~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/security/selinux/hooks.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  Security-Enhanced Linux (SELinux) security module
  4  *
  5  *  This file contains the SELinux hook function implementations.
  6  *
  7  *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
  8  *            Chris Vance, <cvance@nai.com>
  9  *            Wayne Salamon, <wsalamon@nai.com>
 10  *            James Morris <jmorris@redhat.com>
 11  *
 12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
 13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
 14  *                                         Eric Paris <eparis@redhat.com>
 15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
 16  *                          <dgoeddel@trustedcs.com>
 17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
 18  *      Paul Moore <paul@paul-moore.com>
 19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
 20  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
 21  *  Copyright (C) 2016 Mellanox Technologies
 22  */
 23 
 24 #include <linux/init.h>
 25 #include <linux/kd.h>
 26 #include <linux/kernel.h>
 27 #include <linux/kernel_read_file.h>
 28 #include <linux/errno.h>
 29 #include <linux/sched/signal.h>
 30 #include <linux/sched/task.h>
 31 #include <linux/lsm_hooks.h>
 32 #include <linux/xattr.h>
 33 #include <linux/capability.h>
 34 #include <linux/unistd.h>
 35 #include <linux/mm.h>
 36 #include <linux/mman.h>
 37 #include <linux/slab.h>
 38 #include <linux/pagemap.h>
 39 #include <linux/proc_fs.h>
 40 #include <linux/swap.h>
 41 #include <linux/spinlock.h>
 42 #include <linux/syscalls.h>
 43 #include <linux/dcache.h>
 44 #include <linux/file.h>
 45 #include <linux/fdtable.h>
 46 #include <linux/namei.h>
 47 #include <linux/mount.h>
 48 #include <linux/fs_context.h>
 49 #include <linux/fs_parser.h>
 50 #include <linux/netfilter_ipv4.h>
 51 #include <linux/netfilter_ipv6.h>
 52 #include <linux/tty.h>
 53 #include <net/icmp.h>
 54 #include <net/ip.h>             /* for local_port_range[] */
 55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
 56 #include <net/inet_connection_sock.h>
 57 #include <net/net_namespace.h>
 58 #include <net/netlabel.h>
 59 #include <linux/uaccess.h>
 60 #include <asm/ioctls.h>
 61 #include <linux/atomic.h>
 62 #include <linux/bitops.h>
 63 #include <linux/interrupt.h>
 64 #include <linux/netdevice.h>    /* for network interface checks */
 65 #include <net/netlink.h>
 66 #include <linux/tcp.h>
 67 #include <linux/udp.h>
 68 #include <linux/dccp.h>
 69 #include <linux/sctp.h>
 70 #include <net/sctp/structs.h>
 71 #include <linux/quota.h>
 72 #include <linux/un.h>           /* for Unix socket types */
 73 #include <net/af_unix.h>        /* for Unix socket types */
 74 #include <linux/parser.h>
 75 #include <linux/nfs_mount.h>
 76 #include <net/ipv6.h>
 77 #include <linux/hugetlb.h>
 78 #include <linux/personality.h>
 79 #include <linux/audit.h>
 80 #include <linux/string.h>
 81 #include <linux/mutex.h>
 82 #include <linux/posix-timers.h>
 83 #include <linux/syslog.h>
 84 #include <linux/user_namespace.h>
 85 #include <linux/export.h>
 86 #include <linux/msg.h>
 87 #include <linux/shm.h>
 88 #include <uapi/linux/shm.h>
 89 #include <linux/bpf.h>
 90 #include <linux/kernfs.h>
 91 #include <linux/stringhash.h>   /* for hashlen_string() */
 92 #include <uapi/linux/mount.h>
 93 #include <linux/fsnotify.h>
 94 #include <linux/fanotify.h>
 95 #include <linux/io_uring/cmd.h>
 96 #include <uapi/linux/lsm.h>
 97 
 98 #include "avc.h"
 99 #include "objsec.h"
100 #include "netif.h"
101 #include "netnode.h"
102 #include "netport.h"
103 #include "ibpkey.h"
104 #include "xfrm.h"
105 #include "netlabel.h"
106 #include "audit.h"
107 #include "avc_ss.h"
108 
109 #define SELINUX_INODE_INIT_XATTRS 1
110 
111 struct selinux_state selinux_state;
112 
113 /* SECMARK reference count */
114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115 
116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117 static int selinux_enforcing_boot __initdata;
118 
119 static int __init enforcing_setup(char *str)
120 {
121         unsigned long enforcing;
122         if (!kstrtoul(str, 0, &enforcing))
123                 selinux_enforcing_boot = enforcing ? 1 : 0;
124         return 1;
125 }
126 __setup("enforcing=", enforcing_setup);
127 #else
128 #define selinux_enforcing_boot 1
129 #endif
130 
131 int selinux_enabled_boot __initdata = 1;
132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133 static int __init selinux_enabled_setup(char *str)
134 {
135         unsigned long enabled;
136         if (!kstrtoul(str, 0, &enabled))
137                 selinux_enabled_boot = enabled ? 1 : 0;
138         return 1;
139 }
140 __setup("selinux=", selinux_enabled_setup);
141 #endif
142 
143 static int __init checkreqprot_setup(char *str)
144 {
145         unsigned long checkreqprot;
146 
147         if (!kstrtoul(str, 0, &checkreqprot)) {
148                 if (checkreqprot)
149                         pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
150         }
151         return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154 
155 /**
156  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157  *
158  * Description:
159  * This function checks the SECMARK reference counter to see if any SECMARK
160  * targets are currently configured, if the reference counter is greater than
161  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
162  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
163  * policy capability is enabled, SECMARK is always considered enabled.
164  *
165  */
166 static int selinux_secmark_enabled(void)
167 {
168         return (selinux_policycap_alwaysnetwork() ||
169                 atomic_read(&selinux_secmark_refcount));
170 }
171 
172 /**
173  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174  *
175  * Description:
176  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
177  * (1) if any are enabled or false (0) if neither are enabled.  If the
178  * always_check_network policy capability is enabled, peer labeling
179  * is always considered enabled.
180  *
181  */
182 static int selinux_peerlbl_enabled(void)
183 {
184         return (selinux_policycap_alwaysnetwork() ||
185                 netlbl_enabled() || selinux_xfrm_enabled());
186 }
187 
188 static int selinux_netcache_avc_callback(u32 event)
189 {
190         if (event == AVC_CALLBACK_RESET) {
191                 sel_netif_flush();
192                 sel_netnode_flush();
193                 sel_netport_flush();
194                 synchronize_net();
195         }
196         return 0;
197 }
198 
199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201         if (event == AVC_CALLBACK_RESET) {
202                 sel_ib_pkey_flush();
203                 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204         }
205 
206         return 0;
207 }
208 
209 /*
210  * initialise the security for the init task
211  */
212 static void cred_init_security(void)
213 {
214         struct task_security_struct *tsec;
215 
216         tsec = selinux_cred(unrcu_pointer(current->real_cred));
217         tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219 
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225         const struct task_security_struct *tsec;
226 
227         tsec = selinux_cred(cred);
228         return tsec->sid;
229 }
230 
231 static void __ad_net_init(struct common_audit_data *ad,
232                           struct lsm_network_audit *net,
233                           int ifindex, struct sock *sk, u16 family)
234 {
235         ad->type = LSM_AUDIT_DATA_NET;
236         ad->u.net = net;
237         net->netif = ifindex;
238         net->sk = sk;
239         net->family = family;
240 }
241 
242 static void ad_net_init_from_sk(struct common_audit_data *ad,
243                                 struct lsm_network_audit *net,
244                                 struct sock *sk)
245 {
246         __ad_net_init(ad, net, 0, sk, 0);
247 }
248 
249 static void ad_net_init_from_iif(struct common_audit_data *ad,
250                                  struct lsm_network_audit *net,
251                                  int ifindex, u16 family)
252 {
253         __ad_net_init(ad, net, ifindex, NULL, family);
254 }
255 
256 /*
257  * get the objective security ID of a task
258  */
259 static inline u32 task_sid_obj(const struct task_struct *task)
260 {
261         u32 sid;
262 
263         rcu_read_lock();
264         sid = cred_sid(__task_cred(task));
265         rcu_read_unlock();
266         return sid;
267 }
268 
269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270 
271 /*
272  * Try reloading inode security labels that have been marked as invalid.  The
273  * @may_sleep parameter indicates when sleeping and thus reloading labels is
274  * allowed; when set to false, returns -ECHILD when the label is
275  * invalid.  The @dentry parameter should be set to a dentry of the inode.
276  */
277 static int __inode_security_revalidate(struct inode *inode,
278                                        struct dentry *dentry,
279                                        bool may_sleep)
280 {
281         struct inode_security_struct *isec = selinux_inode(inode);
282 
283         might_sleep_if(may_sleep);
284 
285         if (selinux_initialized() &&
286             isec->initialized != LABEL_INITIALIZED) {
287                 if (!may_sleep)
288                         return -ECHILD;
289 
290                 /*
291                  * Try reloading the inode security label.  This will fail if
292                  * @opt_dentry is NULL and no dentry for this inode can be
293                  * found; in that case, continue using the old label.
294                  */
295                 inode_doinit_with_dentry(inode, dentry);
296         }
297         return 0;
298 }
299 
300 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
301 {
302         return selinux_inode(inode);
303 }
304 
305 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
306 {
307         int error;
308 
309         error = __inode_security_revalidate(inode, NULL, !rcu);
310         if (error)
311                 return ERR_PTR(error);
312         return selinux_inode(inode);
313 }
314 
315 /*
316  * Get the security label of an inode.
317  */
318 static struct inode_security_struct *inode_security(struct inode *inode)
319 {
320         __inode_security_revalidate(inode, NULL, true);
321         return selinux_inode(inode);
322 }
323 
324 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
325 {
326         struct inode *inode = d_backing_inode(dentry);
327 
328         return selinux_inode(inode);
329 }
330 
331 /*
332  * Get the security label of a dentry's backing inode.
333  */
334 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
335 {
336         struct inode *inode = d_backing_inode(dentry);
337 
338         __inode_security_revalidate(inode, dentry, true);
339         return selinux_inode(inode);
340 }
341 
342 static void inode_free_security(struct inode *inode)
343 {
344         struct inode_security_struct *isec = selinux_inode(inode);
345         struct superblock_security_struct *sbsec;
346 
347         if (!isec)
348                 return;
349         sbsec = selinux_superblock(inode->i_sb);
350         /*
351          * As not all inode security structures are in a list, we check for
352          * empty list outside of the lock to make sure that we won't waste
353          * time taking a lock doing nothing.
354          *
355          * The list_del_init() function can be safely called more than once.
356          * It should not be possible for this function to be called with
357          * concurrent list_add(), but for better safety against future changes
358          * in the code, we use list_empty_careful() here.
359          */
360         if (!list_empty_careful(&isec->list)) {
361                 spin_lock(&sbsec->isec_lock);
362                 list_del_init(&isec->list);
363                 spin_unlock(&sbsec->isec_lock);
364         }
365 }
366 
367 struct selinux_mnt_opts {
368         u32 fscontext_sid;
369         u32 context_sid;
370         u32 rootcontext_sid;
371         u32 defcontext_sid;
372 };
373 
374 static void selinux_free_mnt_opts(void *mnt_opts)
375 {
376         kfree(mnt_opts);
377 }
378 
379 enum {
380         Opt_error = -1,
381         Opt_context = 0,
382         Opt_defcontext = 1,
383         Opt_fscontext = 2,
384         Opt_rootcontext = 3,
385         Opt_seclabel = 4,
386 };
387 
388 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
389 static const struct {
390         const char *name;
391         int len;
392         int opt;
393         bool has_arg;
394 } tokens[] = {
395         A(context, true),
396         A(fscontext, true),
397         A(defcontext, true),
398         A(rootcontext, true),
399         A(seclabel, false),
400 };
401 #undef A
402 
403 static int match_opt_prefix(char *s, int l, char **arg)
404 {
405         int i;
406 
407         for (i = 0; i < ARRAY_SIZE(tokens); i++) {
408                 size_t len = tokens[i].len;
409                 if (len > l || memcmp(s, tokens[i].name, len))
410                         continue;
411                 if (tokens[i].has_arg) {
412                         if (len == l || s[len] != '=')
413                                 continue;
414                         *arg = s + len + 1;
415                 } else if (len != l)
416                         continue;
417                 return tokens[i].opt;
418         }
419         return Opt_error;
420 }
421 
422 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
423 
424 static int may_context_mount_sb_relabel(u32 sid,
425                         struct superblock_security_struct *sbsec,
426                         const struct cred *cred)
427 {
428         const struct task_security_struct *tsec = selinux_cred(cred);
429         int rc;
430 
431         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
432                           FILESYSTEM__RELABELFROM, NULL);
433         if (rc)
434                 return rc;
435 
436         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
437                           FILESYSTEM__RELABELTO, NULL);
438         return rc;
439 }
440 
441 static int may_context_mount_inode_relabel(u32 sid,
442                         struct superblock_security_struct *sbsec,
443                         const struct cred *cred)
444 {
445         const struct task_security_struct *tsec = selinux_cred(cred);
446         int rc;
447         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
448                           FILESYSTEM__RELABELFROM, NULL);
449         if (rc)
450                 return rc;
451 
452         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
453                           FILESYSTEM__ASSOCIATE, NULL);
454         return rc;
455 }
456 
457 static int selinux_is_genfs_special_handling(struct super_block *sb)
458 {
459         /* Special handling. Genfs but also in-core setxattr handler */
460         return  !strcmp(sb->s_type->name, "sysfs") ||
461                 !strcmp(sb->s_type->name, "pstore") ||
462                 !strcmp(sb->s_type->name, "debugfs") ||
463                 !strcmp(sb->s_type->name, "tracefs") ||
464                 !strcmp(sb->s_type->name, "rootfs") ||
465                 (selinux_policycap_cgroupseclabel() &&
466                  (!strcmp(sb->s_type->name, "cgroup") ||
467                   !strcmp(sb->s_type->name, "cgroup2")));
468 }
469 
470 static int selinux_is_sblabel_mnt(struct super_block *sb)
471 {
472         struct superblock_security_struct *sbsec = selinux_superblock(sb);
473 
474         /*
475          * IMPORTANT: Double-check logic in this function when adding a new
476          * SECURITY_FS_USE_* definition!
477          */
478         BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
479 
480         switch (sbsec->behavior) {
481         case SECURITY_FS_USE_XATTR:
482         case SECURITY_FS_USE_TRANS:
483         case SECURITY_FS_USE_TASK:
484         case SECURITY_FS_USE_NATIVE:
485                 return 1;
486 
487         case SECURITY_FS_USE_GENFS:
488                 return selinux_is_genfs_special_handling(sb);
489 
490         /* Never allow relabeling on context mounts */
491         case SECURITY_FS_USE_MNTPOINT:
492         case SECURITY_FS_USE_NONE:
493         default:
494                 return 0;
495         }
496 }
497 
498 static int sb_check_xattr_support(struct super_block *sb)
499 {
500         struct superblock_security_struct *sbsec = selinux_superblock(sb);
501         struct dentry *root = sb->s_root;
502         struct inode *root_inode = d_backing_inode(root);
503         u32 sid;
504         int rc;
505 
506         /*
507          * Make sure that the xattr handler exists and that no
508          * error other than -ENODATA is returned by getxattr on
509          * the root directory.  -ENODATA is ok, as this may be
510          * the first boot of the SELinux kernel before we have
511          * assigned xattr values to the filesystem.
512          */
513         if (!(root_inode->i_opflags & IOP_XATTR)) {
514                 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
515                         sb->s_id, sb->s_type->name);
516                 goto fallback;
517         }
518 
519         rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
520         if (rc < 0 && rc != -ENODATA) {
521                 if (rc == -EOPNOTSUPP) {
522                         pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
523                                 sb->s_id, sb->s_type->name);
524                         goto fallback;
525                 } else {
526                         pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
527                                 sb->s_id, sb->s_type->name, -rc);
528                         return rc;
529                 }
530         }
531         return 0;
532 
533 fallback:
534         /* No xattr support - try to fallback to genfs if possible. */
535         rc = security_genfs_sid(sb->s_type->name, "/",
536                                 SECCLASS_DIR, &sid);
537         if (rc)
538                 return -EOPNOTSUPP;
539 
540         pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
541                 sb->s_id, sb->s_type->name);
542         sbsec->behavior = SECURITY_FS_USE_GENFS;
543         sbsec->sid = sid;
544         return 0;
545 }
546 
547 static int sb_finish_set_opts(struct super_block *sb)
548 {
549         struct superblock_security_struct *sbsec = selinux_superblock(sb);
550         struct dentry *root = sb->s_root;
551         struct inode *root_inode = d_backing_inode(root);
552         int rc = 0;
553 
554         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
555                 rc = sb_check_xattr_support(sb);
556                 if (rc)
557                         return rc;
558         }
559 
560         sbsec->flags |= SE_SBINITIALIZED;
561 
562         /*
563          * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
564          * leave the flag untouched because sb_clone_mnt_opts might be handing
565          * us a superblock that needs the flag to be cleared.
566          */
567         if (selinux_is_sblabel_mnt(sb))
568                 sbsec->flags |= SBLABEL_MNT;
569         else
570                 sbsec->flags &= ~SBLABEL_MNT;
571 
572         /* Initialize the root inode. */
573         rc = inode_doinit_with_dentry(root_inode, root);
574 
575         /* Initialize any other inodes associated with the superblock, e.g.
576            inodes created prior to initial policy load or inodes created
577            during get_sb by a pseudo filesystem that directly
578            populates itself. */
579         spin_lock(&sbsec->isec_lock);
580         while (!list_empty(&sbsec->isec_head)) {
581                 struct inode_security_struct *isec =
582                                 list_first_entry(&sbsec->isec_head,
583                                            struct inode_security_struct, list);
584                 struct inode *inode = isec->inode;
585                 list_del_init(&isec->list);
586                 spin_unlock(&sbsec->isec_lock);
587                 inode = igrab(inode);
588                 if (inode) {
589                         if (!IS_PRIVATE(inode))
590                                 inode_doinit_with_dentry(inode, NULL);
591                         iput(inode);
592                 }
593                 spin_lock(&sbsec->isec_lock);
594         }
595         spin_unlock(&sbsec->isec_lock);
596         return rc;
597 }
598 
599 static int bad_option(struct superblock_security_struct *sbsec, char flag,
600                       u32 old_sid, u32 new_sid)
601 {
602         char mnt_flags = sbsec->flags & SE_MNTMASK;
603 
604         /* check if the old mount command had the same options */
605         if (sbsec->flags & SE_SBINITIALIZED)
606                 if (!(sbsec->flags & flag) ||
607                     (old_sid != new_sid))
608                         return 1;
609 
610         /* check if we were passed the same options twice,
611          * aka someone passed context=a,context=b
612          */
613         if (!(sbsec->flags & SE_SBINITIALIZED))
614                 if (mnt_flags & flag)
615                         return 1;
616         return 0;
617 }
618 
619 /*
620  * Allow filesystems with binary mount data to explicitly set mount point
621  * labeling information.
622  */
623 static int selinux_set_mnt_opts(struct super_block *sb,
624                                 void *mnt_opts,
625                                 unsigned long kern_flags,
626                                 unsigned long *set_kern_flags)
627 {
628         const struct cred *cred = current_cred();
629         struct superblock_security_struct *sbsec = selinux_superblock(sb);
630         struct dentry *root = sb->s_root;
631         struct selinux_mnt_opts *opts = mnt_opts;
632         struct inode_security_struct *root_isec;
633         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
634         u32 defcontext_sid = 0;
635         int rc = 0;
636 
637         /*
638          * Specifying internal flags without providing a place to
639          * place the results is not allowed
640          */
641         if (kern_flags && !set_kern_flags)
642                 return -EINVAL;
643 
644         mutex_lock(&sbsec->lock);
645 
646         if (!selinux_initialized()) {
647                 if (!opts) {
648                         /* Defer initialization until selinux_complete_init,
649                            after the initial policy is loaded and the security
650                            server is ready to handle calls. */
651                         if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
652                                 sbsec->flags |= SE_SBNATIVE;
653                                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
654                         }
655                         goto out;
656                 }
657                 rc = -EINVAL;
658                 pr_warn("SELinux: Unable to set superblock options "
659                         "before the security server is initialized\n");
660                 goto out;
661         }
662 
663         /*
664          * Binary mount data FS will come through this function twice.  Once
665          * from an explicit call and once from the generic calls from the vfs.
666          * Since the generic VFS calls will not contain any security mount data
667          * we need to skip the double mount verification.
668          *
669          * This does open a hole in which we will not notice if the first
670          * mount using this sb set explicit options and a second mount using
671          * this sb does not set any security options.  (The first options
672          * will be used for both mounts)
673          */
674         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
675             && !opts)
676                 goto out;
677 
678         root_isec = backing_inode_security_novalidate(root);
679 
680         /*
681          * parse the mount options, check if they are valid sids.
682          * also check if someone is trying to mount the same sb more
683          * than once with different security options.
684          */
685         if (opts) {
686                 if (opts->fscontext_sid) {
687                         fscontext_sid = opts->fscontext_sid;
688                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
689                                         fscontext_sid))
690                                 goto out_double_mount;
691                         sbsec->flags |= FSCONTEXT_MNT;
692                 }
693                 if (opts->context_sid) {
694                         context_sid = opts->context_sid;
695                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
696                                         context_sid))
697                                 goto out_double_mount;
698                         sbsec->flags |= CONTEXT_MNT;
699                 }
700                 if (opts->rootcontext_sid) {
701                         rootcontext_sid = opts->rootcontext_sid;
702                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
703                                         rootcontext_sid))
704                                 goto out_double_mount;
705                         sbsec->flags |= ROOTCONTEXT_MNT;
706                 }
707                 if (opts->defcontext_sid) {
708                         defcontext_sid = opts->defcontext_sid;
709                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
710                                         defcontext_sid))
711                                 goto out_double_mount;
712                         sbsec->flags |= DEFCONTEXT_MNT;
713                 }
714         }
715 
716         if (sbsec->flags & SE_SBINITIALIZED) {
717                 /* previously mounted with options, but not on this attempt? */
718                 if ((sbsec->flags & SE_MNTMASK) && !opts)
719                         goto out_double_mount;
720                 rc = 0;
721                 goto out;
722         }
723 
724         if (strcmp(sb->s_type->name, "proc") == 0)
725                 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
726 
727         if (!strcmp(sb->s_type->name, "debugfs") ||
728             !strcmp(sb->s_type->name, "tracefs") ||
729             !strcmp(sb->s_type->name, "binder") ||
730             !strcmp(sb->s_type->name, "bpf") ||
731             !strcmp(sb->s_type->name, "pstore") ||
732             !strcmp(sb->s_type->name, "securityfs"))
733                 sbsec->flags |= SE_SBGENFS;
734 
735         if (!strcmp(sb->s_type->name, "sysfs") ||
736             !strcmp(sb->s_type->name, "cgroup") ||
737             !strcmp(sb->s_type->name, "cgroup2"))
738                 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
739 
740         if (!sbsec->behavior) {
741                 /*
742                  * Determine the labeling behavior to use for this
743                  * filesystem type.
744                  */
745                 rc = security_fs_use(sb);
746                 if (rc) {
747                         pr_warn("%s: security_fs_use(%s) returned %d\n",
748                                         __func__, sb->s_type->name, rc);
749                         goto out;
750                 }
751         }
752 
753         /*
754          * If this is a user namespace mount and the filesystem type is not
755          * explicitly whitelisted, then no contexts are allowed on the command
756          * line and security labels must be ignored.
757          */
758         if (sb->s_user_ns != &init_user_ns &&
759             strcmp(sb->s_type->name, "tmpfs") &&
760             strcmp(sb->s_type->name, "ramfs") &&
761             strcmp(sb->s_type->name, "devpts") &&
762             strcmp(sb->s_type->name, "overlay")) {
763                 if (context_sid || fscontext_sid || rootcontext_sid ||
764                     defcontext_sid) {
765                         rc = -EACCES;
766                         goto out;
767                 }
768                 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
769                         sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
770                         rc = security_transition_sid(current_sid(),
771                                                      current_sid(),
772                                                      SECCLASS_FILE, NULL,
773                                                      &sbsec->mntpoint_sid);
774                         if (rc)
775                                 goto out;
776                 }
777                 goto out_set_opts;
778         }
779 
780         /* sets the context of the superblock for the fs being mounted. */
781         if (fscontext_sid) {
782                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
783                 if (rc)
784                         goto out;
785 
786                 sbsec->sid = fscontext_sid;
787         }
788 
789         /*
790          * Switch to using mount point labeling behavior.
791          * sets the label used on all file below the mountpoint, and will set
792          * the superblock context if not already set.
793          */
794         if (sbsec->flags & SE_SBNATIVE) {
795                 /*
796                  * This means we are initializing a superblock that has been
797                  * mounted before the SELinux was initialized and the
798                  * filesystem requested native labeling. We had already
799                  * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
800                  * in the original mount attempt, so now we just need to set
801                  * the SECURITY_FS_USE_NATIVE behavior.
802                  */
803                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
804         } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
805                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
806                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
807         }
808 
809         if (context_sid) {
810                 if (!fscontext_sid) {
811                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
812                                                           cred);
813                         if (rc)
814                                 goto out;
815                         sbsec->sid = context_sid;
816                 } else {
817                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
818                                                              cred);
819                         if (rc)
820                                 goto out;
821                 }
822                 if (!rootcontext_sid)
823                         rootcontext_sid = context_sid;
824 
825                 sbsec->mntpoint_sid = context_sid;
826                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
827         }
828 
829         if (rootcontext_sid) {
830                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
831                                                      cred);
832                 if (rc)
833                         goto out;
834 
835                 root_isec->sid = rootcontext_sid;
836                 root_isec->initialized = LABEL_INITIALIZED;
837         }
838 
839         if (defcontext_sid) {
840                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
841                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
842                         rc = -EINVAL;
843                         pr_warn("SELinux: defcontext option is "
844                                "invalid for this filesystem type\n");
845                         goto out;
846                 }
847 
848                 if (defcontext_sid != sbsec->def_sid) {
849                         rc = may_context_mount_inode_relabel(defcontext_sid,
850                                                              sbsec, cred);
851                         if (rc)
852                                 goto out;
853                 }
854 
855                 sbsec->def_sid = defcontext_sid;
856         }
857 
858 out_set_opts:
859         rc = sb_finish_set_opts(sb);
860 out:
861         mutex_unlock(&sbsec->lock);
862         return rc;
863 out_double_mount:
864         rc = -EINVAL;
865         pr_warn("SELinux: mount invalid.  Same superblock, different "
866                "security settings for (dev %s, type %s)\n", sb->s_id,
867                sb->s_type->name);
868         goto out;
869 }
870 
871 static int selinux_cmp_sb_context(const struct super_block *oldsb,
872                                     const struct super_block *newsb)
873 {
874         struct superblock_security_struct *old = selinux_superblock(oldsb);
875         struct superblock_security_struct *new = selinux_superblock(newsb);
876         char oldflags = old->flags & SE_MNTMASK;
877         char newflags = new->flags & SE_MNTMASK;
878 
879         if (oldflags != newflags)
880                 goto mismatch;
881         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
882                 goto mismatch;
883         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
884                 goto mismatch;
885         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
886                 goto mismatch;
887         if (oldflags & ROOTCONTEXT_MNT) {
888                 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
889                 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
890                 if (oldroot->sid != newroot->sid)
891                         goto mismatch;
892         }
893         return 0;
894 mismatch:
895         pr_warn("SELinux: mount invalid.  Same superblock, "
896                             "different security settings for (dev %s, "
897                             "type %s)\n", newsb->s_id, newsb->s_type->name);
898         return -EBUSY;
899 }
900 
901 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
902                                         struct super_block *newsb,
903                                         unsigned long kern_flags,
904                                         unsigned long *set_kern_flags)
905 {
906         int rc = 0;
907         const struct superblock_security_struct *oldsbsec =
908                                                 selinux_superblock(oldsb);
909         struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
910 
911         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
912         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
913         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
914 
915         /*
916          * Specifying internal flags without providing a place to
917          * place the results is not allowed.
