linux_binprm structure.
1186  *
1187  * Return: Returns 0 if the hook is successful and permission is granted.
1188  */
1189 int security_bprm_check(struct linux_binprm *bprm)
1190 {
1191         return call_int_hook(bprm_check_security, bprm);
1192 }
1193 
1194 /**
1195  * security_bprm_committing_creds() - Install creds for a process during exec()
1196  * @bprm: binary program information
1197  *
1198  * Prepare to install the new security attributes of a process being
1199  * transformed by an execve operation, based on the old credentials pointed to
1200  * by @current->cred and the information set in @bprm->cred by the
1201  * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1202  * hook is a good place to perform state changes on the process such as closing
1203  * open file descriptors to which access will no longer be granted when the
1204  * attributes are changed.  This is called immediately before commit_creds().
1205  */
1206 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1207 {
1208         call_void_hook(bprm_committing_creds, bprm);
1209 }
1210 
1211 /**
1212  * security_bprm_committed_creds() - Tidy up after cred install during exec()
1213  * @bprm: binary program information
1214  *
1215  * Tidy up after the installation of the new security attributes of a process
1216  * being transformed by an execve operation.  The new credentials have, by this
1217  * point, been set to @current->cred.  @bprm points to the linux_binprm
1218  * structure.  This hook is a good place to perform state changes on the
1219  * process such as clearing out non-inheritable signal state.  This is called
1220  * immediately after commit_creds().
1221  */
1222 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1223 {
1224         call_void_hook(bprm_committed_creds, bprm);
1225 }
1226 
1227 /**
1228  * security_fs_context_submount() - Initialise fc->security
1229  * @fc: new filesystem context
1230  * @reference: dentry reference for submount/remount
1231  *
1232  * Fill out the ->security field for a new fs_context.
1233  *
1234  * Return: Returns 0 on success or negative error code on failure.
1235  */
1236 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1237 {
1238         return call_int_hook(fs_context_submount, fc, reference);
1239 }
1240 
1241 /**
1242  * security_fs_context_dup() - Duplicate a fs_context LSM blob
1243  * @fc: destination filesystem context
1244  * @src_fc: source filesystem context
1245  *
1246  * Allocate and attach a security structure to sc->security.  This pointer is
1247  * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1248  * @src_fc indicates the original filesystem context.
1249  *
1250  * Return: Returns 0 on success or a negative error code on failure.
1251  */
1252 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1253 {
1254         return call_int_hook(fs_context_dup, fc, src_fc);
1255 }
1256 
1257 /**
1258  * security_fs_context_parse_param() - Configure a filesystem context
1259  * @fc: filesystem context
1260  * @param: filesystem parameter
1261  *
1262  * Userspace provided a parameter to configure a superblock.  The LSM can
1263  * consume the parameter or return it to the caller for use elsewhere.
1264  *
1265  * Return: If the parameter is used by the LSM it should return 0, if it is
1266  *         returned to the caller -ENOPARAM is returned, otherwise a negative
1267  *         error code is returned.
1268  */
1269 int security_fs_context_parse_param(struct fs_context *fc,
1270                                     struct fs_parameter *param)
1271 {
1272         struct security_hook_list *hp;
1273         int trc;
1274         int rc = -ENOPARAM;
1275 
1276         hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
1277                              list) {
1278                 trc = hp->hook.fs_context_parse_param(fc, param);
1279                 if (trc == 0)
1280                         rc = 0;
1281                 else if (trc != -ENOPARAM)
1282                         return trc;
1283         }
1284         return rc;
1285 }
1286 
1287 /**
1288  * security_sb_alloc() - Allocate a super_block LSM blob
1289  * @sb: filesystem superblock
1290  *
1291  * Allocate and attach a security structure to the sb->s_security field.  The
1292  * s_security field is initialized to NULL when the structure is allocated.
1293  * @sb contains the super_block structure to be modified.
1294  *
1295  * Return: Returns 0 if operation was successful.
1296  */
1297 int security_sb_alloc(struct super_block *sb)
1298 {
1299         int rc = lsm_superblock_alloc(sb);
1300 
1301         if (unlikely(rc))
1302                 return rc;
1303         rc = call_int_hook(sb_alloc_security, sb);
1304         if (unlikely(rc))
1305                 security_sb_free(sb);
1306         return rc;
1307 }
1308 
1309 /**
1310  * security_sb_delete() - Release super_block LSM associated objects
1311  * @sb: filesystem superblock
1312  *
1313  * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1314  * super_block structure being released.
1315  */
1316 void security_sb_delete(struct super_block *sb)
1317 {
1318         call_void_hook(sb_delete, sb);
1319 }
1320 
1321 /**
1322  * security_sb_free() - Free a super_block LSM blob
1323  * @sb: filesystem superblock
1324  *
1325  * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1326  * structure to be modified.
1327  */
1328 void security_sb_free(struct super_block *sb)
1329 {
1330         call_void_hook(sb_free_security, sb);
1331         kfree(sb->s_security);
1332         sb->s_security = NULL;
1333 }
1334 
1335 /**
1336  * security_free_mnt_opts() - Free memory associated with mount options
1337  * @mnt_opts: LSM processed mount options
1338  *
1339  * Free memory associated with @mnt_ops.
1340  */
1341 void security_free_mnt_opts(void **mnt_opts)
1342 {
1343         if (!*mnt_opts)
1344                 return;
1345         call_void_hook(sb_free_mnt_opts, *mnt_opts);
1346         *mnt_opts = NULL;
1347 }
1348 EXPORT_SYMBOL(security_free_mnt_opts);
1349 
1350 /**
1351  * security_sb_eat_lsm_opts() - Consume LSM mount options
1352  * @options: mount options
1353  * @mnt_opts: LSM processed mount options
1354  *
1355  * Eat (scan @options) and save them in @mnt_opts.
1356  *
1357  * Return: Returns 0 on success, negative values on failure.
1358  */
1359 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1360 {
1361         return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1362 }
1363 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1364 
1365 /**
1366  * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1367  * @sb: filesystem superblock
1368  * @mnt_opts: new mount options
1369  *
1370  * Determine if the new mount options in @mnt_opts are allowed given the
1371  * existing mounted filesystem at @sb.  @sb superblock being compared.
1372  *
1373  * Return: Returns 0 if options are compatible.
1374  */
1375 int security_sb_mnt_opts_compat(struct super_block *sb,
1376                                 void *mnt_opts)
1377 {
1378         return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1379 }
1380 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1381 
1382 /**
1383  * security_sb_remount() - Verify no incompatible mount changes during remount
1384  * @sb: filesystem superblock
1385  * @mnt_opts: (re)mount options
1386  *
1387  * Extracts security system specific mount options and verifies no changes are
1388  * being made to those options.
1389  *
1390  * Return: Returns 0 if permission is granted.
1391  */
1392 int security_sb_remount(struct super_block *sb,
1393                         void *mnt_opts)
1394 {
1395         return call_int_hook(sb_remount, sb, mnt_opts);
1396 }
1397 EXPORT_SYMBOL(security_sb_remount);
1398 
1399 /**
1400  * security_sb_kern_mount() - Check if a kernel mount is allowed
1401  * @sb: filesystem superblock
1402  *
1403  * Mount this @sb if allowed by permissions.
1404  *
1405  * Return: Returns 0 if permission is granted.
1406  */
1407 int security_sb_kern_mount(const struct super_block *sb)
1408 {
1409         return call_int_hook(sb_kern_mount, sb);
1410 }
1411 
1412 /**
1413  * security_sb_show_options() - Output the mount options for a superblock
1414  * @m: output file
1415  * @sb: filesystem superblock
1416  *
1417  * Show (print on @m) mount options for this @sb.
1418  *
1419  * Return: Returns 0 on success, negative values on failure.
1420  */
1421 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1422 {
1423         return call_int_hook(sb_show_options, m, sb);
1424 }
1425 
1426 /**
1427  * security_sb_statfs() - Check if accessing fs stats is allowed
1428  * @dentry: superblock handle
1429  *
1430  * Check permission before obtaining filesystem statistics for the @mnt
1431  * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1432  *
1433  * Return: Returns 0 if permission is granted.
1434  */
1435 int security_sb_statfs(struct dentry *dentry)
1436 {
1437         return call_int_hook(sb_statfs, dentry);
1438 }
1439 
1440 /**
1441  * security_sb_mount() - Check permission for mounting a filesystem
1442  * @dev_name: filesystem backing device
1443  * @path: mount point
1444  * @type: filesystem type
1445  * @flags: mount flags
1446  * @data: filesystem specific data
1447  *
1448  * Check permission before an object specified by @dev_name is mounted on the
1449  * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1450  * device if the file system type requires a device.  For a remount
1451  * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1452  * (@flags & MS_BIND), @dev_name identifies the pathname of the object being
1453  * mounted.
1454  *
1455  * Return: Returns 0 if permission is granted.
1456  */
1457 int security_sb_mount(const char *dev_name, const struct path *path,
1458                       const char *type, unsigned long flags, void *data)
1459 {
1460         return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1461 }
1462 
1463 /**
1464  * security_sb_umount() - Check permission for unmounting a filesystem
1465  * @mnt: mounted filesystem
1466  * @flags: unmount flags
1467  *
1468  * Check permission before the @mnt file system is unmounted.
1469  *
1470  * Return: Returns 0 if permission is granted.
1471  */
1472 int security_sb_umount(struct vfsmount *mnt, int flags)
1473 {
1474         return call_int_hook(sb_umount, mnt, flags);
1475 }
1476 
1477 /**
1478  * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1479  * @old_path: new location for current rootfs
1480  * @new_path: location of the new rootfs
1481  *
1482  * Check permission before pivoting the root filesystem.
1483  *
1484  * Return: Returns 0 if permission is granted.
1485  */
1486 int security_sb_pivotroot(const struct path *old_path,
1487                           const struct path *new_path)
1488 {
1489         return call_int_hook(sb_pivotroot, old_path, new_path);
1490 }
1491 
1492 /**
1493  * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1494  * @sb: filesystem superblock
1495  * @mnt_opts: binary mount options
1496  * @kern_flags: kernel flags (in)
1497  * @set_kern_flags: kernel flags (out)
1498  *
1499  * Set the security relevant mount options used for a superblock.
1500  *
1501  * Return: Returns 0 on success, error on failure.
1502  */
1503 int security_sb_set_mnt_opts(struct super_block *sb,
1504                              void *mnt_opts,
1505                              unsigned long kern_flags,
1506                              unsigned long *set_kern_flags)
1507 {
1508         struct security_hook_list *hp;
1509         int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1510 
1511         hlist_for_each_entry(hp, &security_hook_heads.sb_set_mnt_opts,
1512                              list) {
1513                 rc = hp->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1514                                               set_kern_flags);
1515                 if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1516                         break;
1517         }
1518         return rc;
1519 }
1520 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1521 
1522 /**
1523  * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1524  * @oldsb: source superblock
1525  * @newsb: destination superblock
1526  * @kern_flags: kernel flags (in)
1527  * @set_kern_flags: kernel flags (out)
1528  *
1529  * Copy all security options from a given superblock to another.
1530  *
1531  * Return: Returns 0 on success, error on failure.
1532  */
1533 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1534                                struct super_block *newsb,
1535                                unsigned long kern_flags,
1536                                unsigned long *set_kern_flags)
1537 {
1538         return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1539                              kern_flags, set_kern_flags);
1540 }
1541 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1542 
1543 /**
1544  * security_move_mount() - Check permissions for moving a mount
1545  * @from_path: source mount point
1546  * @to_path: destination mount point
1547  *
1548  * Check permission before a mount is moved.
1549  *
1550  * Return: Returns 0 if permission is granted.
1551  */
1552 int security_move_mount(const struct path *from_path,
1553                         const struct path *to_path)
1554 {
1555         return call_int_hook(move_mount, from_path, to_path);
1556 }
1557 
1558 /**
1559  * security_path_notify() - Check if setting a watch is allowed
1560  * @path: file path
1561  * @mask: event mask
1562  * @obj_type: file path type
1563  *
1564  * Check permissions before setting a watch on events as defined by @mask, on
1565  * an object at @path, whose type is defined by @obj_type.
1566  *
1567  * Return: Returns 0 if permission is granted.
1568  */
1569 int security_path_notify(const struct path *path, u64 mask,
1570                          unsigned int obj_type)
1571 {
1572         return call_int_hook(path_notify, path, mask, obj_type);
1573 }
1574 
1575 /**
1576  * security_inode_alloc() - Allocate an inode LSM blob
1577  * @inode: the inode
1578  *
1579  * Allocate and attach a security structure to @inode->i_security.  The
1580  * i_security field is initialized to NULL when the inode structure is
1581  * allocated.
1582  *
1583  * Return: Return 0 if operation was successful.
1584  */
1585 int security_inode_alloc(struct inode *inode)
1586 {
1587         int rc = lsm_inode_alloc(inode);
1588 
1589         if (unlikely(rc))
1590                 return rc;
1591         rc = call_int_hook(inode_alloc_security, inode);
1592         if (unlikely(rc))
1593                 security_inode_free(inode);
1594         return rc;
1595 }
1596 
1597 static void inode_free_by_rcu(struct rcu_head *head)
1598 {
1599         /*
1600          * The rcu head is at the start of the inode blob
1601          */
1602         kmem_cache_free(lsm_inode_cache, head);
1603 }
1604 
1605 /**
1606  * security_inode_free() - Free an inode's LSM blob
1607  * @inode: the inode
1608  *
1609  * Deallocate the inode security structure and set @inode->i_security to NULL.
1610  */
1611 void security_inode_free(struct inode *inode)
1612 {
1613         call_void_hook(inode_free_security, inode);
1614         /*
1615          * The inode may still be referenced in a path walk and
1616          * a call to security_inode_permission() can be made
1617          * after inode_free_security() is called. Ideally, the VFS
1618          * wouldn't do this, but fixing that is a much harder
1619          * job. For now, simply free the i_security via RCU, and
1620          * leave the current inode->i_security pointer intact.
1621          * The inode will be freed after the RCU grace period too.
1622          */
1623         if (inode->i_security)
1624                 call_rcu((struct rcu_head *)inode->i_security,
1625                          inode_free_by_rcu);
1626 }
1627 
1628 /**
1629  * security_dentry_init_security() - Perform dentry initialization
1630  * @dentry: the dentry to initialize
1631  * @mode: mode used to determine resource type
1632  * @name: name of the last path component
1633  * @xattr_name: name of the security/LSM xattr
1634  * @ctx: pointer to the resulting LSM context
1635  * @ctxlen: length of @ctx
1636  *
1637  * Compute a context for a dentry as the inode is not yet available since NFSv4
1638  * has no label backed by an EA anyway.  It is important to note that
1639  * @xattr_name does not need to be free'd by the caller, it is a static string.
1640  *
1641  * Return: Returns 0 on success, negative values on failure.
1642  */
1643 int security_dentry_init_security(struct dentry *dentry, int mode,
1644                                   const struct qstr *name,
1645                                   const char **xattr_name, void **ctx,
1646                                   u32 *ctxlen)
1647 {
1648         return call_int_hook(dentry_init_security, dentry, mode, name,
1649                              xattr_name, ctx, ctxlen);
1650 }
1651 EXPORT_SYMBOL(security_dentry_init_security);
1652 
1653 /**
1654  * security_dentry_create_files_as() - Perform dentry initialization
1655  * @dentry: the dentry to initialize
1656  * @mode: mode used to determine resource type
1657  * @name: name of the last path component
1658  * @old: creds to use for LSM context calculations
1659  * @new: creds to modify
1660  *
1661  * Compute a context for a dentry as the inode is not yet available and set
1662  * that context in passed in creds so that new files are created using that
1663  * context. Context is calculated using the passed in creds and not the creds
1664  * of the caller.
1665  *
1666  * Return: Returns 0 on success, error on failure.
1667  */
1668 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1669                                     struct qstr *name,
1670                                     const struct cred *old, struct cred *new)
1671 {
1672         return call_int_hook(dentry_create_files_as, dentry, mode,
1673                              name, old, new);
1674 }
1675 EXPORT_SYMBOL(security_dentry_create_files_as);
1676 
1677 /**
1678  * security_inode_init_security() - Initialize an inode's LSM context
1679  * @inode: the inode
1680  * @dir: parent directory
1681  * @qstr: last component of the pathname
1682  * @initxattrs: callback function to write xattrs
1683  * @fs_data: filesystem specific data
1684  *
1685  * Obtain the security attribute name suffix and value to set on a newly
1686  * created inode and set up the incore security field for the new inode.  This
1687  * hook is called by the fs code as part of the inode creation transaction and
1688  * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1689  * hooks called by the VFS.
1690  *
1691  * The hook function is expected to populate the xattrs array, by calling
1692  * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1693  * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1694  * slot, the hook function should set ->name to the attribute name suffix
1695  * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1696  * to the attribute value, to set ->value_len to the length of the value.  If
1697  * the security module does not use security attributes or does not wish to put
1698  * a security attribute on this particular inode, then it should return
1699  * -EOPNOTSUPP to skip this processing.
1700  *
1701  * Return: Returns 0 if the LSM successfully initialized all of the inode
1702  *         security attributes that are required, negative values otherwise.
1703  */
1704 int security_inode_init_security(struct inode *inode, struct inode *dir,
1705                                  const struct qstr *qstr,
1706                                  const initxattrs initxattrs, void *fs_data)
1707 {
1708         struct security_hook_list *hp;
1709         struct xattr *new_xattrs = NULL;
1710         int ret = -EOPNOTSUPP, xattr_count = 0;
1711 
1712         if (unlikely(IS_PRIVATE(inode)))
1713                 return 0;
1714 
1715         if (!blob_sizes.lbs_xattr_count)
1716                 return 0;
1717 
1718         if (initxattrs) {
1719                 /* Allocate +1 as terminator. */
1720                 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1721                                      sizeof(*new_xattrs), GFP_NOFS);
1722                 if (!new_xattrs)
1723                         return -ENOMEM;
1724         }
1725 
1726         hlist_for_each_entry(hp, &security_hook_heads.inode_init_security,
1727                              list) {
1728                 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1729                                                   &xattr_count);
1730                 if (ret && ret != -EOPNOTSUPP)
1731                         goto out;
1732                 /*
1733                  * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1734                  * means that the LSM is not willing to provide an xattr, not
1735                  * that it wants to signal an error. Thus, continue to invoke
1736                  * the remaining LSMs.