918          */
919         if (kern_flags && !set_kern_flags)
920                 return -EINVAL;
921 
922         mutex_lock(&newsbsec->lock);
923 
924         /*
925          * if the parent was able to be mounted it clearly had no special lsm
926          * mount options.  thus we can safely deal with this superblock later
927          */
928         if (!selinux_initialized()) {
929                 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
930                         newsbsec->flags |= SE_SBNATIVE;
931                         *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
932                 }
933                 goto out;
934         }
935 
936         /* how can we clone if the old one wasn't set up?? */
937         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
938 
939         /* if fs is reusing a sb, make sure that the contexts match */
940         if (newsbsec->flags & SE_SBINITIALIZED) {
941                 mutex_unlock(&newsbsec->lock);
942                 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
943                         *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
944                 return selinux_cmp_sb_context(oldsb, newsb);
945         }
946 
947         newsbsec->flags = oldsbsec->flags;
948 
949         newsbsec->sid = oldsbsec->sid;
950         newsbsec->def_sid = oldsbsec->def_sid;
951         newsbsec->behavior = oldsbsec->behavior;
952 
953         if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
954                 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
955                 rc = security_fs_use(newsb);
956                 if (rc)
957                         goto out;
958         }
959 
960         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
961                 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
962                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
963         }
964 
965         if (set_context) {
966                 u32 sid = oldsbsec->mntpoint_sid;
967 
968                 if (!set_fscontext)
969                         newsbsec->sid = sid;
970                 if (!set_rootcontext) {
971                         struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
972                         newisec->sid = sid;
973                 }
974                 newsbsec->mntpoint_sid = sid;
975         }
976         if (set_rootcontext) {
977                 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
978                 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
979 
980                 newisec->sid = oldisec->sid;
981         }
982 
983         sb_finish_set_opts(newsb);
984 out:
985         mutex_unlock(&newsbsec->lock);
986         return rc;
987 }
988 
989 /*
990  * NOTE: the caller is responsible for freeing the memory even if on error.
991  */
992 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
993 {
994         struct selinux_mnt_opts *opts = *mnt_opts;
995         u32 *dst_sid;
996         int rc;
997 
998         if (token == Opt_seclabel)
999                 /* eaten and completely ignored */
1000                 return 0;
1001         if (!s)
1002                 return -EINVAL;
1003 
1004         if (!selinux_initialized()) {
1005                 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1006                 return -EINVAL;
1007         }
1008 
1009         if (!opts) {
1010                 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1011                 if (!opts)
1012                         return -ENOMEM;
1013                 *mnt_opts = opts;
1014         }
1015 
1016         switch (token) {
1017         case Opt_context:
1018                 if (opts->context_sid || opts->defcontext_sid)
1019                         goto err;
1020                 dst_sid = &opts->context_sid;
1021                 break;
1022         case Opt_fscontext:
1023                 if (opts->fscontext_sid)
1024                         goto err;
1025                 dst_sid = &opts->fscontext_sid;
1026                 break;
1027         case Opt_rootcontext:
1028                 if (opts->rootcontext_sid)
1029                         goto err;
1030                 dst_sid = &opts->rootcontext_sid;
1031                 break;
1032         case Opt_defcontext:
1033                 if (opts->context_sid || opts->defcontext_sid)
1034                         goto err;
1035                 dst_sid = &opts->defcontext_sid;
1036                 break;
1037         default:
1038                 WARN_ON(1);
1039                 return -EINVAL;
1040         }
1041         rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1042         if (rc)
1043                 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1044                         s, rc);
1045         return rc;
1046 
1047 err:
1048         pr_warn(SEL_MOUNT_FAIL_MSG);
1049         return -EINVAL;
1050 }
1051 
1052 static int show_sid(struct seq_file *m, u32 sid)
1053 {
1054         char *context = NULL;
1055         u32 len;
1056         int rc;
1057 
1058         rc = security_sid_to_context(sid, &context, &len);
1059         if (!rc) {
1060                 bool has_comma = strchr(context, ',');
1061 
1062                 seq_putc(m, '=');
1063                 if (has_comma)
1064                         seq_putc(m, '\"');
1065                 seq_escape(m, context, "\"\n\\");
1066                 if (has_comma)
1067                         seq_putc(m, '\"');
1068         }
1069         kfree(context);
1070         return rc;
1071 }
1072 
1073 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1074 {
1075         struct superblock_security_struct *sbsec = selinux_superblock(sb);
1076         int rc;
1077 
1078         if (!(sbsec->flags & SE_SBINITIALIZED))
1079                 return 0;
1080 
1081         if (!selinux_initialized())
1082                 return 0;
1083 
1084         if (sbsec->flags & FSCONTEXT_MNT) {
1085                 seq_putc(m, ',');
1086                 seq_puts(m, FSCONTEXT_STR);
1087                 rc = show_sid(m, sbsec->sid);
1088                 if (rc)
1089                         return rc;
1090         }
1091         if (sbsec->flags & CONTEXT_MNT) {
1092                 seq_putc(m, ',');
1093                 seq_puts(m, CONTEXT_STR);
1094                 rc = show_sid(m, sbsec->mntpoint_sid);
1095                 if (rc)
1096                         return rc;
1097         }
1098         if (sbsec->flags & DEFCONTEXT_MNT) {
1099                 seq_putc(m, ',');
1100                 seq_puts(m, DEFCONTEXT_STR);
1101                 rc = show_sid(m, sbsec->def_sid);
1102                 if (rc)
1103                         return rc;
1104         }
1105         if (sbsec->flags & ROOTCONTEXT_MNT) {
1106                 struct dentry *root = sb->s_root;
1107                 struct inode_security_struct *isec = backing_inode_security(root);
1108                 seq_putc(m, ',');
1109                 seq_puts(m, ROOTCONTEXT_STR);
1110                 rc = show_sid(m, isec->sid);
1111                 if (rc)
1112                         return rc;
1113         }
1114         if (sbsec->flags & SBLABEL_MNT) {
1115                 seq_putc(m, ',');
1116                 seq_puts(m, SECLABEL_STR);
1117         }
1118         return 0;
1119 }
1120 
1121 static inline u16 inode_mode_to_security_class(umode_t mode)
1122 {
1123         switch (mode & S_IFMT) {
1124         case S_IFSOCK:
1125                 return SECCLASS_SOCK_FILE;
1126         case S_IFLNK:
1127                 return SECCLASS_LNK_FILE;
1128         case S_IFREG:
1129                 return SECCLASS_FILE;
1130         case S_IFBLK:
1131                 return SECCLASS_BLK_FILE;
1132         case S_IFDIR:
1133                 return SECCLASS_DIR;
1134         case S_IFCHR:
1135                 return SECCLASS_CHR_FILE;
1136         case S_IFIFO:
1137                 return SECCLASS_FIFO_FILE;
1138 
1139         }
1140 
1141         return SECCLASS_FILE;
1142 }
1143 
1144 static inline int default_protocol_stream(int protocol)
1145 {
1146         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1147                 protocol == IPPROTO_MPTCP);
1148 }
1149 
1150 static inline int default_protocol_dgram(int protocol)
1151 {
1152         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1153 }
1154 
1155 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1156 {
1157         bool extsockclass = selinux_policycap_extsockclass();
1158 
1159         switch (family) {
1160         case PF_UNIX:
1161                 switch (type) {
1162                 case SOCK_STREAM:
1163                 case SOCK_SEQPACKET:
1164                         return SECCLASS_UNIX_STREAM_SOCKET;
1165                 case SOCK_DGRAM:
1166                 case SOCK_RAW:
1167                         return SECCLASS_UNIX_DGRAM_SOCKET;
1168                 }
1169                 break;
1170         case PF_INET:
1171         case PF_INET6:
1172                 switch (type) {
1173                 case SOCK_STREAM:
1174                 case SOCK_SEQPACKET:
1175                         if (default_protocol_stream(protocol))
1176                                 return SECCLASS_TCP_SOCKET;
1177                         else if (extsockclass && protocol == IPPROTO_SCTP)
1178                                 return SECCLASS_SCTP_SOCKET;
1179                         else
1180                                 return SECCLASS_RAWIP_SOCKET;
1181                 case SOCK_DGRAM:
1182                         if (default_protocol_dgram(protocol))
1183                                 return SECCLASS_UDP_SOCKET;
1184                         else if (extsockclass && (protocol == IPPROTO_ICMP ||
1185                                                   protocol == IPPROTO_ICMPV6))
1186                                 return SECCLASS_ICMP_SOCKET;
1187                         else
1188                                 return SECCLASS_RAWIP_SOCKET;
1189                 case SOCK_DCCP:
1190                         return SECCLASS_DCCP_SOCKET;
1191                 default:
1192                         return SECCLASS_RAWIP_SOCKET;
1193                 }
1194                 break;
1195         case PF_NETLINK:
1196                 switch (protocol) {
1197                 case NETLINK_ROUTE:
1198                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1199                 case NETLINK_SOCK_DIAG:
1200                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201                 case NETLINK_NFLOG:
1202                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1203                 case NETLINK_XFRM:
1204                         return SECCLASS_NETLINK_XFRM_SOCKET;
1205                 case NETLINK_SELINUX:
1206                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1207                 case NETLINK_ISCSI:
1208                         return SECCLASS_NETLINK_ISCSI_SOCKET;
1209                 case NETLINK_AUDIT:
1210                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1211                 case NETLINK_FIB_LOOKUP:
1212                         return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1213                 case NETLINK_CONNECTOR:
1214                         return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1215                 case NETLINK_NETFILTER:
1216                         return SECCLASS_NETLINK_NETFILTER_SOCKET;
1217                 case NETLINK_DNRTMSG:
1218                         return SECCLASS_NETLINK_DNRT_SOCKET;
1219                 case NETLINK_KOBJECT_UEVENT:
1220                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1221                 case NETLINK_GENERIC:
1222                         return SECCLASS_NETLINK_GENERIC_SOCKET;
1223                 case NETLINK_SCSITRANSPORT:
1224                         return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1225                 case NETLINK_RDMA:
1226                         return SECCLASS_NETLINK_RDMA_SOCKET;
1227                 case NETLINK_CRYPTO:
1228                         return SECCLASS_NETLINK_CRYPTO_SOCKET;
1229                 default:
1230                         return SECCLASS_NETLINK_SOCKET;
1231                 }
1232         case PF_PACKET:
1233                 return SECCLASS_PACKET_SOCKET;
1234         case PF_KEY:
1235                 return SECCLASS_KEY_SOCKET;
1236         case PF_APPLETALK:
1237                 return SECCLASS_APPLETALK_SOCKET;
1238         }
1239 
1240         if (extsockclass) {
1241                 switch (family) {
1242                 case PF_AX25:
1243                         return SECCLASS_AX25_SOCKET;
1244                 case PF_IPX:
1245                         return SECCLASS_IPX_SOCKET;
1246                 case PF_NETROM:
1247                         return SECCLASS_NETROM_SOCKET;
1248                 case PF_ATMPVC:
1249                         return SECCLASS_ATMPVC_SOCKET;
1250                 case PF_X25:
1251                         return SECCLASS_X25_SOCKET;
1252                 case PF_ROSE:
1253                         return SECCLASS_ROSE_SOCKET;
1254                 case PF_DECnet:
1255                         return SECCLASS_DECNET_SOCKET;
1256                 case PF_ATMSVC:
1257                         return SECCLASS_ATMSVC_SOCKET;
1258                 case PF_RDS:
1259                         return SECCLASS_RDS_SOCKET;
1260                 case PF_IRDA:
1261                         return SECCLASS_IRDA_SOCKET;
1262                 case PF_PPPOX:
1263                         return SECCLASS_PPPOX_SOCKET;
1264                 case PF_LLC:
1265                         return SECCLASS_LLC_SOCKET;
1266                 case PF_CAN:
1267                         return SECCLASS_CAN_SOCKET;
1268                 case PF_TIPC:
1269                         return SECCLASS_TIPC_SOCKET;
1270                 case PF_BLUETOOTH:
1271                         return SECCLASS_BLUETOOTH_SOCKET;
1272                 case PF_IUCV:
1273                         return SECCLASS_IUCV_SOCKET;
1274                 case PF_RXRPC:
1275                         return SECCLASS_RXRPC_SOCKET;
1276                 case PF_ISDN:
1277                         return SECCLASS_ISDN_SOCKET;
1278                 case PF_PHONET:
1279                         return SECCLASS_PHONET_SOCKET;
1280                 case PF_IEEE802154:
1281                         return SECCLASS_IEEE802154_SOCKET;
1282                 case PF_CAIF:
1283                         return SECCLASS_CAIF_SOCKET;
1284                 case PF_ALG:
1285                         return SECCLASS_ALG_SOCKET;
1286                 case PF_NFC:
1287                         return SECCLASS_NFC_SOCKET;
1288                 case PF_VSOCK:
1289                         return SECCLASS_VSOCK_SOCKET;
1290                 case PF_KCM:
1291                         return SECCLASS_KCM_SOCKET;
1292                 case PF_QIPCRTR:
1293                         return SECCLASS_QIPCRTR_SOCKET;
1294                 case PF_SMC:
1295                         return SECCLASS_SMC_SOCKET;
1296                 case PF_XDP:
1297                         return SECCLASS_XDP_SOCKET;
1298                 case PF_MCTP:
1299                         return SECCLASS_MCTP_SOCKET;
1300 #if PF_MAX > 46
1301 #error New address family defined, please update this function.
1302 #endif
1303                 }
1304         }
1305 
1306         return SECCLASS_SOCKET;
1307 }
1308 
1309 static int selinux_genfs_get_sid(struct dentry *dentry,
1310                                  u16 tclass,
1311                                  u16 flags,
1312                                  u32 *sid)
1313 {
1314         int rc;
1315         struct super_block *sb = dentry->d_sb;
1316         char *buffer, *path;
1317 
1318         buffer = (char *)__get_free_page(GFP_KERNEL);
1319         if (!buffer)
1320                 return -ENOMEM;
1321 
1322         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1323         if (IS_ERR(path))
1324                 rc = PTR_ERR(path);
1325         else {
1326                 if (flags & SE_SBPROC) {
1327                         /* each process gets a /proc/PID/ entry. Strip off the
1328                          * PID part to get a valid selinux labeling.
1329                          * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1330                         while (path[1] >= '' && path[1] <= '9') {
1331                                 path[1] = '/';
1332                                 path++;
1333                         }
1334                 }
1335                 rc = security_genfs_sid(sb->s_type->name,
1336                                         path, tclass, sid);
1337                 if (rc == -ENOENT) {
1338                         /* No match in policy, mark as unlabeled. */
1339                         *sid = SECINITSID_UNLABELED;
1340                         rc = 0;
1341                 }
1342         }
1343         free_page((unsigned long)buffer);
1344         return rc;
1345 }
1346 
1347 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1348                                   u32 def_sid, u32 *sid)
1349 {
1350 #define INITCONTEXTLEN 255
1351         char *context;
1352         unsigned int len;
1353         int rc;
1354 
1355         len = INITCONTEXTLEN;
1356         context = kmalloc(len + 1, GFP_NOFS);
1357         if (!context)
1358                 return -ENOMEM;
1359 
1360         context[len] = '\0';
1361         rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1362         if (rc == -ERANGE) {
1363                 kfree(context);
1364 
1365                 /* Need a larger buffer.  Query for the right size. */
1366                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1367                 if (rc < 0)
1368                         return rc;
1369 
1370                 len = rc;
1371                 context = kmalloc(len + 1, GFP_NOFS);
1372                 if (!context)
1373                         return -ENOMEM;
1374 
1375                 context[len] = '\0';
1376                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1377                                     context, len);
1378         }
1379         if (rc < 0) {
1380                 kfree(context);
1381                 if (rc != -ENODATA) {
1382                         pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1383                                 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1384                         return rc;
1385                 }
1386                 *sid = def_sid;
1387                 return 0;
1388         }
1389 
1390         rc = security_context_to_sid_default(context, rc, sid,
1391                                              def_sid, GFP_NOFS);
1392         if (rc) {
1393                 char *dev = inode->i_sb->s_id;
1394                 unsigned long ino = inode->i_ino;
1395 
1396                 if (rc == -EINVAL) {
1397                         pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1398                                               ino, dev, context);
1399                 } else {
1400                         pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1401                                 __func__, context, -rc, dev, ino);
1402                 }
1403         }
1404         kfree(context);
1405         return 0;
1406 }
1407 
1408 /* The inode's security attributes must be initialized before first use. */
1409 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1410 {
1411         struct superblock_security_struct *sbsec = NULL;
1412         struct inode_security_struct *isec = selinux_inode(inode);
1413         u32 task_sid, sid = 0;
1414         u16 sclass;
1415         struct dentry *dentry;
1416         int rc = 0;
1417 
1418         if (isec->initialized == LABEL_INITIALIZED)
1419                 return 0;
1420 
1421         spin_lock(&isec->lock);
1422         if (isec->initialized == LABEL_INITIALIZED)
1423                 goto out_unlock;
1424 
1425         if (isec->sclass == SECCLASS_FILE)
1426                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1427 
1428         sbsec = selinux_superblock(inode->i_sb);
1429         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1430                 /* Defer initialization until selinux_complete_init,
1431                    after the initial policy is loaded and the security
1432                    server is ready to handle calls. */
1433                 spin_lock(&sbsec->isec_lock);
1434                 if (list_empty(&isec->list))
1435                         list_add(&isec->list, &sbsec->isec_head);
1436                 spin_unlock(&sbsec->isec_lock);
1437                 goto out_unlock;
1438         }
1439 
1440         sclass = isec->sclass;
1441         task_sid = isec->task_sid;
1442         sid = isec->sid;
1443         isec->initialized = LABEL_PENDING;
1444         spin_unlock(&isec->lock);
1445 
1446         switch (sbsec->behavior) {
1447         /*
1448          * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1449          * via xattr when called from delayed_superblock_init().
1450          */
1451         case SECURITY_FS_USE_NATIVE:
1452         case SECURITY_FS_USE_XATTR:
1453                 if (!(inode->i_opflags & IOP_XATTR)) {
1454                         sid = sbsec->def_sid;
1455                         break;
1456                 }
1457                 /* Need a dentry, since the xattr API requires one.
1458                    Life would be simpler if we could just pass the inode. */
1459                 if (opt_dentry) {
1460                         /* Called from d_instantiate or d_splice_alias. */
1461                         dentry = dget(opt_dentry);
1462                 } else {
1463                         /*
1464                          * Called from selinux_complete_init, try to find a dentry.
1465                          * Some filesystems really want a connected one, so try
1466                          * that first.  We could split SECURITY_FS_USE_XATTR in
1467                          * two, depending upon that...
1468                          */
1469                         dentry = d_find_alias(inode);
1470                         if (!dentry)
1471                                 dentry = d_find_any_alias(inode);
1472                 }
1473                 if (!dentry) {
1474                         /*
1475                          * this is can be hit on boot when a file is accessed
1476                          * before the policy is loaded.  When we load policy we
1477                          * may find inodes that have no dentry on the
1478                          * sbsec->isec_head list.  No reason to complain as these
1479                          * will get fixed up the next time we go through
1480                          * inode_doinit with a dentry, before these inodes could
1481                          * be used again by userspace.
1482                          */
1483                         goto out_invalid;
1484                 }
1485 
1486                 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1487                                             &sid);
1488                 dput(dentry);
1489                 if (rc)
1490                         goto out;
1491                 break;
1492         case SECURITY_FS_USE_TASK:
1493                 sid = task_sid;
1494                 break;
1495         case SECURITY_FS_USE_TRANS:
1496                 /* Default to the fs SID. */
1497                 sid = sbsec->sid;
1498 
1499                 /* Try to obtain a transition SID. */
1500                 rc = security_transition_sid(task_sid, sid,
1501                                              sclass, NULL, &sid);
1502                 if (rc)
1503                         goto out;
1504                 break;
1505         case SECURITY_FS_USE_MNTPOINT:
1506                 sid = sbsec->mntpoint_sid;
1507                 break;
1508         default:
1509                 /* Default to the fs superblock SID. */
1510                 sid = sbsec->sid;
1511 
1512                 if ((sbsec->flags & SE_SBGENFS) &&
1513                      (!S_ISLNK(inode->i_mode) ||
1514                       selinux_policycap_genfs_seclabel_symlinks())) {
1515                         /* We must have a dentry to determine the label on
1516                          * procfs inodes */
1517                         if (opt_dentry) {
1518                                 /* Called from d_instantiate or
1519                                  * d_splice_alias. */
1520                                 dentry = dget(opt_dentry);
1521                         } else {
1522                                 /* Called from selinux_complete_init, try to
1523                                  * find a dentry.  Some filesystems really want
1524                                  * a connected one, so try that first.
1525                                  */
1526                                 dentry = d_find_alias(inode);
1527                                 if (!dentry)
1528                                         dentry = d_find_any_alias(inode);
1529                         }
1530                         /*
1531                          * This can be hit on boot when a file is accessed
1532                          * before the policy is loaded.  When we load policy we
1533                          * may find inodes that have no dentry on the
1534                          * sbsec->isec_head list.  No reason to complain as
1535                          * these will get fixed up the next time we go through
1536                          * inode_doinit() with a dentry, before these inodes
1537                          * could be used again by userspace.
1538                          */
1539                         if (!dentry)
1540                                 goto out_invalid;
1541                         rc = selinux_genfs_get_sid(dentry, sclass,
1542                                                    sbsec->flags, &sid);
1543                         if (rc) {
1544                                 dput(dentry);
1545                                 goto out;
1546                         }
1547 
1548                         if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1549                             (inode->i_opflags & IOP_XATTR)) {
1550                                 rc = inode_doinit_use_xattr(inode, dentry,
1551                                                             sid, &sid);
1552                                 if (rc) {
1553                                         dput(dentry);
1554                                         goto out;
1555                                 }
1556                         }
1557                         dput(dentry);
1558                 }
1559                 break;
1560         }
1561 
1562 out:
1563         spin_lock(&isec->lock);
1564         if (isec->initialized == LABEL_PENDING) {
1565                 if (rc) {
1566                         isec->initialized = LABEL_INVALID;
1567                         goto out_unlock;
1568                 }
1569                 isec->initialized = LABEL_INITIALIZED;
1570                 isec->sid = sid;
1571         }
1572 
1573 out_unlock:
1574         spin_unlock(&isec->lock);
1575         return rc;
1576 
1577 out_invalid:
1578         spin_lock(&isec->lock);
1579         if (isec->initialized == LABEL_PENDING) {
1580                 isec->initialized = LABEL_INVALID;
1581                 isec->sid = sid;
1582         }
1583         spin_unlock(&isec->lock);
1584         return 0;
1585 }
1586 
1587 /* Convert a Linux signal to an access vector. */
1588 static inline u32 signal_to_av(int sig)
1589 {
1590         u32 perm = 0;
1591 
1592         switch (sig) {
1593         case SIGCHLD:
1594                 /* Commonly granted from child to parent. */
1595                 perm = PROCESS__SIGCHLD;
1596                 break;
1597         case SIGKILL:
1598                 /* Cannot be caught or ignored */
1599                 perm = PROCESS__SIGKILL;
1600                 break;
1601         case SIGSTOP:
1602                 /* Cannot be caught or ignored */
1603                 perm = PROCESS__SIGSTOP;
1604                 break;
1605         default:
1606                 /* All other signals. */
1607                 perm = PROCESS__SIGNAL;
1608                 break;
1609         }
1610 
1611         return perm;
1612 }
1613 
1614 #if CAP_LAST_CAP > 63
1615 #error Fix SELinux to handle capabilities > 63.
1616 #endif
1617 
1618 /* Check whether a task is allowed to use a capability. */
1619 static int cred_has_capability(const struct cred *cred,
1620                                int cap, unsigned int opts, bool initns)
1621 {
1622         struct common_audit_data ad;
1623         struct av_decision avd;
1624         u16 sclass;
1625         u32 sid = cred_sid(cred);
1626         u32 av = CAP_TO_MASK(cap);
1627         int rc;
1628 
1629         ad.type = LSM_AUDIT_DATA_CAP;
1630         ad.u.cap = cap;
1631 
1632         switch (CAP_TO_INDEX(cap)) {
1633         case 0:
1634                 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1635                 break;
1636         case 1:
1637                 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1638                 break;
1639         default:
1640                 pr_err("SELinux:  out of range capability %d\n", cap);
1641                 BUG();
1642                 return -EINVAL;
1643         }
1644 
1645         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1646         if (!(opts & CAP_OPT_NOAUDIT)) {
1647                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1648                 if (rc2)
1649                         return rc2;
1650         }
1651         return rc;
1652 }
1653 
1654 /* Check whether a task has a particular permission to an inode.
1655    The 'adp' parameter is optional and allows other audit
1656    data to be passed (e.g. the dentry). */
1657 static int inode_has_perm(const struct cred *cred,
1658                           struct inode *inode,
1659                           u32 perms,
1660                           struct common_audit_data *adp)
1661 {
1662         struct inode_security_struct *isec;
1663         u32 sid;
1664 
1665         if (unlikely(IS_PRIVATE(inode)))
1666                 return 0;
1667 
1668         sid = cred_sid(cred);
1669         isec = selinux_inode(inode);
1670 
1671         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1672 }
1673 
1674 /* Same as inode_has_perm, but pass explicit audit data containing
1675    the dentry to help the auditing code to more easily generate the
1676    pathname if needed. */
1677 static inline int dentry_has_perm(const struct cred *cred,
1678                                   struct dentry *dentry,
1679                                   u32 av)
1680 {
1681         struct inode *inode = d_backing_inode(dentry);
1682         struct common_audit_data ad;
1683 
1684         ad.type = LSM_AUDIT_DATA_DENTRY;
1685         ad.u.dentry = dentry;
1686         __inode_security_revalidate(inode, dentry, true);
1687         return inode_has_perm(cred, inode, av, &ad);
1688 }
1689 
1690 /* Same as inode_has_perm, but pass explicit audit data containing
1691    the path to help the auditing code to more easily generate the
1692    pathname if needed. */
1693 static inline int path_has_perm(const struct cred *cred,
1694                                 const struct path *path,
1695                                 u32 av)
1696 {
1697         struct inode *inode = d_backing_inode(path->dentry);
1698         struct common_audit_data ad;
1699 
1700         ad.type = LSM_AUDIT_DATA_PATH;
1701         ad.u.path = *path;
1702         __inode_security_revalidate(inode, path->dentry, true);
1703         return inode_has_perm(cred, inode, av, &ad);
1704 }
1705 
1706 /* Same as path_has_perm, but uses the inode from the file struct. */
1707 static inline int file_path_has_perm(const struct cred *cred,
1708                                      struct file *file,
1709                                      u32 av)
1710 {
1711         struct common_audit_data ad;
1712 
1713         ad.type = LSM_AUDIT_DATA_FILE;
1714         ad.u.file = file;
1715         return inode_has_perm(cred, file_inode(file), av, &ad);
1716 }
1717 
1718 #ifdef CONFIG_BPF_SYSCALL
1719 static int bpf_fd_pass(const struct file *file, u32 sid);
1720 #endif
1721 
1722 /* Check whether a task can use an open file descriptor to
1723    access an inode in a given way.  Check access to the
1724    descriptor itself, and then use dentry_has_perm to
1725    check a particular permission to the file.
1726    Access to the descriptor is implicitly granted if it
1727    has the same SID as the process.  If av is zero, then
1728    access to the file is not checked, e.g. for cases
1729    where only the descriptor is affected like seek. */
1730 static int file_has_perm(const struct cred *cred,
1731                          struct file *file,
1732                          u32 av)
1733 {
1734         struct file_security_struct *fsec = selinux_file(file);
1735         struct inode *inode = file_inode(file);
1736         struct common_audit_data ad;
1737         u32 sid = cred_sid(cred);
1738         int rc;
1739 
1740         ad.type = LSM_AUDIT_DATA_FILE;
1741         ad.u.file = file;
1742 
1743         if (sid != fsec->sid) {
1744                 rc = avc_has_perm(sid, fsec->sid,
1745                                   SECCLASS_FD,
1746                                   FD__USE,
1747                                   &ad);
1748                 if (rc)
1749                         goto out;
1750         }
1751 
1752 #ifdef CONFIG_BPF_SYSCALL
1753         rc = bpf_fd_pass(file, cred_sid(cred));
1754         if (rc)
1755                 return rc;
1756 #endif
1757 
1758         /* av is zero if only checking access to the descriptor. */
1759         rc = 0;
1760         if (av)
1761                 rc = inode_has_perm(cred, inode, av, &ad);
1762 
1763 out:
1764         return rc;
1765 }
1766 
1767 /*
1768  * Determine the label for an inode that might be unioned.