1737                  */
1738         }
1739 
1740         /* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1741         if (!xattr_count)
1742                 goto out;
1743 
1744         ret = initxattrs(inode, new_xattrs, fs_data);
1745 out:
1746         for (; xattr_count > 0; xattr_count--)
1747                 kfree(new_xattrs[xattr_count - 1].value);
1748         kfree(new_xattrs);
1749         return (ret == -EOPNOTSUPP) ? 0 : ret;
1750 }
1751 EXPORT_SYMBOL(security_inode_init_security);
1752 
1753 /**
1754  * security_inode_init_security_anon() - Initialize an anonymous inode
1755  * @inode: the inode
1756  * @name: the anonymous inode class
1757  * @context_inode: an optional related inode
1758  *
1759  * Set up the incore security field for the new anonymous inode and return
1760  * whether the inode creation is permitted by the security module or not.
1761  *
1762  * Return: Returns 0 on success, -EACCES if the security module denies the
1763  * creation of this inode, or another -errno upon other errors.
1764  */
1765 int security_inode_init_security_anon(struct inode *inode,
1766                                       const struct qstr *name,
1767                                       const struct inode *context_inode)
1768 {
1769         return call_int_hook(inode_init_security_anon, inode, name,
1770                              context_inode);
1771 }
1772 
1773 #ifdef CONFIG_SECURITY_PATH
1774 /**
1775  * security_path_mknod() - Check if creating a special file is allowed
1776  * @dir: parent directory
1777  * @dentry: new file
1778  * @mode: new file mode
1779  * @dev: device number
1780  *
1781  * Check permissions when creating a file. Note that this hook is called even
1782  * if mknod operation is being done for a regular file.
1783  *
1784  * Return: Returns 0 if permission is granted.
1785  */
1786 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1787                         umode_t mode, unsigned int dev)
1788 {
1789         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1790                 return 0;
1791         return call_int_hook(path_mknod, dir, dentry, mode, dev);
1792 }
1793 EXPORT_SYMBOL(security_path_mknod);
1794 
1795 /**
1796  * security_path_post_mknod() - Update inode security after reg file creation
1797  * @idmap: idmap of the mount
1798  * @dentry: new file
1799  *
1800  * Update inode security field after a regular file has been created.
1801  */
1802 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1803 {
1804         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1805                 return;
1806         call_void_hook(path_post_mknod, idmap, dentry);
1807 }
1808 
1809 /**
1810  * security_path_mkdir() - Check if creating a new directory is allowed
1811  * @dir: parent directory
1812  * @dentry: new directory
1813  * @mode: new directory mode
1814  *
1815  * Check permissions to create a new directory in the existing directory.
1816  *
1817  * Return: Returns 0 if permission is granted.
1818  */
1819 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1820                         umode_t mode)
1821 {
1822         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1823                 return 0;
1824         return call_int_hook(path_mkdir, dir, dentry, mode);
1825 }
1826 EXPORT_SYMBOL(security_path_mkdir);
1827 
1828 /**
1829  * security_path_rmdir() - Check if removing a directory is allowed
1830  * @dir: parent directory
1831  * @dentry: directory to remove
1832  *
1833  * Check the permission to remove a directory.
1834  *
1835  * Return: Returns 0 if permission is granted.
1836  */
1837 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1838 {
1839         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1840                 return 0;
1841         return call_int_hook(path_rmdir, dir, dentry);
1842 }
1843 
1844 /**
1845  * security_path_unlink() - Check if removing a hard link is allowed
1846  * @dir: parent directory
1847  * @dentry: file
1848  *
1849  * Check the permission to remove a hard link to a file.
1850  *
1851  * Return: Returns 0 if permission is granted.
1852  */
1853 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1854 {
1855         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1856                 return 0;
1857         return call_int_hook(path_unlink, dir, dentry);
1858 }
1859 EXPORT_SYMBOL(security_path_unlink);
1860 
1861 /**
1862  * security_path_symlink() - Check if creating a symbolic link is allowed
1863  * @dir: parent directory
1864  * @dentry: symbolic link
1865  * @old_name: file pathname
1866  *
1867  * Check the permission to create a symbolic link to a file.
1868  *
1869  * Return: Returns 0 if permission is granted.
1870  */
1871 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1872                           const char *old_name)
1873 {
1874         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1875                 return 0;
1876         return call_int_hook(path_symlink, dir, dentry, old_name);
1877 }
1878 
1879 /**
1880  * security_path_link - Check if creating a hard link is allowed
1881  * @old_dentry: existing file
1882  * @new_dir: new parent directory
1883  * @new_dentry: new link
1884  *
1885  * Check permission before creating a new hard link to a file.
1886  *
1887  * Return: Returns 0 if permission is granted.
1888  */
1889 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1890                        struct dentry *new_dentry)
1891 {
1892         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1893                 return 0;
1894         return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1895 }
1896 
1897 /**
1898  * security_path_rename() - Check if renaming a file is allowed
1899  * @old_dir: parent directory of the old file
1900  * @old_dentry: the old file
1901  * @new_dir: parent directory of the new file
1902  * @new_dentry: the new file
1903  * @flags: flags
1904  *
1905  * Check for permission to rename a file or directory.
1906  *
1907  * Return: Returns 0 if permission is granted.
1908  */
1909 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1910                          const struct path *new_dir, struct dentry *new_dentry,
1911                          unsigned int flags)
1912 {
1913         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1914                      (d_is_positive(new_dentry) &&
1915                       IS_PRIVATE(d_backing_inode(new_dentry)))))
1916                 return 0;
1917 
1918         return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
1919                              new_dentry, flags);
1920 }
1921 EXPORT_SYMBOL(security_path_rename);
1922 
1923 /**
1924  * security_path_truncate() - Check if truncating a file is allowed
1925  * @path: file
1926  *
1927  * Check permission before truncating the file indicated by path.  Note that
1928  * truncation permissions may also be checked based on already opened files,
1929  * using the security_file_truncate() hook.
1930  *
1931  * Return: Returns 0 if permission is granted.
1932  */
1933 int security_path_truncate(const struct path *path)
1934 {
1935         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1936                 return 0;
1937         return call_int_hook(path_truncate, path);
1938 }
1939 
1940 /**
1941  * security_path_chmod() - Check if changing the file's mode is allowed
1942  * @path: file
1943  * @mode: new mode
1944  *
1945  * Check for permission to change a mode of the file @path. The new mode is
1946  * specified in @mode which is a bitmask of constants from
1947  * <include/uapi/linux/stat.h>.
1948  *
1949  * Return: Returns 0 if permission is granted.
1950  */
1951 int security_path_chmod(const struct path *path, umode_t mode)
1952 {
1953         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1954                 return 0;
1955         return call_int_hook(path_chmod, path, mode);
1956 }
1957 
1958 /**
1959  * security_path_chown() - Check if changing the file's owner/group is allowed
1960  * @path: file
1961  * @uid: file owner
1962  * @gid: file group
1963  *
1964  * Check for permission to change owner/group of a file or directory.
1965  *
1966  * Return: Returns 0 if permission is granted.
1967  */
1968 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1969 {
1970         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1971                 return 0;
1972         return call_int_hook(path_chown, path, uid, gid);
1973 }
1974 
1975 /**
1976  * security_path_chroot() - Check if changing the root directory is allowed
1977  * @path: directory
1978  *
1979  * Check for permission to change root directory.
1980  *
1981  * Return: Returns 0 if permission is granted.
1982  */
1983 int security_path_chroot(const struct path *path)
1984 {
1985         return call_int_hook(path_chroot, path);
1986 }
1987 #endif /* CONFIG_SECURITY_PATH */
1988 
1989 /**
1990  * security_inode_create() - Check if creating a file is allowed
1991  * @dir: the parent directory
1992  * @dentry: the file being created
1993  * @mode: requested file mode
1994  *
1995  * Check permission to create a regular file.
1996  *
1997  * Return: Returns 0 if permission is granted.
1998  */
1999 int security_inode_create(struct inode *dir, struct dentry *dentry,
2000                           umode_t mode)
2001 {
2002         if (unlikely(IS_PRIVATE(dir)))
2003                 return 0;
2004         return call_int_hook(inode_create, dir, dentry, mode);
2005 }
2006 EXPORT_SYMBOL_GPL(security_inode_create);
2007 
2008 /**
2009  * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2010  * @idmap: idmap of the mount
2011  * @inode: inode of the new tmpfile
2012  *
2013  * Update inode security data after a tmpfile has been created.
2014  */
2015 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2016                                         struct inode *inode)
2017 {
2018         if (unlikely(IS_PRIVATE(inode)))
2019                 return;
2020         call_void_hook(inode_post_create_tmpfile, idmap, inode);
2021 }
2022 
2023 /**
2024  * security_inode_link() - Check if creating a hard link is allowed
2025  * @old_dentry: existing file
2026  * @dir: new parent directory
2027  * @new_dentry: new link
2028  *
2029  * Check permission before creating a new hard link to a file.
2030  *
2031  * Return: Returns 0 if permission is granted.
2032  */
2033 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2034                         struct dentry *new_dentry)
2035 {
2036         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2037                 return 0;
2038         return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2039 }
2040 
2041 /**
2042  * security_inode_unlink() - Check if removing a hard link is allowed
2043  * @dir: parent directory
2044  * @dentry: file
2045  *
2046  * Check the permission to remove a hard link to a file.
2047  *
2048  * Return: Returns 0 if permission is granted.
2049  */
2050 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2051 {
2052         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2053                 return 0;
2054         return call_int_hook(inode_unlink, dir, dentry);
2055 }
2056 
2057 /**
2058  * security_inode_symlink() - Check if creating a symbolic link is allowed
2059  * @dir: parent directory
2060  * @dentry: symbolic link
2061  * @old_name: existing filename
2062  *
2063  * Check the permission to create a symbolic link to a file.
2064  *
2065  * Return: Returns 0 if permission is granted.
2066  */
2067 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2068                            const char *old_name)
2069 {
2070         if (unlikely(IS_PRIVATE(dir)))
2071                 return 0;
2072         return call_int_hook(inode_symlink, dir, dentry, old_name);
2073 }
2074 
2075 /**
2076  * security_inode_mkdir() - Check if creation a new director is allowed
2077  * @dir: parent directory
2078  * @dentry: new directory
2079  * @mode: new directory mode
2080  *
2081  * Check permissions to create a new directory in the existing directory
2082  * associated with inode structure @dir.
2083  *
2084  * Return: Returns 0 if permission is granted.
2085  */
2086 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2087 {
2088         if (unlikely(IS_PRIVATE(dir)))
2089                 return 0;
2090         return call_int_hook(inode_mkdir, dir, dentry, mode);
2091 }
2092 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2093 
2094 /**
2095  * security_inode_rmdir() - Check if removing a directory is allowed
2096  * @dir: parent directory
2097  * @dentry: directory to be removed
2098  *
2099  * Check the permission to remove a directory.
2100  *
2101  * Return: Returns 0 if permission is granted.
2102  */
2103 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2104 {
2105         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2106                 return 0;
2107         return call_int_hook(inode_rmdir, dir, dentry);
2108 }
2109 
2110 /**
2111  * security_inode_mknod() - Check if creating a special file is allowed
2112  * @dir: parent directory
2113  * @dentry: new file
2114  * @mode: new file mode
2115  * @dev: device number
2116  *
2117  * Check permissions when creating a special file (or a socket or a fifo file
2118  * created via the mknod system call).  Note that if mknod operation is being
2119  * done for a regular file, then the create hook will be called and not this
2120  * hook.
2121  *
2122  * Return: Returns 0 if permission is granted.
2123  */
2124 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2125                          umode_t mode, dev_t dev)
2126 {
2127         if (unlikely(IS_PRIVATE(dir)))
2128                 return 0;
2129         return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2130 }
2131 
2132 /**
2133  * security_inode_rename() - Check if renaming a file is allowed
2134  * @old_dir: parent directory of the old file
2135  * @old_dentry: the old file
2136  * @new_dir: parent directory of the new file
2137  * @new_dentry: the new file
2138  * @flags: flags
2139  *
2140  * Check for permission to rename a file or directory.
2141  *
2142  * Return: Returns 0 if permission is granted.
2143  */
2144 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2145                           struct inode *new_dir, struct dentry *new_dentry,
2146                           unsigned int flags)
2147 {
2148         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2149                      (d_is_positive(new_dentry) &&
2150                       IS_PRIVATE(d_backing_inode(new_dentry)))))
2151                 return 0;
2152 
2153         if (flags & RENAME_EXCHANGE) {
2154                 int err = call_int_hook(inode_rename, new_dir, new_dentry,
2155                                         old_dir, old_dentry);
2156                 if (err)
2157                         return err;
2158         }
2159 
2160         return call_int_hook(inode_rename, old_dir, old_dentry,
2161                              new_dir, new_dentry);
2162 }
2163 
2164 /**
2165  * security_inode_readlink() - Check if reading a symbolic link is allowed
2166  * @dentry: link
2167  *
2168  * Check the permission to read the symbolic link.
2169  *
2170  * Return: Returns 0 if permission is granted.
2171  */
2172 int security_inode_readlink(struct dentry *dentry)
2173 {
2174         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2175                 return 0;
2176         return call_int_hook(inode_readlink, dentry);
2177 }
2178 
2179 /**
2180  * security_inode_follow_link() - Check if following a symbolic link is allowed
2181  * @dentry: link dentry
2182  * @inode: link inode
2183  * @rcu: true if in RCU-walk mode
2184  *
2185  * Check permission to follow a symbolic link when looking up a pathname.  If
2186  * @rcu is true, @inode is not stable.
2187  *
2188  * Return: Returns 0 if permission is granted.
2189  */
2190 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2191                                bool rcu)
2192 {
2193         if (unlikely(IS_PRIVATE(inode)))
2194                 return 0;
2195         return call_int_hook(inode_follow_link, dentry, inode, rcu);
2196 }
2197 
2198 /**
2199  * security_inode_permission() - Check if accessing an inode is allowed
2200  * @inode: inode
2201  * @mask: access mask
2202  *
2203  * Check permission before accessing an inode.  This hook is called by the
2204  * existing Linux permission function, so a security module can use it to
2205  * provide additional checking for existing Linux permission checks.  Notice
2206  * that this hook is called when a file is opened (as well as many other
2207  * operations), whereas the file_security_ops permission hook is called when
2208  * the actual read/write operations are performed.
2209  *
2210  * Return: Returns 0 if permission is granted.
2211  */
2212 int security_inode_permission(struct inode *inode, int mask)
2213 {
2214         if (unlikely(IS_PRIVATE(inode)))
2215                 return 0;
2216         return call_int_hook(inode_permission, inode, mask);
2217 }
2218 
2219 /**
2220  * security_inode_setattr() - Check if setting file attributes is allowed
2221  * @idmap: idmap of the mount
2222  * @dentry: file
2223  * @attr: new attributes
2224  *
2225  * Check permission before setting file attributes.  Note that the kernel call
2226  * to notify_change is performed from several locations, whenever file
2227  * attributes change (such as when a file is truncated, chown/chmod operations,
2228  * transferring disk quotas, etc).
2229  *
2230  * Return: Returns 0 if permission is granted.
2231  */
2232 int security_inode_setattr(struct mnt_idmap *idmap,
2233                            struct dentry *dentry, struct iattr *attr)
2234 {
2235         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2236                 return 0;
2237         return call_int_hook(inode_setattr, idmap, dentry, attr);
2238 }
2239 EXPORT_SYMBOL_GPL(security_inode_setattr);
2240 
2241 /**
2242  * security_inode_post_setattr() - Update the inode after a setattr operation
2243  * @idmap: idmap of the mount
2244  * @dentry: file
2245  * @ia_valid: file attributes set
2246  *
2247  * Update inode security field after successful setting file attributes.
2248  */
2249 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2250                                  int ia_valid)
2251 {
2252         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2253                 return;
2254         call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2255 }
2256 
2257 /**
2258  * security_inode_getattr() - Check if getting file attributes is allowed
2259  * @path: file
2260  *
2261  * Check permission before obtaining file attributes.
2262  *
2263  * Return: Returns 0 if permission is granted.
2264  */
2265 int security_inode_getattr(const struct path *path)
2266 {
2267         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2268                 return 0;
2269         return call_int_hook(inode_getattr, path);
2270 }
2271 
2272 /**
2273  * security_inode_setxattr() - Check if setting file xattrs is allowed
2274  * @idmap: idmap of the mount
2275  * @dentry: file
2276  * @name: xattr name
2277  * @value: xattr value
2278  * @size: size of xattr value
2279  * @flags: flags
2280  *
2281  * This hook performs the desired permission checks before setting the extended
2282  * attributes (xattrs) on @dentry.  It is important to note that we have some
2283  * additional logic before the main LSM implementation calls to detect if we
2284  * need to perform an additional capability check at the LSM layer.
2285  *
2286  * Normally we enforce a capability check prior to executing the various LSM
2287  * hook implementations, but if a LSM wants to avoid this capability check,
2288  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2289  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2290  * responsible for enforcing the access control for the specific xattr.  If all
2291  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2292  * or return a 0 (the default return value), the capability check is still
2293  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2294  * check is performed.
2295  *
2296  * Return: Returns 0 if permission is granted.