1769  */
1770 static int
1771 selinux_determine_inode_label(const struct task_security_struct *tsec,
1772                                  struct inode *dir,
1773                                  const struct qstr *name, u16 tclass,
1774                                  u32 *_new_isid)
1775 {
1776         const struct superblock_security_struct *sbsec =
1777                                                 selinux_superblock(dir->i_sb);
1778 
1779         if ((sbsec->flags & SE_SBINITIALIZED) &&
1780             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1781                 *_new_isid = sbsec->mntpoint_sid;
1782         } else if ((sbsec->flags & SBLABEL_MNT) &&
1783                    tsec->create_sid) {
1784                 *_new_isid = tsec->create_sid;
1785         } else {
1786                 const struct inode_security_struct *dsec = inode_security(dir);
1787                 return security_transition_sid(tsec->sid,
1788                                                dsec->sid, tclass,
1789                                                name, _new_isid);
1790         }
1791 
1792         return 0;
1793 }
1794 
1795 /* Check whether a task can create a file. */
1796 static int may_create(struct inode *dir,
1797                       struct dentry *dentry,
1798                       u16 tclass)
1799 {
1800         const struct task_security_struct *tsec = selinux_cred(current_cred());
1801         struct inode_security_struct *dsec;
1802         struct superblock_security_struct *sbsec;
1803         u32 sid, newsid;
1804         struct common_audit_data ad;
1805         int rc;
1806 
1807         dsec = inode_security(dir);
1808         sbsec = selinux_superblock(dir->i_sb);
1809 
1810         sid = tsec->sid;
1811 
1812         ad.type = LSM_AUDIT_DATA_DENTRY;
1813         ad.u.dentry = dentry;
1814 
1815         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1816                           DIR__ADD_NAME | DIR__SEARCH,
1817                           &ad);
1818         if (rc)
1819                 return rc;
1820 
1821         rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1822                                            &newsid);
1823         if (rc)
1824                 return rc;
1825 
1826         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1827         if (rc)
1828                 return rc;
1829 
1830         return avc_has_perm(newsid, sbsec->sid,
1831                             SECCLASS_FILESYSTEM,
1832                             FILESYSTEM__ASSOCIATE, &ad);
1833 }
1834 
1835 #define MAY_LINK        0
1836 #define MAY_UNLINK      1
1837 #define MAY_RMDIR       2
1838 
1839 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1840 static int may_link(struct inode *dir,
1841                     struct dentry *dentry,
1842                     int kind)
1843 
1844 {
1845         struct inode_security_struct *dsec, *isec;
1846         struct common_audit_data ad;
1847         u32 sid = current_sid();
1848         u32 av;
1849         int rc;
1850 
1851         dsec = inode_security(dir);
1852         isec = backing_inode_security(dentry);
1853 
1854         ad.type = LSM_AUDIT_DATA_DENTRY;
1855         ad.u.dentry = dentry;
1856 
1857         av = DIR__SEARCH;
1858         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1859         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1860         if (rc)
1861                 return rc;
1862 
1863         switch (kind) {
1864         case MAY_LINK:
1865                 av = FILE__LINK;
1866                 break;
1867         case MAY_UNLINK:
1868                 av = FILE__UNLINK;
1869                 break;
1870         case MAY_RMDIR:
1871                 av = DIR__RMDIR;
1872                 break;
1873         default:
1874                 pr_warn("SELinux: %s:  unrecognized kind %d\n",
1875                         __func__, kind);
1876                 return 0;
1877         }
1878 
1879         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1880         return rc;
1881 }
1882 
1883 static inline int may_rename(struct inode *old_dir,
1884                              struct dentry *old_dentry,
1885                              struct inode *new_dir,
1886                              struct dentry *new_dentry)
1887 {
1888         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1889         struct common_audit_data ad;
1890         u32 sid = current_sid();
1891         u32 av;
1892         int old_is_dir, new_is_dir;
1893         int rc;
1894 
1895         old_dsec = inode_security(old_dir);
1896         old_isec = backing_inode_security(old_dentry);
1897         old_is_dir = d_is_dir(old_dentry);
1898         new_dsec = inode_security(new_dir);
1899 
1900         ad.type = LSM_AUDIT_DATA_DENTRY;
1901 
1902         ad.u.dentry = old_dentry;
1903         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1904                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1905         if (rc)
1906                 return rc;
1907         rc = avc_has_perm(sid, old_isec->sid,
1908                           old_isec->sclass, FILE__RENAME, &ad);
1909         if (rc)
1910                 return rc;
1911         if (old_is_dir && new_dir != old_dir) {
1912                 rc = avc_has_perm(sid, old_isec->sid,
1913                                   old_isec->sclass, DIR__REPARENT, &ad);
1914                 if (rc)
1915                         return rc;
1916         }
1917 
1918         ad.u.dentry = new_dentry;
1919         av = DIR__ADD_NAME | DIR__SEARCH;
1920         if (d_is_positive(new_dentry))
1921                 av |= DIR__REMOVE_NAME;
1922         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1923         if (rc)
1924                 return rc;
1925         if (d_is_positive(new_dentry)) {
1926                 new_isec = backing_inode_security(new_dentry);
1927                 new_is_dir = d_is_dir(new_dentry);
1928                 rc = avc_has_perm(sid, new_isec->sid,
1929                                   new_isec->sclass,
1930                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1931                 if (rc)
1932                         return rc;
1933         }
1934 
1935         return 0;
1936 }
1937 
1938 /* Check whether a task can perform a filesystem operation. */
1939 static int superblock_has_perm(const struct cred *cred,
1940                                const struct super_block *sb,
1941                                u32 perms,
1942                                struct common_audit_data *ad)
1943 {
1944         struct superblock_security_struct *sbsec;
1945         u32 sid = cred_sid(cred);
1946 
1947         sbsec = selinux_superblock(sb);
1948         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1949 }
1950 
1951 /* Convert a Linux mode and permission mask to an access vector. */
1952 static inline u32 file_mask_to_av(int mode, int mask)
1953 {
1954         u32 av = 0;
1955 
1956         if (!S_ISDIR(mode)) {
1957                 if (mask & MAY_EXEC)
1958                         av |= FILE__EXECUTE;
1959                 if (mask & MAY_READ)
1960                         av |= FILE__READ;
1961 
1962                 if (mask & MAY_APPEND)
1963                         av |= FILE__APPEND;
1964                 else if (mask & MAY_WRITE)
1965                         av |= FILE__WRITE;
1966 
1967         } else {
1968                 if (mask & MAY_EXEC)
1969                         av |= DIR__SEARCH;
1970                 if (mask & MAY_WRITE)
1971                         av |= DIR__WRITE;
1972                 if (mask & MAY_READ)
1973                         av |= DIR__READ;
1974         }
1975 
1976         return av;
1977 }
1978 
1979 /* Convert a Linux file to an access vector. */
1980 static inline u32 file_to_av(const struct file *file)
1981 {
1982         u32 av = 0;
1983 
1984         if (file->f_mode & FMODE_READ)
1985                 av |= FILE__READ;
1986         if (file->f_mode & FMODE_WRITE) {
1987                 if (file->f_flags & O_APPEND)
1988                         av |= FILE__APPEND;
1989                 else
1990                         av |= FILE__WRITE;
1991         }
1992         if (!av) {
1993                 /*
1994                  * Special file opened with flags 3 for ioctl-only use.
1995                  */
1996                 av = FILE__IOCTL;
1997         }
1998 
1999         return av;
2000 }
2001 
2002 /*
2003  * Convert a file to an access vector and include the correct
2004  * open permission.
2005  */
2006 static inline u32 open_file_to_av(struct file *file)
2007 {
2008         u32 av = file_to_av(file);
2009         struct inode *inode = file_inode(file);
2010 
2011         if (selinux_policycap_openperm() &&
2012             inode->i_sb->s_magic != SOCKFS_MAGIC)
2013                 av |= FILE__OPEN;
2014 
2015         return av;
2016 }
2017 
2018 /* Hook functions begin here. */
2019 
2020 static int selinux_binder_set_context_mgr(const struct cred *mgr)
2021 {
2022         return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2023                             BINDER__SET_CONTEXT_MGR, NULL);
2024 }
2025 
2026 static int selinux_binder_transaction(const struct cred *from,
2027                                       const struct cred *to)
2028 {
2029         u32 mysid = current_sid();
2030         u32 fromsid = cred_sid(from);
2031         u32 tosid = cred_sid(to);
2032         int rc;
2033 
2034         if (mysid != fromsid) {
2035                 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2036                                   BINDER__IMPERSONATE, NULL);
2037                 if (rc)
2038                         return rc;
2039         }
2040 
2041         return avc_has_perm(fromsid, tosid,
2042                             SECCLASS_BINDER, BINDER__CALL, NULL);
2043 }
2044 
2045 static int selinux_binder_transfer_binder(const struct cred *from,
2046                                           const struct cred *to)
2047 {
2048         return avc_has_perm(cred_sid(from), cred_sid(to),
2049                             SECCLASS_BINDER, BINDER__TRANSFER,
2050                             NULL);
2051 }
2052 
2053 static int selinux_binder_transfer_file(const struct cred *from,
2054                                         const struct cred *to,
2055                                         const struct file *file)
2056 {
2057         u32 sid = cred_sid(to);
2058         struct file_security_struct *fsec = selinux_file(file);
2059         struct dentry *dentry = file->f_path.dentry;
2060         struct inode_security_struct *isec;
2061         struct common_audit_data ad;
2062         int rc;
2063 
2064         ad.type = LSM_AUDIT_DATA_PATH;
2065         ad.u.path = file->f_path;
2066 
2067         if (sid != fsec->sid) {
2068                 rc = avc_has_perm(sid, fsec->sid,
2069                                   SECCLASS_FD,
2070                                   FD__USE,
2071                                   &ad);
2072                 if (rc)
2073                         return rc;
2074         }
2075 
2076 #ifdef CONFIG_BPF_SYSCALL
2077         rc = bpf_fd_pass(file, sid);
2078         if (rc)
2079                 return rc;
2080 #endif
2081 
2082         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2083                 return 0;
2084 
2085         isec = backing_inode_security(dentry);
2086         return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2087                             &ad);
2088 }
2089 
2090 static int selinux_ptrace_access_check(struct task_struct *child,
2091                                        unsigned int mode)
2092 {
2093         u32 sid = current_sid();
2094         u32 csid = task_sid_obj(child);
2095 
2096         if (mode & PTRACE_MODE_READ)
2097                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2098                                 NULL);
2099 
2100         return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2101                         NULL);
2102 }
2103 
2104 static int selinux_ptrace_traceme(struct task_struct *parent)
2105 {
2106         return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2107                             SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2108 }
2109 
2110 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2111                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
2112 {
2113         return avc_has_perm(current_sid(), task_sid_obj(target),
2114                         SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2115 }
2116 
2117 static int selinux_capset(struct cred *new, const struct cred *old,
2118                           const kernel_cap_t *effective,
2119                           const kernel_cap_t *inheritable,
2120                           const kernel_cap_t *permitted)
2121 {
2122         return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2123                             PROCESS__SETCAP, NULL);
2124 }
2125 
2126 /*
2127  * (This comment used to live with the selinux_task_setuid hook,
2128  * which was removed).
2129  *
2130  * Since setuid only affects the current process, and since the SELinux
2131  * controls are not based on the Linux identity attributes, SELinux does not
2132  * need to control this operation.  However, SELinux does control the use of
2133  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2134  */
2135 
2136 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2137                            int cap, unsigned int opts)
2138 {
2139         return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2140 }
2141 
2142 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2143 {
2144         const struct cred *cred = current_cred();
2145         int rc = 0;
2146 
2147         if (!sb)
2148                 return 0;
2149 
2150         switch (cmds) {
2151         case Q_SYNC:
2152         case Q_QUOTAON:
2153         case Q_QUOTAOFF:
2154         case Q_SETINFO:
2155         case Q_SETQUOTA:
2156         case Q_XQUOTAOFF:
2157         case Q_XQUOTAON:
2158         case Q_XSETQLIM:
2159                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2160                 break;
2161         case Q_GETFMT:
2162         case Q_GETINFO:
2163         case Q_GETQUOTA:
2164         case Q_XGETQUOTA:
2165         case Q_XGETQSTAT:
2166         case Q_XGETQSTATV:
2167         case Q_XGETNEXTQUOTA:
2168                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2169                 break;
2170         default:
2171                 rc = 0;  /* let the kernel handle invalid cmds */
2172                 break;
2173         }
2174         return rc;
2175 }
2176 
2177 static int selinux_quota_on(struct dentry *dentry)
2178 {
2179         const struct cred *cred = current_cred();
2180 
2181         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2182 }
2183 
2184 static int selinux_syslog(int type)
2185 {
2186         switch (type) {
2187         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2188         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2189                 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2190                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2191         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2192         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2193         /* Set level of messages printed to console */
2194         case SYSLOG_ACTION_CONSOLE_LEVEL:
2195                 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2196                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2197                                     NULL);
2198         }
2199         /* All other syslog types */
2200         return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201                             SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2202 }
2203 
2204 /*
2205  * Check that a process has enough memory to allocate a new virtual
2206  * mapping. 0 means there is enough memory for the allocation to
2207  * succeed and -ENOMEM implies there is not.
2208  *
2209  * Do not audit the selinux permission check, as this is applied to all
2210  * processes that allocate mappings.
2211  */
2212 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2213 {
2214         int rc, cap_sys_admin = 0;
2215 
2216         rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2217                                  CAP_OPT_NOAUDIT, true);
2218         if (rc == 0)
2219                 cap_sys_admin = 1;
2220 
2221         return cap_sys_admin;
2222 }
2223 
2224 /* binprm security operations */
2225 
2226 static u32 ptrace_parent_sid(void)
2227 {
2228         u32 sid = 0;
2229         struct task_struct *tracer;
2230 
2231         rcu_read_lock();
2232         tracer = ptrace_parent(current);
2233         if (tracer)
2234                 sid = task_sid_obj(tracer);
2235         rcu_read_unlock();
2236 
2237         return sid;
2238 }
2239 
2240 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2241                             const struct task_security_struct *old_tsec,
2242                             const struct task_security_struct *new_tsec)
2243 {
2244         int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2245         int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2246         int rc;
2247         u32 av;
2248 
2249         if (!nnp && !nosuid)
2250                 return 0; /* neither NNP nor nosuid */
2251 
2252         if (new_tsec->sid == old_tsec->sid)
2253                 return 0; /* No change in credentials */
2254 
2255         /*
2256          * If the policy enables the nnp_nosuid_transition policy capability,
2257          * then we permit transitions under NNP or nosuid if the
2258          * policy allows the corresponding permission between
2259          * the old and new contexts.
2260          */
2261         if (selinux_policycap_nnp_nosuid_transition()) {
2262                 av = 0;
2263                 if (nnp)
2264                         av |= PROCESS2__NNP_TRANSITION;
2265                 if (nosuid)
2266                         av |= PROCESS2__NOSUID_TRANSITION;
2267                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2268                                   SECCLASS_PROCESS2, av, NULL);
2269                 if (!rc)
2270                         return 0;
2271         }
2272 
2273         /*
2274          * We also permit NNP or nosuid transitions to bounded SIDs,
2275          * i.e. SIDs that are guaranteed to only be allowed a subset
2276          * of the permissions of the current SID.
2277          */
2278         rc = security_bounded_transition(old_tsec->sid,
2279                                          new_tsec->sid);
2280         if (!rc)
2281                 return 0;
2282 
2283         /*
2284          * On failure, preserve the errno values for NNP vs nosuid.
2285          * NNP:  Operation not permitted for caller.
2286          * nosuid:  Permission denied to file.
2287          */
2288         if (nnp)
2289                 return -EPERM;
2290         return -EACCES;
2291 }
2292 
2293 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2294 {
2295         const struct task_security_struct *old_tsec;
2296         struct task_security_struct *new_tsec;
2297         struct inode_security_struct *isec;
2298         struct common_audit_data ad;
2299         struct inode *inode = file_inode(bprm->file);
2300         int rc;
2301 
2302         /* SELinux context only depends on initial program or script and not
2303          * the script interpreter */
2304 
2305         old_tsec = selinux_cred(current_cred());
2306         new_tsec = selinux_cred(bprm->cred);
2307         isec = inode_security(inode);
2308 
2309         /* Default to the current task SID. */
2310         new_tsec->sid = old_tsec->sid;
2311         new_tsec->osid = old_tsec->sid;
2312 
2313         /* Reset fs, key, and sock SIDs on execve. */
2314         new_tsec->create_sid = 0;
2315         new_tsec->keycreate_sid = 0;
2316         new_tsec->sockcreate_sid = 0;
2317 
2318         /*
2319          * Before policy is loaded, label any task outside kernel space
2320          * as SECINITSID_INIT, so that any userspace tasks surviving from
2321          * early boot end up with a label different from SECINITSID_KERNEL
2322          * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2323          */
2324         if (!selinux_initialized()) {
2325                 new_tsec->sid = SECINITSID_INIT;
2326                 /* also clear the exec_sid just in case */
2327                 new_tsec->exec_sid = 0;
2328                 return 0;
2329         }
2330 
2331         if (old_tsec->exec_sid) {
2332                 new_tsec->sid = old_tsec->exec_sid;
2333                 /* Reset exec SID on execve. */
2334                 new_tsec->exec_sid = 0;
2335 
2336                 /* Fail on NNP or nosuid if not an allowed transition. */
2337                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2338                 if (rc)
2339                         return rc;
2340         } else {
2341                 /* Check for a default transition on this program. */
2342                 rc = security_transition_sid(old_tsec->sid,
2343                                              isec->sid, SECCLASS_PROCESS, NULL,
2344                                              &new_tsec->sid);
2345                 if (rc)
2346                         return rc;
2347 
2348                 /*
2349                  * Fallback to old SID on NNP or nosuid if not an allowed
2350                  * transition.
2351                  */
2352                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2353                 if (rc)
2354                         new_tsec->sid = old_tsec->sid;
2355         }
2356 
2357         ad.type = LSM_AUDIT_DATA_FILE;
2358         ad.u.file = bprm->file;
2359 
2360         if (new_tsec->sid == old_tsec->sid) {
2361                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2362                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2363                 if (rc)
2364                         return rc;
2365         } else {
2366                 /* Check permissions for the transition. */
2367                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2368                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2369                 if (rc)
2370                         return rc;
2371 
2372                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2373                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2374                 if (rc)
2375                         return rc;
2376 
2377                 /* Check for shared state */
2378                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2379                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2380                                           SECCLASS_PROCESS, PROCESS__SHARE,
2381                                           NULL);
2382                         if (rc)
2383                                 return -EPERM;
2384                 }
2385 
2386                 /* Make sure that anyone attempting to ptrace over a task that
2387                  * changes its SID has the appropriate permit */
2388                 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2389                         u32 ptsid = ptrace_parent_sid();
2390                         if (ptsid != 0) {
2391                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2392                                                   SECCLASS_PROCESS,
2393                                                   PROCESS__PTRACE, NULL);
2394                                 if (rc)
2395                                         return -EPERM;
2396                         }
2397                 }
2398 
2399                 /* Clear any possibly unsafe personality bits on exec: */
2400                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2401 
2402                 /* Enable secure mode for SIDs transitions unless
2403                    the noatsecure permission is granted between
2404                    the two SIDs, i.e. ahp returns 0. */
2405                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2406                                   SECCLASS_PROCESS, PROCESS__NOATSECURE,
2407                                   NULL);
2408                 bprm->secureexec |= !!rc;
2409         }
2410 
2411         return 0;
2412 }
2413 
2414 static int match_file(const void *p, struct file *file, unsigned fd)
2415 {
2416         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2417 }
2418 
2419 /* Derived from fs/exec.c:flush_old_files. */
2420 static inline void flush_unauthorized_files(const struct cred *cred,
2421                                             struct files_struct *files)
2422 {
2423         struct file *file, *devnull = NULL;
2424         struct tty_struct *tty;
2425         int drop_tty = 0;
2426         unsigned n;
2427 
2428         tty = get_current_tty();
2429         if (tty) {
2430                 spin_lock(&tty->files_lock);
2431                 if (!list_empty(&tty->tty_files)) {
2432                         struct tty_file_private *file_priv;
2433 
2434                         /* Revalidate access to controlling tty.
2435                            Use file_path_has_perm on the tty path directly
2436                            rather than using file_has_perm, as this particular
2437                            open file may belong to another process and we are
2438                            only interested in the inode-based check here. */
2439                         file_priv = list_first_entry(&tty->tty_files,
2440                                                 struct tty_file_private, list);
2441                         file = file_priv->file;
2442                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2443                                 drop_tty = 1;
2444                 }
2445                 spin_unlock(&tty->files_lock);
2446                 tty_kref_put(tty);
2447         }
2448         /* Reset controlling tty. */
2449         if (drop_tty)
2450                 no_tty();
2451 
2452         /* Revalidate access to inherited open files. */
2453         n = iterate_fd(files, 0, match_file, cred);
2454         if (!n) /* none found? */
2455                 return;
2456 
2457         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2458         if (IS_ERR(devnull))
2459                 devnull = NULL;
2460         /* replace all the matching ones with this */
2461         do {
2462                 replace_fd(n - 1, devnull, 0);
2463         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2464         if (devnull)
2465                 fput(devnull);
2466 }
2467 
2468 /*
2469  * Prepare a process for imminent new credential changes due to exec
2470  */
2471 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2472 {
2473         struct task_security_struct *new_tsec;
2474         struct rlimit *rlim, *initrlim;
2475         int rc, i;
2476 
2477         new_tsec = selinux_cred(bprm->cred);
2478         if (new_tsec->sid == new_tsec->osid)
2479                 return;
2480 
2481         /* Close files for which the new task SID is not authorized. */
2482         flush_unauthorized_files(bprm->cred, current->files);
2483 
2484         /* Always clear parent death signal on SID transitions. */
2485         current->pdeath_signal = 0;
2486 
2487         /* Check whether the new SID can inherit resource limits from the old
2488          * SID.  If not, reset all soft limits to the lower of the current
2489          * task's hard limit and the init task's soft limit.
2490          *
2491          * Note that the setting of hard limits (even to lower them) can be
2492          * controlled by the setrlimit check.  The inclusion of the init task's
2493          * soft limit into the computation is to avoid resetting soft limits
2494          * higher than the default soft limit for cases where the default is
2495          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2496          */
2497         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2498                           PROCESS__RLIMITINH, NULL);
2499         if (rc) {
2500                 /* protect against do_prlimit() */
2501                 task_lock(current);
2502                 for (i = 0; i < RLIM_NLIMITS; i++) {
2503                         rlim = current->signal->rlim + i;
2504                         initrlim = init_task.signal->rlim + i;
2505                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2506                 }
2507                 task_unlock(current);
2508                 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2509                         update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2510         }
2511 }
2512 
2513 /*
2514  * Clean up the process immediately after the installation of new credentials
2515  * due to exec
2516  */
2517 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2518 {
2519         const struct task_security_struct *tsec = selinux_cred(current_cred());
2520         u32 osid, sid;
2521         int rc;
2522 
2523         osid = tsec->osid;
2524         sid = tsec->sid;
2525 
2526         if (sid == osid)
2527                 return;
2528 
2529         /* Check whether the new SID can inherit signal state from the old SID.
2530          * If not, clear itimers to avoid subsequent signal generation and
2531          * flush and unblock signals.
2532          *
2533          * This must occur _after_ the task SID has been updated so that any
2534          * kill done after the flush will be checked against the new SID.
2535          */
2536         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2537         if (rc) {
2538                 clear_itimer();
2539 
2540                 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2541                 if (!fatal_signal_pending(current)) {
2542                         flush_sigqueue(&current->pending);
2543                         flush_sigqueue(&current->signal->shared_pending);
2544                         flush_signal_handlers(current, 1);
2545                         sigemptyset(&current->blocked);
2546                         recalc_sigpending();
2547                 }
2548                 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2549         }
2550 
2551         /* Wake up the parent if it is waiting so that it can recheck
2552          * wait permission to the new task SID. */
2553         read_lock(&tasklist_lock);
2554         __wake_up_parent(current, unrcu_pointer(current->real_parent));
2555         read_unlock(&tasklist_lock);
2556 }
2557 
2558 /* superblock security operations */
2559 
2560 static int selinux_sb_alloc_security(struct super_block *sb)
2561 {
2562         struct superblock_security_struct *sbsec = selinux_superblock(sb);
2563 
2564         mutex_init(&sbsec->lock);
2565         INIT_LIST_HEAD(&sbsec->isec_head);
2566         spin_lock_init(&sbsec->isec_lock);
2567         sbsec->sid = SECINITSID_UNLABELED;
2568         sbsec->def_sid = SECINITSID_FILE;
2569         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2570 
2571         return 0;
2572 }
2573 
2574 static inline int opt_len(const char *s)
2575 {
2576         bool open_quote = false;
2577         int len;
2578         char c;
2579 
2580         for (len = 0; (c = s[len]) != '\0'; len++) {
2581                 if (c == '"')
2582                         open_quote = !open_quote;
2583                 if (c == ',' && !open_quote)
2584                         break;
2585         }
2586         return len;
2587 }
2588 
2589 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2590 {
2591         char *from = options;
2592         char *to = options;
2593         bool first = true;
2594         int rc;
2595 
2596         while (1) {
2597                 int len = opt_len(from);
2598                 int token;
2599                 char *arg = NULL;
2600 
2601                 token = match_opt_prefix(from, len, &arg);
2602 
2603                 if (token != Opt_error) {
2604                         char *p, *q;
2605 
2606                         /* strip quotes */
2607                         if (arg) {
2608                                 for (p = q = arg; p < from + len; p++) {
2609                                         char c = *p;
2610                                         if (c != '"')
2611                                                 *q++ = c;
2612                                 }
2613                                 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2614                                 if (!arg) {
2615                                         rc = -ENOMEM;
2616                                         goto free_opt;
2617                                 }
2618                         }
2619                         rc = selinux_add_opt(token, arg, mnt_opts);
2620                         kfree(arg);
2621                         arg = NULL;
2622                         if (unlikely(rc)) {
2623                                 goto free_opt;
2624                         }
2625                 } else {
2626                         if (!first) {   // copy with preceding comma
2627                                 from--;
2628                                 len++;
2629                         }
2630                         if (to != from)
2631                                 memmove(to, from, len);
2632                         to += len;
2633                         first = false;
2634                 }
2635                 if (!from[len])
2636                         break;
2637                 from += len + 1;
2638         }
2639         *to = '\0';
2640         return 0;
2641 
2642 free_opt:
2643         if (*mnt_opts) {
2644                 selinux_free_mnt_opts(*mnt_opts);
2645                 *mnt_opts = NULL;
2646         }
2647         return rc;
2648 }
2649 
2650 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2651 {
2652         struct selinux_mnt_opts *opts = mnt_opts;
2653         struct superblock_security_struct *sbsec = selinux_superblock(sb);
2654 
2655         /*
2656          * Superblock not initialized (i.e. no options) - reject if any
2657          * options specified, otherwise accept.
2658          */
2659         if (!(sbsec->flags & SE_SBINITIALIZED))
2660                 return opts ? 1 : 0;
2661 
2662         /*
2663          * Superblock initialized and no options specified - reject if
2664          * superblock has any options set, otherwise accept.
2665          */
2666         if (!opts)
2667                 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2668 
2669         if (opts->fscontext_sid) {
2670                 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2671                                opts->fscontext_sid))
2672                         return 1;
2673         }
2674         if (opts->context_sid) {
2675                 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2676                                opts->context_sid))
2677                         return 1;
2678         }
2679         if (opts->rootcontext_sid) {
2680                 struct inode_security_struct *root_isec;
2681 
2682                 root_isec = backing_inode_security(sb->s_root);
2683                 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2684                                opts->rootcontext_sid))
2685                         return 1;
2686         }
2687         if (opts->defcontext_sid) {
2688                 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2689                                opts->defcontext_sid))
2690                         return 1;
2691         }
2692         return 0;
2693 }
2694 
2695 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2696 {
2697         struct selinux_mnt_opts *opts = mnt_opts;
2698         struct superblock_security_struct *sbsec = selinux_superblock(sb);
2699 
2700         if (!(sbsec->flags & SE_SBINITIALIZED))
2701                 return 0;
2702 
2703         if (!opts)
2704                 return 0;
2705 
2706         if (opts->fscontext_sid) {
2707                 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2708                                opts->fscontext_sid))
2709                         goto out_bad_option;
2710         }
2711         if (opts->context_sid) {
2712                 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2713                                opts->context_sid))
2714                         goto out_bad_option;
2715         }
2716         if (opts->rootcontext_sid) {
2717                 struct inode_security_struct *root_isec;
2718                 root_isec = backing_inode_security(sb->s_root);
2719                 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2720                                opts->rootcontext_sid))
2721                         goto out_bad_option;
2722         }
2723         if (opts->defcontext_sid) {
2724                 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2725                                opts->defcontext_sid))
2726                         goto out_bad_option;
2727         }
2728         return 0;
2729 
2730 out_bad_option:
2731         pr_warn("SELinux: unable to change security options "
2732                "during remount (dev %s, type=%s)\n", sb->s_id,
2733                sb->s_type->name);
2734         return -EINVAL;
2735 }
2736 
2737 static int selinux_sb_kern_mount(const struct super_block *sb)
2738 {
2739         const struct cred *cred = current_cred();
2740         struct common_audit_data ad;
2741 
2742         ad.type = LSM_AUDIT_DATA_DENTRY;
2743         ad.u.dentry = sb->s_root;
2744         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2745 }
2746 
2747 static int selinux_sb_statfs(struct dentry *dentry)
2748 {
2749         const struct cred *cred = current_cred();
2750         struct common_audit_data ad;
2751 
2752         ad.type = LSM_AUDIT_DATA_DENTRY;
2753         ad.u.dentry = dentry->d_sb->s_root;
2754         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2755 }
2756 
2757 static int selinux_mount(const char *dev_name,
2758                          const struct path *path,
2759                          const char *type,
2760                          unsigned long flags,
2761                          void *data)
2762 {
2763         const struct cred *cred = current_cred();
2764 
2765         if (flags & MS_REMOUNT)
2766                 return superblock_has_perm(cred, path->dentry->d_sb,
2767                                            FILESYSTEM__REMOUNT, NULL);
2768         else
2769                 return path_has_perm(cred, path, FILE__MOUNTON);
2770 }
2771 
2772 static int selinux_move_mount(const struct path *from_path,
2773                               const struct path *to_path)
2774 {
2775         const struct cred *cred = current_cred();
2776 
2777         return path_has_perm(cred, to_path, FILE__MOUNTON);
2778 }
2779 
2780 static int selinux_umount(struct vfsmount *mnt, int flags)
2781 {
2782         const struct cred *cred = current_cred();
2783 
2784         return superblock_has_perm(cred, mnt->mnt_sb,
2785                                    FILESYSTEM__UNMOUNT, NULL);
2786 }
2787 
2788 static int selinux_fs_context_submount(struct fs_context *fc,
2789                                    struct super_block *reference)
2790 {
2791         const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2792         struct selinux_mnt_opts *opts;
2793 
2794         /*
2795          * Ensure that fc->security remains NULL when no options are set
2796          * as expected by selinux_set_mnt_opts().
2797          */
2798         if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2799                 return 0;
2800 
2801         opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2802         if (!opts)
2803                 return -ENOMEM;
2804 
2805         if (sbsec->flags & FSCONTEXT_MNT)
2806                 opts->fscontext_sid = sbsec->sid;
2807         if (sbsec->flags & CONTEXT_MNT)
2808                 opts->context_sid = sbsec->mntpoint_sid;
2809         if (sbsec->flags & DEFCONTEXT_MNT)
2810                 opts->defcontext_sid = sbsec->def_sid;
2811         fc->security = opts;
2812         return 0;
2813 }
2814 
2815 static int selinux_fs_context_dup(struct fs_context *fc,
2816                                   struct fs_context *src_fc)
2817 {
2818         const struct selinux_mnt_opts *src = src_fc->security;
2819 
2820         if (!src)
2821                 return 0;
2822 
2823         fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2824         return fc->security ? 0 : -ENOMEM;
2825 }
2826 
2827 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2828         fsparam_string(CONTEXT_STR,     Opt_context),
2829         fsparam_string(DEFCONTEXT_STR,  Opt_defcontext),
2830         fsparam_string(FSCONTEXT_STR,   Opt_fscontext),
2831         fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2832         fsparam_flag  (SECLABEL_STR,    Opt_seclabel),
2833         {}
2834 };
2835 
2836 static int selinux_fs_context_parse_param(struct fs_context *fc,
2837                                           struct fs_parameter *param)
2838 {
2839         struct fs_parse_result result;
2840         int opt;
2841 
2842         opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2843         if (opt < 0)
2844                 return opt;
2845 
2846         return selinux_add_opt(opt, param->string, &fc->security);
2847 }
2848 
2849 /* inode security operations */
2850 
2851 static int selinux_inode_alloc_security(struct inode *inode)
2852 {
2853         struct inode_security_struct *isec = selinux_inode(inode);
2854         u32 sid = current_sid();
2855 
2856         spin_lock_init(&isec->lock);
2857         INIT_LIST_HEAD(&isec->list);
2858         isec->inode = inode;
2859         isec->sid = SECINITSID_UNLABELED;
2860         isec->sclass = SECCLASS_FILE;
2861         isec->task_sid = sid;
2862         isec->initialized = LABEL_INVALID;
2863 
2864         return 0;
2865 }
2866 
2867 static void selinux_inode_free_security(struct inode *inode)
2868 {
2869         inode_free_security(inode);
2870 }
2871 
2872 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2873                                         const struct qstr *name,
2874                                         const char **xattr_name, void **ctx,
2875                                         u32 *ctxlen)
2876 {
2877         u32 newsid;
2878         int rc;
2879 
2880         rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2881                                            d_inode(dentry->d_parent), name,
2882                                            inode_mode_to_security_class(mode),
2883                                            &newsid);
2884         if (rc)
2885                 return rc;
2886 
2887         if (xattr_name)
2888                 *xattr_name = XATTR_NAME_SELINUX;
2889 
2890         return security_sid_to_context(newsid, (char **)ctx,
2891                                        ctxlen);
2892 }
2893 
2894 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2895                                           struct qstr *name,
2896                                           const struct cred *old,
2897                                           struct cred *new)
2898 {
2899         u32 newsid;
2900         int rc;
2901         struct task_security_struct *tsec;
2902 
2903         rc = selinux_determine_inode_label(selinux_cred(old),
2904                                            d_inode(dentry->d_parent), name,
2905                                            inode_mode_to_security_class(mode),
2906                                            &newsid);
2907         if (rc)
2908                 return rc;
2909 
2910         tsec = selinux_cred(new);
2911         tsec->create_sid = newsid;
2912         return 0;
2913 }
2914 
2915 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2916                                        const struct qstr *qstr,
2917                                        struct xattr *xattrs, int *xattr_count)
2918 {
2919         const struct task_security_struct *tsec = selinux_cred(current_cred());
2920         struct superblock_security_struct *sbsec;
2921         struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2922         u32 newsid, clen;
2923         u16 newsclass;
2924         int rc;
2925         char *context;
2926 
2927         sbsec = selinux_superblock(dir->i_sb);
2928 
2929         newsid = tsec->create_sid;
2930         newsclass = inode_mode_to_security_class(inode->i_mode);
2931         rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
2932         if (rc)
2933                 return rc;
2934 
2935         /* Possibly defer initialization to selinux_complete_init. */
2936         if (sbsec->flags & SE_SBINITIALIZED) {
2937                 struct inode_security_struct *isec = selinux_inode(inode);
2938                 isec->sclass = newsclass;
2939                 isec->sid = newsid;
2940                 isec->initialized = LABEL_INITIALIZED;
2941         }
2942 
2943         if (!selinux_initialized() ||
2944             !(sbsec->flags & SBLABEL_MNT))
2945                 return -EOPNOTSUPP;
2946 
2947         if (xattr) {
2948                 rc = security_sid_to_context_force(newsid,
2949                                                    &context, &clen);
2950                 if (rc)
2951                         return rc;
2952                 xattr->value = context;
2953                 xattr->value_len = clen;
2954                 xattr->name = XATTR_SELINUX_SUFFIX;
2955         }
2956 
2957         return 0;
2958 }
2959 
2960 static int selinux_inode_init_security_anon(struct inode *inode,
2961                                             const struct qstr *name,
2962                                             const struct inode *context_inode)
2963 {
2964         u32 sid = current_sid();
2965         struct common_audit_data ad;
2966         struct inode_security_struct *isec;
2967         int rc;
2968 
2969         if (unlikely(!selinux_initialized()))
2970                 return 0;
2971 
2972         isec = selinux_inode(inode);
2973 
2974         /*
2975          * We only get here once per ephemeral inode.  The inode has
2976          * been initialized via inode_alloc_security but is otherwise
2977          * untouched.
2978          */
2979 
2980         if (context_inode) {
2981                 struct inode_security_struct *context_isec =
2982                         selinux_inode(context_inode);
2983                 if (context_isec->initialized != LABEL_INITIALIZED) {
2984                         pr_err("SELinux:  context_inode is not initialized\n");
2985                         return -EACCES;
2986                 }
2987 
2988                 isec->sclass = context_isec->sclass;
2989                 isec->sid = context_isec->sid;
2990         } else {
2991                 isec->sclass = SECCLASS_ANON_INODE;
2992                 rc = security_transition_sid(
2993                         sid, sid,
2994                         isec->sclass, name, &isec->sid);
2995                 if (rc)
2996                         return rc;
2997         }
2998 
2999         isec->initialized = LABEL_INITIALIZED;
3000         /*
3001          * Now that we've initialized security, check whether we're
3002          * allowed to actually create this type of anonymous inode.
3003          */
3004 
3005         ad.type = LSM_AUDIT_DATA_ANONINODE;
3006         ad.u.anonclass = name ? (const char *)name->name : "?";
3007 
3008         return avc_has_perm(sid,
3009                             isec->sid,
3010                             isec->sclass,
3011                             FILE__CREATE,
3012                             &ad);
3013 }
3014 
3015 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3016 {
3017         return may_create(dir, dentry, SECCLASS_FILE);
3018 }
3019 
3020 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3021 {
3022         return may_link(dir, old_dentry, MAY_LINK);
3023 }
3024 
3025 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3026 {
3027         return may_link(dir, dentry, MAY_UNLINK);
3028 }
3029 
3030 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3031 {
3032         return may_create(dir, dentry, SECCLASS_LNK_FILE);
3033 }
3034 
3035 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3036 {
3037         return may_create(dir, dentry, SECCLASS_DIR);
3038 }
3039 
3040 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3041 {
3042         return may_link(dir, dentry, MAY_RMDIR);
3043 }
3044 
3045 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3046 {
3047         return may_create(dir, dentry, inode_mode_to_security_class(mode));
3048 }
3049 
3050 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3051                                 struct inode *new_inode, struct dentry *new_dentry)
3052 {
3053         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3054 }
3055 
3056 static int selinux_inode_readlink(struct dentry *dentry)
3057 {
3058         const struct cred *cred = current_cred();
3059 
3060         return dentry_has_perm(cred, dentry, FILE__READ);
3061 }
3062 
3063 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3064                                      bool rcu)
3065 {
3066         struct common_audit_data ad;
3067         struct inode_security_struct *isec;
3068         u32 sid = current_sid();
3069 
3070         ad.type = LSM_AUDIT_DATA_DENTRY;
3071         ad.u.dentry = dentry;
3072         isec = inode_security_rcu(inode, rcu);
3073         if (IS_ERR(isec))
3074                 return PTR_ERR(isec);
3075 
3076         return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3077 }
3078 
3079 static noinline int audit_inode_permission(struct inode *inode,
3080                                            u32 perms, u32 audited, u32 denied,
3081                                            int result)
3082 {
3083         struct common_audit_data ad;
3084         struct inode_security_struct *isec = selinux_inode(inode);
3085 
3086         ad.type = LSM_AUDIT_DATA_INODE;
3087         ad.u.inode = inode;
3088 
3089         return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3090                             audited, denied, result, &ad);
3091 }
3092 
3093 static int selinux_inode_permission(struct inode *inode, int mask)
3094 {
3095         u32 perms;
3096         bool from_access;
3097         bool no_block = mask & MAY_NOT_BLOCK;
3098         struct inode_security_struct *isec;
3099         u32 sid = current_sid();
3100         struct av_decision avd;
3101         int rc, rc2;
3102         u32 audited, denied;
3103 
3104         from_access = mask & MAY_ACCESS;
3105         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3106 
3107         /* No permission to check.  Existence test. */
3108         if (!mask)
3109                 return 0;
3110 
3111         if (unlikely(IS_PRIVATE(inode)))
3112                 return 0;
3113 
3114         perms = file_mask_to_av(inode->i_mode, mask);
3115 
3116         isec = inode_security_rcu(inode, no_block);
3117         if (IS_ERR(isec))
3118                 return PTR_ERR(isec);
3119 
3120         rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3121                                   &avd);
3122         audited = avc_audit_required(perms, &avd, rc,
3123                                      from_access ? FILE__AUDIT_ACCESS : 0,
3124                                      &denied);
3125         if (likely(!audited))
3126                 return rc;
3127 
3128         rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3129         if (rc2)
3130                 return rc2;
3131         return rc;
3132 }
3133 
3134 static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3135                                  struct iattr *iattr)
3136 {
3137         const struct cred *cred = current_cred();
3138         struct inode *inode = d_backing_inode(dentry);
3139         unsigned int ia_valid = iattr->ia_valid;
3140         __u32 av = FILE__WRITE;
3141 
3142         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3143         if (ia_valid & ATTR_FORCE) {
3144                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3145                               ATTR_FORCE);
3146                 if (!ia_valid)
3147                         return 0;
3148         }
3149 
3150         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3151                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3152                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3153 
3154         if (selinux_policycap_openperm() &&
3155             inode->i_sb->s_magic != SOCKFS_MAGIC &&
3156             (ia_valid & ATTR_SIZE) &&
3157             !(ia_valid & ATTR_FILE))
3158                 av |= FILE__OPEN;
3159 
3160         return dentry_has_perm(cred, dentry, av);
3161 }
3162 
3163 static int selinux_inode_getattr(const struct path *path)
3164 {
3165         return path_has_perm(current_cred(), path, FILE__GETATTR);
3166 }
3167 
3168 static bool has_cap_mac_admin(bool audit)
3169 {
3170         const struct cred *cred = current_cred();
3171         unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3172 
3173         if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3174                 return false;
3175         if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3176                 return false;
3177         return true;
3178 }
3179 
3180 /**
3181  * selinux_inode_xattr_skipcap - Skip the xattr capability checks?
3182  * @name: name of the xattr
3183  *
3184  * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs
3185  * named @name; the LSM layer should avoid enforcing any traditional
3186  * capability based access controls on this xattr.  Returns 0 to indicate that
3187  * SELinux does not "own" the access control rights to xattrs named @name and is
3188  * deferring to the LSM layer for further access controls, including capability
3189  * based controls.
3190  */
3191 static int selinux_inode_xattr_skipcap(const char *name)
3192 {
3193         /* require capability check if not a selinux xattr */
3194         return !strcmp(name, XATTR_NAME_SELINUX);
3195 }
3196 
3197 static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3198                                   struct dentry *dentry, const char *name,
3199                                   const void *value, size_t size, int flags)
3200 {
3201         struct inode *inode = d_backing_inode(dentry);
3202         struct inode_security_struct *isec;
3203         struct superblock_security_struct *sbsec;
3204         struct common_audit_data ad;
3205         u32 newsid, sid = current_sid();
3206         int rc = 0;
3207 
3208         /* if not a selinux xattr, only check the ordinary setattr perm */
3209         if (strcmp(name, XATTR_NAME_SELINUX))
3210                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3211 
3212         if (!selinux_initialized())
3213                 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3214 
3215         sbsec = selinux_superblock(inode->i_sb);
3216         if (!(sbsec->flags & SBLABEL_MNT))
3217                 return -EOPNOTSUPP;
3218 
3219         if (!inode_owner_or_capable(idmap, inode))
3220                 return -EPERM;
3221 
3222         ad.type = LSM_AUDIT_DATA_DENTRY;
3223         ad.u.dentry = dentry;
3224 
3225         isec = backing_inode_security(dentry);
3226         rc = avc_has_perm(sid, isec->sid, isec->sclass,
3227                           FILE__RELABELFROM, &ad);
3228         if (rc)
3229                 return rc;
3230 
3231         rc = security_context_to_sid(value, size, &newsid,
3232                                      GFP_KERNEL);
3233         if (rc == -EINVAL) {
3234                 if (!has_cap_mac_admin(true)) {
3235                         struct audit_buffer *ab;
3236                         size_t audit_size;
3237 
3238                         /* We strip a nul only if it is at the end, otherwise the
3239                          * context contains a nul and we should audit that */
3240                         if (value) {
3241                                 const char *str = value;
3242 
3243                                 if (str[size - 1] == '\0')
3244                                         audit_size = size - 1;
3245                                 else
3246                                         audit_size = size;
3247                         } else {
3248                                 audit_size = 0;
3249                         }
3250                         ab = audit_log_start(audit_context(),
3251                                              GFP_ATOMIC, AUDIT_SELINUX_ERR);
3252                         if (!ab)
3253                                 return rc;
3254                         audit_log_format(ab, "op=setxattr invalid_context=");
3255                         audit_log_n_untrustedstring(ab, value, audit_size);
3256                         audit_log_end(ab);
3257 
3258                         return rc;
3259                 }
3260                 rc = security_context_to_sid_force(value,
3261                                                    size, &newsid);
3262         }
3263         if (rc)
3264                 return rc;
3265 
3266         rc = avc_has_perm(sid, newsid, isec->sclass,
3267                           FILE__RELABELTO, &ad);
3268         if (rc)
3269                 return rc;
3270 
3271         rc = security_validate_transition(isec->sid, newsid,
3272                                           sid, isec->sclass);
3273         if (rc)
3274                 return rc;
3275 
3276         return avc_has_perm(newsid,
3277                             sbsec->sid,
3278                             SECCLASS_FILESYSTEM,
3279                             FILESYSTEM__ASSOCIATE,
3280                             &ad);
3281 }
3282 
3283 static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3284                                  struct dentry *dentry, const char *acl_name,
3285                                  struct posix_acl *kacl)
3286 {
3287         return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3288 }
3289 
3290 static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3291                                  struct dentry *dentry, const char *acl_name)
3292 {
3293         return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3294 }
3295 
3296 static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3297                                     struct dentry *dentry, const char *acl_name)
3298 {
3299         return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3300 }
3301 
3302 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3303                                         const void *value, size_t size,
3304                                         int flags)
3305 {
3306         struct inode *inode = d_backing_inode(dentry);
3307         struct inode_security_struct *isec;
3308         u32 newsid;
3309         int rc;
3310 
3311         if (strcmp(name, XATTR_NAME_SELINUX)) {
3312                 /* Not an attribute we recognize, so nothing to do. */
3313                 return;
3314         }
3315 
3316         if (!selinux_initialized()) {
3317                 /* If we haven't even been initialized, then we can't validate
3318                  * against a policy, so leave the label as invalid. It may
3319                  * resolve to a valid label on the next revalidation try if
3320                  * we've since initialized.
3321                  */
3322                 return;
3323         }
3324 
3325         rc = security_context_to_sid_force(value, size,
3326                                            &newsid);
3327         if (rc) {
3328                 pr_err("SELinux:  unable to map context to SID"
3329                        "for (%s, %lu), rc=%d\n",
3330                        inode->i_sb->s_id, inode->i_ino, -rc);
3331                 return;
3332         }
3333 
3334         isec = backing_inode_security(dentry);
3335         spin_lock(&isec->lock);
3336         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3337         isec->sid = newsid;
3338         isec->initialized = LABEL_INITIALIZED;
3339         spin_unlock(&isec->lock);
3340 }
3341 
3342 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3343 {
3344         const struct cred *cred = current_cred();
3345 
3346         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3347 }
3348 
3349 static int selinux_inode_listxattr(struct dentry *dentry)
3350 {
3351         const struct cred *cred = current_cred();
3352 
3353         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3354 }
3355 
3356 static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3357                                      struct dentry *dentry, const char *name)
3358 {
3359         /* if not a selinux xattr, only check the ordinary setattr perm */
3360         if (strcmp(name, XATTR_NAME_SELINUX))
3361                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3362 
3363         if (!selinux_initialized())
3364                 return 0;
3365 
3366         /* No one is allowed to remove a SELinux security label.
3367            You can change the label, but all data must be labeled. */
3368         return -EACCES;
3369 }
3370 
3371 static int selinux_path_notify(const struct path *path, u64 mask,
3372                                                 unsigned int obj_type)
3373 {
3374         int ret;
3375         u32 perm;
3376 
3377         struct common_audit_data ad;
3378 
3379         ad.type = LSM_AUDIT_DATA_PATH;
3380         ad.u.path = *path;
3381 
3382         /*
3383          * Set permission needed based on the type of mark being set.
3384          * Performs an additional check for sb watches.
3385          */
3386         switch (obj_type) {
3387         case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3388                 perm = FILE__WATCH_MOUNT;
3389                 break;
3390         case FSNOTIFY_OBJ_TYPE_SB:
3391                 perm = FILE__WATCH_SB;
3392                 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3393                                                 FILESYSTEM__WATCH, &ad);
3394                 if (ret)
3395                         return ret;
3396                 break;
3397         case FSNOTIFY_OBJ_TYPE_INODE:
3398                 perm = FILE__WATCH;
3399                 break;
3400         default:
3401                 return -EINVAL;
3402         }
3403 
3404         /* blocking watches require the file:watch_with_perm permission */
3405         if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3406                 perm |= FILE__WATCH_WITH_PERM;
3407 
3408         /* watches on read-like events need the file:watch_reads permission */
3409         if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3410                 perm |= FILE__WATCH_READS;
3411 
3412         return path_has_perm(current_cred(), path, perm);
3413 }
3414 
3415 /*
3416  * Copy the inode security context value to the user.
3417  *
3418  * Permission check is handled by selinux_inode_getxattr hook.
3419  */
3420 static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3421                                      struct inode *inode, const char *name,
3422                                      void **buffer, bool alloc)
3423 {
3424         u32 size;
3425         int error;
3426         char *context = NULL;
3427         struct inode_security_struct *isec;
3428 
3429         /*
3430          * If we're not initialized yet, then we can't validate contexts, so
3431          * just let vfs_getxattr fall back to using the on-disk xattr.
3432          */
3433         if (!selinux_initialized() ||
3434             strcmp(name, XATTR_SELINUX_SUFFIX))
3435                 return -EOPNOTSUPP;
3436 
3437         /*
3438          * If the caller has CAP_MAC_ADMIN, then get the raw context
3439          * value even if it is not defined by current policy; otherwise,
3440          * use the in-core value under current policy.
3441          * Use the non-auditing forms of the permission checks since
3442          * getxattr may be called by unprivileged processes commonly
3443          * and lack of permission just means that we fall back to the
3444          * in-core context value, not a denial.
3445          */
3446         isec = inode_security(inode);
3447         if (has_cap_mac_admin(false))
3448                 error = security_sid_to_context_force(isec->sid, &context,
3449                                                       &size);
3450         else
3451                 error = security_sid_to_context(isec->sid,
3452                                                 &context, &size);
3453         if (error)
3454                 return error;
3455         error = size;
3456         if (alloc) {
3457                 *buffer = context;
3458                 goto out_nofree;
3459         }
3460         kfree(context);
3461 out_nofree:
3462         return error;
3463 }
3464 
3465 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3466                                      const void *value, size_t size, int flags)
3467 {
3468         struct inode_security_struct *isec = inode_security_novalidate(inode);
3469         struct superblock_security_struct *sbsec;
3470         u32 newsid;
3471         int rc;
3472 
3473         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3474                 return -EOPNOTSUPP;
3475 
3476         sbsec = selinux_superblock(inode->i_sb);
3477         if (!(sbsec->flags & SBLABEL_MNT))
3478                 return -EOPNOTSUPP;
3479 
3480         if (!value || !size)
3481                 return -EACCES;
3482 
3483         rc = security_context_to_sid(value, size, &newsid,
3484                                      GFP_KERNEL);
3485         if (rc)
3486                 return rc;
3487 
3488         spin_lock(&isec->lock);
3489         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3490         isec->sid = newsid;
3491         isec->initialized = LABEL_INITIALIZED;
3492         spin_unlock(&isec->lock);
3493         return 0;
3494 }
3495 
3496 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3497 {
3498         const int len = sizeof(XATTR_NAME_SELINUX);
3499 
3500         if (!selinux_initialized())
3501                 return 0;
3502 
3503         if (buffer && len <= buffer_size)
3504                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3505         return len;
3506 }
3507 
3508 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3509 {
3510         struct inode_security_struct *isec = inode_security_novalidate(inode);
3511         *secid = isec->sid;
3512 }
3513 
3514 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3515 {
3516         u32 sid;
3517         struct task_security_struct *tsec;
3518         struct cred *new_creds = *new;
3519 
3520         if (new_creds == NULL) {
3521                 new_creds = prepare_creds();
3522                 if (!new_creds)
3523                         return -ENOMEM;
3524         }
3525 
3526         tsec = selinux_cred(new_creds);
3527         /* Get label from overlay inode and set it in create_sid */
3528         selinux_inode_getsecid(d_inode(src), &sid);
3529         tsec->create_sid = sid;
3530         *new = new_creds;
3531         return 0;
3532 }
3533 
3534 static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name)
3535 {
3536         /* The copy_up hook above sets the initial context on an inode, but we
3537          * don't then want to overwrite it by blindly copying all the lower
3538          * xattrs up.  Instead, filter out SELinux-related xattrs following
3539          * policy load.
3540          */
3541         if (selinux_initialized() && strcmp(name, XATTR_NAME_SELINUX) == 0)
3542                 return 1; /* Discard */
3543         /*
3544          * Any other attribute apart from SELINUX is not claimed, supported
3545          * by selinux.
3546          */
3547         return -EOPNOTSUPP;
3548 }
3549 
3550 /* kernfs node operations */
3551 
3552 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3553                                         struct kernfs_node *kn)
3554 {
3555         const struct task_security_struct *tsec = selinux_cred(current_cred());
3556         u32 parent_sid, newsid, clen;
3557         int rc;
3558         char *context;
3559 
3560         rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3561         if (rc == -ENODATA)
3562                 return 0;
3563         else if (rc < 0)
3564                 return rc;
3565 
3566         clen = (u32)rc;
3567         context = kmalloc(clen, GFP_KERNEL);
3568         if (!context)
3569                 return -ENOMEM;
3570 
3571         rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3572         if (rc < 0) {
3573                 kfree(context);
3574                 return rc;
3575         }
3576 
3577         rc = security_context_to_sid(context, clen, &parent_sid,
3578                                      GFP_KERNEL);
3579         kfree(context);
3580         if (rc)
3581                 return rc;
3582 
3583         if (tsec->create_sid) {
3584                 newsid = tsec->create_sid;
3585         } else {
3586                 u16 secclass = inode_mode_to_security_class(kn->mode);
3587                 struct qstr q;
3588 
3589                 q.name = kn->name;
3590                 q.hash_len = hashlen_string(kn_dir, kn->name);
3591 
3592                 rc = security_transition_sid(tsec->sid,
3593                                              parent_sid, secclass, &q,
3594                                              &newsid);
3595                 if (rc)
3596                         return rc;
3597         }
3598 
3599         rc = security_sid_to_context_force(newsid,
3600                                            &context, &clen);
3601         if (rc)
3602                 return rc;
3603 
3604         rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3605                               XATTR_CREATE);
3606         kfree(context);
3607         return rc;
3608 }
3609 
3610 
3611 /* file security operations */
3612 
3613 static int selinux_revalidate_file_permission(struct file *file, int mask)
3614 {
3615         const struct cred *cred = current_cred();
3616         struct inode *inode = file_inode(file);
3617 
3618         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3619         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3620                 mask |= MAY_APPEND;
3621 
3622         return file_has_perm(cred, file,
3623                              file_mask_to_av(inode->i_mode, mask));
3624 }
3625 
3626 static int selinux_file_permission(struct file *file, int mask)
3627 {
3628         struct inode *inode = file_inode(file);
3629         struct file_security_struct *fsec = selinux_file(file);
3630         struct inode_security_struct *isec;
3631         u32 sid = current_sid();
3632 
3633         if (!mask)
3634                 /* No permission to check.  Existence test. */
3635                 return 0;
3636 
3637         isec = inode_security(inode);
3638         if (sid == fsec->sid && fsec->isid == isec->sid &&
3639             fsec->pseqno == avc_policy_seqno())
3640                 /* No change since file_open check. */
3641                 return 0;
3642 
3643         return selinux_revalidate_file_permission(file, mask);
3644 }
3645 
3646 static int selinux_file_alloc_security(struct file *file)
3647 {
3648         struct file_security_struct *fsec = selinux_file(file);
3649         u32 sid = current_sid();
3650 
3651         fsec->sid = sid;
3652         fsec->fown_sid = sid;
3653 
3654         return 0;
3655 }
3656 
3657 /*
3658  * Check whether a task has the ioctl permission and cmd
3659  * operation to an inode.