2297  */
2298 int security_inode_setxattr(struct mnt_idmap *idmap,
2299                             struct dentry *dentry, const char *name,
2300                             const void *value, size_t size, int flags)
2301 {
2302         int rc;
2303 
2304         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2305                 return 0;
2306 
2307         /* enforce the capability checks at the lsm layer, if needed */
2308         if (!call_int_hook(inode_xattr_skipcap, name)) {
2309                 rc = cap_inode_setxattr(dentry, name, value, size, flags);
2310                 if (rc)
2311                         return rc;
2312         }
2313 
2314         return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2315                              flags);
2316 }
2317 
2318 /**
2319  * security_inode_set_acl() - Check if setting posix acls is allowed
2320  * @idmap: idmap of the mount
2321  * @dentry: file
2322  * @acl_name: acl name
2323  * @kacl: acl struct
2324  *
2325  * Check permission before setting posix acls, the posix acls in @kacl are
2326  * identified by @acl_name.
2327  *
2328  * Return: Returns 0 if permission is granted.
2329  */
2330 int security_inode_set_acl(struct mnt_idmap *idmap,
2331                            struct dentry *dentry, const char *acl_name,
2332                            struct posix_acl *kacl)
2333 {
2334         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2335                 return 0;
2336         return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2337 }
2338 
2339 /**
2340  * security_inode_post_set_acl() - Update inode security from posix acls set
2341  * @dentry: file
2342  * @acl_name: acl name
2343  * @kacl: acl struct
2344  *
2345  * Update inode security data after successfully setting posix acls on @dentry.
2346  * The posix acls in @kacl are identified by @acl_name.
2347  */
2348 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2349                                  struct posix_acl *kacl)
2350 {
2351         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2352                 return;
2353         call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2354 }
2355 
2356 /**
2357  * security_inode_get_acl() - Check if reading posix acls is allowed
2358  * @idmap: idmap of the mount
2359  * @dentry: file
2360  * @acl_name: acl name
2361  *
2362  * Check permission before getting osix acls, the posix acls are identified by
2363  * @acl_name.
2364  *
2365  * Return: Returns 0 if permission is granted.
2366  */
2367 int security_inode_get_acl(struct mnt_idmap *idmap,
2368                            struct dentry *dentry, const char *acl_name)
2369 {
2370         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2371                 return 0;
2372         return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2373 }
2374 
2375 /**
2376  * security_inode_remove_acl() - Check if removing a posix acl is allowed
2377  * @idmap: idmap of the mount
2378  * @dentry: file
2379  * @acl_name: acl name
2380  *
2381  * Check permission before removing posix acls, the posix acls are identified
2382  * by @acl_name.
2383  *
2384  * Return: Returns 0 if permission is granted.
2385  */
2386 int security_inode_remove_acl(struct mnt_idmap *idmap,
2387                               struct dentry *dentry, const char *acl_name)
2388 {
2389         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2390                 return 0;
2391         return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2392 }
2393 
2394 /**
2395  * security_inode_post_remove_acl() - Update inode security after rm posix acls
2396  * @idmap: idmap of the mount
2397  * @dentry: file
2398  * @acl_name: acl name
2399  *
2400  * Update inode security data after successfully removing posix acls on
2401  * @dentry in @idmap. The posix acls are identified by @acl_name.
2402  */
2403 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2404                                     struct dentry *dentry, const char *acl_name)
2405 {
2406         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2407                 return;
2408         call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2409 }
2410 
2411 /**
2412  * security_inode_post_setxattr() - Update the inode after a setxattr operation
2413  * @dentry: file
2414  * @name: xattr name
2415  * @value: xattr value
2416  * @size: xattr value size
2417  * @flags: flags
2418  *
2419  * Update inode security field after successful setxattr operation.
2420  */
2421 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2422                                   const void *value, size_t size, int flags)
2423 {
2424         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2425                 return;
2426         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2427 }
2428 
2429 /**
2430  * security_inode_getxattr() - Check if xattr access is allowed
2431  * @dentry: file
2432  * @name: xattr name
2433  *
2434  * Check permission before obtaining the extended attributes identified by
2435  * @name for @dentry.
2436  *
2437  * Return: Returns 0 if permission is granted.
2438  */
2439 int security_inode_getxattr(struct dentry *dentry, const char *name)
2440 {
2441         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2442                 return 0;
2443         return call_int_hook(inode_getxattr, dentry, name);
2444 }
2445 
2446 /**
2447  * security_inode_listxattr() - Check if listing xattrs is allowed
2448  * @dentry: file
2449  *
2450  * Check permission before obtaining the list of extended attribute names for
2451  * @dentry.
2452  *
2453  * Return: Returns 0 if permission is granted.
2454  */
2455 int security_inode_listxattr(struct dentry *dentry)
2456 {
2457         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2458                 return 0;
2459         return call_int_hook(inode_listxattr, dentry);
2460 }
2461 
2462 /**
2463  * security_inode_removexattr() - Check if removing an xattr is allowed
2464  * @idmap: idmap of the mount
2465  * @dentry: file
2466  * @name: xattr name
2467  *
2468  * This hook performs the desired permission checks before setting the extended
2469  * attributes (xattrs) on @dentry.  It is important to note that we have some
2470  * additional logic before the main LSM implementation calls to detect if we
2471  * need to perform an additional capability check at the LSM layer.
2472  *
2473  * Normally we enforce a capability check prior to executing the various LSM
2474  * hook implementations, but if a LSM wants to avoid this capability check,
2475  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2476  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2477  * responsible for enforcing the access control for the specific xattr.  If all
2478  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2479  * or return a 0 (the default return value), the capability check is still
2480  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2481  * check is performed.
2482  *
2483  * Return: Returns 0 if permission is granted.
2484  */
2485 int security_inode_removexattr(struct mnt_idmap *idmap,
2486                                struct dentry *dentry, const char *name)
2487 {
2488         int rc;
2489 
2490         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2491                 return 0;
2492 
2493         /* enforce the capability checks at the lsm layer, if needed */
2494         if (!call_int_hook(inode_xattr_skipcap, name)) {
2495                 rc = cap_inode_removexattr(idmap, dentry, name);
2496                 if (rc)
2497                         return rc;
2498         }
2499 
2500         return call_int_hook(inode_removexattr, idmap, dentry, name);
2501 }
2502 
2503 /**
2504  * security_inode_post_removexattr() - Update the inode after a removexattr op
2505  * @dentry: file
2506  * @name: xattr name
2507  *
2508  * Update the inode after a successful removexattr operation.
2509  */
2510 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2511 {
2512         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2513                 return;
2514         call_void_hook(inode_post_removexattr, dentry, name);
2515 }
2516 
2517 /**
2518  * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2519  * @dentry: associated dentry
2520  *
2521  * Called when an inode has been changed to determine if
2522  * security_inode_killpriv() should be called.
2523  *
2524  * Return: Return <0 on error to abort the inode change operation, return 0 if
2525  *         security_inode_killpriv() does not need to be called, return >0 if
2526  *         security_inode_killpriv() does need to be called.
2527  */
2528 int security_inode_need_killpriv(struct dentry *dentry)
2529 {
2530         return call_int_hook(inode_need_killpriv, dentry);
2531 }
2532 
2533 /**
2534  * security_inode_killpriv() - The setuid bit is removed, update LSM state
2535  * @idmap: idmap of the mount
2536  * @dentry: associated dentry
2537  *
2538  * The @dentry's setuid bit is being removed.  Remove similar security labels.
2539  * Called with the dentry->d_inode->i_mutex held.
2540  *
2541  * Return: Return 0 on success.  If error is returned, then the operation
2542  *         causing setuid bit removal is failed.
2543  */
2544 int security_inode_killpriv(struct mnt_idmap *idmap,
2545                             struct dentry *dentry)
2546 {
2547         return call_int_hook(inode_killpriv, idmap, dentry);
2548 }
2549 
2550 /**
2551  * security_inode_getsecurity() - Get the xattr security label of an inode
2552  * @idmap: idmap of the mount
2553  * @inode: inode
2554  * @name: xattr name
2555  * @buffer: security label buffer
2556  * @alloc: allocation flag
2557  *
2558  * Retrieve a copy of the extended attribute representation of the security
2559  * label associated with @name for @inode via @buffer.  Note that @name is the
2560  * remainder of the attribute name after the security prefix has been removed.
2561  * @alloc is used to specify if the call should return a value via the buffer
2562  * or just the value length.
2563  *
2564  * Return: Returns size of buffer on success.
2565  */
2566 int security_inode_getsecurity(struct mnt_idmap *idmap,
2567                                struct inode *inode, const char *name,
2568                                void **buffer, bool alloc)
2569 {
2570         if (unlikely(IS_PRIVATE(inode)))
2571                 return LSM_RET_DEFAULT(inode_getsecurity);
2572 
2573         return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2574                              alloc);
2575 }
2576 
2577 /**
2578  * security_inode_setsecurity() - Set the xattr security label of an inode
2579  * @inode: inode
2580  * @name: xattr name
2581  * @value: security label
2582  * @size: length of security label
2583  * @flags: flags
2584  *
2585  * Set the security label associated with @name for @inode from the extended
2586  * attribute value @value.  @size indicates the size of the @value in bytes.
2587  * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2588  * remainder of the attribute name after the security. prefix has been removed.
2589  *
2590  * Return: Returns 0 on success.
2591  */
2592 int security_inode_setsecurity(struct inode *inode, const char *name,
2593                                const void *value, size_t size, int flags)
2594 {
2595         if (unlikely(IS_PRIVATE(inode)))
2596                 return LSM_RET_DEFAULT(inode_setsecurity);
2597 
2598         return call_int_hook(inode_setsecurity, inode, name, value, size,
2599                              flags);
2600 }
2601 
2602 /**
2603  * security_inode_listsecurity() - List the xattr security label names
2604  * @inode: inode
2605  * @buffer: buffer
2606  * @buffer_size: size of buffer
2607  *
2608  * Copy the extended attribute names for the security labels associated with
2609  * @inode into @buffer.  The maximum size of @buffer is specified by
2610  * @buffer_size.  @buffer may be NULL to request the size of the buffer
2611  * required.
2612  *
2613  * Return: Returns number of bytes used/required on success.
2614  */
2615 int security_inode_listsecurity(struct inode *inode,
2616                                 char *buffer, size_t buffer_size)
2617 {
2618         if (unlikely(IS_PRIVATE(inode)))
2619                 return 0;
2620         return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2621 }
2622 EXPORT_SYMBOL(security_inode_listsecurity);
2623 
2624 /**
2625  * security_inode_getsecid() - Get an inode's secid
2626  * @inode: inode
2627  * @secid: secid to return
2628  *
2629  * Get the secid associated with the node.  In case of failure, @secid will be
2630  * set to zero.
2631  */
2632 void security_inode_getsecid(struct inode *inode, u32 *secid)
2633 {
2634         call_void_hook(inode_getsecid, inode, secid);
2635 }
2636 
2637 /**
2638  * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2639  * @src: union dentry of copy-up file
2640  * @new: newly created creds
2641  *
2642  * A file is about to be copied up from lower layer to upper layer of overlay
2643  * filesystem. Security module can prepare a set of new creds and modify as
2644  * need be and return new creds. Caller will switch to new creds temporarily to
2645  * create new file and release newly allocated creds.
2646  *
2647  * Return: Returns 0 on success or a negative error code on error.
2648  */
2649 int security_inode_copy_up(struct dentry *src, struct cred **new)
2650 {
2651         return call_int_hook(inode_copy_up, src, new);
2652 }
2653 EXPORT_SYMBOL(security_inode_copy_up);
2654 
2655 /**
2656  * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2657  * @src: union dentry of copy-up file
2658  * @name: xattr name
2659  *
2660  * Filter the xattrs being copied up when a unioned file is copied up from a
2661  * lower layer to the union/overlay layer.   The caller is responsible for
2662  * reading and writing the xattrs, this hook is merely a filter.
2663  *
2664  * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP
2665  *         if the security module does not know about attribute, or a negative
2666  *         error code to abort the copy up.
2667  */
2668 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2669 {
2670         int rc;
2671 
2672         /*
2673          * The implementation can return 0 (accept the xattr), 1 (discard the
2674          * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
2675          * any other error code in case of an error.
2676          */
2677         rc = call_int_hook(inode_copy_up_xattr, src, name);
2678         if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2679                 return rc;
2680 
2681         return LSM_RET_DEFAULT(inode_copy_up_xattr);
2682 }
2683 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2684 
2685 /**
2686  * security_kernfs_init_security() - Init LSM context for a kernfs node
2687  * @kn_dir: parent kernfs node
2688  * @kn: the kernfs node to initialize
2689  *
2690  * Initialize the security context of a newly created kernfs node based on its
2691  * own and its parent's attributes.
2692  *
2693  * Return: Returns 0 if permission is granted.
2694  */
2695 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2696                                   struct kernfs_node *kn)
2697 {
2698         return call_int_hook(kernfs_init_security, kn_dir, kn);
2699 }
2700 
2701 /**
2702  * security_file_permission() - Check file permissions
2703  * @file: file
2704  * @mask: requested permissions
2705  *
2706  * Check file permissions before accessing an open file.  This hook is called
2707  * by various operations that read or write files.  A security module can use
2708  * this hook to perform additional checking on these operations, e.g. to
2709  * revalidate permissions on use to support privilege bracketing or policy
2710  * changes.  Notice that this hook is used when the actual read/write
2711  * operations are performed, whereas the inode_security_ops hook is called when
2712  * a file is opened (as well as many other operations).  Although this hook can
2713  * be used to revalidate permissions for various system call operations that
2714  * read or write files, it does not address the revalidation of permissions for
2715  * memory-mapped files.  Security modules must handle this separately if they
2716  * need such revalidation.
2717  *
2718  * Return: Returns 0 if permission is granted.
2719  */
2720 int security_file_permission(struct file *file, int mask)
2721 {
2722         return call_int_hook(file_permission, file, mask);
2723 }
2724 
2725 /**
2726  * security_file_alloc() - Allocate and init a file's LSM blob
2727  * @file: the file
2728  *
2729  * Allocate and attach a security structure to the file->f_security field.  The
2730  * security field is initialized to NULL when the structure is first created.
2731  *
2732  * Return: Return 0 if the hook is successful and permission is granted.
2733  */
2734 int security_file_alloc(struct file *file)
2735 {
2736         int rc = lsm_file_alloc(file);
2737 
2738         if (rc)
2739                 return rc;
2740         rc = call_int_hook(file_alloc_security, file);
2741         if (unlikely(rc))
2742                 security_file_free(file);
2743         return rc;
2744 }
2745 
2746 /**
2747  * security_file_release() - Perform actions before releasing the file ref
2748  * @file: the file
2749  *
2750  * Perform actions before releasing the last reference to a file.
2751  */
2752 void security_file_release(struct file *file)
2753 {
2754         call_void_hook(file_release, file);
2755 }
2756 
2757 /**
2758  * security_file_free() - Free a file's LSM blob
2759  * @file: the file
2760  *
2761  * Deallocate and free any security structures stored in file->f_security.
2762  */
2763 void security_file_free(struct file *file)
2764 {
2765         void *blob;
2766 
2767         call_void_hook(file_free_security, file);
2768 
2769         blob = file->f_security;
2770         if (blob) {
2771                 file->f_security = NULL;
2772                 kmem_cache_free(lsm_file_cache, blob);
2773         }
2774 }
2775 
2776 /**
2777  * security_file_ioctl() - Check if an ioctl is allowed
2778  * @file: associated file
2779  * @cmd: ioctl cmd
2780  * @arg: ioctl arguments
2781  *
2782  * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2783  * represents a user space pointer; in other cases, it may be a simple integer
2784  * value.  When @arg represents a user space pointer, it should never be used
2785  * by the security module.
2786  *
2787  * Return: Returns 0 if permission is granted.
2788  */
2789 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2790 {
2791         return call_int_hook(file_ioctl, file, cmd, arg);
2792 }
2793 EXPORT_SYMBOL_GPL(security_file_ioctl);
2794 
2795 /**
2796  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2797  * @file: associated file
2798  * @cmd: ioctl cmd
2799  * @arg: ioctl arguments
2800  *
2801  * Compat version of security_file_ioctl() that correctly handles 32-bit
2802  * processes running on 64-bit kernels.
2803  *
2804  * Return: Returns 0 if permission is granted.
2805  */
2806 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2807                                unsigned long arg)
2808 {
2809         return call_int_hook(file_ioctl_compat, file, cmd, arg);
2810 }
2811 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2812 
2813 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2814 {
2815         /*
2816          * Does we have PROT_READ and does the application expect
2817          * it to imply PROT_EXEC?  If not, nothing to talk about...
2818          */
2819         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2820                 return prot;
2821         if (!(current->personality & READ_IMPLIES_EXEC))
2822                 return prot;
2823         /*
2824          * if that's an anonymous mapping, let it.
2825          */
2826         if (!file)
2827                 return prot | PROT_EXEC;
2828         /*
2829          * ditto if it's not on noexec mount, except that on !MMU we need
2830          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2831          */
2832         if (!path_noexec(&file->f_path)) {
2833 #ifndef CONFIG_MMU
2834                 if (file->f_op->mmap_capabilities) {
2835                         unsigned caps = file->f_op->mmap_capabilities(file);
2836                         if (!(caps & NOMMU_MAP_EXEC))
2837                                 return prot;
2838                 }
2839 #endif
2840                 return prot | PROT_EXEC;
2841         }
2842         /* anything on noexec mount won't get PROT_EXEC */
2843         return prot;
2844 }
2845 
2846 /**
2847  * security_mmap_file() - Check if mmap'ing a file is allowed
2848  * @file: file
2849  * @prot: protection applied by the kernel
2850  * @flags: flags
2851  *
2852  * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2853  * mapping anonymous memory.
2854  *
2855  * Return: Returns 0 if permission is granted.
2856  */
2857 int security_mmap_file(struct file *file, unsigned long prot,
2858                        unsigned long flags)
2859 {
2860         return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2861                              flags);
2862 }
2863 
2864 /**
2865  * security_mmap_addr() - Check if mmap'ing an address is allowed
2866  * @addr: address
2867  *
2868  * Check permissions for a mmap operation at @addr.
2869  *
2870  * Return: Returns 0 if permission is granted.
2871  */
2872 int security_mmap_addr(unsigned long addr)
2873 {
2874         return call_int_hook(mmap_addr, addr);
2875 }
2876 
2877 /**
2878  * security_file_mprotect() - Check if changing memory protections is allowed
2879  * @vma: memory region
2880  * @reqprot: application requested protection
2881  * @prot: protection applied by the kernel
2882  *
2883  * Check permissions before changing memory access permissions.
2884  *
2885  * Return: Returns 0 if permission is granted.
2886  */
2887 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2888                            unsigned long prot)
2889 {
2890         return call_int_hook(file_mprotect, vma, reqprot, prot);
2891 }
2892 
2893 /**
2894  * security_file_lock() - Check if a file lock is allowed
2895  * @file: file
2896  * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2897  *
2898  * Check permission before performing file locking operations.  Note the hook
2899  * mediates both flock and fcntl style locks.
2900  *
2901  * Return: Returns 0 if permission is granted.
2902  */
2903 int security_file_lock(struct file *file, unsigned int cmd)
2904 {
2905         return call_int_hook(file_lock, file, cmd);
2906 }
2907 
2908 /**
2909  * security_file_fcntl() - Check if fcntl() op is allowed
2910  * @file: file
2911  * @cmd: fcntl command
2912  * @arg: command argument
2913  *
2914  * Check permission before allowing the file operation specified by @cmd from
2915  * being performed on the file @file.  Note that @arg sometimes represents a
2916  * user space pointer; in other cases, it may be a simple integer value.  When
2917  * @arg represents a user space pointer, it should never be used by the
2918  * security module.
2919  *
2920  * Return: Returns 0 if permission is granted.
2921  */
2922 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2923 {
2924         return call_int_hook(file_fcntl, file, cmd, arg);
2925 }
2926 
2927 /**
2928  * security_file_set_fowner() - Set the file owner info in the LSM blob
2929  * @file: the file
2930  *
2931  * Save owner security information (typically from current->security) in
2932  * file->f_security for later use by the send_sigiotask hook.
2933  *
2934  * Return: Returns 0 on success.
2935  */
2936 void security_file_set_fowner(struct file *file)
2937 {
2938         call_void_hook(file_set_fowner, file);
2939 }
2940 
2941 /**
2942  * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2943  * @tsk: target task
2944  * @fown: signal sender
2945  * @sig: signal to be sent, SIGIO is sent if 0
2946  *
2947  * Check permission for the file owner @fown to send SIGIO or SIGURG to the
2948  * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
2949  * that the fown_struct, @fown, is never outside the context of a struct file,
2950  * so the file structure (and associated security information) can always be
2951  * obtained: container_of(fown, struct file, f_owner).
2952  *
2953  * Return: Returns 0 if permission is granted.
2954  */
2955 int security_file_send_sigiotask(struct task_struct *tsk,
2956                                  struct fown_struct *fown, int sig)
2957 {
2958         return call_int_hook(file_send_sigiotask, tsk, fown, sig);
2959 }
2960 
2961 /**
2962  * security_file_receive() - Check if receiving a file via IPC is allowed
2963  * @file: file being received
2964  *
2965  * This hook allows security modules to control the ability of a process to
2966  * receive an open file descriptor via socket IPC.
2967  *
2968  * Return: Returns 0 if permission is granted.
2969  */
2970 int security_file_receive(struct file *file)
2971 {
2972         return call_int_hook(file_receive, file);
2973 }
2974 
2975 /**
2976  * security_file_open() - Save open() time state for late use by the LSM
2977  * @file:
2978  *
2979  * Save open-time permission checking state for later use upon file_permission,
2980  * and recheck access if anything has changed since inode_permission.
2981  *
2982  * Return: Returns 0 if permission is granted.
2983  */
2984 int security_file_open(struct file *file)
2985 {
2986         int ret;
2987 
2988         ret = call_int_hook(file_open, file);
2989         if (ret)
2990                 return ret;
2991 
2992         return fsnotify_open_perm(file);
2993 }
2994 
2995 /**
2996  * security_file_post_open() - Evaluate a file after it has been opened
2997  * @file: the file
2998  * @mask: access mask
2999  *
3000  * Evaluate an opened file and the access mask requested with open(). The hook
3001  * is useful for LSMs that require the file content to be available in order to
3002  * make decisions.
3003  *
3004  * Return: Returns 0 if permission is granted.
3005  */
3006 int security_file_post_open(struct file *file, int mask)
3007 {
3008         return call_int_hook(file_post_open, file, mask);
3009 }
3010 EXPORT_SYMBOL_GPL(security_file_post_open);
3011 
3012 /**
3013  * security_file_truncate() - Check if truncating a file is allowed
3014  * @file: file
3015  *
3016  * Check permission before truncating a file, i.e. using ftruncate.  Note that
3017  * truncation permission may also be checked based on the path, using the
3018  * @path_truncate hook.
3019  *
3020  * Return: Returns 0 if permission is granted.
3021  */
3022 int security_file_truncate(struct file *file)
3023 {
3024         return call_int_hook(file_truncate, file);
3025 }
3026 
3027 /**
3028  * security_task_alloc() - Allocate a task's LSM blob
3029  * @task: the task
3030  * @clone_flags: flags indicating what is being shared
3031  *
3032  * Handle allocation of task-related resources.
3033  *
3034  * Return: Returns a zero on success, negative values on failure.
3035  */
3036 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3037 {
3038         int rc = lsm_task_alloc(task);
3039 
3040         if (rc)
3041                 return rc;
3042         rc = ccs_alloc_task_security(task);
3043         if (likely(!rc))
3044                 rc = call_int_hook(task_alloc, task, clone_flags);
3045         if (unlikely(rc))
3046                 security_task_free(task);
3047         return rc;
3048 }
3049 
3050 /**
3051  * security_task_free() - Free a task's LSM blob and related resources
3052  * @task: task
3053  *
3054  * Handle release of task-related resources.  Note that this can be called from
3055  * interrupt context.
3056  */
3057 void security_task_free(struct task_struct *task)
3058 {
3059         call_void_hook(task_free, task);
3060         ccs_free_task_security(task);
3061 
3062         kfree(task->security);
3063         task->security = NULL;
3064 }
3065 
3066 /**
3067  * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3068  * @cred: credentials
3069  * @gfp: gfp flags
3070  *
3071  * Only allocate sufficient memory and attach to @cred such that
3072  * cred_transfer() will not get ENOMEM.
3073  *
3074  * Return: Returns 0 on success, negative values on failure.
3075  */
3076 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3077 {
3078         int rc = lsm_cred_alloc(cred, gfp);
3079 
3080         if (rc)
3081                 return rc;
3082 
3083         rc = call_int_hook(cred_alloc_blank, cred, gfp);
3084         if (unlikely(rc))
3085                 security_cred_free(cred);
3086         return rc;
3087 }
3088 
3089 /**
3090  * security_cred_free() - Free the cred's LSM blob and associated resources
3091  * @cred: credentials
3092  *
3093  * Deallocate and clear the cred->security field in a set of credentials.
3094  */
3095 void security_cred_free(struct cred *cred)
3096 {
3097         /*
3098          * There is a failure case in prepare_creds() that
3099          * may result in a call here with ->security being NULL.
3100          */
3101         if (unlikely(cred->security == NULL))
3102                 return;
3103 
3104         call_void_hook(cred_free, cred);
3105 
3106         kfree(cred->security);
3107         cred->security = NULL;
3108 }
3109 
3110 /**
3111  * security_prepare_creds() - Prepare a new set of credentials
3112  * @new: new credentials
3113  * @old: original credentials
3114  * @gfp: gfp flags
3115  *
3116  * Prepare a new set of credentials by copying the data from the old set.
3117  *
3118  * Return: Returns 0 on success, negative values on failure.
3119  */
3120 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3121 {
3122         int rc = lsm_cred_alloc(new, gfp);
3123 
3124         if (rc)
3125                 return rc;
3126 
3127         rc = call_int_hook(cred_prepare, new, old, gfp);
3128         if (unlikely(rc))
3129                 security_cred_free(new);
3130         return rc;
3131 }
3132 
3133 /**
3134  * security_transfer_creds() - Transfer creds
3135  * @new: target credentials
3136  * @old: original credentials
3137  *
3138  * Transfer data from original creds to new creds.
3139  */
3140 void security_transfer_creds(struct cred *new, const struct cred *old)
3141 {
3142         call_void_hook(cred_transfer, new, old);
3143 }
3144 
3145 /**
3146  * security_cred_getsecid() - Get the secid from a set of credentials
3147  * @c: credentials
3148  * @secid: secid value
3149  *
3150  * Retrieve the security identifier of the cred structure @c.  In case of
3151  * failure, @secid will be set to zero.
3152  */
3153 void security_cred_getsecid(const struct cred *c, u32 *secid)
3154 {
3155         *secid = 0;
3156         call_void_hook(cred_getsecid, c, secid);
3157 }
3158 EXPORT_SYMBOL(security_cred_getsecid);
3159 
3160 /**
3161  * security_kernel_act_as() - Set the kernel credentials to act as secid
3162  * @new: credentials
3163  * @secid: secid
3164  *
3165  * Set the credentials for a kernel service to act as (subjective context).
3166  * The current task must be the one that nominated @secid.
3167  *
3168  * Return: Returns 0 if successful.
3169  */
3170 int security_kernel_act_as(struct cred *new, u32 secid)
3171 {
3172         return call_int_hook(kernel_act_as, new, secid);
3173 }
3174 
3175 /**
3176  * security_kernel_create_files_as() - Set file creation context using an inode
3177  * @new: target credentials
3178  * @inode: reference inode
3179  *
3180  * Set the file creation context in a set of credentials to be the same as the
3181  * objective context of the specified inode.  The current task must be the one
3182  * that nominated @inode.
3183  *
3184  * Return: Returns 0 if successful.
3185  */
3186 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3187 {
3188         return call_int_hook(kernel_create_files_as, new, inode);
3189 }
3190 
3191 /**
3192  * security_kernel_module_request() - Check if loading a module is allowed
3193  * @kmod_name: module name
3194  *
3195  * Ability to trigger the kernel to automatically upcall to userspace for
3196  * userspace to load a kernel module with the given name.
3197  *
3198  * Return: Returns 0 if successful.
3199  */
3200 int security_kernel_module_request(char *kmod_name)
3201 {
3202         return call_int_hook(kernel_module_request, kmod_name);
3203 }
3204 
3205 /**
3206  * security_kernel_read_file() - Read a file specified by userspace
3207  * @file: file
3208  * @id: file identifier
3209  * @contents: trust if security_kernel_post_read_file() will be called
3210  *
3211  * Read a file specified by userspace.
3212  *
3213  * Return: Returns 0 if permission is granted.
3214  */
3215 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3216                               bool contents)
3217 {
3218         return call_int_hook(kernel_read_file, file, id, contents);
3219 }
3220 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3221 
3222 /**
3223  * security_kernel_post_read_file() - Read a file specified by userspace
3224  * @file: file
3225  * @buf: file contents
3226  * @size: size of file contents
3227  * @id: file identifier
3228  *
3229  * Read a file specified by userspace.  This must be paired with a prior call
3230  * to security_kernel_read_file() call that indicated this hook would also be
3231  * called, see security_kernel_read_file() for more information.
3232  *
3233  * Return: Returns 0 if permission is granted.
3234  */
3235 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3236                                    enum kernel_read_file_id id)
3237 {
3238         return call_int_hook(kernel_post_read_file, file, buf, size, id);
3239 }
3240 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3241 
3242 /**
3243  * security_kernel_load_data() - Load data provided by userspace
3244  * @id: data identifier
3245  * @contents: true if security_kernel_post_load_data() will be called
3246  *
3247  * Load data provided by userspace.
3248  *
3249  * Return: Returns 0 if permission is granted.
3250  */
3251 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3252 {
3253         return call_int_hook(kernel_load_data, id, contents);
3254 }
3255 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3256 
3257 /**
3258  * security_kernel_post_load_data() - Load userspace data from a non-file source
3259  * @buf: data
3260  * @size: size of data
3261  * @id: data identifier
3262  * @description: text description of data, specific to the id value
3263  *
3264  * Load data provided by a non-file source (usually userspace buffer).  This
3265  * must be paired with a prior security_kernel_load_data() call that indicated
3266  * this hook would also be called, see security_kernel_load_data() for more
3267  * information.
3268  *
3269  * Return: Returns 0 if permission is granted.
3270  */
3271 int security_kernel_post_load_data(char *buf, loff_t size,
3272                                    enum kernel_load_data_id id,
3273                                    char *description)
3274 {
3275         return call_int_hook(kernel_post_load_data, buf, size, id, description);
3276 }
3277 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3278 
3279 /**
3280  * security_task_fix_setuid() - Update LSM with new user id attributes
3281  * @new: updated credentials
3282  * @old: credentials being replaced
3283  * @flags: LSM_SETID_* flag values
3284  *
3285  * Update the module's state after setting one or more of the user identity
3286  * attributes of the current process.  The @flags parameter indicates which of
3287  * the set*uid system calls invoked this hook.  If @new is the set of
3288  * credentials that will be installed.  Modifications should be made to this
3289  * rather than to @current->cred.
3290  *
3291  * Return: Returns 0 on success.
3292  */
3293 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3294                              int flags)
3295 {
3296         return call_int_hook(task_fix_setuid, new, old, flags);
3297 }
3298 
3299 /**
3300  * security_task_fix_setgid() - Update LSM with new group id attributes
3301  * @new: updated credentials
3302  * @old: credentials being replaced
3303  * @flags: LSM_SETID_* flag value
3304  *
3305  * Update the module's state after setting one or more of the group identity
3306  * attributes of the current process.  The @flags parameter indicates which of
3307  * the set*gid system calls invoked this hook.  @new is the set of credentials
3308  * that will be installed.  Modifications should be made to this rather than to
3309  * @current->cred.
3310  *
3311  * Return: Returns 0 on success.
3312  */
3313 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3314                              int flags)
3315 {
3316         return call_int_hook(task_fix_setgid, new, old, flags);
3317 }
3318 
3319 /**
3320  * security_task_fix_setgroups() - Update LSM with new supplementary groups
3321  * @new: updated credentials
3322  * @old: credentials being replaced
3323  *
3324  * Update the module's state after setting the supplementary group identity
3325  * attributes of the current process.  @new is the set of credentials that will
3326  * be installed.  Modifications should be made to this rather than to
3327  * @current->cred.
3328  *
3329  * Return: Returns 0 on success.
3330  */
3331 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3332 {
3333         return call_int_hook(task_fix_setgroups, new, old);
3334 }
3335 
3336 /**
3337  * security_task_setpgid() - Check if setting the pgid is allowed
3338  * @p: task being modified
3339  * @pgid: new pgid
3340  *
3341  * Check permission before setting the process group identifier of the process
3342  * @p to @pgid.
3343  *
3344  * Return: Returns 0 if permission is granted.
3345  */
3346 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3347 {
3348         return call_int_hook(task_setpgid, p, pgid);
3349 }
3350 
3351 /**
3352  * security_task_getpgid() - Check if getting the pgid is allowed
3353  * @p: task
3354  *
3355  * Check permission before getting the process group identifier of the process
3356  * @p.
3357  *
3358  * Return: Returns 0 if permission is granted.
3359  */
3360 int security_task_getpgid(struct task_struct *p)
3361 {
3362         return call_int_hook(task_getpgid, p);
3363 }
3364 
3365 /**
3366  * security_task_getsid() - Check if getting the session id is allowed
3367  * @p: task
3368  *
3369  * Check permission before getting the session identifier of the process @p.
3370  *
3371  * Return: Returns 0 if permission is granted.
3372  */
3373 int security_task_getsid(struct task_struct *p)
3374 {
3375         return call_int_hook(task_getsid, p);
3376 }
3377 
3378 /**
3379  * security_current_getsecid_subj() - Get the current task's subjective secid
3380  * @secid: secid value
3381  *
3382  * Retrieve the subjective security identifier of the current task and return
3383  * it in @secid.  In case of failure, @secid will be set to zero.
3384  */
3385 void security_current_getsecid_subj(u32 *secid)
3386 {
3387         *secid = 0;
3388         call_void_hook(current_getsecid_subj, secid);
3389 }
3390 EXPORT_SYMBOL(security_current_getsecid_subj);
3391 
3392 /**
3393  * security_task_getsecid_obj() - Get a task's objective secid
3394  * @p: target task
3395  * @secid: secid value
3396  *
3397  * Retrieve the objective security identifier of the task_struct in @p and
3398  * return it in @secid. In case of failure, @secid will be set to zero.
3399  */
3400 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3401 {
3402         *secid = 0;
3403         call_void_hook(task_getsecid_obj, p, secid);
3404 }
3405 EXPORT_SYMBOL(security_task_getsecid_obj);
3406 
3407 /**
3408  * security_task_setnice() - Check if setting a task's nice value is allowed
3409  * @p: target task
3410  * @nice: nice value
3411  *
3412  * Check permission before setting the nice value of @p to @nice.
3413  *
3414  * Return: Returns 0 if permission is granted.
3415  */
3416 int security_task_setnice(struct task_struct *p, int nice)
3417 {
3418         return call_int_hook(task_setnice, p, nice);
3419 }
3420 
3421 /**
3422  * security_task_setioprio() - Check if setting a task's ioprio is allowed
3423  * @p: target task
3424  * @ioprio: ioprio value
3425  *
3426  * Check permission before setting the ioprio value of @p to @ioprio.