3660  */
3661 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3662                 u32 requested, u16 cmd)
3663 {
3664         struct common_audit_data ad;
3665         struct file_security_struct *fsec = selinux_file(file);
3666         struct inode *inode = file_inode(file);
3667         struct inode_security_struct *isec;
3668         struct lsm_ioctlop_audit ioctl;
3669         u32 ssid = cred_sid(cred);
3670         int rc;
3671         u8 driver = cmd >> 8;
3672         u8 xperm = cmd & 0xff;
3673 
3674         ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3675         ad.u.op = &ioctl;
3676         ad.u.op->cmd = cmd;
3677         ad.u.op->path = file->f_path;
3678 
3679         if (ssid != fsec->sid) {
3680                 rc = avc_has_perm(ssid, fsec->sid,
3681                                 SECCLASS_FD,
3682                                 FD__USE,
3683                                 &ad);
3684                 if (rc)
3685                         goto out;
3686         }
3687 
3688         if (unlikely(IS_PRIVATE(inode)))
3689                 return 0;
3690 
3691         isec = inode_security(inode);
3692         rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3693                                     requested, driver, xperm, &ad);
3694 out:
3695         return rc;
3696 }
3697 
3698 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3699                               unsigned long arg)
3700 {
3701         const struct cred *cred = current_cred();
3702         int error = 0;
3703 
3704         switch (cmd) {
3705         case FIONREAD:
3706         case FIBMAP:
3707         case FIGETBSZ:
3708         case FS_IOC_GETFLAGS:
3709         case FS_IOC_GETVERSION:
3710                 error = file_has_perm(cred, file, FILE__GETATTR);
3711                 break;
3712 
3713         case FS_IOC_SETFLAGS:
3714         case FS_IOC_SETVERSION:
3715                 error = file_has_perm(cred, file, FILE__SETATTR);
3716                 break;
3717 
3718         /* sys_ioctl() checks */
3719         case FIONBIO:
3720         case FIOASYNC:
3721                 error = file_has_perm(cred, file, 0);
3722                 break;
3723 
3724         case KDSKBENT:
3725         case KDSKBSENT:
3726                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3727                                             CAP_OPT_NONE, true);
3728                 break;
3729 
3730         case FIOCLEX:
3731         case FIONCLEX:
3732                 if (!selinux_policycap_ioctl_skip_cloexec())
3733                         error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3734                 break;
3735 
3736         /* default case assumes that the command will go
3737          * to the file's ioctl() function.
3738          */
3739         default:
3740                 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3741         }
3742         return error;
3743 }
3744 
3745 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3746                               unsigned long arg)
3747 {
3748         /*
3749          * If we are in a 64-bit kernel running 32-bit userspace, we need to
3750          * make sure we don't compare 32-bit flags to 64-bit flags.
3751          */
3752         switch (cmd) {
3753         case FS_IOC32_GETFLAGS:
3754                 cmd = FS_IOC_GETFLAGS;
3755                 break;
3756         case FS_IOC32_SETFLAGS:
3757                 cmd = FS_IOC_SETFLAGS;
3758                 break;
3759         case FS_IOC32_GETVERSION:
3760                 cmd = FS_IOC_GETVERSION;
3761                 break;
3762         case FS_IOC32_SETVERSION:
3763                 cmd = FS_IOC_SETVERSION;
3764                 break;
3765         default:
3766                 break;
3767         }
3768 
3769         return selinux_file_ioctl(file, cmd, arg);
3770 }
3771 
3772 static int default_noexec __ro_after_init;
3773 
3774 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3775 {
3776         const struct cred *cred = current_cred();
3777         u32 sid = cred_sid(cred);
3778         int rc = 0;
3779 
3780         if (default_noexec &&
3781             (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3782                                    (!shared && (prot & PROT_WRITE)))) {
3783                 /*
3784                  * We are making executable an anonymous mapping or a
3785                  * private file mapping that will also be writable.
3786                  * This has an additional check.
3787                  */
3788                 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3789                                   PROCESS__EXECMEM, NULL);
3790                 if (rc)
3791                         goto error;
3792         }
3793 
3794         if (file) {
3795                 /* read access is always possible with a mapping */
3796                 u32 av = FILE__READ;
3797 
3798                 /* write access only matters if the mapping is shared */
3799                 if (shared && (prot & PROT_WRITE))
3800                         av |= FILE__WRITE;
3801 
3802                 if (prot & PROT_EXEC)
3803                         av |= FILE__EXECUTE;
3804 
3805                 return file_has_perm(cred, file, av);
3806         }
3807 
3808 error:
3809         return rc;
3810 }
3811 
3812 static int selinux_mmap_addr(unsigned long addr)
3813 {
3814         int rc = 0;
3815 
3816         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3817                 u32 sid = current_sid();
3818                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3819                                   MEMPROTECT__MMAP_ZERO, NULL);
3820         }
3821 
3822         return rc;
3823 }
3824 
3825 static int selinux_mmap_file(struct file *file,
3826                              unsigned long reqprot __always_unused,
3827                              unsigned long prot, unsigned long flags)
3828 {
3829         struct common_audit_data ad;
3830         int rc;
3831 
3832         if (file) {
3833                 ad.type = LSM_AUDIT_DATA_FILE;
3834                 ad.u.file = file;
3835                 rc = inode_has_perm(current_cred(), file_inode(file),
3836                                     FILE__MAP, &ad);
3837                 if (rc)
3838                         return rc;
3839         }
3840 
3841         return file_map_prot_check(file, prot,
3842                                    (flags & MAP_TYPE) == MAP_SHARED);
3843 }
3844 
3845 static int selinux_file_mprotect(struct vm_area_struct *vma,
3846                                  unsigned long reqprot __always_unused,
3847                                  unsigned long prot)
3848 {
3849         const struct cred *cred = current_cred();
3850         u32 sid = cred_sid(cred);
3851 
3852         if (default_noexec &&
3853             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3854                 int rc = 0;
3855                 /*
3856                  * We don't use the vma_is_initial_heap() helper as it has
3857                  * a history of problems and is currently broken on systems
3858                  * where there is no heap, e.g. brk == start_brk.  Before
3859                  * replacing the conditional below with vma_is_initial_heap(),
3860                  * or something similar, please ensure that the logic is the
3861                  * same as what we have below or you have tested every possible
3862                  * corner case you can think to test.
3863                  */
3864                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3865                     vma->vm_end <= vma->vm_mm->brk) {
3866                         rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3867                                           PROCESS__EXECHEAP, NULL);
3868                 } else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3869                             vma_is_stack_for_current(vma))) {
3870                         rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3871                                           PROCESS__EXECSTACK, NULL);
3872                 } else if (vma->vm_file && vma->anon_vma) {
3873                         /*
3874                          * We are making executable a file mapping that has
3875                          * had some COW done. Since pages might have been
3876                          * written, check ability to execute the possibly
3877                          * modified content.  This typically should only
3878                          * occur for text relocations.
3879                          */
3880                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3881                 }
3882                 if (rc)
3883                         return rc;
3884         }
3885 
3886         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3887 }
3888 
3889 static int selinux_file_lock(struct file *file, unsigned int cmd)
3890 {
3891         const struct cred *cred = current_cred();
3892 
3893         return file_has_perm(cred, file, FILE__LOCK);
3894 }
3895 
3896 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3897                               unsigned long arg)
3898 {
3899         const struct cred *cred = current_cred();
3900         int err = 0;
3901 
3902         switch (cmd) {
3903         case F_SETFL:
3904                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3905                         err = file_has_perm(cred, file, FILE__WRITE);
3906                         break;
3907                 }
3908                 fallthrough;
3909         case F_SETOWN:
3910         case F_SETSIG:
3911         case F_GETFL:
3912         case F_GETOWN:
3913         case F_GETSIG:
3914         case F_GETOWNER_UIDS:
3915                 /* Just check FD__USE permission */
3916                 err = file_has_perm(cred, file, 0);
3917                 break;
3918         case F_GETLK:
3919         case F_SETLK:
3920         case F_SETLKW:
3921         case F_OFD_GETLK:
3922         case F_OFD_SETLK:
3923         case F_OFD_SETLKW:
3924 #if BITS_PER_LONG == 32
3925         case F_GETLK64:
3926         case F_SETLK64:
3927         case F_SETLKW64:
3928 #endif
3929                 err = file_has_perm(cred, file, FILE__LOCK);
3930                 break;
3931         }
3932 
3933         return err;
3934 }
3935 
3936 static void selinux_file_set_fowner(struct file *file)
3937 {
3938         struct file_security_struct *fsec;
3939 
3940         fsec = selinux_file(file);
3941         fsec->fown_sid = current_sid();
3942 }
3943 
3944 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3945                                        struct fown_struct *fown, int signum)
3946 {
3947         struct file *file;
3948         u32 sid = task_sid_obj(tsk);
3949         u32 perm;
3950         struct file_security_struct *fsec;
3951 
3952         /* struct fown_struct is never outside the context of a struct file */
3953         file = container_of(fown, struct file, f_owner);
3954 
3955         fsec = selinux_file(file);
3956 
3957         if (!signum)
3958                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3959         else
3960                 perm = signal_to_av(signum);
3961 
3962         return avc_has_perm(fsec->fown_sid, sid,
3963                             SECCLASS_PROCESS, perm, NULL);
3964 }
3965 
3966 static int selinux_file_receive(struct file *file)
3967 {
3968         const struct cred *cred = current_cred();
3969 
3970         return file_has_perm(cred, file, file_to_av(file));
3971 }
3972 
3973 static int selinux_file_open(struct file *file)
3974 {
3975         struct file_security_struct *fsec;
3976         struct inode_security_struct *isec;
3977 
3978         fsec = selinux_file(file);
3979         isec = inode_security(file_inode(file));
3980         /*
3981          * Save inode label and policy sequence number
3982          * at open-time so that selinux_file_permission
3983          * can determine whether revalidation is necessary.
3984          * Task label is already saved in the file security
3985          * struct as its SID.
3986          */
3987         fsec->isid = isec->sid;
3988         fsec->pseqno = avc_policy_seqno();
3989         /*
3990          * Since the inode label or policy seqno may have changed
3991          * between the selinux_inode_permission check and the saving
3992          * of state above, recheck that access is still permitted.
3993          * Otherwise, access might never be revalidated against the
3994          * new inode label or new policy.
3995          * This check is not redundant - do not remove.
3996          */
3997         return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3998 }
3999 
4000 /* task security operations */
4001 
4002 static int selinux_task_alloc(struct task_struct *task,
4003                               unsigned long clone_flags)
4004 {
4005         u32 sid = current_sid();
4006 
4007         return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
4008 }
4009 
4010 /*
4011  * prepare a new set of credentials for modification
4012  */
4013 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4014                                 gfp_t gfp)
4015 {
4016         const struct task_security_struct *old_tsec = selinux_cred(old);
4017         struct task_security_struct *tsec = selinux_cred(new);
4018 
4019         *tsec = *old_tsec;
4020         return 0;
4021 }
4022 
4023 /*
4024  * transfer the SELinux data to a blank set of creds
4025  */
4026 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4027 {
4028         const struct task_security_struct *old_tsec = selinux_cred(old);
4029         struct task_security_struct *tsec = selinux_cred(new);
4030 
4031         *tsec = *old_tsec;
4032 }
4033 
4034 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4035 {
4036         *secid = cred_sid(c);
4037 }
4038 
4039 /*
4040  * set the security data for a kernel service
4041  * - all the creation contexts are set to unlabelled
4042  */
4043 static int selinux_kernel_act_as(struct cred *new, u32 secid)
4044 {
4045         struct task_security_struct *tsec = selinux_cred(new);
4046         u32 sid = current_sid();
4047         int ret;
4048 
4049         ret = avc_has_perm(sid, secid,
4050                            SECCLASS_KERNEL_SERVICE,
4051                            KERNEL_SERVICE__USE_AS_OVERRIDE,
4052                            NULL);
4053         if (ret == 0) {
4054                 tsec->sid = secid;
4055                 tsec->create_sid = 0;
4056                 tsec->keycreate_sid = 0;
4057                 tsec->sockcreate_sid = 0;
4058         }
4059         return ret;
4060 }
4061 
4062 /*
4063  * set the file creation context in a security record to the same as the
4064  * objective context of the specified inode
4065  */
4066 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4067 {
4068         struct inode_security_struct *isec = inode_security(inode);
4069         struct task_security_struct *tsec = selinux_cred(new);
4070         u32 sid = current_sid();
4071         int ret;
4072 
4073         ret = avc_has_perm(sid, isec->sid,
4074                            SECCLASS_KERNEL_SERVICE,
4075                            KERNEL_SERVICE__CREATE_FILES_AS,
4076                            NULL);
4077 
4078         if (ret == 0)
4079                 tsec->create_sid = isec->sid;
4080         return ret;
4081 }
4082 
4083 static int selinux_kernel_module_request(char *kmod_name)
4084 {
4085         struct common_audit_data ad;
4086 
4087         ad.type = LSM_AUDIT_DATA_KMOD;
4088         ad.u.kmod_name = kmod_name;
4089 
4090         return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4091                             SYSTEM__MODULE_REQUEST, &ad);
4092 }
4093 
4094 static int selinux_kernel_module_from_file(struct file *file)
4095 {
4096         struct common_audit_data ad;
4097         struct inode_security_struct *isec;
4098         struct file_security_struct *fsec;
4099         u32 sid = current_sid();
4100         int rc;
4101 
4102         /* init_module */
4103         if (file == NULL)
4104                 return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4105                                         SYSTEM__MODULE_LOAD, NULL);
4106 
4107         /* finit_module */
4108 
4109         ad.type = LSM_AUDIT_DATA_FILE;
4110         ad.u.file = file;
4111 
4112         fsec = selinux_file(file);
4113         if (sid != fsec->sid) {
4114                 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4115                 if (rc)
4116                         return rc;
4117         }
4118 
4119         isec = inode_security(file_inode(file));
4120         return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4121                                 SYSTEM__MODULE_LOAD, &ad);
4122 }
4123 
4124 static int selinux_kernel_read_file(struct file *file,
4125                                     enum kernel_read_file_id id,
4126                                     bool contents)
4127 {
4128         int rc = 0;
4129 
4130         switch (id) {
4131         case READING_MODULE:
4132                 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4133                 break;
4134         default:
4135                 break;
4136         }
4137 
4138         return rc;
4139 }
4140 
4141 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4142 {
4143         int rc = 0;
4144 
4145         switch (id) {
4146         case LOADING_MODULE:
4147                 rc = selinux_kernel_module_from_file(NULL);
4148                 break;
4149         default:
4150                 break;
4151         }
4152 
4153         return rc;
4154 }
4155 
4156 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4157 {
4158         return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4159                             PROCESS__SETPGID, NULL);
4160 }
4161 
4162 static int selinux_task_getpgid(struct task_struct *p)
4163 {
4164         return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4165                             PROCESS__GETPGID, NULL);
4166 }
4167 
4168 static int selinux_task_getsid(struct task_struct *p)
4169 {
4170         return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4171                             PROCESS__GETSESSION, NULL);
4172 }
4173 
4174 static void selinux_current_getsecid_subj(u32 *secid)
4175 {
4176         *secid = current_sid();
4177 }
4178 
4179 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4180 {
4181         *secid = task_sid_obj(p);
4182 }
4183 
4184 static int selinux_task_setnice(struct task_struct *p, int nice)
4185 {
4186         return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4187                             PROCESS__SETSCHED, NULL);
4188 }
4189 
4190 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4191 {
4192         return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4193                             PROCESS__SETSCHED, NULL);
4194 }
4195 
4196 static int selinux_task_getioprio(struct task_struct *p)
4197 {
4198         return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4199                             PROCESS__GETSCHED, NULL);
4200 }
4201 
4202 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4203                                 unsigned int flags)
4204 {
4205         u32 av = 0;
4206 
4207         if (!flags)
4208                 return 0;
4209         if (flags & LSM_PRLIMIT_WRITE)
4210                 av |= PROCESS__SETRLIMIT;
4211         if (flags & LSM_PRLIMIT_READ)
4212                 av |= PROCESS__GETRLIMIT;
4213         return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4214                             SECCLASS_PROCESS, av, NULL);
4215 }
4216 
4217 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4218                 struct rlimit *new_rlim)
4219 {
4220         struct rlimit *old_rlim = p->signal->rlim + resource;
4221 
4222         /* Control the ability to change the hard limit (whether
4223            lowering or raising it), so that the hard limit can
4224            later be used as a safe reset point for the soft limit
4225            upon context transitions.  See selinux_bprm_committing_creds. */
4226         if (old_rlim->rlim_max != new_rlim->rlim_max)
4227                 return avc_has_perm(current_sid(), task_sid_obj(p),
4228                                     SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4229 
4230         return 0;
4231 }
4232 
4233 static int selinux_task_setscheduler(struct task_struct *p)
4234 {
4235         return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4236                             PROCESS__SETSCHED, NULL);
4237 }
4238 
4239 static int selinux_task_getscheduler(struct task_struct *p)
4240 {
4241         return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4242                             PROCESS__GETSCHED, NULL);
4243 }
4244 
4245 static int selinux_task_movememory(struct task_struct *p)
4246 {
4247         return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4248                             PROCESS__SETSCHED, NULL);
4249 }
4250 
4251 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4252                                 int sig, const struct cred *cred)
4253 {
4254         u32 secid;
4255         u32 perm;
4256 
4257         if (!sig)
4258                 perm = PROCESS__SIGNULL; /* null signal; existence test */
4259         else
4260                 perm = signal_to_av(sig);
4261         if (!cred)
4262                 secid = current_sid();
4263         else
4264                 secid = cred_sid(cred);
4265         return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4266 }
4267 
4268 static void selinux_task_to_inode(struct task_struct *p,
4269                                   struct inode *inode)
4270 {
4271         struct inode_security_struct *isec = selinux_inode(inode);
4272         u32 sid = task_sid_obj(p);
4273 
4274         spin_lock(&isec->lock);
4275         isec->sclass = inode_mode_to_security_class(inode->i_mode);
4276         isec->sid = sid;
4277         isec->initialized = LABEL_INITIALIZED;
4278         spin_unlock(&isec->lock);
4279 }
4280 
4281 static int selinux_userns_create(const struct cred *cred)
4282 {
4283         u32 sid = current_sid();
4284 
4285         return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4286                         USER_NAMESPACE__CREATE, NULL);
4287 }
4288 
4289 /* Returns error only if unable to parse addresses */
4290 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4291                         struct common_audit_data *ad, u8 *proto)
4292 {
4293         int offset, ihlen, ret = -EINVAL;
4294         struct iphdr _iph, *ih;
4295 
4296         offset = skb_network_offset(skb);
4297         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4298         if (ih == NULL)
4299                 goto out;
4300 
4301         ihlen = ih->ihl * 4;
4302         if (ihlen < sizeof(_iph))
4303                 goto out;
4304 
4305         ad->u.net->v4info.saddr = ih->saddr;
4306         ad->u.net->v4info.daddr = ih->daddr;
4307         ret = 0;
4308 
4309         if (proto)
4310                 *proto = ih->protocol;
4311 
4312         switch (ih->protocol) {
4313         case IPPROTO_TCP: {
4314                 struct tcphdr _tcph, *th;
4315 
4316                 if (ntohs(ih->frag_off) & IP_OFFSET)
4317                         break;
4318 
4319                 offset += ihlen;
4320                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4321                 if (th == NULL)
4322                         break;
4323 
4324                 ad->u.net->sport = th->source;
4325                 ad->u.net->dport = th->dest;
4326                 break;
4327         }
4328 
4329         case IPPROTO_UDP: {
4330                 struct udphdr _udph, *uh;
4331 
4332                 if (ntohs(ih->frag_off) & IP_OFFSET)
4333                         break;
4334 
4335                 offset += ihlen;
4336                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4337                 if (uh == NULL)
4338                         break;
4339 
4340                 ad->u.net->sport = uh->source;
4341                 ad->u.net->dport = uh->dest;
4342                 break;
4343         }
4344 
4345         case IPPROTO_DCCP: {
4346                 struct dccp_hdr _dccph, *dh;
4347 
4348                 if (ntohs(ih->frag_off) & IP_OFFSET)
4349                         break;
4350 
4351                 offset += ihlen;
4352                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4353                 if (dh == NULL)
4354                         break;
4355 
4356                 ad->u.net->sport = dh->dccph_sport;
4357                 ad->u.net->dport = dh->dccph_dport;
4358                 break;
4359         }
4360 
4361 #if IS_ENABLED(CONFIG_IP_SCTP)
4362         case IPPROTO_SCTP: {
4363                 struct sctphdr _sctph, *sh;
4364 
4365                 if (ntohs(ih->frag_off) & IP_OFFSET)
4366                         break;
4367 
4368                 offset += ihlen;
4369                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4370                 if (sh == NULL)
4371                         break;
4372 
4373                 ad->u.net->sport = sh->source;
4374                 ad->u.net->dport = sh->dest;
4375                 break;
4376         }
4377 #endif
4378         default:
4379                 break;
4380         }
4381 out:
4382         return ret;
4383 }
4384 
4385 #if IS_ENABLED(CONFIG_IPV6)
4386 
4387 /* Returns error only if unable to parse addresses */
4388 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4389                         struct common_audit_data *ad, u8 *proto)
4390 {
4391         u8 nexthdr;
4392         int ret = -EINVAL, offset;
4393         struct ipv6hdr _ipv6h, *ip6;
4394         __be16 frag_off;
4395 
4396         offset = skb_network_offset(skb);
4397         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4398         if (ip6 == NULL)
4399                 goto out;
4400 
4401         ad->u.net->v6info.saddr = ip6->saddr;
4402         ad->u.net->v6info.daddr = ip6->daddr;
4403         ret = 0;
4404 
4405         nexthdr = ip6->nexthdr;
4406         offset += sizeof(_ipv6h);
4407         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4408         if (offset < 0)
4409                 goto out;
4410 
4411         if (proto)
4412                 *proto = nexthdr;
4413 
4414         switch (nexthdr) {
4415         case IPPROTO_TCP: {
4416                 struct tcphdr _tcph, *th;
4417 
4418                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4419                 if (th == NULL)
4420                         break;
4421 
4422                 ad->u.net->sport = th->source;
4423                 ad->u.net->dport = th->dest;
4424                 break;
4425         }
4426 
4427         case IPPROTO_UDP: {
4428                 struct udphdr _udph, *uh;
4429 
4430                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4431                 if (uh == NULL)
4432                         break;
4433 
4434                 ad->u.net->sport = uh->source;
4435                 ad->u.net->dport = uh->dest;
4436                 break;
4437         }
4438 
4439         case IPPROTO_DCCP: {
4440                 struct dccp_hdr _dccph, *dh;
4441 
4442                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4443                 if (dh == NULL)
4444                         break;
4445 
4446                 ad->u.net->sport = dh->dccph_sport;
4447                 ad->u.net->dport = dh->dccph_dport;
4448                 break;
4449         }
4450 
4451 #if IS_ENABLED(CONFIG_IP_SCTP)
4452         case IPPROTO_SCTP: {
4453                 struct sctphdr _sctph, *sh;
4454 
4455                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4456                 if (sh == NULL)
4457                         break;
4458 
4459                 ad->u.net->sport = sh->source;
4460                 ad->u.net->dport = sh->dest;
4461                 break;
4462         }
4463 #endif
4464         /* includes fragments */
4465         default:
4466                 break;
4467         }
4468 out:
4469         return ret;
4470 }
4471 
4472 #endif /* IPV6 */
4473 
4474 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4475                              char **_addrp, int src, u8 *proto)
4476 {
4477         char *addrp;
4478         int ret;
4479 
4480         switch (ad->u.net->family) {
4481         case PF_INET:
4482                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4483                 if (ret)
4484                         goto parse_error;
4485                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4486                                        &ad->u.net->v4info.daddr);
4487                 goto okay;
4488 
4489 #if IS_ENABLED(CONFIG_IPV6)
4490         case PF_INET6:
4491                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4492                 if (ret)
4493                         goto parse_error;
4494                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4495                                        &ad->u.net->v6info.daddr);
4496                 goto okay;
4497 #endif  /* IPV6 */
4498         default:
4499                 addrp = NULL;
4500                 goto okay;
4501         }
4502 
4503 parse_error:
4504         pr_warn(
4505                "SELinux: failure in selinux_parse_skb(),"
4506                " unable to parse packet\n");
4507         return ret;
4508 
4509 okay:
4510         if (_addrp)
4511                 *_addrp = addrp;
4512         return 0;
4513 }
4514 
4515 /**
4516  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4517  * @skb: the packet
4518  * @family: protocol family
4519  * @sid: the packet's peer label SID
4520  *
4521  * Description:
4522  * Check the various different forms of network peer labeling and determine
4523  * the peer label/SID for the packet; most of the magic actually occurs in
4524  * the security server function security_net_peersid_cmp().  The function
4525  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4526  * or -EACCES if @sid is invalid due to inconsistencies with the different
4527  * peer labels.
4528  *
4529  */
4530 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4531 {
4532         int err;
4533         u32 xfrm_sid;
4534         u32 nlbl_sid;
4535         u32 nlbl_type;
4536 
4537         err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4538         if (unlikely(err))
4539                 return -EACCES;
4540         err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4541         if (unlikely(err))
4542                 return -EACCES;
4543 
4544         err = security_net_peersid_resolve(nlbl_sid,
4545                                            nlbl_type, xfrm_sid, sid);
4546         if (unlikely(err)) {
4547                 pr_warn(
4548                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
4549                        " unable to determine packet's peer label\n");
4550                 return -EACCES;
4551         }
4552 
4553         return 0;
4554 }
4555 
4556 /**
4557  * selinux_conn_sid - Determine the child socket label for a connection
4558  * @sk_sid: the parent socket's SID
4559  * @skb_sid: the packet's SID
4560  * @conn_sid: the resulting connection SID
4561  *
4562  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4563  * combined with the MLS information from @skb_sid in order to create
4564  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4565  * of @sk_sid.  Returns zero on success, negative values on failure.
4566  *
4567  */
4568 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4569 {
4570         int err = 0;
4571 
4572         if (skb_sid != SECSID_NULL)
4573                 err = security_sid_mls_copy(sk_sid, skb_sid,
4574                                             conn_sid);
4575         else
4576                 *conn_sid = sk_sid;
4577 
4578         return err;
4579 }
4580 
4581 /* socket security operations */
4582 
4583 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4584                                  u16 secclass, u32 *socksid)
4585 {
4586         if (tsec->sockcreate_sid > SECSID_NULL) {
4587                 *socksid = tsec->sockcreate_sid;
4588                 return 0;
4589         }
4590 
4591         return security_transition_sid(tsec->sid, tsec->sid,
4592                                        secclass, NULL, socksid);
4593 }
4594 
4595 static int sock_has_perm(struct sock *sk, u32 perms)
4596 {
4597         struct sk_security_struct *sksec = selinux_sock(sk);
4598         struct common_audit_data ad;
4599         struct lsm_network_audit net;
4600 
4601         if (sksec->sid == SECINITSID_KERNEL)
4602                 return 0;
4603 
4604         /*
4605          * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4606          * inherited the kernel context from early boot used to be skipped
4607          * here, so preserve that behavior unless the capability is set.
4608          *
4609          * By setting the capability the policy signals that it is ready
4610          * for this quirk to be fixed. Note that sockets created by a kernel
4611          * thread or a usermode helper executed without a transition will
4612          * still be skipped in this check regardless of the policycap
4613          * setting.
4614          */
4615         if (!selinux_policycap_userspace_initial_context() &&
4616             sksec->sid == SECINITSID_INIT)
4617                 return 0;
4618 
4619         ad_net_init_from_sk(&ad, &net, sk);
4620 
4621         return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4622                             &ad);
4623 }
4624 
4625 static int selinux_socket_create(int family, int type,
4626                                  int protocol, int kern)
4627 {
4628         const struct task_security_struct *tsec = selinux_cred(current_cred());
4629         u32 newsid;
4630         u16 secclass;
4631         int rc;
4632 
4633         if (kern)
4634                 return 0;
4635 
4636         secclass = socket_type_to_security_class(family, type, protocol);
4637         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4638         if (rc)
4639                 return rc;
4640 
4641         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4642 }
4643 
4644 static int selinux_socket_post_create(struct socket *sock, int family,
4645                                       int type, int protocol, int kern)
4646 {
4647         const struct task_security_struct *tsec = selinux_cred(current_cred());
4648         struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4649         struct sk_security_struct *sksec;
4650         u16 sclass = socket_type_to_security_class(family, type, protocol);
4651         u32 sid = SECINITSID_KERNEL;
4652         int err = 0;
4653 
4654         if (!kern) {
4655                 err = socket_sockcreate_sid(tsec, sclass, &sid);
4656                 if (err)
4657                         return err;
4658         }
4659 
4660         isec->sclass = sclass;
4661         isec->sid = sid;
4662         isec->initialized = LABEL_INITIALIZED;
4663 
4664         if (sock->sk) {
4665                 sksec = selinux_sock(sock->sk);
4666                 sksec->sclass = sclass;
4667                 sksec->sid = sid;
4668                 /* Allows detection of the first association on this socket */
4669                 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4670                         sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4671 
4672                 err = selinux_netlbl_socket_post_create(sock->sk, family);
4673         }
4674 
4675         return err;
4676 }
4677 
4678 static int selinux_socket_socketpair(struct socket *socka,
4679                                      struct socket *sockb)
4680 {
4681         struct sk_security_struct *sksec_a = selinux_sock(socka->sk);
4682         struct sk_security_struct *sksec_b = selinux_sock(sockb->sk);
4683 
4684         sksec_a->peer_sid = sksec_b->sid;
4685         sksec_b->peer_sid = sksec_a->sid;
4686 
4687         return 0;
4688 }
4689 
4690 /* Range of port numbers used to automatically bind.
4691    Need to determine whether we should perform a name_bind
4692    permission check between the socket and the port number. */
4693 
4694 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4695 {
4696         struct sock *sk = sock->sk;
4697         struct sk_security_struct *sksec = selinux_sock(sk);
4698         u16 family;
4699         int err;
4700 
4701         err = sock_has_perm(sk, SOCKET__BIND);
4702         if (err)
4703                 goto out;
4704 
4705         /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4706         family = sk->sk_family;
4707         if (family == PF_INET || family == PF_INET6) {
4708                 char *addrp;
4709                 struct common_audit_data ad;
4710                 struct lsm_network_audit net = {0,};
4711                 struct sockaddr_in *addr4 = NULL;
4712                 struct sockaddr_in6 *addr6 = NULL;
4713                 u16 family_sa;
4714                 unsigned short snum;
4715                 u32 sid, node_perm;
4716 
4717                 /*
4718                  * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4719                  * that validates multiple binding addresses. Because of this
4720                  * need to check address->sa_family as it is possible to have
4721                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4722                  */
4723                 if (addrlen < offsetofend(struct sockaddr, sa_family))
4724                         return -EINVAL;
4725                 family_sa = address->sa_family;
4726                 switch (family_sa) {
4727                 case AF_UNSPEC:
4728                 case AF_INET:
4729                         if (addrlen < sizeof(struct sockaddr_in))
4730                                 return -EINVAL;
4731                         addr4 = (struct sockaddr_in *)address;
4732                         if (family_sa == AF_UNSPEC) {
4733                                 if (family == PF_INET6) {
4734                                         /* Length check from inet6_bind_sk() */
4735                                         if (addrlen < SIN6_LEN_RFC2133)
4736                                                 return -EINVAL;
4737                                         /* Family check from __inet6_bind() */
4738                                         goto err_af;
4739                                 }
4740                                 /* see __inet_bind(), we only want to allow
4741                                  * AF_UNSPEC if the address is INADDR_ANY
4742                                  */
4743                                 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4744                                         goto err_af;
4745                                 family_sa = AF_INET;
4746                         }
4747                         snum = ntohs(addr4->sin_port);
4748                         addrp = (char *)&addr4->sin_addr.s_addr;
4749                         break;
4750                 case AF_INET6:
4751                         if (addrlen < SIN6_LEN_RFC2133)
4752                                 return -EINVAL;
4753                         addr6 = (struct sockaddr_in6 *)address;
4754                         snum = ntohs(addr6->sin6_port);
4755                         addrp = (char *)&addr6->sin6_addr.s6_addr;
4756                         break;
4757                 default:
4758                         goto err_af;
4759                 }
4760 
4761                 ad.type = LSM_AUDIT_DATA_NET;
4762                 ad.u.net = &net;
4763                 ad.u.net->sport = htons(snum);
4764                 ad.u.net->family = family_sa;
4765 
4766                 if (snum) {
4767                         int low, high;
4768 
4769                         inet_get_local_port_range(sock_net(sk), &low, &high);
4770 
4771                         if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4772                             snum < low || snum > high) {
4773                                 err = sel_netport_sid(sk->sk_protocol,
4774                                                       snum, &sid);
4775                                 if (err)
4776                                         goto out;
4777                                 err = avc_has_perm(sksec->sid, sid,
4778                                                    sksec->sclass,
4779                                                    SOCKET__NAME_BIND, &ad);
4780                                 if (err)
4781                                         goto out;
4782                         }
4783                 }
4784 
4785                 switch (sksec->sclass) {
4786                 case SECCLASS_TCP_SOCKET:
4787                         node_perm = TCP_SOCKET__NODE_BIND;
4788                         break;
4789 
4790                 case SECCLASS_UDP_SOCKET:
4791                         node_perm = UDP_SOCKET__NODE_BIND;
4792                         break;
4793 
4794                 case SECCLASS_DCCP_SOCKET:
4795                         node_perm = DCCP_SOCKET__NODE_BIND;
4796                         break;
4797 
4798                 case SECCLASS_SCTP_SOCKET:
4799                         node_perm = SCTP_SOCKET__NODE_BIND;
4800                         break;
4801 
4802                 default:
4803                         node_perm = RAWIP_SOCKET__NODE_BIND;
4804                         break;
4805                 }
4806 
4807                 err = sel_netnode_sid(addrp, family_sa, &sid);
4808                 if (err)
4809                         goto out;
4810 
4811                 if (family_sa == AF_INET)
4812                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4813                 else
4814                         ad.u.net->v6info.saddr = addr6->sin6_addr;
4815 
4816                 err = avc_has_perm(sksec->sid, sid,
4817                                    sksec->sclass, node_perm, &ad);
4818                 if (err)
4819                         goto out;
4820         }
4821 out:
4822         return err;
4823 err_af:
4824         /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4825         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4826                 return -EINVAL;
4827         return -EAFNOSUPPORT;
4828 }
4829 
4830 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4831  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4832  */
4833 static int selinux_socket_connect_helper(struct socket *sock,
4834                                          struct sockaddr *address, int addrlen)
4835 {
4836         struct sock *sk = sock->sk;
4837         struct sk_security_struct *sksec = selinux_sock(sk);
4838         int err;
4839 
4840         err = sock_has_perm(sk, SOCKET__CONNECT);
4841         if (err)
4842                 return err;
4843         if (addrlen < offsetofend(struct sockaddr, sa_family))
4844                 return -EINVAL;
4845 
4846         /* connect(AF_UNSPEC) has special handling, as it is a documented
4847          * way to disconnect the socket
4848          */
4849         if (address->sa_family == AF_UNSPEC)
4850                 return 0;
4851 
4852         /*
4853          * If a TCP, DCCP or SCTP socket, check name_connect permission
4854          * for the port.
4855          */
4856         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4857             sksec->sclass == SECCLASS_DCCP_SOCKET ||
4858             sksec->sclass == SECCLASS_SCTP_SOCKET) {
4859                 struct common_audit_data ad;
4860                 struct lsm_network_audit net = {0,};
4861                 struct sockaddr_in *addr4 = NULL;
4862                 struct sockaddr_in6 *addr6 = NULL;
4863                 unsigned short snum;
4864                 u32 sid, perm;
4865 
4866                 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4867                  * that validates multiple connect addresses. Because of this
4868                  * need to check address->sa_family as it is possible to have
4869                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4870                  */
4871                 switch (address->sa_family) {
4872                 case AF_INET:
4873                         addr4 = (struct sockaddr_in *)address;
4874                         if (addrlen < sizeof(struct sockaddr_in))
4875                                 return -EINVAL;
4876                         snum = ntohs(addr4->sin_port);
4877                         break;
4878                 case AF_INET6:
4879                         addr6 = (struct sockaddr_in6 *)address;
4880                         if (addrlen < SIN6_LEN_RFC2133)
4881                                 return -EINVAL;
4882                         snum = ntohs(addr6->sin6_port);
4883                         break;
4884                 default:
4885                         /* Note that SCTP services expect -EINVAL, whereas
4886                          * others expect -EAFNOSUPPORT.
4887                          */
4888                         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4889                                 return -EINVAL;
4890                         else
4891                                 return -EAFNOSUPPORT;
4892                 }
4893 
4894                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4895                 if (err)
4896                         return err;
4897 
4898                 switch (sksec->sclass) {
4899                 case SECCLASS_TCP_SOCKET:
4900                         perm = TCP_SOCKET__NAME_CONNECT;
4901                         break;
4902                 case SECCLASS_DCCP_SOCKET:
4903                         perm = DCCP_SOCKET__NAME_CONNECT;
4904                         break;
4905                 case SECCLASS_SCTP_SOCKET:
4906                         perm = SCTP_SOCKET__NAME_CONNECT;
4907                         break;
4908                 }
4909 
4910                 ad.type = LSM_AUDIT_DATA_NET;
4911                 ad.u.net = &net;
4912                 ad.u.net->dport = htons(snum);
4913                 ad.u.net->family = address->sa_family;
4914                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4915                 if (err)
4916                         return err;
4917         }
4918 
4919         return 0;
4920 }
4921 
4922 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4923 static int selinux_socket_connect(struct socket *sock,
4924                                   struct sockaddr *address, int addrlen)
4925 {
4926         int err;
4927         struct sock *sk = sock->sk;
4928 
4929         err = selinux_socket_connect_helper(sock, address, addrlen);
4930         if (err)
4931                 return err;
4932 
4933         return selinux_netlbl_socket_connect(sk, address);
4934 }
4935 
4936 static int selinux_socket_listen(struct socket *sock, int backlog)
4937 {
4938         return sock_has_perm(sock->sk, SOCKET__LISTEN);
4939 }
4940 
4941 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4942 {
4943         int err;
4944         struct inode_security_struct *isec;
4945         struct inode_security_struct *newisec;
4946         u16 sclass;
4947         u32 sid;
4948 
4949         err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4950         if (err)
4951                 return err;
4952 
4953         isec = inode_security_novalidate(SOCK_INODE(sock));
4954         spin_lock(&isec->lock);
4955         sclass = isec->sclass;
4956         sid = isec->sid;
4957         spin_unlock(&isec->lock);
4958 
4959         newisec = inode_security_novalidate(SOCK_INODE(newsock));
4960         newisec->sclass = sclass;
4961         newisec->sid = sid;
4962         newisec->initialized = LABEL_INITIALIZED;
4963 
4964         return 0;
4965 }
4966 
4967 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4968                                   int size)
4969 {
4970         return sock_has_perm(sock->sk, SOCKET__WRITE);
4971 }
4972 
4973 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4974                                   int size, int flags)
4975 {
4976         return sock_has_perm(sock->sk, SOCKET__READ);
4977 }
4978 
4979 static int selinux_socket_getsockname(struct socket *sock)
4980 {
4981         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4982 }
4983 
4984 static int selinux_socket_getpeername(struct socket *sock)
4985 {
4986         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4987 }
4988 
4989 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4990 {
4991         int err;
4992 
4993         err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4994         if (err)
4995                 return err;
4996 
4997         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4998 }
4999 
5000 static int selinux_socket_getsockopt(struct socket *sock, int level,
5001                                      int optname)
5002 {
5003         return sock_has_perm(sock->sk, SOCKET__GETOPT);
5004 }
5005 
5006 static int selinux_socket_shutdown(struct socket *sock, int how)
5007 {
5008         return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5009 }
5010 
5011 static int selinux_socket_unix_stream_connect(struct sock *sock,
5012                                               struct sock *other,
5013                                               struct sock *newsk)
5014 {
5015         struct sk_security_struct *sksec_sock = selinux_sock(sock);
5016         struct sk_security_struct *sksec_other = selinux_sock(other);
5017         struct sk_security_struct *sksec_new = selinux_sock(newsk);
5018         struct common_audit_data ad;
5019         struct lsm_network_audit net;
5020         int err;
5021 
5022         ad_net_init_from_sk(&ad, &net, other);
5023 
5024         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5025                            sksec_other->sclass,
5026                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5027         if (err)
5028                 return err;
5029 
5030         /* server child socket */
5031         sksec_new->peer_sid = sksec_sock->sid;
5032         err = security_sid_mls_copy(sksec_other->sid,
5033                                     sksec_sock->sid, &sksec_new->sid);
5034         if (err)
5035                 return err;
5036 
5037         /* connecting socket */
5038         sksec_sock->peer_sid = sksec_new->sid;
5039 
5040         return 0;
5041 }
5042 
5043 static int selinux_socket_unix_may_send(struct socket *sock,
5044                                         struct socket *other)
5045 {
5046         struct sk_security_struct *ssec = selinux_sock(sock->sk);
5047         struct sk_security_struct *osec = selinux_sock(other->sk);
5048         struct common_audit_data ad;
5049         struct lsm_network_audit net;
5050 
5051         ad_net_init_from_sk(&ad, &net, other->sk);
5052 
5053         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5054                             &ad);
5055 }
5056 
5057 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5058                                     char *addrp, u16 family, u32 peer_sid,
5059                                     struct common_audit_data *ad)
5060 {
5061         int err;
5062         u32 if_sid;
5063         u32 node_sid;
5064 
5065         err = sel_netif_sid(ns, ifindex, &if_sid);
5066         if (err)
5067                 return err;
5068         err = avc_has_perm(peer_sid, if_sid,
5069                            SECCLASS_NETIF, NETIF__INGRESS, ad);
5070         if (err)
5071                 return err;
5072 
5073         err = sel_netnode_sid(addrp, family, &node_sid);
5074         if (err)
5075                 return err;
5076         return avc_has_perm(peer_sid, node_sid,
5077                             SECCLASS_NODE, NODE__RECVFROM, ad);
5078 }
5079 
5080 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5081                                        u16 family)
5082 {
5083         int err = 0;
5084         struct sk_security_struct *sksec = selinux_sock(sk);
5085         u32 sk_sid = sksec->sid;
5086         struct common_audit_data ad;
5087         struct lsm_network_audit net;
5088         char *addrp;
5089 
5090         ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5091         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5092         if (err)
5093                 return err;
5094 
5095         if (selinux_secmark_enabled()) {
5096                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5097                                    PACKET__RECV, &ad);
5098                 if (err)
5099                         return err;
5100         }
5101 
5102         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5103         if (err)
5104                 return err;
5105         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5106 
5107         return err;
5108 }
5109 
5110 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5111 {
5112         int err, peerlbl_active, secmark_active;
5113         struct sk_security_struct *sksec = selinux_sock(sk);
5114         u16 family = sk->sk_family;
5115         u32 sk_sid = sksec->sid;
5116         struct common_audit_data ad;
5117         struct lsm_network_audit net;
5118         char *addrp;
5119 
5120         if (family != PF_INET && family != PF_INET6)
5121                 return 0;
5122 
5123         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5124         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5125                 family = PF_INET;
5126 
5127         /* If any sort of compatibility mode is enabled then handoff processing
5128          * to the selinux_sock_rcv_skb_compat() function to deal with the
5129          * special handling.  We do this in an attempt to keep this function
5130          * as fast and as clean as possible. */
5131         if (!selinux_policycap_netpeer())
5132                 return selinux_sock_rcv_skb_compat(sk, skb, family);
5133 
5134         secmark_active = selinux_secmark_enabled();
5135         peerlbl_active = selinux_peerlbl_enabled();
5136         if (!secmark_active && !peerlbl_active)
5137                 return 0;
5138 
5139         ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5140         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5141         if (err)
5142                 return err;
5143 
5144         if (peerlbl_active) {
5145                 u32 peer_sid;
5146 
5147                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5148                 if (err)
5149                         return err;
5150                 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5151                                                addrp, family, peer_sid, &ad);
5152                 if (err) {
5153                         selinux_netlbl_err(skb, family, err, 0);
5154                         return err;
5155                 }
5156                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5157                                    PEER__RECV, &ad);
5158                 if (err) {
5159                         selinux_netlbl_err(skb, family, err, 0);
5160                         return err;
5161                 }
5162         }
5163 
5164         if (secmark_active) {
5165                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5166                                    PACKET__RECV, &ad);
5167                 if (err)
5168                         return err;
5169         }
5170 
5171         return err;
5172 }
5173 
5174 static int selinux_socket_getpeersec_stream(struct socket *sock,
5175                                             sockptr_t optval, sockptr_t optlen,
5176                                             unsigned int len)
5177 {
5178         int err = 0;
5179         char *scontext = NULL;
5180         u32 scontext_len;
5181         struct sk_security_struct *sksec = selinux_sock(sock->sk);
5182         u32 peer_sid = SECSID_NULL;
5183 
5184         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5185             sksec->sclass == SECCLASS_TCP_SOCKET ||
5186             sksec->sclass == SECCLASS_SCTP_SOCKET)
5187                 peer_sid = sksec->peer_sid;
5188         if (peer_sid == SECSID_NULL)
5189                 return -ENOPROTOOPT;
5190 
5191         err = security_sid_to_context(peer_sid, &scontext,
5192                                       &scontext_len);
5193         if (err)
5194                 return err;
5195         if (scontext_len > len) {
5196                 err = -ERANGE;
5197                 goto out_len;
5198         }
5199 
5200         if (copy_to_sockptr(optval, scontext, scontext_len))
5201                 err = -EFAULT;
5202 out_len:
5203         if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5204                 err = -EFAULT;
5205         kfree(scontext);
5206         return err;
5207 }
5208 
5209 static int selinux_socket_getpeersec_dgram(struct socket *sock,
5210                                            struct sk_buff *skb, u32 *secid)
5211 {
5212         u32 peer_secid = SECSID_NULL;
5213         u16 family;
5214 
5215         if (skb && skb->protocol == htons(ETH_P_IP))
5216                 family = PF_INET;
5217         else if (skb && skb->protocol == htons(ETH_P_IPV6))
5218                 family = PF_INET6;
5219         else if (sock)
5220                 family = sock->sk->sk_family;
5221         else {
5222                 *secid = SECSID_NULL;
5223                 return -EINVAL;
5224         }
5225 
5226         if (sock && family == PF_UNIX) {
5227                 struct inode_security_struct *isec;
5228                 isec = inode_security_novalidate(SOCK_INODE(sock));
5229                 peer_secid = isec->sid;
5230         } else if (skb)
5231                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5232 
5233         *secid = peer_secid;
5234         if (peer_secid == SECSID_NULL)
5235                 return -ENOPROTOOPT;
5236         return 0;
5237 }
5238 
5239 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5240 {
5241         struct sk_security_struct *sksec = selinux_sock(sk);
5242 
5243         sksec->peer_sid = SECINITSID_UNLABELED;
5244         sksec->sid = SECINITSID_UNLABELED;
5245         sksec->sclass = SECCLASS_SOCKET;
5246         selinux_netlbl_sk_security_reset(sksec);
5247 
5248         return 0;
5249 }
5250 
5251 static void selinux_sk_free_security(struct sock *sk)
5252 {
5253         struct sk_security_struct *sksec = selinux_sock(sk);
5254 
5255         selinux_netlbl_sk_security_free(sksec);
5256 }
5257 
5258 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5259 {
5260         struct sk_security_struct *sksec = selinux_sock(sk);
5261         struct sk_security_struct *newsksec = selinux_sock(newsk);
5262 
5263         newsksec->sid = sksec->sid;
5264         newsksec->peer_sid = sksec->peer_sid;
5265         newsksec->sclass = sksec->sclass;
5266 
5267         selinux_netlbl_sk_security_reset(newsksec);
5268 }
5269 
5270 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5271 {
5272         if (!sk)
5273                 *secid = SECINITSID_ANY_SOCKET;
5274         else {
5275                 const struct sk_security_struct *sksec = selinux_sock(sk);
5276 
5277                 *secid = sksec->sid;
5278         }
5279 }
5280 
5281 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5282 {
5283         struct inode_security_struct *isec =
5284                 inode_security_novalidate(SOCK_INODE(parent));
5285         struct sk_security_struct *sksec = selinux_sock(sk);
5286 
5287         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5288             sk->sk_family == PF_UNIX)
5289                 isec->sid = sksec->sid;
5290         sksec->sclass = isec->sclass;
5291 }
5292 
5293 /*
5294  * Determines peer_secid for the asoc and updates socket's peer label
5295  * if it's the first association on the socket.
5296  */
5297 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5298                                           struct sk_buff *skb)
5299 {
5300         struct sock *sk = asoc->base.sk;
5301         u16 family = sk->sk_family;
5302         struct sk_security_struct *sksec = selinux_sock(sk);
5303         struct common_audit_data ad;
5304         struct lsm_network_audit net;
5305         int err;
5306 
5307         /* handle mapped IPv4 packets arriving via IPv6 sockets */
5308         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5309                 family = PF_INET;
5310 
5311         if (selinux_peerlbl_enabled()) {
5312                 asoc->peer_secid = SECSID_NULL;
5313 
5314                 /* This will return peer_sid = SECSID_NULL if there are
5315                  * no peer labels, see security_net_peersid_resolve().
5316                  */
5317                 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5318                 if (err)
5319                         return err;
5320 
5321                 if (asoc->peer_secid == SECSID_NULL)
5322                         asoc->peer_secid = SECINITSID_UNLABELED;
5323         } else {
5324                 asoc->peer_secid = SECINITSID_UNLABELED;
5325         }
5326 
5327         if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5328                 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5329 
5330                 /* Here as first association on socket. As the peer SID
5331                  * was allowed by peer recv (and the netif/node checks),
5332                  * then it is approved by policy and used as the primary
5333                  * peer SID for getpeercon(3).
5334                  */
5335                 sksec->peer_sid = asoc->peer_secid;
5336         } else if (sksec->peer_sid != asoc->peer_secid) {
5337                 /* Other association peer SIDs are checked to enforce
5338                  * consistency among the peer SIDs.
5339                  */
5340                 ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5341                 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5342                                    sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5343                                    &ad);
5344                 if (err)
5345                         return err;
5346         }
5347         return 0;
5348 }
5349 
5350 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5351  * happens on an incoming connect(2), sctp_connectx(3) or
5352  * sctp_sendmsg(3) (with no association already present).
5353  */
5354 static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5355                                       struct sk_buff *skb)
5356 {
5357         struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5358         u32 conn_sid;
5359         int err;
5360 
5361         if (!selinux_policycap_extsockclass())
5362                 return 0;
5363 
5364         err = selinux_sctp_process_new_assoc(asoc, skb);
5365         if (err)
5366                 return err;
5367 
5368         /* Compute the MLS component for the connection and store
5369          * the information in asoc. This will be used by SCTP TCP type
5370          * sockets and peeled off connections as they cause a new
5371          * socket to be generated. selinux_sctp_sk_clone() will then
5372          * plug this into the new socket.
5373          */
5374         err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5375         if (err)
5376                 return err;
5377 
5378         asoc->secid = conn_sid;
5379 
5380         /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5381         return selinux_netlbl_sctp_assoc_request(asoc, skb);
5382 }
5383 
5384 /* Called when SCTP receives a COOKIE ACK chunk as the final
5385  * response to an association request (initited by us).
5386  */
5387 static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5388                                           struct sk_buff *skb)
5389 {
5390         struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5391 
5392         if (!selinux_policycap_extsockclass())
5393                 return 0;
5394 
5395         /* Inherit secid from the parent socket - this will be picked up
5396          * by selinux_sctp_sk_clone() if the association gets peeled off
5397          * into a new socket.
5398          */
5399         asoc->secid = sksec->sid;
5400 
5401         return selinux_sctp_process_new_assoc(asoc, skb);
5402 }
5403 
5404 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5405  * based on their @optname.
5406  */
5407 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5408                                      struct sockaddr *address,
5409                                      int addrlen)
5410 {
5411         int len, err = 0, walk_size = 0;
5412         void *addr_buf;
5413         struct sockaddr *addr;
5414         struct socket *sock;
5415 
5416         if (!selinux_policycap_extsockclass())
5417                 return 0;
5418 
5419         /* Process one or more addresses that may be IPv4 or IPv6 */
5420         sock = sk->sk_socket;
5421         addr_buf = address;
5422 
5423         while (walk_size < addrlen) {
5424                 if (walk_size + sizeof(sa_family_t) > addrlen)
5425                         return -EINVAL;
5426 
5427                 addr = addr_buf;
5428                 switch (addr->sa_family) {
5429                 case AF_UNSPEC:
5430                 case AF_INET:
5431                         len = sizeof(struct sockaddr_in);
5432                         break;
5433                 case AF_INET6:
5434                         len = sizeof(struct sockaddr_in6);
5435                         break;
5436                 default:
5437                         return -EINVAL;
5438                 }
5439 
5440                 if (walk_size + len > addrlen)
5441                         return -EINVAL;
5442 
5443                 err = -EINVAL;
5444                 switch (optname) {
5445                 /* Bind checks */
5446                 case SCTP_PRIMARY_ADDR:
5447                 case SCTP_SET_PEER_PRIMARY_ADDR:
5448                 case SCTP_SOCKOPT_BINDX_ADD:
5449                         err = selinux_socket_bind(sock, addr, len);
5450                         break;
5451                 /* Connect checks */
5452                 case SCTP_SOCKOPT_CONNECTX:
5453                 case SCTP_PARAM_SET_PRIMARY:
5454                 case SCTP_PARAM_ADD_IP:
5455                 case SCTP_SENDMSG_CONNECT:
5456                         err = selinux_socket_connect_helper(sock, addr, len);
5457                         if (err)
5458                                 return err;
5459 
5460                         /* As selinux_sctp_bind_connect() is called by the
5461                          * SCTP protocol layer, the socket is already locked,
5462                          * therefore selinux_netlbl_socket_connect_locked()
5463                          * is called here. The situations handled are:
5464                          * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5465                          * whenever a new IP address is added or when a new
5466                          * primary address is selected.
5467                          * Note that an SCTP connect(2) call happens before
5468                          * the SCTP protocol layer and is handled via
5469                          * selinux_socket_connect().
5470                          */
5471                         err = selinux_netlbl_socket_connect_locked(sk, addr);
5472                         break;
5473                 }
5474 
5475                 if (err)
5476                         return err;
5477 
5478                 addr_buf += len;
5479                 walk_size += len;
5480         }
5481 
5482         return 0;
5483 }
5484 
5485 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5486 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5487                                   struct sock *newsk)
5488 {
5489         struct sk_security_struct *sksec = selinux_sock(sk);
5490         struct sk_security_struct *newsksec = selinux_sock(newsk);
5491 
5492         /* If policy does not support SECCLASS_SCTP_SOCKET then call
5493          * the non-sctp clone version.
5494          */
5495         if (!selinux_policycap_extsockclass())
5496                 return selinux_sk_clone_security(sk, newsk);
5497 
5498         newsksec->sid = asoc->secid;
5499         newsksec->peer_sid = asoc->peer_secid;
5500         newsksec->sclass = sksec->sclass;
5501         selinux_netlbl_sctp_sk_clone(sk, newsk);
5502 }
5503 
5504 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5505 {
5506         struct sk_security_struct *ssksec = selinux_sock(ssk);
5507         struct sk_security_struct *sksec = selinux_sock(sk);
5508 
5509         ssksec->sclass = sksec->sclass;
5510         ssksec->sid = sksec->sid;
5511 
5512         /* replace the existing subflow label deleting the existing one
5513          * and re-recreating a new label using the updated context
5514          */
5515         selinux_netlbl_sk_security_free(ssksec);
5516         return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5517 }
5518 
5519 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5520                                      struct request_sock *req)
5521 {
5522         struct sk_security_struct *sksec = selinux_sock(sk);
5523         int err;
5524         u16 family = req->rsk_ops->family;
5525         u32 connsid;
5526         u32 peersid;
5527 
5528         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5529         if (err)
5530                 return err;
5531         err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5532         if (err)
5533                 return err;
5534         req->secid = connsid;
5535         req->peer_secid = peersid;
5536 
5537         return selinux_netlbl_inet_conn_request(req, family);
5538 }
5539 
5540 static void selinux_inet_csk_clone(struct sock *newsk,
5541                                    const struct request_sock *req)
5542 {
5543         struct sk_security_struct *newsksec = selinux_sock(newsk);
5544 
5545         newsksec->sid = req->secid;
5546         newsksec->peer_sid = req->peer_secid;
5547         /* NOTE: Ideally, we should also get the isec->sid for the
5548            new socket in sync, but we don't have the isec available yet.