3427  *
3428  * Return: Returns 0 if permission is granted.
3429  */
3430 int security_task_setioprio(struct task_struct *p, int ioprio)
3431 {
3432         return call_int_hook(task_setioprio, p, ioprio);
3433 }
3434 
3435 /**
3436  * security_task_getioprio() - Check if getting a task's ioprio is allowed
3437  * @p: task
3438  *
3439  * Check permission before getting the ioprio value of @p.
3440  *
3441  * Return: Returns 0 if permission is granted.
3442  */
3443 int security_task_getioprio(struct task_struct *p)
3444 {
3445         return call_int_hook(task_getioprio, p);
3446 }
3447 
3448 /**
3449  * security_task_prlimit() - Check if get/setting resources limits is allowed
3450  * @cred: current task credentials
3451  * @tcred: target task credentials
3452  * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3453  *
3454  * Check permission before getting and/or setting the resource limits of
3455  * another task.
3456  *
3457  * Return: Returns 0 if permission is granted.
3458  */
3459 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3460                           unsigned int flags)
3461 {
3462         return call_int_hook(task_prlimit, cred, tcred, flags);
3463 }
3464 
3465 /**
3466  * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3467  * @p: target task's group leader
3468  * @resource: resource whose limit is being set
3469  * @new_rlim: new resource limit
3470  *
3471  * Check permission before setting the resource limits of process @p for
3472  * @resource to @new_rlim.  The old resource limit values can be examined by
3473  * dereferencing (p->signal->rlim + resource).
3474  *
3475  * Return: Returns 0 if permission is granted.
3476  */
3477 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3478                             struct rlimit *new_rlim)
3479 {
3480         return call_int_hook(task_setrlimit, p, resource, new_rlim);
3481 }
3482 
3483 /**
3484  * security_task_setscheduler() - Check if setting sched policy/param is allowed
3485  * @p: target task
3486  *
3487  * Check permission before setting scheduling policy and/or parameters of
3488  * process @p.
3489  *
3490  * Return: Returns 0 if permission is granted.
3491  */
3492 int security_task_setscheduler(struct task_struct *p)
3493 {
3494         return call_int_hook(task_setscheduler, p);
3495 }
3496 
3497 /**
3498  * security_task_getscheduler() - Check if getting scheduling info is allowed
3499  * @p: target task
3500  *
3501  * Check permission before obtaining scheduling information for process @p.
3502  *
3503  * Return: Returns 0 if permission is granted.
3504  */
3505 int security_task_getscheduler(struct task_struct *p)
3506 {
3507         return call_int_hook(task_getscheduler, p);
3508 }
3509 
3510 /**
3511  * security_task_movememory() - Check if moving memory is allowed
3512  * @p: task
3513  *
3514  * Check permission before moving memory owned by process @p.
3515  *
3516  * Return: Returns 0 if permission is granted.
3517  */
3518 int security_task_movememory(struct task_struct *p)
3519 {
3520         return call_int_hook(task_movememory, p);
3521 }
3522 
3523 /**
3524  * security_task_kill() - Check if sending a signal is allowed
3525  * @p: target process
3526  * @info: signal information
3527  * @sig: signal value
3528  * @cred: credentials of the signal sender, NULL if @current
3529  *
3530  * Check permission before sending signal @sig to @p.  @info can be NULL, the
3531  * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3532  * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3533  * the kernel and should typically be permitted.  SIGIO signals are handled
3534  * separately by the send_sigiotask hook in file_security_ops.
3535  *
3536  * Return: Returns 0 if permission is granted.
3537  */
3538 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3539                        int sig, const struct cred *cred)
3540 {
3541         return call_int_hook(task_kill, p, info, sig, cred);
3542 }
3543 
3544 /**
3545  * security_task_prctl() - Check if a prctl op is allowed
3546  * @option: operation
3547  * @arg2: argument
3548  * @arg3: argument
3549  * @arg4: argument
3550  * @arg5: argument
3551  *
3552  * Check permission before performing a process control operation on the
3553  * current process.
3554  *
3555  * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3556  *         to cause prctl() to return immediately with that value.
3557  */
3558 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3559                         unsigned long arg4, unsigned long arg5)
3560 {
3561         int thisrc;
3562         int rc = LSM_RET_DEFAULT(task_prctl);
3563         struct security_hook_list *hp;
3564 
3565         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
3566                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3567                 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3568                         rc = thisrc;
3569                         if (thisrc != 0)
3570                                 break;
3571                 }
3572         }
3573         return rc;
3574 }
3575 
3576 /**
3577  * security_task_to_inode() - Set the security attributes of a task's inode
3578  * @p: task
3579  * @inode: inode
3580  *
3581  * Set the security attributes for an inode based on an associated task's
3582  * security attributes, e.g. for /proc/pid inodes.
3583  */
3584 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3585 {
3586         call_void_hook(task_to_inode, p, inode);
3587 }
3588 
3589 /**
3590  * security_create_user_ns() - Check if creating a new userns is allowed
3591  * @cred: prepared creds
3592  *
3593  * Check permission prior to creating a new user namespace.
3594  *
3595  * Return: Returns 0 if successful, otherwise < 0 error code.
3596  */
3597 int security_create_user_ns(const struct cred *cred)
3598 {
3599         return call_int_hook(userns_create, cred);
3600 }
3601 
3602 /**
3603  * security_ipc_permission() - Check if sysv ipc access is allowed
3604  * @ipcp: ipc permission structure
3605  * @flag: requested permissions
3606  *
3607  * Check permissions for access to IPC.
3608  *
3609  * Return: Returns 0 if permission is granted.
3610  */
3611 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3612 {
3613         return call_int_hook(ipc_permission, ipcp, flag);
3614 }
3615 
3616 /**
3617  * security_ipc_getsecid() - Get the sysv ipc object's secid
3618  * @ipcp: ipc permission structure
3619  * @secid: secid pointer
3620  *
3621  * Get the secid associated with the ipc object.  In case of failure, @secid
3622  * will be set to zero.
3623  */
3624 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
3625 {
3626         *secid = 0;
3627         call_void_hook(ipc_getsecid, ipcp, secid);
3628 }
3629 
3630 /**
3631  * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3632  * @msg: message structure
3633  *
3634  * Allocate and attach a security structure to the msg->security field.  The
3635  * security field is initialized to NULL when the structure is first created.
3636  *
3637  * Return: Return 0 if operation was successful and permission is granted.
3638  */
3639 int security_msg_msg_alloc(struct msg_msg *msg)
3640 {
3641         int rc = lsm_msg_msg_alloc(msg);
3642 
3643         if (unlikely(rc))
3644                 return rc;
3645         rc = call_int_hook(msg_msg_alloc_security, msg);
3646         if (unlikely(rc))
3647                 security_msg_msg_free(msg);
3648         return rc;
3649 }
3650 
3651 /**
3652  * security_msg_msg_free() - Free a sysv ipc message LSM blob
3653  * @msg: message structure
3654  *
3655  * Deallocate the security structure for this message.
3656  */
3657 void security_msg_msg_free(struct msg_msg *msg)
3658 {
3659         call_void_hook(msg_msg_free_security, msg);
3660         kfree(msg->security);
3661         msg->security = NULL;
3662 }
3663 
3664 /**
3665  * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3666  * @msq: sysv ipc permission structure
3667  *
3668  * Allocate and attach a security structure to @msg. The security field is
3669  * initialized to NULL when the structure is first created.
3670  *
3671  * Return: Returns 0 if operation was successful and permission is granted.
3672  */
3673 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3674 {
3675         int rc = lsm_ipc_alloc(msq);
3676 
3677         if (unlikely(rc))
3678                 return rc;
3679         rc = call_int_hook(msg_queue_alloc_security, msq);
3680         if (unlikely(rc))
3681                 security_msg_queue_free(msq);
3682         return rc;
3683 }
3684 
3685 /**
3686  * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3687  * @msq: sysv ipc permission structure
3688  *
3689  * Deallocate security field @perm->security for the message queue.
3690  */
3691 void security_msg_queue_free(struct kern_ipc_perm *msq)
3692 {
3693         call_void_hook(msg_queue_free_security, msq);
3694         kfree(msq->security);
3695         msq->security = NULL;
3696 }
3697 
3698 /**
3699  * security_msg_queue_associate() - Check if a msg queue operation is allowed
3700  * @msq: sysv ipc permission structure
3701  * @msqflg: operation flags
3702  *
3703  * Check permission when a message queue is requested through the msgget system
3704  * call. This hook is only called when returning the message queue identifier
3705  * for an existing message queue, not when a new message queue is created.
3706  *
3707  * Return: Return 0 if permission is granted.
3708  */
3709 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3710 {
3711         return call_int_hook(msg_queue_associate, msq, msqflg);
3712 }
3713 
3714 /**
3715  * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3716  * @msq: sysv ipc permission structure
3717  * @cmd: operation
3718  *
3719  * Check permission when a message control operation specified by @cmd is to be
3720  * performed on the message queue with permissions.
3721  *
3722  * Return: Returns 0 if permission is granted.
3723  */
3724 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3725 {
3726         return call_int_hook(msg_queue_msgctl, msq, cmd);
3727 }
3728 
3729 /**
3730  * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3731  * @msq: sysv ipc permission structure
3732  * @msg: message
3733  * @msqflg: operation flags
3734  *
3735  * Check permission before a message, @msg, is enqueued on the message queue
3736  * with permissions specified in @msq.
3737  *
3738  * Return: Returns 0 if permission is granted.
3739  */
3740 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3741                               struct msg_msg *msg, int msqflg)
3742 {
3743         return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3744 }
3745 
3746 /**
3747  * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3748  * @msq: sysv ipc permission structure
3749  * @msg: message
3750  * @target: target task
3751  * @type: type of message requested
3752  * @mode: operation flags
3753  *
3754  * Check permission before a message, @msg, is removed from the message queue.
3755  * The @target task structure contains a pointer to the process that will be
3756  * receiving the message (not equal to the current process when inline receives
3757  * are being performed).
3758  *
3759  * Return: Returns 0 if permission is granted.
3760  */
3761 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3762                               struct task_struct *target, long type, int mode)
3763 {
3764         return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3765 }
3766 
3767 /**
3768  * security_shm_alloc() - Allocate a sysv shm LSM blob
3769  * @shp: sysv ipc permission structure
3770  *
3771  * Allocate and attach a security structure to the @shp security field.  The
3772  * security field is initialized to NULL when the structure is first created.
3773  *
3774  * Return: Returns 0 if operation was successful and permission is granted.
3775  */
3776 int security_shm_alloc(struct kern_ipc_perm *shp)
3777 {
3778         int rc = lsm_ipc_alloc(shp);
3779 
3780         if (unlikely(rc))
3781                 return rc;
3782         rc = call_int_hook(shm_alloc_security, shp);
3783         if (unlikely(rc))
3784                 security_shm_free(shp);
3785         return rc;
3786 }
3787 
3788 /**
3789  * security_shm_free() - Free a sysv shm LSM blob
3790  * @shp: sysv ipc permission structure
3791  *
3792  * Deallocate the security structure @perm->security for the memory segment.
3793  */
3794 void security_shm_free(struct kern_ipc_perm *shp)
3795 {
3796         call_void_hook(shm_free_security, shp);
3797         kfree(shp->security);
3798         shp->security = NULL;
3799 }
3800 
3801 /**
3802  * security_shm_associate() - Check if a sysv shm operation is allowed
3803  * @shp: sysv ipc permission structure
3804  * @shmflg: operation flags
3805  *
3806  * Check permission when a shared memory region is requested through the shmget
3807  * system call. This hook is only called when returning the shared memory
3808  * region identifier for an existing region, not when a new shared memory
3809  * region is created.
3810  *
3811  * Return: Returns 0 if permission is granted.
3812  */
3813 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3814 {
3815         return call_int_hook(shm_associate, shp, shmflg);
3816 }
3817 
3818 /**
3819  * security_shm_shmctl() - Check if a sysv shm operation is allowed
3820  * @shp: sysv ipc permission structure
3821  * @cmd: operation
3822  *
3823  * Check permission when a shared memory control operation specified by @cmd is
3824  * to be performed on the shared memory region with permissions in @shp.
3825  *
3826  * Return: Return 0 if permission is granted.
3827  */
3828 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3829 {
3830         return call_int_hook(shm_shmctl, shp, cmd);
3831 }
3832 
3833 /**
3834  * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3835  * @shp: sysv ipc permission structure
3836  * @shmaddr: address of memory region to attach
3837  * @shmflg: operation flags
3838  *
3839  * Check permissions prior to allowing the shmat system call to attach the
3840  * shared memory segment with permissions @shp to the data segment of the
3841  * calling process. The attaching address is specified by @shmaddr.
3842  *
3843  * Return: Returns 0 if permission is granted.
3844  */
3845 int security_shm_shmat(struct kern_ipc_perm *shp,
3846                        char __user *shmaddr, int shmflg)
3847 {
3848         return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3849 }
3850 
3851 /**
3852  * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3853  * @sma: sysv ipc permission structure
3854  *
3855  * Allocate and attach a security structure to the @sma security field. The
3856  * security field is initialized to NULL when the structure is first created.
3857  *
3858  * Return: Returns 0 if operation was successful and permission is granted.
3859  */
3860 int security_sem_alloc(struct kern_ipc_perm *sma)
3861 {
3862         int rc = lsm_ipc_alloc(sma);
3863 
3864         if (unlikely(rc))
3865                 return rc;
3866         rc = call_int_hook(sem_alloc_security, sma);
3867         if (unlikely(rc))
3868                 security_sem_free(sma);
3869         return rc;
3870 }
3871 
3872 /**
3873  * security_sem_free() - Free a sysv semaphore LSM blob
3874  * @sma: sysv ipc permission structure
3875  *
3876  * Deallocate security structure @sma->security for the semaphore.
3877  */
3878 void security_sem_free(struct kern_ipc_perm *sma)
3879 {
3880         call_void_hook(sem_free_security, sma);
3881         kfree(sma->security);
3882         sma->security = NULL;
3883 }
3884 
3885 /**
3886  * security_sem_associate() - Check if a sysv semaphore operation is allowed
3887  * @sma: sysv ipc permission structure
3888  * @semflg: operation flags
3889  *
3890  * Check permission when a semaphore is requested through the semget system
3891  * call. This hook is only called when returning the semaphore identifier for
3892  * an existing semaphore, not when a new one must be created.
3893  *
3894  * Return: Returns 0 if permission is granted.
3895  */
3896 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3897 {
3898         return call_int_hook(sem_associate, sma, semflg);
3899 }
3900 
3901 /**
3902  * security_sem_semctl() - Check if a sysv semaphore operation is allowed
3903  * @sma: sysv ipc permission structure
3904  * @cmd: operation
3905  *
3906  * Check permission when a semaphore operation specified by @cmd is to be
3907  * performed on the semaphore.
3908  *
3909  * Return: Returns 0 if permission is granted.
3910  */
3911 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3912 {
3913         return call_int_hook(sem_semctl, sma, cmd);
3914 }
3915 
3916 /**
3917  * security_sem_semop() - Check if a sysv semaphore operation is allowed
3918  * @sma: sysv ipc permission structure
3919  * @sops: operations to perform
3920  * @nsops: number of operations
3921  * @alter: flag indicating changes will be made
3922  *
3923  * Check permissions before performing operations on members of the semaphore
3924  * set. If the @alter flag is nonzero, the semaphore set may be modified.
3925  *
3926  * Return: Returns 0 if permission is granted.
3927  */
3928 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3929                        unsigned nsops, int alter)
3930 {
3931         return call_int_hook(sem_semop, sma, sops, nsops, alter);
3932 }
3933 
3934 /**
3935  * security_d_instantiate() - Populate an inode's LSM state based on a dentry
3936  * @dentry: dentry
3937  * @inode: inode
3938  *
3939  * Fill in @inode security information for a @dentry if allowed.
3940  */
3941 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3942 {
3943         if (unlikely(inode && IS_PRIVATE(inode)))
3944                 return;
3945         call_void_hook(d_instantiate, dentry, inode);
3946 }
3947 EXPORT_SYMBOL(security_d_instantiate);
3948 
3949 /*
3950  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3951  */
3952 
3953 /**
3954  * security_getselfattr - Read an LSM attribute of the current process.
3955  * @attr: which attribute to return
3956  * @uctx: the user-space destination for the information, or NULL
3957  * @size: pointer to the size of space available to receive the data
3958  * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
3959  * attributes associated with the LSM identified in the passed @ctx be
3960  * reported.
3961  *
3962  * A NULL value for @uctx can be used to get both the number of attributes
3963  * and the size of the data.
3964  *
3965  * Returns the number of attributes found on success, negative value
3966  * on error. @size is reset to the total size of the data.
3967  * If @size is insufficient to contain the data -E2BIG is returned.
3968  */
3969 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
3970                          u32 __user *size, u32 flags)
3971 {
3972         struct security_hook_list *hp;
3973         struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
3974         u8 __user *base = (u8 __user *)uctx;
3975         u32 entrysize;
3976         u32 total = 0;
3977         u32 left;
3978         bool toobig = false;
3979         bool single = false;
3980         int count = 0;
3981         int rc;
3982 
3983         if (attr == LSM_ATTR_UNDEF)
3984                 return -EINVAL;
3985         if (size == NULL)
3986                 return -EINVAL;
3987         if (get_user(left, size))
3988                 return -EFAULT;
3989 
3990         if (flags) {
3991                 /*
3992                  * Only flag supported is LSM_FLAG_SINGLE
3993                  */
3994                 if (flags != LSM_FLAG_SINGLE || !uctx)
3995                         return -EINVAL;
3996                 if (copy_from_user(&lctx, uctx, sizeof(lctx)))
3997                         return -EFAULT;
3998                 /*
3999                  * If the LSM ID isn't specified it is an error.