5549            So we will wait until sock_graft to do it, by which
5550            time it will have been created and available. */
5551 
5552         /* We don't need to take any sort of lock here as we are the only
5553          * thread with access to newsksec */
5554         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5555 }
5556 
5557 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5558 {
5559         u16 family = sk->sk_family;
5560         struct sk_security_struct *sksec = selinux_sock(sk);
5561 
5562         /* handle mapped IPv4 packets arriving via IPv6 sockets */
5563         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5564                 family = PF_INET;
5565 
5566         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5567 }
5568 
5569 static int selinux_secmark_relabel_packet(u32 sid)
5570 {
5571         return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO,
5572                             NULL);
5573 }
5574 
5575 static void selinux_secmark_refcount_inc(void)
5576 {
5577         atomic_inc(&selinux_secmark_refcount);
5578 }
5579 
5580 static void selinux_secmark_refcount_dec(void)
5581 {
5582         atomic_dec(&selinux_secmark_refcount);
5583 }
5584 
5585 static void selinux_req_classify_flow(const struct request_sock *req,
5586                                       struct flowi_common *flic)
5587 {
5588         flic->flowic_secid = req->secid;
5589 }
5590 
5591 static int selinux_tun_dev_alloc_security(void **security)
5592 {
5593         struct tun_security_struct *tunsec;
5594 
5595         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5596         if (!tunsec)
5597                 return -ENOMEM;
5598         tunsec->sid = current_sid();
5599 
5600         *security = tunsec;
5601         return 0;
5602 }
5603 
5604 static void selinux_tun_dev_free_security(void *security)
5605 {
5606         kfree(security);
5607 }
5608 
5609 static int selinux_tun_dev_create(void)
5610 {
5611         u32 sid = current_sid();
5612 
5613         /* we aren't taking into account the "sockcreate" SID since the socket
5614          * that is being created here is not a socket in the traditional sense,
5615          * instead it is a private sock, accessible only to the kernel, and
5616          * representing a wide range of network traffic spanning multiple
5617          * connections unlike traditional sockets - check the TUN driver to
5618          * get a better understanding of why this socket is special */
5619 
5620         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5621                             NULL);
5622 }
5623 
5624 static int selinux_tun_dev_attach_queue(void *security)
5625 {
5626         struct tun_security_struct *tunsec = security;
5627 
5628         return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5629                             TUN_SOCKET__ATTACH_QUEUE, NULL);
5630 }
5631 
5632 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5633 {
5634         struct tun_security_struct *tunsec = security;
5635         struct sk_security_struct *sksec = selinux_sock(sk);
5636 
5637         /* we don't currently perform any NetLabel based labeling here and it
5638          * isn't clear that we would want to do so anyway; while we could apply
5639          * labeling without the support of the TUN user the resulting labeled
5640          * traffic from the other end of the connection would almost certainly
5641          * cause confusion to the TUN user that had no idea network labeling
5642          * protocols were being used */
5643 
5644         sksec->sid = tunsec->sid;
5645         sksec->sclass = SECCLASS_TUN_SOCKET;
5646 
5647         return 0;
5648 }
5649 
5650 static int selinux_tun_dev_open(void *security)
5651 {
5652         struct tun_security_struct *tunsec = security;
5653         u32 sid = current_sid();
5654         int err;
5655 
5656         err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5657                            TUN_SOCKET__RELABELFROM, NULL);
5658         if (err)
5659                 return err;
5660         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5661                            TUN_SOCKET__RELABELTO, NULL);
5662         if (err)
5663                 return err;
5664         tunsec->sid = sid;
5665 
5666         return 0;
5667 }
5668 
5669 #ifdef CONFIG_NETFILTER
5670 
5671 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5672                                        const struct nf_hook_state *state)
5673 {
5674         int ifindex;
5675         u16 family;
5676         char *addrp;
5677         u32 peer_sid;
5678         struct common_audit_data ad;
5679         struct lsm_network_audit net;
5680         int secmark_active, peerlbl_active;
5681 
5682         if (!selinux_policycap_netpeer())
5683                 return NF_ACCEPT;
5684 
5685         secmark_active = selinux_secmark_enabled();
5686         peerlbl_active = selinux_peerlbl_enabled();
5687         if (!secmark_active && !peerlbl_active)
5688                 return NF_ACCEPT;
5689 
5690         family = state->pf;
5691         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5692                 return NF_DROP;
5693 
5694         ifindex = state->in->ifindex;
5695         ad_net_init_from_iif(&ad, &net, ifindex, family);
5696         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5697                 return NF_DROP;
5698 
5699         if (peerlbl_active) {
5700                 int err;
5701 
5702                 err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5703                                                addrp, family, peer_sid, &ad);
5704                 if (err) {
5705                         selinux_netlbl_err(skb, family, err, 1);
5706                         return NF_DROP;
5707                 }
5708         }
5709 
5710         if (secmark_active)
5711                 if (avc_has_perm(peer_sid, skb->secmark,
5712                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5713                         return NF_DROP;
5714 
5715         if (netlbl_enabled())
5716                 /* we do this in the FORWARD path and not the POST_ROUTING
5717                  * path because we want to make sure we apply the necessary
5718                  * labeling before IPsec is applied so we can leverage AH
5719                  * protection */
5720                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5721                         return NF_DROP;
5722 
5723         return NF_ACCEPT;
5724 }
5725 
5726 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5727                                       const struct nf_hook_state *state)
5728 {
5729         struct sock *sk;
5730         u32 sid;
5731 
5732         if (!netlbl_enabled())
5733                 return NF_ACCEPT;
5734 
5735         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5736          * because we want to make sure we apply the necessary labeling
5737          * before IPsec is applied so we can leverage AH protection */
5738         sk = skb->sk;
5739         if (sk) {
5740                 struct sk_security_struct *sksec;
5741 
5742                 if (sk_listener(sk))
5743                         /* if the socket is the listening state then this
5744                          * packet is a SYN-ACK packet which means it needs to
5745                          * be labeled based on the connection/request_sock and
5746                          * not the parent socket.  unfortunately, we can't
5747                          * lookup the request_sock yet as it isn't queued on
5748                          * the parent socket until after the SYN-ACK is sent.
5749                          * the "solution" is to simply pass the packet as-is
5750                          * as any IP option based labeling should be copied
5751                          * from the initial connection request (in the IP
5752                          * layer).  it is far from ideal, but until we get a
5753                          * security label in the packet itself this is the
5754                          * best we can do. */
5755                         return NF_ACCEPT;
5756 
5757                 /* standard practice, label using the parent socket */
5758                 sksec = selinux_sock(sk);
5759                 sid = sksec->sid;
5760         } else
5761                 sid = SECINITSID_KERNEL;
5762         if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5763                 return NF_DROP;
5764 
5765         return NF_ACCEPT;
5766 }
5767 
5768 
5769 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5770                                         const struct nf_hook_state *state)
5771 {
5772         struct sock *sk;
5773         struct sk_security_struct *sksec;
5774         struct common_audit_data ad;
5775         struct lsm_network_audit net;
5776         u8 proto = 0;
5777 
5778         sk = skb_to_full_sk(skb);
5779         if (sk == NULL)
5780                 return NF_ACCEPT;
5781         sksec = selinux_sock(sk);
5782 
5783         ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5784         if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5785                 return NF_DROP;
5786 
5787         if (selinux_secmark_enabled())
5788                 if (avc_has_perm(sksec->sid, skb->secmark,
5789                                  SECCLASS_PACKET, PACKET__SEND, &ad))
5790                         return NF_DROP_ERR(-ECONNREFUSED);
5791 
5792         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5793                 return NF_DROP_ERR(-ECONNREFUSED);
5794 
5795         return NF_ACCEPT;
5796 }
5797 
5798 static unsigned int selinux_ip_postroute(void *priv,
5799                                          struct sk_buff *skb,
5800                                          const struct nf_hook_state *state)
5801 {
5802         u16 family;
5803         u32 secmark_perm;
5804         u32 peer_sid;
5805         int ifindex;
5806         struct sock *sk;
5807         struct common_audit_data ad;
5808         struct lsm_network_audit net;
5809         char *addrp;
5810         int secmark_active, peerlbl_active;
5811 
5812         /* If any sort of compatibility mode is enabled then handoff processing
5813          * to the selinux_ip_postroute_compat() function to deal with the
5814          * special handling.  We do this in an attempt to keep this function
5815          * as fast and as clean as possible. */
5816         if (!selinux_policycap_netpeer())
5817                 return selinux_ip_postroute_compat(skb, state);
5818 
5819         secmark_active = selinux_secmark_enabled();
5820         peerlbl_active = selinux_peerlbl_enabled();
5821         if (!secmark_active && !peerlbl_active)
5822                 return NF_ACCEPT;
5823 
5824         sk = skb_to_full_sk(skb);
5825 
5826 #ifdef CONFIG_XFRM
5827         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5828          * packet transformation so allow the packet to pass without any checks
5829          * since we'll have another chance to perform access control checks
5830          * when the packet is on it's final way out.
5831          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5832          *       is NULL, in this case go ahead and apply access control.
5833          * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5834          *       TCP listening state we cannot wait until the XFRM processing
5835          *       is done as we will miss out on the SA label if we do;
5836          *       unfortunately, this means more work, but it is only once per
5837          *       connection. */
5838         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5839             !(sk && sk_listener(sk)))
5840                 return NF_ACCEPT;
5841 #endif
5842 
5843         family = state->pf;
5844         if (sk == NULL) {
5845                 /* Without an associated socket the packet is either coming
5846                  * from the kernel or it is being forwarded; check the packet
5847                  * to determine which and if the packet is being forwarded
5848                  * query the packet directly to determine the security label. */
5849                 if (skb->skb_iif) {
5850                         secmark_perm = PACKET__FORWARD_OUT;
5851                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5852                                 return NF_DROP;
5853                 } else {
5854                         secmark_perm = PACKET__SEND;
5855                         peer_sid = SECINITSID_KERNEL;
5856                 }
5857         } else if (sk_listener(sk)) {
5858                 /* Locally generated packet but the associated socket is in the
5859                  * listening state which means this is a SYN-ACK packet.  In
5860                  * this particular case the correct security label is assigned
5861                  * to the connection/request_sock but unfortunately we can't
5862                  * query the request_sock as it isn't queued on the parent
5863                  * socket until after the SYN-ACK packet is sent; the only
5864                  * viable choice is to regenerate the label like we do in
5865                  * selinux_inet_conn_request().  See also selinux_ip_output()
5866                  * for similar problems. */
5867                 u32 skb_sid;
5868                 struct sk_security_struct *sksec;
5869 
5870                 sksec = selinux_sock(sk);
5871                 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5872                         return NF_DROP;
5873                 /* At this point, if the returned skb peerlbl is SECSID_NULL
5874                  * and the packet has been through at least one XFRM
5875                  * transformation then we must be dealing with the "final"
5876                  * form of labeled IPsec packet; since we've already applied
5877                  * all of our access controls on this packet we can safely
5878                  * pass the packet. */
5879                 if (skb_sid == SECSID_NULL) {
5880                         switch (family) {
5881                         case PF_INET:
5882                                 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5883                                         return NF_ACCEPT;
5884                                 break;
5885                         case PF_INET6:
5886                                 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5887                                         return NF_ACCEPT;
5888                                 break;
5889                         default:
5890                                 return NF_DROP_ERR(-ECONNREFUSED);
5891                         }
5892                 }
5893                 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5894                         return NF_DROP;
5895                 secmark_perm = PACKET__SEND;
5896         } else {
5897                 /* Locally generated packet, fetch the security label from the
5898                  * associated socket. */
5899                 struct sk_security_struct *sksec = selinux_sock(sk);
5900                 peer_sid = sksec->sid;
5901                 secmark_perm = PACKET__SEND;
5902         }
5903 
5904         ifindex = state->out->ifindex;
5905         ad_net_init_from_iif(&ad, &net, ifindex, family);
5906         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5907                 return NF_DROP;
5908 
5909         if (secmark_active)
5910                 if (avc_has_perm(peer_sid, skb->secmark,
5911                                  SECCLASS_PACKET, secmark_perm, &ad))
5912                         return NF_DROP_ERR(-ECONNREFUSED);
5913 
5914         if (peerlbl_active) {
5915                 u32 if_sid;
5916                 u32 node_sid;
5917 
5918                 if (sel_netif_sid(state->net, ifindex, &if_sid))
5919                         return NF_DROP;
5920                 if (avc_has_perm(peer_sid, if_sid,
5921                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
5922                         return NF_DROP_ERR(-ECONNREFUSED);
5923 
5924                 if (sel_netnode_sid(addrp, family, &node_sid))
5925                         return NF_DROP;
5926                 if (avc_has_perm(peer_sid, node_sid,
5927                                  SECCLASS_NODE, NODE__SENDTO, &ad))
5928                         return NF_DROP_ERR(-ECONNREFUSED);
5929         }
5930 
5931         return NF_ACCEPT;
5932 }
5933 #endif  /* CONFIG_NETFILTER */
5934 
5935 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5936 {
5937         int rc = 0;
5938         unsigned int msg_len;
5939         unsigned int data_len = skb->len;
5940         unsigned char *data = skb->data;
5941         struct nlmsghdr *nlh;
5942         struct sk_security_struct *sksec = selinux_sock(sk);
5943         u16 sclass = sksec->sclass;
5944         u32 perm;
5945 
5946         while (data_len >= nlmsg_total_size(0)) {
5947                 nlh = (struct nlmsghdr *)data;
5948 
5949                 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5950                  *       users which means we can't reject skb's with bogus
5951                  *       length fields; our solution is to follow what
5952                  *       netlink_rcv_skb() does and simply skip processing at
5953                  *       messages with length fields that are clearly junk
5954                  */
5955                 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5956                         return 0;
5957 
5958                 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5959                 if (rc == 0) {
5960                         rc = sock_has_perm(sk, perm);
5961                         if (rc)
5962                                 return rc;
5963                 } else if (rc == -EINVAL) {
5964                         /* -EINVAL is a missing msg/perm mapping */
5965                         pr_warn_ratelimited("SELinux: unrecognized netlink"
5966                                 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5967                                 " pid=%d comm=%s\n",
5968                                 sk->sk_protocol, nlh->nlmsg_type,
5969                                 secclass_map[sclass - 1].name,
5970                                 task_pid_nr(current), current->comm);
5971                         if (enforcing_enabled() &&
5972                             !security_get_allow_unknown())
5973                                 return rc;
5974                         rc = 0;
5975                 } else if (rc == -ENOENT) {
5976                         /* -ENOENT is a missing socket/class mapping, ignore */
5977                         rc = 0;
5978                 } else {
5979                         return rc;
5980                 }
5981 
5982                 /* move to the next message after applying netlink padding */
5983                 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5984                 if (msg_len >= data_len)
5985                         return 0;
5986                 data_len -= msg_len;
5987                 data += msg_len;
5988         }
5989 
5990         return rc;
5991 }
5992 
5993 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5994 {
5995         isec->sclass = sclass;
5996         isec->sid = current_sid();
5997 }
5998 
5999 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6000                         u32 perms)
6001 {
6002         struct ipc_security_struct *isec;
6003         struct common_audit_data ad;
6004         u32 sid = current_sid();
6005 
6006         isec = selinux_ipc(ipc_perms);
6007 
6008         ad.type = LSM_AUDIT_DATA_IPC;
6009         ad.u.ipc_id = ipc_perms->key;
6010 
6011         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6012 }
6013 
6014 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6015 {
6016         struct msg_security_struct *msec;
6017 
6018         msec = selinux_msg_msg(msg);
6019         msec->sid = SECINITSID_UNLABELED;
6020 
6021         return 0;
6022 }
6023 
6024 /* message queue security operations */
6025 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6026 {
6027         struct ipc_security_struct *isec;
6028         struct common_audit_data ad;
6029         u32 sid = current_sid();
6030 
6031         isec = selinux_ipc(msq);
6032         ipc_init_security(isec, SECCLASS_MSGQ);
6033 
6034         ad.type = LSM_AUDIT_DATA_IPC;
6035         ad.u.ipc_id = msq->key;
6036 
6037         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6038                             MSGQ__CREATE, &ad);
6039 }
6040 
6041 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6042 {
6043         struct ipc_security_struct *isec;
6044         struct common_audit_data ad;
6045         u32 sid = current_sid();
6046 
6047         isec = selinux_ipc(msq);
6048 
6049         ad.type = LSM_AUDIT_DATA_IPC;
6050         ad.u.ipc_id = msq->key;
6051 
6052         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6053                             MSGQ__ASSOCIATE, &ad);
6054 }
6055 
6056 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6057 {
6058         u32 perms;
6059 
6060         switch (cmd) {
6061         case IPC_INFO:
6062         case MSG_INFO:
6063                 /* No specific object, just general system-wide information. */
6064                 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6065                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6066         case IPC_STAT:
6067         case MSG_STAT:
6068         case MSG_STAT_ANY:
6069                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6070                 break;
6071         case IPC_SET:
6072                 perms = MSGQ__SETATTR;
6073                 break;
6074         case IPC_RMID:
6075                 perms = MSGQ__DESTROY;
6076                 break;
6077         default:
6078                 return 0;
6079         }
6080 
6081         return ipc_has_perm(msq, perms);
6082 }
6083 
6084 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6085 {
6086         struct ipc_security_struct *isec;
6087         struct msg_security_struct *msec;
6088         struct common_audit_data ad;
6089         u32 sid = current_sid();
6090         int rc;
6091 
6092         isec = selinux_ipc(msq);
6093         msec = selinux_msg_msg(msg);
6094 
6095         /*
6096          * First time through, need to assign label to the message
6097          */
6098         if (msec->sid == SECINITSID_UNLABELED) {
6099                 /*
6100                  * Compute new sid based on current process and
6101                  * message queue this message will be stored in
6102                  */
6103                 rc = security_transition_sid(sid, isec->sid,
6104                                              SECCLASS_MSG, NULL, &msec->sid);
6105                 if (rc)
6106                         return rc;
6107         }
6108 
6109         ad.type = LSM_AUDIT_DATA_IPC;
6110         ad.u.ipc_id = msq->key;
6111 
6112         /* Can this process write to the queue? */
6113         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6114                           MSGQ__WRITE, &ad);
6115         if (!rc)
6116                 /* Can this process send the message */
6117                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6118                                   MSG__SEND, &ad);
6119         if (!rc)
6120                 /* Can the message be put in the queue? */
6121                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6122                                   MSGQ__ENQUEUE, &ad);
6123 
6124         return rc;
6125 }
6126 
6127 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6128                                     struct task_struct *target,
6129                                     long type, int mode)
6130 {
6131         struct ipc_security_struct *isec;
6132         struct msg_security_struct *msec;
6133         struct common_audit_data ad;
6134         u32 sid = task_sid_obj(target);
6135         int rc;
6136 
6137         isec = selinux_ipc(msq);
6138         msec = selinux_msg_msg(msg);
6139 
6140         ad.type = LSM_AUDIT_DATA_IPC;
6141         ad.u.ipc_id = msq->key;
6142 
6143         rc = avc_has_perm(sid, isec->sid,
6144                           SECCLASS_MSGQ, MSGQ__READ, &ad);
6145         if (!rc)
6146                 rc = avc_has_perm(sid, msec->sid,
6147                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
6148         return rc;
6149 }
6150 
6151 /* Shared Memory security operations */
6152 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6153 {
6154         struct ipc_security_struct *isec;
6155         struct common_audit_data ad;
6156         u32 sid = current_sid();
6157 
6158         isec = selinux_ipc(shp);
6159         ipc_init_security(isec, SECCLASS_SHM);
6160 
6161         ad.type = LSM_AUDIT_DATA_IPC;
6162         ad.u.ipc_id = shp->key;
6163 
6164         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6165                             SHM__CREATE, &ad);
6166 }
6167 
6168 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6169 {
6170         struct ipc_security_struct *isec;
6171         struct common_audit_data ad;
6172         u32 sid = current_sid();
6173 
6174         isec = selinux_ipc(shp);
6175 
6176         ad.type = LSM_AUDIT_DATA_IPC;
6177         ad.u.ipc_id = shp->key;
6178 
6179         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6180                             SHM__ASSOCIATE, &ad);
6181 }
6182 
6183 /* Note, at this point, shp is locked down */
6184 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6185 {
6186         u32 perms;
6187 
6188         switch (cmd) {
6189         case IPC_INFO:
6190         case SHM_INFO:
6191                 /* No specific object, just general system-wide information. */
6192                 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6193                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6194         case IPC_STAT:
6195         case SHM_STAT:
6196         case SHM_STAT_ANY:
6197                 perms = SHM__GETATTR | SHM__ASSOCIATE;
6198                 break;
6199         case IPC_SET:
6200                 perms = SHM__SETATTR;
6201                 break;
6202         case SHM_LOCK:
6203         case SHM_UNLOCK:
6204                 perms = SHM__LOCK;
6205                 break;
6206         case IPC_RMID:
6207                 perms = SHM__DESTROY;
6208                 break;
6209         default:
6210                 return 0;
6211         }
6212 
6213         return ipc_has_perm(shp, perms);
6214 }
6215 
6216 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6217                              char __user *shmaddr, int shmflg)
6218 {
6219         u32 perms;
6220 
6221         if (shmflg & SHM_RDONLY)
6222                 perms = SHM__READ;
6223         else
6224                 perms = SHM__READ | SHM__WRITE;
6225 
6226         return ipc_has_perm(shp, perms);
6227 }
6228 
6229 /* Semaphore security operations */
6230 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6231 {
6232         struct ipc_security_struct *isec;
6233         struct common_audit_data ad;
6234         u32 sid = current_sid();
6235 
6236         isec = selinux_ipc(sma);
6237         ipc_init_security(isec, SECCLASS_SEM);
6238 
6239         ad.type = LSM_AUDIT_DATA_IPC;
6240         ad.u.ipc_id = sma->key;
6241 
6242         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6243                             SEM__CREATE, &ad);
6244 }
6245 
6246 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6247 {
6248         struct ipc_security_struct *isec;
6249         struct common_audit_data ad;
6250         u32 sid = current_sid();
6251 
6252         isec = selinux_ipc(sma);
6253 
6254         ad.type = LSM_AUDIT_DATA_IPC;
6255         ad.u.ipc_id = sma->key;
6256 
6257         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6258                             SEM__ASSOCIATE, &ad);
6259 }
6260 
6261 /* Note, at this point, sma is locked down */
6262 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6263 {
6264         int err;
6265         u32 perms;
6266 
6267         switch (cmd) {
6268         case IPC_INFO:
6269         case SEM_INFO:
6270                 /* No specific object, just general system-wide information. */
6271                 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6272                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6273         case GETPID:
6274         case GETNCNT:
6275         case GETZCNT:
6276                 perms = SEM__GETATTR;
6277                 break;
6278         case GETVAL:
6279         case GETALL:
6280                 perms = SEM__READ;
6281                 break;
6282         case SETVAL:
6283         case SETALL:
6284                 perms = SEM__WRITE;
6285                 break;
6286         case IPC_RMID:
6287                 perms = SEM__DESTROY;
6288                 break;
6289         case IPC_SET:
6290                 perms = SEM__SETATTR;
6291                 break;
6292         case IPC_STAT:
6293         case SEM_STAT:
6294         case SEM_STAT_ANY:
6295                 perms = SEM__GETATTR | SEM__ASSOCIATE;
6296                 break;
6297         default:
6298                 return 0;
6299         }
6300 
6301         err = ipc_has_perm(sma, perms);
6302         return err;
6303 }
6304 
6305 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6306                              struct sembuf *sops, unsigned nsops, int alter)
6307 {
6308         u32 perms;
6309 
6310         if (alter)
6311                 perms = SEM__READ | SEM__WRITE;
6312         else
6313                 perms = SEM__READ;
6314 
6315         return ipc_has_perm(sma, perms);
6316 }
6317 
6318 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6319 {
6320         u32 av = 0;
6321 
6322         av = 0;
6323         if (flag & S_IRUGO)
6324                 av |= IPC__UNIX_READ;
6325         if (flag & S_IWUGO)
6326                 av |= IPC__UNIX_WRITE;
6327 
6328         if (av == 0)
6329                 return 0;
6330 
6331         return ipc_has_perm(ipcp, av);
6332 }
6333 
6334 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6335 {
6336         struct ipc_security_struct *isec = selinux_ipc(ipcp);
6337         *secid = isec->sid;
6338 }
6339 
6340 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6341 {
6342         if (inode)
6343                 inode_doinit_with_dentry(inode, dentry);
6344 }
6345 
6346 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6347                                char **value)
6348 {
6349         const struct task_security_struct *tsec;
6350         int error;
6351         u32 sid;
6352         u32 len;
6353 
6354         rcu_read_lock();
6355         tsec = selinux_cred(__task_cred(p));
6356         if (p != current) {
6357                 error = avc_has_perm(current_sid(), tsec->sid,
6358                                      SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6359                 if (error)
6360                         goto err_unlock;
6361         }
6362         switch (attr) {
6363         case LSM_ATTR_CURRENT:
6364                 sid = tsec->sid;
6365                 break;
6366         case LSM_ATTR_PREV:
6367                 sid = tsec->osid;
6368                 break;
6369         case LSM_ATTR_EXEC:
6370                 sid = tsec->exec_sid;
6371                 break;
6372         case LSM_ATTR_FSCREATE:
6373                 sid = tsec->create_sid;
6374                 break;
6375         case LSM_ATTR_KEYCREATE:
6376                 sid = tsec->keycreate_sid;
6377                 break;
6378         case LSM_ATTR_SOCKCREATE:
6379                 sid = tsec->sockcreate_sid;
6380                 break;
6381         default:
6382                 error = -EOPNOTSUPP;
6383                 goto err_unlock;
6384         }
6385         rcu_read_unlock();
6386 
6387         if (sid == SECSID_NULL) {
6388                 *value = NULL;
6389                 return 0;
6390         }
6391 
6392         error = security_sid_to_context(sid, value, &len);
6393         if (error)
6394                 return error;
6395         return len;
6396 
6397 err_unlock:
6398         rcu_read_unlock();
6399         return error;
6400 }
6401 
6402 static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6403 {
6404         struct task_security_struct *tsec;
6405         struct cred *new;
6406         u32 mysid = current_sid(), sid = 0, ptsid;
6407         int error;
6408         char *str = value;
6409 
6410         /*
6411          * Basic control over ability to set these attributes at all.