4000                  */
4001                 if (lctx.id == LSM_ID_UNDEF)
4002                         return -EINVAL;
4003                 single = true;
4004         }
4005 
4006         /*
4007          * In the usual case gather all the data from the LSMs.
4008          * In the single case only get the data from the LSM specified.
4009          */
4010         hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) {
4011                 if (single && lctx.id != hp->lsmid->id)
4012                         continue;
4013                 entrysize = left;
4014                 if (base)
4015                         uctx = (struct lsm_ctx __user *)(base + total);
4016                 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags);
4017                 if (rc == -EOPNOTSUPP) {
4018                         rc = 0;
4019                         continue;
4020                 }
4021                 if (rc == -E2BIG) {
4022                         rc = 0;
4023                         left = 0;
4024                         toobig = true;
4025                 } else if (rc < 0)
4026                         return rc;
4027                 else
4028                         left -= entrysize;
4029 
4030                 total += entrysize;
4031                 count += rc;
4032                 if (single)
4033                         break;
4034         }
4035         if (put_user(total, size))
4036                 return -EFAULT;
4037         if (toobig)
4038                 return -E2BIG;
4039         if (count == 0)
4040                 return LSM_RET_DEFAULT(getselfattr);
4041         return count;
4042 }
4043 
4044 /*
4045  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4046  */
4047 
4048 /**
4049  * security_setselfattr - Set an LSM attribute on the current process.
4050  * @attr: which attribute to set
4051  * @uctx: the user-space source for the information
4052  * @size: the size of the data
4053  * @flags: reserved for future use, must be 0
4054  *
4055  * Set an LSM attribute for the current process. The LSM, attribute
4056  * and new value are included in @uctx.
4057  *
4058  * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4059  * if the user buffer is inaccessible, E2BIG if size is too big, or an
4060  * LSM specific failure.
4061  */
4062 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4063                          u32 size, u32 flags)
4064 {
4065         struct security_hook_list *hp;
4066         struct lsm_ctx *lctx;
4067         int rc = LSM_RET_DEFAULT(setselfattr);
4068         u64 required_len;
4069 
4070         if (flags)
4071                 return -EINVAL;
4072         if (size < sizeof(*lctx))
4073                 return -EINVAL;
4074         if (size > PAGE_SIZE)
4075                 return -E2BIG;
4076 
4077         lctx = memdup_user(uctx, size);
4078         if (IS_ERR(lctx))
4079                 return PTR_ERR(lctx);
4080 
4081         if (size < lctx->len ||
4082             check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4083             lctx->len < required_len) {
4084                 rc = -EINVAL;
4085                 goto free_out;
4086         }
4087 
4088         hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list)
4089                 if ((hp->lsmid->id) == lctx->id) {
4090                         rc = hp->hook.setselfattr(attr, lctx, size, flags);
4091                         break;
4092                 }
4093 
4094 free_out:
4095         kfree(lctx);
4096         return rc;
4097 }
4098 
4099 /**
4100  * security_getprocattr() - Read an attribute for a task
4101  * @p: the task
4102  * @lsmid: LSM identification
4103  * @name: attribute name
4104  * @value: attribute value
4105  *
4106  * Read attribute @name for task @p and store it into @value if allowed.
4107  *
4108  * Return: Returns the length of @value on success, a negative value otherwise.
4109  */
4110 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4111                          char **value)
4112 {
4113         struct security_hook_list *hp;
4114 
4115         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
4116                 if (lsmid != 0 && lsmid != hp->lsmid->id)
4117                         continue;
4118                 return hp->hook.getprocattr(p, name, value);
4119         }
4120         return LSM_RET_DEFAULT(getprocattr);
4121 }
4122 
4123 /**
4124  * security_setprocattr() - Set an attribute for a task
4125  * @lsmid: LSM identification
4126  * @name: attribute name
4127  * @value: attribute value
4128  * @size: attribute value size
4129  *
4130  * Write (set) the current task's attribute @name to @value, size @size if
4131  * allowed.
4132  *
4133  * Return: Returns bytes written on success, a negative value otherwise.
4134  */
4135 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4136 {
4137         struct security_hook_list *hp;
4138 
4139         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
4140                 if (lsmid != 0 && lsmid != hp->lsmid->id)
4141                         continue;
4142                 return hp->hook.setprocattr(name, value, size);
4143         }
4144         return LSM_RET_DEFAULT(setprocattr);
4145 }
4146 
4147 /**
4148  * security_netlink_send() - Save info and check if netlink sending is allowed
4149  * @sk: sending socket
4150  * @skb: netlink message
4151  *
4152  * Save security information for a netlink message so that permission checking
4153  * can be performed when the message is processed.  The security information
4154  * can be saved using the eff_cap field of the netlink_skb_parms structure.
4155  * Also may be used to provide fine grained control over message transmission.
4156  *
4157  * Return: Returns 0 if the information was successfully saved and message is
4158  *         allowed to be transmitted.
4159  */
4160 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4161 {
4162         return call_int_hook(netlink_send, sk, skb);
4163 }
4164 
4165 /**
4166  * security_ismaclabel() - Check if the named attribute is a MAC label
4167  * @name: full extended attribute name
4168  *
4169  * Check if the extended attribute specified by @name represents a MAC label.
4170  *
4171  * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4172  */
4173 int security_ismaclabel(const char *name)
4174 {
4175         return call_int_hook(ismaclabel, name);
4176 }
4177 EXPORT_SYMBOL(security_ismaclabel);
4178 
4179 /**
4180  * security_secid_to_secctx() - Convert a secid to a secctx
4181  * @secid: secid
4182  * @secdata: secctx
4183  * @seclen: secctx length
4184  *
4185  * Convert secid to security context.  If @secdata is NULL the length of the
4186  * result will be returned in @seclen, but no @secdata will be returned.  This
4187  * does mean that the length could change between calls to check the length and
4188  * the next call which actually allocates and returns the @secdata.
4189  *
4190  * Return: Return 0 on success, error on failure.
4191  */
4192 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4193 {
4194         return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4195 }
4196 EXPORT_SYMBOL(security_secid_to_secctx);
4197 
4198 /**
4199  * security_secctx_to_secid() - Convert a secctx to a secid
4200  * @secdata: secctx
4201  * @seclen: length of secctx
4202  * @secid: secid
4203  *
4204  * Convert security context to secid.
4205  *
4206  * Return: Returns 0 on success, error on failure.
4207  */
4208 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4209 {
4210         *secid = 0;
4211         return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4212 }
4213 EXPORT_SYMBOL(security_secctx_to_secid);
4214 
4215 /**
4216  * security_release_secctx() - Free a secctx buffer
4217  * @secdata: secctx
4218  * @seclen: length of secctx
4219  *
4220  * Release the security context.
4221  */
4222 void security_release_secctx(char *secdata, u32 seclen)
4223 {
4224         call_void_hook(release_secctx, secdata, seclen);
4225 }
4226 EXPORT_SYMBOL(security_release_secctx);
4227 
4228 /**
4229  * security_inode_invalidate_secctx() - Invalidate an inode's security label
4230  * @inode: inode
4231  *
4232  * Notify the security module that it must revalidate the security context of
4233  * an inode.
4234  */
4235 void security_inode_invalidate_secctx(struct inode *inode)
4236 {
4237         call_void_hook(inode_invalidate_secctx, inode);
4238 }
4239 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4240 
4241 /**
4242  * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4243  * @inode: inode
4244  * @ctx: secctx
4245  * @ctxlen: length of secctx
4246  *
4247  * Notify the security module of what the security context of an inode should
4248  * be.  Initializes the incore security context managed by the security module
4249  * for this inode.  Example usage: NFS client invokes this hook to initialize
4250  * the security context in its incore inode to the value provided by the server
4251  * for the file when the server returned the file's attributes to the client.
4252  * Must be called with inode->i_mutex locked.
4253  *
4254  * Return: Returns 0 on success, error on failure.
4255  */
4256 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4257 {
4258         return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4259 }
4260 EXPORT_SYMBOL(security_inode_notifysecctx);
4261 
4262 /**
4263  * security_inode_setsecctx() - Change the security label of an inode
4264  * @dentry: inode
4265  * @ctx: secctx
4266  * @ctxlen: length of secctx
4267  *
4268  * Change the security context of an inode.  Updates the incore security
4269  * context managed by the security module and invokes the fs code as needed
4270  * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4271  * context.  Example usage: NFS server invokes this hook to change the security
4272  * context in its incore inode and on the backing filesystem to a value
4273  * provided by the client on a SETATTR operation.  Must be called with
4274  * inode->i_mutex locked.
4275  *
4276  * Return: Returns 0 on success, error on failure.
4277  */
4278 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4279 {
4280         return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4281 }
4282 EXPORT_SYMBOL(security_inode_setsecctx);
4283 
4284 /**
4285  * security_inode_getsecctx() - Get the security label of an inode
4286  * @inode: inode
4287  * @ctx: secctx
4288  * @ctxlen: length of secctx
4289  *
4290  * On success, returns 0 and fills out @ctx and @ctxlen with the security
4291  * context for the given @inode.
4292  *
4293  * Return: Returns 0 on success, error on failure.
4294  */
4295 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4296 {
4297         return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4298 }
4299 EXPORT_SYMBOL(security_inode_getsecctx);
4300 
4301 #ifdef CONFIG_WATCH_QUEUE
4302 /**
4303  * security_post_notification() - Check if a watch notification can be posted
4304  * @w_cred: credentials of the task that set the watch
4305  * @cred: credentials of the task which triggered the watch
4306  * @n: the notification
4307  *
4308  * Check to see if a watch notification can be posted to a particular queue.
4309  *
4310  * Return: Returns 0 if permission is granted.
4311  */
4312 int security_post_notification(const struct cred *w_cred,
4313                                const struct cred *cred,
4314                                struct watch_notification *n)
4315 {
4316         return call_int_hook(post_notification, w_cred, cred, n);
4317 }
4318 #endif /* CONFIG_WATCH_QUEUE */
4319 
4320 #ifdef CONFIG_KEY_NOTIFICATIONS
4321 /**
4322  * security_watch_key() - Check if a task is allowed to watch for key events
4323  * @key: the key to watch
4324  *
4325  * Check to see if a process is allowed to watch for event notifications from
4326  * a key or keyring.
4327  *
4328  * Return: Returns 0 if permission is granted.
4329  */
4330 int security_watch_key(struct key *key)
4331 {
4332         return call_int_hook(watch_key, key);
4333 }
4334 #endif /* CONFIG_KEY_NOTIFICATIONS */
4335 
4336 #ifdef CONFIG_SECURITY_NETWORK
4337 /**
4338  * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4339  * @sock: originating sock
4340  * @other: peer sock
4341  * @newsk: new sock
4342  *
4343  * Check permissions before establishing a Unix domain stream connection
4344  * between @sock and @other.
4345  *
4346  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4347  * Linux provides an alternative to the conventional file name space for Unix
4348  * domain sockets.  Whereas binding and connecting to sockets in the file name
4349  * space is mediated by the typical file permissions (and caught by the mknod
4350  * and permission hooks in inode_security_ops), binding and connecting to
4351  * sockets in the abstract name space is completely unmediated.  Sufficient
4352  * control of Unix domain sockets in the abstract name space isn't possible
4353  * using only the socket layer hooks, since we need to know the actual target
4354  * socket, which is not looked up until we are inside the af_unix code.
4355  *
4356  * Return: Returns 0 if permission is granted.
4357  */
4358 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4359                                  struct sock *newsk)
4360 {
4361         return call_int_hook(unix_stream_connect, sock, other, newsk);
4362 }
4363 EXPORT_SYMBOL(security_unix_stream_connect);
4364 
4365 /**
4366  * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4367  * @sock: originating sock
4368  * @other: peer sock
4369  *
4370  * Check permissions before connecting or sending datagrams from @sock to
4371  * @other.
4372  *
4373  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4374  * Linux provides an alternative to the conventional file name space for Unix
4375  * domain sockets.  Whereas binding and connecting to sockets in the file name
4376  * space is mediated by the typical file permissions (and caught by the mknod
4377  * and permission hooks in inode_security_ops), binding and connecting to
4378  * sockets in the abstract name space is completely unmediated.  Sufficient
4379  * control of Unix domain sockets in the abstract name space isn't possible
4380  * using only the socket layer hooks, since we need to know the actual target
4381  * socket, which is not looked up until we are inside the af_unix code.
4382  *
4383  * Return: Returns 0 if permission is granted.
4384  */
4385 int security_unix_may_send(struct socket *sock,  struct socket *other)
4386 {
4387         return call_int_hook(unix_may_send, sock, other);
4388 }
4389 EXPORT_SYMBOL(security_unix_may_send);
4390 
4391 /**
4392  * security_socket_create() - Check if creating a new socket is allowed
4393  * @family: protocol family
4394  * @type: communications type
4395  * @protocol: requested protocol
4396  * @kern: set to 1 if a kernel socket is requested
4397  *
4398  * Check permissions prior to creating a new socket.
4399  *
4400  * Return: Returns 0 if permission is granted.
4401  */
4402 int security_socket_create(int family, int type, int protocol, int kern)
4403 {
4404         return call_int_hook(socket_create, family, type, protocol, kern);
4405 }
4406 
4407 /**
4408  * security_socket_post_create() - Initialize a newly created socket
4409  * @sock: socket
4410  * @family: protocol family
4411  * @type: communications type
4412  * @protocol: requested protocol
4413  * @kern: set to 1 if a kernel socket is requested
4414  *
4415  * This hook allows a module to update or allocate a per-socket security
4416  * structure. Note that the security field was not added directly to the socket
4417  * structure, but rather, the socket security information is stored in the
4418  * associated inode.  Typically, the inode alloc_security hook will allocate
4419  * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4420  * may be used to update the SOCK_INODE(sock)->i_security field with additional
4421  * information that wasn't available when the inode was allocated.
4422  *
4423  * Return: Returns 0 if permission is granted.
4424  */
4425 int security_socket_post_create(struct socket *sock, int family,
4426                                 int type, int protocol, int kern)
4427 {
4428         return call_int_hook(socket_post_create, sock, family, type,
4429                              protocol, kern);
4430 }
4431 
4432 /**
4433  * security_socket_socketpair() - Check if creating a socketpair is allowed
4434  * @socka: first socket
4435  * @sockb: second socket
4436  *
4437  * Check permissions before creating a fresh pair of sockets.
4438  *
4439  * Return: Returns 0 if permission is granted and the connection was
4440  *         established.
4441  */
4442 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4443 {
4444         return call_int_hook(socket_socketpair, socka, sockb);
4445 }
4446 EXPORT_SYMBOL(security_socket_socketpair);
4447 
4448 /**
4449  * security_socket_bind() - Check if a socket bind operation is allowed
4450  * @sock: socket
4451  * @address: requested bind address
4452  * @addrlen: length of address
4453  *
4454  * Check permission before socket protocol layer bind operation is performed
4455  * and the socket @sock is bound to the address specified in the @address
4456  * parameter.
4457  *
4458  * Return: Returns 0 if permission is granted.
4459  */
4460 int security_socket_bind(struct socket *sock,
4461                          struct sockaddr *address, int addrlen)
4462 {
4463         return call_int_hook(socket_bind, sock, address, addrlen);
4464 }
4465 
4466 /**
4467  * security_socket_connect() - Check if a socket connect operation is allowed
4468  * @sock: socket
4469  * @address: address of remote connection point
4470  * @addrlen: length of address
4471  *
4472  * Check permission before socket protocol layer connect operation attempts to
4473  * connect socket @sock to a remote address, @address.
4474  *
4475  * Return: Returns 0 if permission is granted.
4476  */
4477 int security_socket_connect(struct socket *sock,
4478                             struct sockaddr *address, int addrlen)
4479 {
4480         return call_int_hook(socket_connect, sock, address, addrlen);
4481 }
4482 
4483 /**
4484  * security_socket_listen() - Check if a socket is allowed to listen
4485  * @sock: socket
4486  * @backlog: connection queue size
4487  *
4488  * Check permission before socket protocol layer listen operation.
4489  *
4490  * Return: Returns 0 if permission is granted.
4491  */
4492 int security_socket_listen(struct socket *sock, int backlog)
4493 {
4494         return call_int_hook(socket_listen, sock, backlog);
4495 }
4496 
4497 /**
4498  * security_socket_accept() - Check if a socket is allowed to accept connections
4499  * @sock: listening socket
4500  * @newsock: newly creation connection socket
4501  *
4502  * Check permission before accepting a new connection.  Note that the new
4503  * socket, @newsock, has been created and some information copied to it, but
4504  * the accept operation has not actually been performed.
4505  *
4506  * Return: Returns 0 if permission is granted.
4507  */
4508 int security_socket_accept(struct socket *sock, struct socket *newsock)
4509 {
4510         return call_int_hook(socket_accept, sock, newsock);
4511 }
4512 
4513 /**
4514  * security_socket_sendmsg() - Check if sending a message is allowed
4515  * @sock: sending socket
4516  * @msg: message to send
4517  * @size: size of message
4518  *
4519  * Check permission before transmitting a message to another socket.
4520  *
4521  * Return: Returns 0 if permission is granted.
4522  */
4523 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4524 {
4525         return call_int_hook(socket_sendmsg, sock, msg, size);
4526 }
4527 
4528 /**
4529  * security_socket_recvmsg() - Check if receiving a message is allowed
4530  * @sock: receiving socket
4531  * @msg: message to receive
4532  * @size: size of message
4533  * @flags: operational flags
4534  *
4535  * Check permission before receiving a message from a socket.
4536  *
4537  * Return: Returns 0 if permission is granted.
4538  */
4539 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4540                             int size, int flags)
4541 {
4542         return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4543 }
4544 
4545 /**
4546  * security_socket_getsockname() - Check if reading the socket addr is allowed
4547  * @sock: socket
4548  *
4549  * Check permission before reading the local address (name) of the socket
4550  * object.
4551  *
4552  * Return: Returns 0 if permission is granted.
4553  */
4554 int security_socket_getsockname(struct socket *sock)
4555 {
4556         return call_int_hook(socket_getsockname, sock);
4557 }
4558 
4559 /**
4560  * security_socket_getpeername() - Check if reading the peer's addr is allowed
4561  * @sock: socket
4562  *
4563  * Check permission before the remote address (name) of a socket object.
4564  *
4565  * Return: Returns 0 if permission is granted.
4566  */
4567 int security_socket_getpeername(struct socket *sock)
4568 {
4569         return call_int_hook(socket_getpeername, sock);
4570 }
4571 
4572 /**
4573  * security_socket_getsockopt() - Check if reading a socket option is allowed
4574  * @sock: socket
4575  * @level: option's protocol level
4576  * @optname: option name
4577  *
4578  * Check permissions before retrieving the options associated with socket
4579  * @sock.
4580  *
4581  * Return: Returns 0 if permission is granted.
4582  */
4583 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4584 {
4585         return call_int_hook(socket_getsockopt, sock, level, optname);
4586 }
4587 
4588 /**
4589  * security_socket_setsockopt() - Check if setting a socket option is allowed
4590  * @sock: socket
4591  * @level: option's protocol level
4592  * @optname: option name
4593  *
4594  * Check permissions before setting the options associated with socket @sock.
4595  *
4596  * Return: Returns 0 if permission is granted.
4597  */
4598 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4599 {
4600         return call_int_hook(socket_setsockopt, sock, level, optname);
4601 }
4602 
4603 /**
4604  * security_socket_shutdown() - Checks if shutting down the socket is allowed
4605  * @sock: socket
4606  * @how: flag indicating how sends and receives are handled
4607  *
4608  * Checks permission before all or part of a connection on the socket @sock is
4609  * shut down.
4610  *
4611  * Return: Returns 0 if permission is granted.
4612  */
4613 int security_socket_shutdown(struct socket *sock, int how)
4614 {
4615         return call_int_hook(socket_shutdown, sock, how);
4616 }
4617 
4618 /**
4619  * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4620  * @sk: destination sock
4621  * @skb: incoming packet
4622  *
4623  * Check permissions on incoming network packets.  This hook is distinct from
4624  * Netfilter's IP input hooks since it is the first time that the incoming
4625  * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4626  * sleep inside this hook because some callers hold spinlocks.
4627  *
4628  * Return: Returns 0 if permission is granted.
4629  */
4630 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4631 {
4632         return call_int_hook(socket_sock_rcv_skb, sk, skb);
4633 }
4634 EXPORT_SYMBOL(security_sock_rcv_skb);
4635 
4636 /**
4637  * security_socket_getpeersec_stream() - Get the remote peer label
4638  * @sock: socket
4639  * @optval: destination buffer
4640  * @optlen: size of peer label copied into the buffer
4641  * @len: maximum size of the destination buffer
4642  *
4643  * This hook allows the security module to provide peer socket security state
4644  * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4645  * For tcp sockets this can be meaningful if the socket is associated with an
4646  * ipsec SA.
4647  *
4648  * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4649  *         values.
4650  */
4651 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4652                                       sockptr_t optlen, unsigned int len)
4653 {
4654         return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4655                              len);
4656 }
4657 
4658 /**
4659  * security_socket_getpeersec_dgram() - Get the remote peer label
4660  * @sock: socket
4661  * @skb: datagram packet
4662  * @secid: remote peer label secid
4663  *
4664  * This hook allows the security module to provide peer socket security state
4665  * for udp sockets on a per-packet basis to userspace via getsockopt
4666  * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4667  * option via getsockopt. It can then retrieve the security state returned by
4668  * this hook for a packet via the SCM_SECURITY ancillary message type.
4669  *
4670  * Return: Returns 0 on success, error on failure.
4671  */
4672 int security_socket_getpeersec_dgram(struct socket *sock,
4673                                      struct sk_buff *skb, u32 *secid)
4674 {
4675         return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4676 }
4677 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4678 
4679 /**
4680  * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4681  * @sk: sock
4682  * @family: protocol family
4683  * @priority: gfp flags
4684  *
4685  * Allocate and attach a security structure to the sk->sk_security field, which
4686  * is used to copy security attributes between local stream sockets.
4687  *
4688  * Return: Returns 0 on success, error on failure.
4689  */
4690 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4691 {
4692         return call_int_hook(sk_alloc_security, sk, family, priority);
4693 }
4694 
4695 /**
4696  * security_sk_free() - Free the sock's LSM blob
4697  * @sk: sock
4698  *
4699  * Deallocate security structure.
4700  */
4701 void security_sk_free(struct sock *sk)
4702 {
4703         call_void_hook(sk_free_security, sk);
4704 }
4705 
4706 /**
4707  * security_sk_clone() - Clone a sock's LSM state
4708  * @sk: original sock
4709  * @newsk: target sock
4710  *
4711  * Clone/copy security structure.
4712  */
4713 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4714 {
4715         call_void_hook(sk_clone_security, sk, newsk);
4716 }
4717 EXPORT_SYMBOL(security_sk_clone);
4718 
4719 /**
4720  * security_sk_classify_flow() - Set a flow's secid based on socket
4721  * @sk: original socket
4722  * @flic: target flow
4723  *
4724  * Set the target flow's secid to socket's secid.
4725  */
4726 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4727 {
4728         call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4729 }
4730 EXPORT_SYMBOL(security_sk_classify_flow);
4731 
4732 /**
4733  * security_req_classify_flow() - Set a flow's secid based on request_sock
4734  * @req: request_sock
4735  * @flic: target flow
4736  *
4737  * Sets @flic's secid to @req's secid.
4738  */
4739 void security_req_classify_flow(const struct request_sock *req,
4740                                 struct flowi_common *flic)
4741 {
4742         call_void_hook(req_classify_flow, req, flic);
4743 }
4744 EXPORT_SYMBOL(security_req_classify_flow);
4745 
4746 /**
4747  * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4748  * @sk: sock being grafted
4749  * @parent: target parent socket
4750  *
4751  * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4752  * LSM state from @parent.
4753  */
4754 void security_sock_graft(struct sock *sk, struct socket *parent)
4755 {
4756         call_void_hook(sock_graft, sk, parent);
4757 }
4758 EXPORT_SYMBOL(security_sock_graft);
4759 
4760 /**
4761  * security_inet_conn_request() - Set request_sock state using incoming connect
4762  * @sk: parent listening sock
4763  * @skb: incoming connection
4764  * @req: new request_sock
4765  *
4766  * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4767  *
4768  * Return: Returns 0 if permission is granted.
4769  */
4770 int security_inet_conn_request(const struct sock *sk,
4771                                struct sk_buff *skb, struct request_sock *req)
4772 {
4773         return call_int_hook(inet_conn_request, sk, skb, req);
4774 }
4775 EXPORT_SYMBOL(security_inet_conn_request);
4776 
4777 /**
4778  * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4779  * @newsk: new sock
4780  * @req: connection request_sock
4781  *
4782  * Set that LSM state of @sock using the LSM state from @req.
4783  */
4784 void security_inet_csk_clone(struct sock *newsk,
4785                              const struct request_sock *req)
4786 {
4787         call_void_hook(inet_csk_clone, newsk, req);
4788 }
4789 
4790 /**
4791  * security_inet_conn_established() - Update sock's LSM state with connection
4792  * @sk: sock
4793  * @skb: connection packet
4794  *
4795  * Update @sock's LSM state to represent a new connection from @skb.
4796  */
4797 void security_inet_conn_established(struct sock *sk,
4798                                     struct sk_buff *skb)
4799 {
4800         call_void_hook(inet_conn_established, sk, skb);
4801 }
4802 EXPORT_SYMBOL(security_inet_conn_established);
4803 
4804 /**
4805  * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4806  * @secid: new secmark value
4807  *
4808  * Check if the process should be allowed to relabel packets to @secid.
4809  *
4810  * Return: Returns 0 if permission is granted.
4811  */
4812 int security_secmark_relabel_packet(u32 secid)
4813 {
4814         return call_int_hook(secmark_relabel_packet, secid);
4815 }
4816 EXPORT_SYMBOL(security_secmark_relabel_packet);
4817 
4818 /**
4819  * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4820  *
4821  * Tells the LSM to increment the number of secmark labeling rules loaded.
4822  */
4823 void security_secmark_refcount_inc(void)
4824 {
4825         call_void_hook(secmark_refcount_inc);
4826 }
4827 EXPORT_SYMBOL(security_secmark_refcount_inc);
4828 
4829 /**
4830  * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4831  *
4832  * Tells the LSM to decrement the number of secmark labeling rules loaded.
4833  */
4834 void security_secmark_refcount_dec(void)
4835 {
4836         call_void_hook(secmark_refcount_dec);
4837 }
4838 EXPORT_SYMBOL(security_secmark_refcount_dec);
4839 
4840 /**
4841  * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4842  * @security: pointer to the LSM blob
4843  *
4844  * This hook allows a module to allocate a security structure for a TUN device,
4845  * returning the pointer in @security.
4846  *
4847  * Return: Returns a zero on success, negative values on failure.
4848  */
4849 int security_tun_dev_alloc_security(void **security)
4850 {
4851         return call_int_hook(tun_dev_alloc_security, security);
4852 }
4853 EXPORT_SYMBOL(security_tun_dev_alloc_security);
4854 
4855 /**
4856  * security_tun_dev_free_security() - Free a TUN device LSM blob
4857  * @security: LSM blob
4858  *
4859  * This hook allows a module to free the security structure for a TUN device.
4860  */
4861 void security_tun_dev_free_security(void *security)
4862 {
4863         call_void_hook(tun_dev_free_security, security);
4864 }
4865 EXPORT_SYMBOL(security_tun_dev_free_security);
4866 
4867 /**
4868  * security_tun_dev_create() - Check if creating a TUN device is allowed
4869  *
4870  * Check permissions prior to creating a new TUN device.
4871  *
4872  * Return: Returns 0 if permission is granted.
4873  */
4874 int security_tun_dev_create(void)
4875 {
4876         return call_int_hook(tun_dev_create);
4877 }
4878 EXPORT_SYMBOL(security_tun_dev_create);
4879 
4880 /**
4881  * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4882  * @security: TUN device LSM blob
4883  *
4884  * Check permissions prior to attaching to a TUN device queue.
4885  *
4886  * Return: Returns 0 if permission is granted.
4887  */
4888 int security_tun_dev_attach_queue(void *security)
4889 {
4890         return call_int_hook(tun_dev_attach_queue, security);
4891 }
4892 EXPORT_SYMBOL(security_tun_dev_attach_queue);
4893 
4894 /**
4895  * security_tun_dev_attach() - Update TUN device LSM state on attach
4896  * @sk: associated sock
4897  * @security: TUN device LSM blob
4898  *
4899  * This hook can be used by the module to update any security state associated
4900  * with the TUN device's sock structure.
4901  *
4902  * Return: Returns 0 if permission is granted.
4903  */
4904 int security_tun_dev_attach(struct sock *sk, void *security)
4905 {
4906         return call_int_hook(tun_dev_attach, sk, security);
4907 }
4908 EXPORT_SYMBOL(security_tun_dev_attach);
4909 
4910 /**
4911  * security_tun_dev_open() - Update TUN device LSM state on open
4912  * @security: TUN device LSM blob
4913  *
4914  * This hook can be used by the module to update any security state associated
4915  * with the TUN device's security structure.
4916  *
4917  * Return: Returns 0 if permission is granted.
4918  */
4919 int security_tun_dev_open(void *security)
4920 {
4921         return call_int_hook(tun_dev_open, security);
4922 }
4923 EXPORT_SYMBOL(security_tun_dev_open);
4924 
4925 /**
4926  * security_sctp_assoc_request() - Update the LSM on a SCTP association req
4927  * @asoc: SCTP association
4928  * @skb: packet requesting the association
4929  *
4930  * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
4931  *
4932  * Return: Returns 0 on success, error on failure.
4933  */
4934 int security_sctp_assoc_request(struct sctp_association *asoc,
4935                                 struct sk_buff *skb)
4936 {
4937         return call_int_hook(sctp_assoc_request, asoc, skb);
4938 }
4939 EXPORT_SYMBOL(security_sctp_assoc_request);
4940 
4941 /**
4942  * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
4943  * @sk: socket
4944  * @optname: SCTP option to validate
4945  * @address: list of IP addresses to validate
4946  * @addrlen: length of the address list
4947  *
4948  * Validiate permissions required for each address associated with sock @sk.
4949  * Depending on @optname, the addresses will be treated as either a connect or
4950  * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
4951  * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
4952  *
4953  * Return: Returns 0 on success, error on failure.
4954  */
4955 int security_sctp_bind_connect(struct sock *sk, int optname,
4956                                struct sockaddr *address, int addrlen)
4957 {
4958         return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
4959 }
4960 EXPORT_SYMBOL(security_sctp_bind_connect);
4961 
4962 /**
4963  * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
4964  * @asoc: SCTP association
4965  * @sk: original sock
4966  * @newsk: target sock
4967  *
4968  * Called whenever a new socket is created by accept(2) (i.e. a TCP style
4969  * socket) or when a socket is 'peeled off' e.g userspace calls
4970  * sctp_peeloff(3).
4971  */
4972 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
4973                             struct sock *newsk)
4974 {
4975         call_void_hook(sctp_sk_clone, asoc, sk, newsk);
4976 }
4977 EXPORT_SYMBOL(security_sctp_sk_clone);
4978 
4979 /**
4980  * security_sctp_assoc_established() - Update LSM state when assoc established
4981  * @asoc: SCTP association
4982  * @skb: packet establishing the association
4983  *
4984  * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
4985  * security module.
4986  *
4987  * Return: Returns 0 if permission is granted.
4988  */
4989 int security_sctp_assoc_established(struct sctp_association *asoc,
4990                                     struct sk_buff *skb)
4991 {
4992         return call_int_hook(sctp_assoc_established, asoc, skb);
4993 }
4994 EXPORT_SYMBOL(security_sctp_assoc_established);
4995 
4996 /**
4997  * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
4998  * @sk: the owning MPTCP socket
4999  * @ssk: the new subflow
5000  *
5001  * Update the labeling for the given MPTCP subflow, to match the one of the
5002  * owning MPTCP socket. This hook has to be called after the socket creation and
5003  * initialization via the security_socket_create() and
5004  * security_socket_post_create() LSM hooks.
5005  *
5006  * Return: Returns 0 on success or a negative error code on failure.
5007  */
5008 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5009 {
5010         return call_int_hook(mptcp_add_subflow, sk, ssk);
5011 }
5012 
5013 #endif  /* CONFIG_SECURITY_NETWORK */
5014 
5015 #ifdef CONFIG_SECURITY_INFINIBAND
5016 /**
5017  * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5018  * @sec: LSM blob
5019  * @subnet_prefix: subnet prefix of the port
5020  * @pkey: IB pkey
5021  *
5022  * Check permission to access a pkey when modifying a QP.
5023  *
5024  * Return: Returns 0 if permission is granted.
5025  */
5026 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5027 {
5028         return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5029 }
5030 EXPORT_SYMBOL(security_ib_pkey_access);
5031 
5032 /**
5033  * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5034  * @sec: LSM blob
5035  * @dev_name: IB device name
5036  * @port_num: port number
5037  *
5038  * Check permissions to send and receive SMPs on a end port.
5039  *
5040  * Return: Returns 0 if permission is granted.
5041  */
5042 int security_ib_endport_manage_subnet(void *sec,
5043                                       const char *dev_name, u8 port_num)
5044 {
5045         return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5046 }
5047 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5048 
5049 /**
5050  * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5051  * @sec: LSM blob
5052  *
5053  * Allocate a security structure for Infiniband objects.
5054  *
5055  * Return: Returns 0 on success, non-zero on failure.
5056  */
5057 int security_ib_alloc_security(void **sec)
5058 {
5059         return call_int_hook(ib_alloc_security, sec);
5060 }
5061 EXPORT_SYMBOL(security_ib_alloc_security);
5062 
5063 /**
5064  * security_ib_free_security() - Free an Infiniband LSM blob
5065  * @sec: LSM blob
5066  *
5067  * Deallocate an Infiniband security structure.
5068  */
5069 void security_ib_free_security(void *sec)
5070 {
5071         call_void_hook(ib_free_security, sec);
5072 }
5073 EXPORT_SYMBOL(security_ib_free_security);
5074 #endif  /* CONFIG_SECURITY_INFINIBAND */
5075 
5076 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5077 /**
5078  * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5079  * @ctxp: xfrm security context being added to the SPD
5080  * @sec_ctx: security label provided by userspace
5081  * @gfp: gfp flags
5082  *
5083  * Allocate a security structure to the xp->security field; the security field
5084  * is initialized to NULL when the xfrm_policy is allocated.
5085  *
5086  * Return:  Return 0 if operation was successful.
5087  */
5088 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5089                                struct xfrm_user_sec_ctx *sec_ctx,
5090                                gfp_t gfp)
5091 {
5092         return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5093 }
5094 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5095 
5096 /**
5097  * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5098  * @old_ctx: xfrm security context
5099  * @new_ctxp: target xfrm security context
5100  *
5101  * Allocate a security structure in new_ctxp that contains the information from
5102  * the old_ctx structure.
5103  *
5104  * Return: Return 0 if operation was successful.
5105  */
5106 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5107                                struct xfrm_sec_ctx **new_ctxp)
5108 {
5109         return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5110 }
5111 
5112 /**
5113  * security_xfrm_policy_free() - Free a xfrm security context
5114  * @ctx: xfrm security context
5115  *
5116  * Free LSM resources associated with @ctx.
5117  */
5118 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5119 {
5120         call_void_hook(xfrm_policy_free_security, ctx);
5121 }
5122 EXPORT_SYMBOL(security_xfrm_policy_free);
5123 
5124 /**
5125  * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5126  * @ctx: xfrm security context
5127  *
5128  * Authorize deletion of a SPD entry.
5129  *
5130  * Return: Returns 0 if permission is granted.
5131  */
5132 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5133 {
5134         return call_int_hook(xfrm_policy_delete_security, ctx);
5135 }
5136 
5137 /**
5138  * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5139  * @x: xfrm state being added to the SAD
5140  * @sec_ctx: security label provided by userspace
5141  *
5142  * Allocate a security structure to the @x->security field; the security field
5143  * is initialized to NULL when the xfrm_state is allocated. Set the context to
5144  * correspond to @sec_ctx.
5145  *
5146  * Return: Return 0 if operation was successful.
5147  */
5148 int security_xfrm_state_alloc(struct xfrm_state *x,
5149                               struct xfrm_user_sec_ctx *sec_ctx)
5150 {
5151         return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5152 }
5153 EXPORT_SYMBOL(security_xfrm_state_alloc);
5154 
5155 /**
5156  * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5157  * @x: xfrm state being added to the SAD
5158  * @polsec: associated policy's security context
5159  * @secid: secid from the flow
5160  *
5161  * Allocate a security structure to the x->security field; the security field
5162  * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5163  * correspond to secid.
5164  *
5165  * Return: Returns 0 if operation was successful.
5166  */
5167 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5168                                       struct xfrm_sec_ctx *polsec, u32 secid)
5169 {
5170         return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5171 }
5172 
5173 /**
5174  * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5175  * @x: xfrm state
5176  *
5177  * Authorize deletion of x->security.
5178  *
5179  * Return: Returns 0 if permission is granted.
5180  */
5181 int security_xfrm_state_delete(struct xfrm_state *x)
5182 {
5183         return call_int_hook(xfrm_state_delete_security, x);
5184 }
5185 EXPORT_SYMBOL(security_xfrm_state_delete);
5186 
5187 /**
5188  * security_xfrm_state_free() - Free a xfrm state
5189  * @x: xfrm state
5190  *
5191  * Deallocate x->security.
5192  */
5193 void security_xfrm_state_free(struct xfrm_state *x)
5194 {
5195         call_void_hook(xfrm_state_free_security, x);
5196 }
5197 
5198 /**
5199  * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5200  * @ctx: target xfrm security context
5201  * @fl_secid: flow secid used to authorize access
5202  *
5203  * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5204  * packet.  The hook is called when selecting either a per-socket policy or a
5205  * generic xfrm policy.
5206  *
5207  * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5208  *         other errors.
5209  */
5210 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5211 {
5212         return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5213 }
5214 
5215 /**
5216  * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5217  * @x: xfrm state to match
5218  * @xp: xfrm policy to check for a match
5219  * @flic: flow to check for a match.
5220  *
5221  * Check @xp and @flic for a match with @x.
5222  *
5223  * Return: Returns 1 if there is a match.
5224  */
5225 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5226                                        struct xfrm_policy *xp,
5227                                        const struct flowi_common *flic)
5228 {
5229         struct security_hook_list *hp;
5230         int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5231 
5232         /*
5233          * Since this function is expected to return 0 or 1, the judgment
5234          * becomes difficult if multiple LSMs supply this call. Fortunately,
5235          * we can use the first LSM's judgment because currently only SELinux
5236          * supplies this call.
5237          *
5238          * For speed optimization, we explicitly break the loop rather than
5239          * using the macro
5240          */
5241         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
5242                              list) {
5243                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
5244                 break;
5245         }
5246         return rc;
5247 }
5248 
5249 /**
5250  * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5251  * @skb: xfrm packet
5252  * @secid: secid
5253  *
5254  * Decode the packet in @skb and return the security label in @secid.
5255  *
5256  * Return: Return 0 if all xfrms used have the same secid.
5257  */
5258 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5259 {
5260         return call_int_hook(xfrm_decode_session, skb, secid, 1);
5261 }
5262 
5263 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5264 {
5265         int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5266                                0);
5267 
5268         BUG_ON(rc);
5269 }
5270 EXPORT_SYMBOL(security_skb_classify_flow);
5271 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
5272 
5273 #ifdef CONFIG_KEYS
5274 /**
5275  * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5276  * @key: key
5277  * @cred: credentials
5278  * @flags: allocation flags
5279  *
5280  * Permit allocation of a key and assign security data. Note that key does not
5281  * have a serial number assigned at this point.
5282  *
5283  * Return: Return 0 if permission is granted, -ve error otherwise.
5284  */
5285 int security_key_alloc(struct key *key, const struct cred *cred,
5286                        unsigned long flags)
5287 {
5288         return call_int_hook(key_alloc, key, cred, flags);
5289 }
5290 
5291 /**
5292  * security_key_free() - Free a kernel key LSM blob
5293  * @key: key
5294  *
5295  * Notification of destruction; free security data.
5296  */
5297 void security_key_free(struct key *key)
5298 {
5299         call_void_hook(key_free, key);
5300 }
5301 
5302 /**
5303  * security_key_permission() - Check if a kernel key operation is allowed
5304  * @key_ref: key reference
5305  * @cred: credentials of actor requesting access
5306  * @need_perm: requested permissions
5307  *
5308  * See whether a specific operational right is granted to a process on a key.
5309  *
5310  * Return: Return 0 if permission is granted, -ve error otherwise.
5311  */
5312 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5313                             enum key_need_perm need_perm)
5314 {
5315         return call_int_hook(key_permission, key_ref, cred, need_perm);
5316 }
5317 
5318 /**
5319  * security_key_getsecurity() - Get the key's security label
5320  * @key: key
5321  * @buffer: security label buffer
5322  *
5323  * Get a textual representation of the security context attached to a key for
5324  * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5325  * storage for the NUL-terminated string and the caller should free it.
5326  *
5327  * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5328  *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5329  *         there is no security label assigned to the key.
5330  */
5331 int security_key_getsecurity(struct key *key, char **buffer)
5332 {
5333         *buffer = NULL;
5334         return call_int_hook(key_getsecurity, key, buffer);
5335 }
5336 
5337 /**
5338  * security_key_post_create_or_update() - Notification of key create or update
5339  * @keyring: keyring to which the key is linked to
5340  * @key: created or updated key
5341  * @payload: data used to instantiate or update the key
5342  * @payload_len: length of payload
5343  * @flags: key flags
5344  * @create: flag indicating whether the key was created or updated
5345  *
5346  * Notify the caller of a key creation or update.
5347  */
5348 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5349                                         const void *payload, size_t payload_len,
5350                                         unsigned long flags, bool create)
5351 {
5352         call_void_hook(key_post_create_or_update, keyring, key, payload,
5353                        payload_len, flags, create);
5354 }
5355 #endif  /* CONFIG_KEYS */
5356 
5357 #ifdef CONFIG_AUDIT
5358 /**
5359  * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5360  * @field: audit action
5361  * @op: rule operator
5362  * @rulestr: rule context
5363  * @lsmrule: receive buffer for audit rule struct
5364  * @gfp: GFP flag used for kmalloc
5365  *
5366  * Allocate and initialize an LSM audit rule structure.
5367  *
5368  * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5369  *         an invalid rule.
5370  */
5371 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5372                              gfp_t gfp)
5373 {
5374         return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5375 }
5376 
5377 /**
5378  * security_audit_rule_known() - Check if an audit rule contains LSM fields
5379  * @krule: audit rule
5380  *
5381  * Specifies whether given @krule contains any fields related to the current
5382  * LSM.
5383  *
5384  * Return: Returns 1 in case of relation found, 0 otherwise.
5385  */
5386 int security_audit_rule_known(struct audit_krule *krule)
5387 {
5388         return call_int_hook(audit_rule_known, krule);
5389 }
5390 
5391 /**
5392  * security_audit_rule_free() - Free an LSM audit rule struct
5393  * @lsmrule: audit rule struct
5394  *
5395  * Deallocate the LSM audit rule structure previously allocated by
5396  * audit_rule_init().
5397  */
5398 void security_audit_rule_free(void *lsmrule)
5399 {
5400         call_void_hook(audit_rule_free, lsmrule);
5401 }
5402 
5403 /**
5404  * security_audit_rule_match() - Check if a label matches an audit rule
5405  * @secid: security label
5406  * @field: LSM audit field
5407  * @op: matching operator
5408  * @lsmrule: audit rule
5409  *
5410  * Determine if given @secid matches a rule previously approved by
5411  * security_audit_rule_known().
5412  *
5413  * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5414  *         failure.
5415  */
5416 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
5417 {
5418         return call_int_hook(audit_rule_match, secid, field, op, lsmrule);
5419 }
5420 #endif /* CONFIG_AUDIT */
5421 
5422 #ifdef CONFIG_BPF_SYSCALL
5423 /**
5424  * security_bpf() - Check if the bpf syscall operation is allowed
5425  * @cmd: command
5426  * @attr: bpf attribute
5427  * @size: size
5428  *
5429  * Do a initial check for all bpf syscalls after the attribute is copied into
5430  * the kernel. The actual security module can implement their own rules to
5431  * check the specific cmd they need.
5432  *
5433  * Return: Returns 0 if permission is granted.
5434  */
5435 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5436 {
5437         return call_int_hook(bpf, cmd, attr, size);
5438 }
5439 
5440 /**
5441  * security_bpf_map() - Check if access to a bpf map is allowed
5442  * @map: bpf map
5443  * @fmode: mode
5444  *
5445  * Do a check when the kernel generates and returns a file descriptor for eBPF
5446  * maps.
5447  *
5448  * Return: Returns 0 if permission is granted.
5449  */
5450 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5451 {
5452         return call_int_hook(bpf_map, map, fmode);
5453 }
5454 
5455 /**
5456  * security_bpf_prog() - Check if access to a bpf program is allowed
5457  * @prog: bpf program
5458  *
5459  * Do a check when the kernel generates and returns a file descriptor for eBPF
5460  * programs.
5461  *
5462  * Return: Returns 0 if permission is granted.
5463  */
5464 int security_bpf_prog(struct bpf_prog *prog)
5465 {
5466         return call_int_hook(bpf_prog, prog);
5467 }
5468 
5469 /**
5470  * security_bpf_map_create() - Check if BPF map creation is allowed
5471  * @map: BPF map object
5472  * @attr: BPF syscall attributes used to create BPF map
5473  * @token: BPF token used to grant user access
5474  *
5475  * Do a check when the kernel creates a new BPF map. This is also the
5476  * point where LSM blob is allocated for LSMs that need them.
5477  *
5478  * Return: Returns 0 on success, error on failure.
5479  */
5480 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5481                             struct bpf_token *token)
5482 {
5483         return call_int_hook(bpf_map_create, map, attr, token);
5484 }
5485 
5486 /**
5487  * security_bpf_prog_load() - Check if loading of BPF program is allowed
5488  * @prog: BPF program object
5489  * @attr: BPF syscall attributes used to create BPF program
5490  * @token: BPF token used to grant user access to BPF subsystem
5491  *
5492  * Perform an access control check when the kernel loads a BPF program and
5493  * allocates associated BPF program object. This hook is also responsible for
5494  * allocating any required LSM state for the BPF program.
5495  *
5496  * Return: Returns 0 on success, error on failure.
5497  */
5498 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5499                            struct bpf_token *token)
5500 {
5501         return call_int_hook(bpf_prog_load, prog, attr, token);
5502 }
5503 
5504 /**
5505  * security_bpf_token_create() - Check if creating of BPF token is allowed
5506  * @token: BPF token object
5507  * @attr: BPF syscall attributes used to create BPF token
5508  * @path: path pointing to BPF FS mount point from which BPF token is created
5509  *
5510  * Do a check when the kernel instantiates a new BPF token object from BPF FS
5511  * instance. This is also the point where LSM blob can be allocated for LSMs.
5512  *
5513  * Return: Returns 0 on success, error on failure.
5514  */
5515 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5516                               struct path *path)
5517 {
5518         return call_int_hook(bpf_token_create, token, attr, path);
5519 }
5520 
5521 /**
5522  * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5523  * requested BPF syscall command
5524  * @token: BPF token object
5525  * @cmd: BPF syscall command requested to be delegated by BPF token
5526  *
5527  * Do a check when the kernel decides whether provided BPF token should allow
5528  * delegation of requested BPF syscall command.
5529  *
5530  * Return: Returns 0 on success, error on failure.
5531  */
5532 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5533 {
5534         return call_int_hook(bpf_token_cmd, token, cmd);
5535 }
5536 
5537 /**
5538  * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5539  * requested BPF-related capability
5540  * @token: BPF token object
5541  * @cap: capabilities requested to be delegated by BPF token
5542  *
5543  * Do a check when the kernel decides whether provided BPF token should allow
5544  * delegation of requested BPF-related capabilities.
5545  *
5546  * Return: Returns 0 on success, error on failure.
5547  */
5548 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5549 {
5550         return call_int_hook(bpf_token_capable, token, cap);
5551 }
5552 
5553 /**
5554  * security_bpf_map_free() - Free a bpf map's LSM blob
5555  * @map: bpf map
5556  *
5557  * Clean up the security information stored inside bpf map.
5558  */
5559 void security_bpf_map_free(struct bpf_map *map)
5560 {
5561         call_void_hook(bpf_map_free, map);
5562 }
5563 
5564 /**
5565  * security_bpf_prog_free() - Free a BPF program's LSM blob
5566  * @prog: BPF program struct
5567  *
5568  * Clean up the security information stored inside BPF program.
5569  */
5570 void security_bpf_prog_free(struct bpf_prog *prog)
5571 {
5572         call_void_hook(bpf_prog_free, prog);
5573 }
5574 
5575 /**
5576  * security_bpf_token_free() - Free a BPF token's LSM blob
5577  * @token: BPF token struct
5578  *
5579  * Clean up the security information stored inside BPF token.
5580  */
5581 void security_bpf_token_free(struct bpf_token *token)
5582 {
5583         call_void_hook(bpf_token_free, token);
5584 }
5585 #endif /* CONFIG_BPF_SYSCALL */
5586 
5587 /**
5588  * security_locked_down() - Check if a kernel feature is allowed
5589  * @what: requested kernel feature
5590  *
5591  * Determine whether a kernel feature that potentially enables arbitrary code
5592  * execution in kernel space should be permitted.
5593  *
5594  * Return: Returns 0 if permission is granted.
5595  */
5596 int security_locked_down(enum lockdown_reason what)
5597 {
5598         return call_int_hook(locked_down, what);
5599 }
5600 EXPORT_SYMBOL(security_locked_down);
5601 
5602 #ifdef CONFIG_PERF_EVENTS
5603 /**
5604  * security_perf_event_open() - Check if a perf event open is allowed
5605  * @attr: perf event attribute
5606  * @type: type of event
5607  *
5608  * Check whether the @type of perf_event_open syscall is allowed.
5609  *
5610  * Return: Returns 0 if permission is granted.
5611  */
5612 int security_perf_event_open(struct perf_event_attr *attr, int type)
5613 {
5614         return call_int_hook(perf_event_open, attr, type);
5615 }
5616 
5617 /**
5618  * security_perf_event_alloc() - Allocate a perf event LSM blob
5619  * @event: perf event
5620  *
5621  * Allocate and save perf_event security info.
5622  *
5623  * Return: Returns 0 on success, error on failure.
5624  */
5625 int security_perf_event_alloc(struct perf_event *event)
5626 {
5627         return call_int_hook(perf_event_alloc, event);
5628 }
5629 
5630 /**
5631  * security_perf_event_free() - Free a perf event LSM blob
5632  * @event: perf event
5633  *
5634  * Release (free) perf_event security info.
5635  */
5636 void security_perf_event_free(struct perf_event *event)
5637 {
5638         call_void_hook(perf_event_free, event);
5639 }
5640 
5641 /**
5642  * security_perf_event_read() - Check if reading a perf event label is allowed
5643  * @event: perf event
5644  *
5645  * Read perf_event security info if allowed.
5646  *
5647  * Return: Returns 0 if permission is granted.
5648  */
5649 int security_perf_event_read(struct perf_event *event)
5650 {
5651         return call_int_hook(perf_event_read, event);
5652 }
5653 
5654 /**
5655  * security_perf_event_write() - Check if writing a perf event label is allowed
5656  * @event: perf event
5657  *
5658  * Write perf_event security info if allowed.
5659  *
5660  * Return: Returns 0 if permission is granted.
5661  */
5662 int security_perf_event_write(struct perf_event *event)
5663 {
5664         return call_int_hook(perf_event_write, event);
5665 }
5666 #endif /* CONFIG_PERF_EVENTS */
5667 
5668 #ifdef CONFIG_IO_URING
5669 /**
5670  * security_uring_override_creds() - Check if overriding creds is allowed
5671  * @new: new credentials
5672  *
5673  * Check if the current task, executing an io_uring operation, is allowed to
5674  * override it's credentials with @new.
5675  *
5676  * Return: Returns 0 if permission is granted.
5677  */
5678 int security_uring_override_creds(const struct cred *new)
5679 {
5680         return call_int_hook(uring_override_creds, new);
5681 }
5682 
5683 /**
5684  * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5685  *
5686  * Check whether the current task is allowed to spawn a io_uring polling thread
5687  * (IORING_SETUP_SQPOLL).
5688  *
5689  * Return: Returns 0 if permission is granted.
5690  */
5691 int security_uring_sqpoll(void)
5692 {
5693         return call_int_hook(uring_sqpoll);
5694 }
5695 
5696 /**
5697  * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5698  * @ioucmd: command
5699  *
5700  * Check whether the file_operations uring_cmd is allowed to run.
5701  *
5702  * Return: Returns 0 if permission is granted.
5703  */
5704 int security_uring_cmd(struct io_uring_cmd *ioucmd)
5705 {
5706         return call_int_hook(uring_cmd, ioucmd);
5707 }
5708 #endif /* CONFIG_IO_URING */
5709 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php