6412          */
6413         switch (attr) {
6414         case LSM_ATTR_EXEC:
6415                 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6416                                      PROCESS__SETEXEC, NULL);
6417                 break;
6418         case LSM_ATTR_FSCREATE:
6419                 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6420                                      PROCESS__SETFSCREATE, NULL);
6421                 break;
6422         case LSM_ATTR_KEYCREATE:
6423                 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6424                                      PROCESS__SETKEYCREATE, NULL);
6425                 break;
6426         case LSM_ATTR_SOCKCREATE:
6427                 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6428                                      PROCESS__SETSOCKCREATE, NULL);
6429                 break;
6430         case LSM_ATTR_CURRENT:
6431                 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6432                                      PROCESS__SETCURRENT, NULL);
6433                 break;
6434         default:
6435                 error = -EOPNOTSUPP;
6436                 break;
6437         }
6438         if (error)
6439                 return error;
6440 
6441         /* Obtain a SID for the context, if one was specified. */
6442         if (size && str[0] && str[0] != '\n') {
6443                 if (str[size-1] == '\n') {
6444                         str[size-1] = 0;
6445                         size--;
6446                 }
6447                 error = security_context_to_sid(value, size,
6448                                                 &sid, GFP_KERNEL);
6449                 if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6450                         if (!has_cap_mac_admin(true)) {
6451                                 struct audit_buffer *ab;
6452                                 size_t audit_size;
6453 
6454                                 /* We strip a nul only if it is at the end,
6455                                  * otherwise the context contains a nul and
6456                                  * we should audit that */
6457                                 if (str[size - 1] == '\0')
6458                                         audit_size = size - 1;
6459                                 else
6460                                         audit_size = size;
6461                                 ab = audit_log_start(audit_context(),
6462                                                      GFP_ATOMIC,
6463                                                      AUDIT_SELINUX_ERR);
6464                                 if (!ab)
6465                                         return error;
6466                                 audit_log_format(ab, "op=fscreate invalid_context=");
6467                                 audit_log_n_untrustedstring(ab, value,
6468                                                             audit_size);
6469                                 audit_log_end(ab);
6470 
6471                                 return error;
6472                         }
6473                         error = security_context_to_sid_force(value, size,
6474                                                         &sid);
6475                 }
6476                 if (error)
6477                         return error;
6478         }
6479 
6480         new = prepare_creds();
6481         if (!new)
6482                 return -ENOMEM;
6483 
6484         /* Permission checking based on the specified context is
6485            performed during the actual operation (execve,
6486            open/mkdir/...), when we know the full context of the
6487            operation.  See selinux_bprm_creds_for_exec for the execve
6488            checks and may_create for the file creation checks. The
6489            operation will then fail if the context is not permitted. */
6490         tsec = selinux_cred(new);
6491         if (attr == LSM_ATTR_EXEC) {
6492                 tsec->exec_sid = sid;
6493         } else if (attr == LSM_ATTR_FSCREATE) {
6494                 tsec->create_sid = sid;
6495         } else if (attr == LSM_ATTR_KEYCREATE) {
6496                 if (sid) {
6497                         error = avc_has_perm(mysid, sid,
6498                                              SECCLASS_KEY, KEY__CREATE, NULL);
6499                         if (error)
6500                                 goto abort_change;
6501                 }
6502                 tsec->keycreate_sid = sid;
6503         } else if (attr == LSM_ATTR_SOCKCREATE) {
6504                 tsec->sockcreate_sid = sid;
6505         } else if (attr == LSM_ATTR_CURRENT) {
6506                 error = -EINVAL;
6507                 if (sid == 0)
6508                         goto abort_change;
6509 
6510                 if (!current_is_single_threaded()) {
6511                         error = security_bounded_transition(tsec->sid, sid);
6512                         if (error)
6513                                 goto abort_change;
6514                 }
6515 
6516                 /* Check permissions for the transition. */
6517                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6518                                      PROCESS__DYNTRANSITION, NULL);
6519                 if (error)
6520                         goto abort_change;
6521 
6522                 /* Check for ptracing, and update the task SID if ok.
6523                    Otherwise, leave SID unchanged and fail. */
6524                 ptsid = ptrace_parent_sid();
6525                 if (ptsid != 0) {
6526                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6527                                              PROCESS__PTRACE, NULL);
6528                         if (error)
6529                                 goto abort_change;
6530                 }
6531 
6532                 tsec->sid = sid;
6533         } else {
6534                 error = -EINVAL;
6535                 goto abort_change;
6536         }
6537 
6538         commit_creds(new);
6539         return size;
6540 
6541 abort_change:
6542         abort_creds(new);
6543         return error;
6544 }
6545 
6546 /**
6547  * selinux_getselfattr - Get SELinux current task attributes
6548  * @attr: the requested attribute
6549  * @ctx: buffer to receive the result
6550  * @size: buffer size (input), buffer size used (output)
6551  * @flags: unused
6552  *
6553  * Fill the passed user space @ctx with the details of the requested
6554  * attribute.
6555  *
6556  * Returns the number of attributes on success, an error code otherwise.
6557  * There will only ever be one attribute.
6558  */
6559 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6560                                u32 *size, u32 flags)
6561 {
6562         int rc;
6563         char *val = NULL;
6564         int val_len;
6565 
6566         val_len = selinux_lsm_getattr(attr, current, &val);
6567         if (val_len < 0)
6568                 return val_len;
6569         rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6570         kfree(val);
6571         return (!rc ? 1 : rc);
6572 }
6573 
6574 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6575                                u32 size, u32 flags)
6576 {
6577         int rc;
6578 
6579         rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6580         if (rc > 0)
6581                 return 0;
6582         return rc;
6583 }
6584 
6585 static int selinux_getprocattr(struct task_struct *p,
6586                                const char *name, char **value)
6587 {
6588         unsigned int attr = lsm_name_to_attr(name);
6589         int rc;
6590 
6591         if (attr) {
6592                 rc = selinux_lsm_getattr(attr, p, value);
6593                 if (rc != -EOPNOTSUPP)
6594                         return rc;
6595         }
6596 
6597         return -EINVAL;
6598 }
6599 
6600 static int selinux_setprocattr(const char *name, void *value, size_t size)
6601 {
6602         int attr = lsm_name_to_attr(name);
6603 
6604         if (attr)
6605                 return selinux_lsm_setattr(attr, value, size);
6606         return -EINVAL;
6607 }
6608 
6609 static int selinux_ismaclabel(const char *name)
6610 {
6611         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6612 }
6613 
6614 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6615 {
6616         return security_sid_to_context(secid,
6617                                        secdata, seclen);
6618 }
6619 
6620 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6621 {
6622         return security_context_to_sid(secdata, seclen,
6623                                        secid, GFP_KERNEL);
6624 }
6625 
6626 static void selinux_release_secctx(char *secdata, u32 seclen)
6627 {
6628         kfree(secdata);
6629 }
6630 
6631 static void selinux_inode_invalidate_secctx(struct inode *inode)
6632 {
6633         struct inode_security_struct *isec = selinux_inode(inode);
6634 
6635         spin_lock(&isec->lock);
6636         isec->initialized = LABEL_INVALID;
6637         spin_unlock(&isec->lock);
6638 }
6639 
6640 /*
6641  *      called with inode->i_mutex locked
6642  */
6643 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6644 {
6645         int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6646                                            ctx, ctxlen, 0);
6647         /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6648         return rc == -EOPNOTSUPP ? 0 : rc;
6649 }
6650 
6651 /*
6652  *      called with inode->i_mutex locked
6653  */
6654 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6655 {
6656         return __vfs_setxattr_locked(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6657                                      ctx, ctxlen, 0, NULL);
6658 }
6659 
6660 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6661 {
6662         int len = 0;
6663         len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6664                                         XATTR_SELINUX_SUFFIX, ctx, true);
6665         if (len < 0)
6666                 return len;
6667         *ctxlen = len;
6668         return 0;
6669 }
6670 #ifdef CONFIG_KEYS
6671 
6672 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6673                              unsigned long flags)
6674 {
6675         const struct task_security_struct *tsec;
6676         struct key_security_struct *ksec;
6677 
6678         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6679         if (!ksec)
6680                 return -ENOMEM;
6681 
6682         tsec = selinux_cred(cred);
6683         if (tsec->keycreate_sid)
6684                 ksec->sid = tsec->keycreate_sid;
6685         else
6686                 ksec->sid = tsec->sid;
6687 
6688         k->security = ksec;
6689         return 0;
6690 }
6691 
6692 static void selinux_key_free(struct key *k)
6693 {
6694         struct key_security_struct *ksec = k->security;
6695 
6696         k->security = NULL;
6697         kfree(ksec);
6698 }
6699 
6700 static int selinux_key_permission(key_ref_t key_ref,
6701                                   const struct cred *cred,
6702                                   enum key_need_perm need_perm)
6703 {
6704         struct key *key;
6705         struct key_security_struct *ksec;
6706         u32 perm, sid;
6707 
6708         switch (need_perm) {
6709         case KEY_NEED_VIEW:
6710                 perm = KEY__VIEW;
6711                 break;
6712         case KEY_NEED_READ:
6713                 perm = KEY__READ;
6714                 break;
6715         case KEY_NEED_WRITE:
6716                 perm = KEY__WRITE;
6717                 break;
6718         case KEY_NEED_SEARCH:
6719                 perm = KEY__SEARCH;
6720                 break;
6721         case KEY_NEED_LINK:
6722                 perm = KEY__LINK;
6723                 break;
6724         case KEY_NEED_SETATTR:
6725                 perm = KEY__SETATTR;
6726                 break;
6727         case KEY_NEED_UNLINK:
6728         case KEY_SYSADMIN_OVERRIDE:
6729         case KEY_AUTHTOKEN_OVERRIDE:
6730         case KEY_DEFER_PERM_CHECK:
6731                 return 0;
6732         default:
6733                 WARN_ON(1);
6734                 return -EPERM;
6735 
6736         }
6737 
6738         sid = cred_sid(cred);
6739         key = key_ref_to_ptr(key_ref);
6740         ksec = key->security;
6741 
6742         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6743 }
6744 
6745 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6746 {
6747         struct key_security_struct *ksec = key->security;
6748         char *context = NULL;
6749         unsigned len;
6750         int rc;
6751 
6752         rc = security_sid_to_context(ksec->sid,
6753                                      &context, &len);
6754         if (!rc)
6755                 rc = len;
6756         *_buffer = context;
6757         return rc;
6758 }
6759 
6760 #ifdef CONFIG_KEY_NOTIFICATIONS
6761 static int selinux_watch_key(struct key *key)
6762 {
6763         struct key_security_struct *ksec = key->security;
6764         u32 sid = current_sid();
6765 
6766         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6767 }
6768 #endif
6769 #endif
6770 
6771 #ifdef CONFIG_SECURITY_INFINIBAND
6772 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6773 {
6774         struct common_audit_data ad;
6775         int err;
6776         u32 sid = 0;
6777         struct ib_security_struct *sec = ib_sec;
6778         struct lsm_ibpkey_audit ibpkey;
6779 
6780         err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6781         if (err)
6782                 return err;
6783 
6784         ad.type = LSM_AUDIT_DATA_IBPKEY;
6785         ibpkey.subnet_prefix = subnet_prefix;
6786         ibpkey.pkey = pkey_val;
6787         ad.u.ibpkey = &ibpkey;
6788         return avc_has_perm(sec->sid, sid,
6789                             SECCLASS_INFINIBAND_PKEY,
6790                             INFINIBAND_PKEY__ACCESS, &ad);
6791 }
6792 
6793 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6794                                             u8 port_num)
6795 {
6796         struct common_audit_data ad;
6797         int err;
6798         u32 sid = 0;
6799         struct ib_security_struct *sec = ib_sec;
6800         struct lsm_ibendport_audit ibendport;
6801 
6802         err = security_ib_endport_sid(dev_name, port_num,
6803                                       &sid);
6804 
6805         if (err)
6806                 return err;
6807 
6808         ad.type = LSM_AUDIT_DATA_IBENDPORT;
6809         ibendport.dev_name = dev_name;
6810         ibendport.port = port_num;
6811         ad.u.ibendport = &ibendport;
6812         return avc_has_perm(sec->sid, sid,
6813                             SECCLASS_INFINIBAND_ENDPORT,
6814                             INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6815 }
6816 
6817 static int selinux_ib_alloc_security(void **ib_sec)
6818 {
6819         struct ib_security_struct *sec;
6820 
6821         sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6822         if (!sec)
6823                 return -ENOMEM;
6824         sec->sid = current_sid();
6825 
6826         *ib_sec = sec;
6827         return 0;
6828 }
6829 
6830 static void selinux_ib_free_security(void *ib_sec)
6831 {
6832         kfree(ib_sec);
6833 }
6834 #endif
6835 
6836 #ifdef CONFIG_BPF_SYSCALL
6837 static int selinux_bpf(int cmd, union bpf_attr *attr,
6838                                      unsigned int size)
6839 {
6840         u32 sid = current_sid();
6841         int ret;
6842 
6843         switch (cmd) {
6844         case BPF_MAP_CREATE:
6845                 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6846                                    NULL);
6847                 break;
6848         case BPF_PROG_LOAD:
6849                 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6850                                    NULL);
6851                 break;
6852         default:
6853                 ret = 0;
6854                 break;
6855         }
6856 
6857         return ret;
6858 }
6859 
6860 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6861 {
6862         u32 av = 0;
6863 
6864         if (fmode & FMODE_READ)
6865                 av |= BPF__MAP_READ;
6866         if (fmode & FMODE_WRITE)
6867                 av |= BPF__MAP_WRITE;
6868         return av;
6869 }
6870 
6871 /* This function will check the file pass through unix socket or binder to see
6872  * if it is a bpf related object. And apply corresponding checks on the bpf
6873  * object based on the type. The bpf maps and programs, not like other files and
6874  * socket, are using a shared anonymous inode inside the kernel as their inode.
6875  * So checking that inode cannot identify if the process have privilege to
6876  * access the bpf object and that's why we have to add this additional check in
6877  * selinux_file_receive and selinux_binder_transfer_files.
6878  */
6879 static int bpf_fd_pass(const struct file *file, u32 sid)
6880 {
6881         struct bpf_security_struct *bpfsec;
6882         struct bpf_prog *prog;
6883         struct bpf_map *map;
6884         int ret;
6885 
6886         if (file->f_op == &bpf_map_fops) {
6887                 map = file->private_data;
6888                 bpfsec = map->security;
6889                 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6890                                    bpf_map_fmode_to_av(file->f_mode), NULL);
6891                 if (ret)
6892                         return ret;
6893         } else if (file->f_op == &bpf_prog_fops) {
6894                 prog = file->private_data;
6895                 bpfsec = prog->aux->security;
6896                 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6897                                    BPF__PROG_RUN, NULL);
6898                 if (ret)
6899                         return ret;
6900         }
6901         return 0;
6902 }
6903 
6904 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6905 {
6906         u32 sid = current_sid();
6907         struct bpf_security_struct *bpfsec;
6908 
6909         bpfsec = map->security;
6910         return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6911                             bpf_map_fmode_to_av(fmode), NULL);
6912 }
6913 
6914 static int selinux_bpf_prog(struct bpf_prog *prog)
6915 {
6916         u32 sid = current_sid();
6917         struct bpf_security_struct *bpfsec;
6918 
6919         bpfsec = prog->aux->security;
6920         return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6921                             BPF__PROG_RUN, NULL);
6922 }
6923 
6924 static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6925                                   struct bpf_token *token)
6926 {
6927         struct bpf_security_struct *bpfsec;
6928 
6929         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6930         if (!bpfsec)
6931                 return -ENOMEM;
6932 
6933         bpfsec->sid = current_sid();
6934         map->security = bpfsec;
6935 
6936         return 0;
6937 }
6938 
6939 static void selinux_bpf_map_free(struct bpf_map *map)
6940 {
6941         struct bpf_security_struct *bpfsec = map->security;
6942 
6943         map->security = NULL;
6944         kfree(bpfsec);
6945 }
6946 
6947 static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6948                                  struct bpf_token *token)
6949 {
6950         struct bpf_security_struct *bpfsec;
6951 
6952         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6953         if (!bpfsec)
6954                 return -ENOMEM;
6955 
6956         bpfsec->sid = current_sid();
6957         prog->aux->security = bpfsec;
6958 
6959         return 0;
6960 }
6961 
6962 static void selinux_bpf_prog_free(struct bpf_prog *prog)
6963 {
6964         struct bpf_security_struct *bpfsec = prog->aux->security;
6965 
6966         prog->aux->security = NULL;
6967         kfree(bpfsec);
6968 }
6969 
6970 static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6971                                     struct path *path)
6972 {
6973         struct bpf_security_struct *bpfsec;
6974 
6975         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6976         if (!bpfsec)
6977                 return -ENOMEM;
6978 
6979         bpfsec->sid = current_sid();
6980         token->security = bpfsec;
6981 
6982         return 0;
6983 }
6984 
6985 static void selinux_bpf_token_free(struct bpf_token *token)
6986 {
6987         struct bpf_security_struct *bpfsec = token->security;
6988 
6989         token->security = NULL;
6990         kfree(bpfsec);
6991 }
6992 #endif
6993 
6994 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
6995         .lbs_cred = sizeof(struct task_security_struct),
6996         .lbs_file = sizeof(struct file_security_struct),
6997         .lbs_inode = sizeof(struct inode_security_struct),
6998         .lbs_ipc = sizeof(struct ipc_security_struct),
6999         .lbs_msg_msg = sizeof(struct msg_security_struct),
7000         .lbs_sock = sizeof(struct sk_security_struct),
7001         .lbs_superblock = sizeof(struct superblock_security_struct),
7002         .lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7003 };
7004 
7005 #ifdef CONFIG_PERF_EVENTS
7006 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7007 {
7008         u32 requested, sid = current_sid();
7009 
7010         if (type == PERF_SECURITY_OPEN)
7011                 requested = PERF_EVENT__OPEN;
7012         else if (type == PERF_SECURITY_CPU)
7013                 requested = PERF_EVENT__CPU;
7014         else if (type == PERF_SECURITY_KERNEL)
7015                 requested = PERF_EVENT__KERNEL;
7016         else if (type == PERF_SECURITY_TRACEPOINT)
7017                 requested = PERF_EVENT__TRACEPOINT;
7018         else
7019                 return -EINVAL;
7020 
7021         return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7022                             requested, NULL);
7023 }
7024 
7025 static int selinux_perf_event_alloc(struct perf_event *event)
7026 {
7027         struct perf_event_security_struct *perfsec;
7028 
7029         perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7030         if (!perfsec)
7031                 return -ENOMEM;
7032 
7033         perfsec->sid = current_sid();
7034         event->security = perfsec;
7035 
7036         return 0;
7037 }
7038 
7039 static void selinux_perf_event_free(struct perf_event *event)
7040 {
7041         struct perf_event_security_struct *perfsec = event->security;
7042 
7043         event->security = NULL;
7044         kfree(perfsec);
7045 }
7046 
7047 static int selinux_perf_event_read(struct perf_event *event)
7048 {
7049         struct perf_event_security_struct *perfsec = event->security;
7050         u32 sid = current_sid();
7051 
7052         return avc_has_perm(sid, perfsec->sid,
7053                             SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7054 }
7055 
7056 static int selinux_perf_event_write(struct perf_event *event)
7057 {
7058         struct perf_event_security_struct *perfsec = event->security;
7059         u32 sid = current_sid();
7060 
7061         return avc_has_perm(sid, perfsec->sid,
7062                             SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7063 }
7064 #endif
7065 
7066 #ifdef CONFIG_IO_URING
7067 /**
7068  * selinux_uring_override_creds - check the requested cred override
7069  * @new: the target creds
7070  *
7071  * Check to see if the current task is allowed to override it's credentials
7072  * to service an io_uring operation.
7073  */
7074 static int selinux_uring_override_creds(const struct cred *new)
7075 {
7076         return avc_has_perm(current_sid(), cred_sid(new),
7077                             SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7078 }
7079 
7080 /**
7081  * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7082  *
7083  * Check to see if the current task is allowed to create a new io_uring
7084  * kernel polling thread.
7085  */
7086 static int selinux_uring_sqpoll(void)
7087 {
7088         u32 sid = current_sid();
7089 
7090         return avc_has_perm(sid, sid,
7091                             SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7092 }
7093 
7094 /**
7095  * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7096  * @ioucmd: the io_uring command structure
7097  *
7098  * Check to see if the current domain is allowed to execute an
7099  * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7100  *
7101  */
7102 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7103 {
7104         struct file *file = ioucmd->file;
7105         struct inode *inode = file_inode(file);
7106         struct inode_security_struct *isec = selinux_inode(inode);
7107         struct common_audit_data ad;
7108 
7109         ad.type = LSM_AUDIT_DATA_FILE;
7110         ad.u.file = file;
7111 
7112         return avc_has_perm(current_sid(), isec->sid,
7113                             SECCLASS_IO_URING, IO_URING__CMD, &ad);
7114 }
7115 #endif /* CONFIG_IO_URING */
7116 
7117 static const struct lsm_id selinux_lsmid = {
7118         .name = "selinux",
7119         .id = LSM_ID_SELINUX,
7120 };
7121 
7122 /*
7123  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7124  * 1. any hooks that don't belong to (2.) or (3.) below,
7125  * 2. hooks that both access structures allocated by other hooks, and allocate
7126  *    structures that can be later accessed by other hooks (mostly "cloning"
7127  *    hooks),
7128  * 3. hooks that only allocate structures that can be later accessed by other
7129  *    hooks ("allocating" hooks).
7130  *
7131  * Please follow block comment delimiters in the list to keep this order.
7132  */
7133 static struct security_hook_list selinux_hooks[] __ro_after_init = {
7134         LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7135         LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7136         LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7137         LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7138 
7139         LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7140         LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7141         LSM_HOOK_INIT(capget, selinux_capget),
7142         LSM_HOOK_INIT(capset, selinux_capset),
7143         LSM_HOOK_INIT(capable, selinux_capable),
7144         LSM_HOOK_INIT(quotactl, selinux_quotactl),
7145         LSM_HOOK_INIT(quota_on, selinux_quota_on),
7146         LSM_HOOK_INIT(syslog, selinux_syslog),
7147         LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7148 
7149         LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7150 
7151         LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7152         LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7153         LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7154 
7155         LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7156         LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7157         LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7158         LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7159         LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7160         LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7161         LSM_HOOK_INIT(sb_mount, selinux_mount),
7162         LSM_HOOK_INIT(sb_umount, selinux_umount),
7163         LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7164         LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7165 
7166         LSM_HOOK_INIT(move_mount, selinux_move_mount),
7167 
7168         LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7169         LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7170 
7171         LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7172         LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7173         LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7174         LSM_HOOK_INIT(inode_create, selinux_inode_create),
7175         LSM_HOOK_INIT(inode_link, selinux_inode_link),
7176         LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7177         LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7178         LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7179         LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7180         LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7181         LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7182         LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7183         LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7184         LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7185         LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7186         LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7187         LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap),
7188         LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7189         LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7190         LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7191         LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7192         LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7193         LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7194         LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7195         LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7196         LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7197         LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7198         LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7199         LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7200         LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7201         LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7202         LSM_HOOK_INIT(path_notify, selinux_path_notify),
7203 
7204         LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7205 
7206         LSM_HOOK_INIT(file_permission, selinux_file_permission),
7207         LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7208         LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7209         LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7210         LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7211         LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7212         LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7213         LSM_HOOK_INIT(file_lock, selinux_file_lock),
7214         LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7215         LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7216         LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7217         LSM_HOOK_INIT(file_receive, selinux_file_receive),
7218 
7219         LSM_HOOK_INIT(file_open, selinux_file_open),
7220 
7221         LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7222         LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7223         LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7224         LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7225         LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7226         LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7227         LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7228         LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7229         LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7230         LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7231         LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7232         LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7233         LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7234         LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7235         LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7236         LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7237         LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7238         LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7239         LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7240         LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7241         LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7242         LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7243         LSM_HOOK_INIT(task_kill, selinux_task_kill),
7244         LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7245         LSM_HOOK_INIT(userns_create, selinux_userns_create),
7246 
7247         LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7248         LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7249 
7250         LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7251         LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7252         LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7253         LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7254 
7255         LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7256         LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7257         LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7258 
7259         LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7260         LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7261         LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7262 
7263         LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7264 
7265         LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7266         LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7267         LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7268         LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7269 
7270         LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7271         LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7272         LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7273         LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7274         LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7275         LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7276 
7277         LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7278         LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7279 
7280         LSM_HOOK_INIT(socket_create, selinux_socket_create),
7281         LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7282         LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7283         LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7284         LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7285         LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7286         LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7287         LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7288         LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7289         LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7290         LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7291         LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7292         LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7293         LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7294         LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7295         LSM_HOOK_INIT(socket_getpeersec_stream,
7296                         selinux_socket_getpeersec_stream),
7297         LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7298         LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7299         LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7300         LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7301         LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7302         LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7303         LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7304         LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7305         LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7306         LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7307         LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7308         LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7309         LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7310         LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7311         LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7312         LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7313         LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7314         LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7315         LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7316         LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7317         LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7318         LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7319 #ifdef CONFIG_SECURITY_INFINIBAND
7320         LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7321         LSM_HOOK_INIT(ib_endport_manage_subnet,
7322                       selinux_ib_endport_manage_subnet),
7323         LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7324 #endif
7325 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7326         LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7327         LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7328         LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7329         LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7330         LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7331         LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7332                         selinux_xfrm_state_pol_flow_match),
7333         LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7334 #endif
7335 
7336 #ifdef CONFIG_KEYS
7337         LSM_HOOK_INIT(key_free, selinux_key_free),
7338         LSM_HOOK_INIT(key_permission, selinux_key_permission),
7339         LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7340 #ifdef CONFIG_KEY_NOTIFICATIONS
7341         LSM_HOOK_INIT(watch_key, selinux_watch_key),
7342 #endif
7343 #endif
7344 
7345 #ifdef CONFIG_AUDIT
7346         LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7347         LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7348         LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7349 #endif
7350 
7351 #ifdef CONFIG_BPF_SYSCALL
7352         LSM_HOOK_INIT(bpf, selinux_bpf),
7353         LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7354         LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7355         LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7356         LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7357         LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7358 #endif
7359 
7360 #ifdef CONFIG_PERF_EVENTS
7361         LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7362         LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7363         LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7364         LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7365 #endif
7366 
7367 #ifdef CONFIG_IO_URING
7368         LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7369         LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7370         LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7371 #endif
7372 
7373         /*
7374          * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7375          */
7376         LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7377         LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7378         LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7379         LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7380 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7381         LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7382 #endif
7383 
7384         /*
7385          * PUT "ALLOCATING" HOOKS HERE
7386          */
7387         LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7388         LSM_HOOK_INIT(msg_queue_alloc_security,
7389                       selinux_msg_queue_alloc_security),
7390         LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7391         LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7392         LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7393         LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7394         LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7395         LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7396         LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7397         LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7398 #ifdef CONFIG_SECURITY_INFINIBAND
7399         LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7400 #endif
7401 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7402         LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7403         LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7404         LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7405                       selinux_xfrm_state_alloc_acquire),
7406 #endif
7407 #ifdef CONFIG_KEYS
7408         LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7409 #endif
7410 #ifdef CONFIG_AUDIT
7411         LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7412 #endif
7413 #ifdef CONFIG_BPF_SYSCALL
7414         LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7415         LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7416         LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7417 #endif
7418 #ifdef CONFIG_PERF_EVENTS
7419         LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7420 #endif
7421 };
7422 
7423 static __init int selinux_init(void)
7424 {
7425         pr_info("SELinux:  Initializing.\n");
7426 
7427         memset(&selinux_state, 0, sizeof(selinux_state));
7428         enforcing_set(selinux_enforcing_boot);
7429         selinux_avc_init();
7430         mutex_init(&selinux_state.status_lock);
7431         mutex_init(&selinux_state.policy_mutex);
7432 
7433         /* Set the security state for the initial task. */
7434         cred_init_security();
7435 
7436         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7437         if (!default_noexec)
7438                 pr_notice("SELinux:  virtual memory is executable by default\n");
7439 
7440         avc_init();
7441 
7442         avtab_cache_init();
7443 
7444         ebitmap_cache_init();
7445 
7446         hashtab_cache_init();
7447 
7448         security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7449                            &selinux_lsmid);
7450 
7451         if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7452                 panic("SELinux: Unable to register AVC netcache callback\n");
7453 
7454         if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7455                 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7456 
7457         if (selinux_enforcing_boot)
7458                 pr_debug("SELinux:  Starting in enforcing mode\n");
7459         else
7460                 pr_debug("SELinux:  Starting in permissive mode\n");
7461 
7462         fs_validate_description("selinux", selinux_fs_parameters);
7463 
7464         return 0;
7465 }
7466 
7467 static void delayed_superblock_init(struct super_block *sb, void *unused)
7468 {
7469         selinux_set_mnt_opts(sb, NULL, 0, NULL);
7470 }
7471 
7472 void selinux_complete_init(void)
7473 {
7474         pr_debug("SELinux:  Completing initialization.\n");
7475 
7476         /* Set up any superblocks initialized prior to the policy load. */
7477         pr_debug("SELinux:  Setting up existing superblocks.\n");
7478         iterate_supers(delayed_superblock_init, NULL);
7479 }
7480 
7481 /* SELinux requires early initialization in order to label
7482    all processes and objects when they are created. */
7483 DEFINE_LSM(selinux) = {
7484         .name = "selinux",
7485         .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7486         .enabled = &selinux_enabled_boot,
7487         .blobs = &selinux_blob_sizes,
7488         .init = selinux_init,
7489 };
7490 
7491 #if defined(CONFIG_NETFILTER)
7492 static const struct nf_hook_ops selinux_nf_ops[] = {
7493         {
7494                 .hook =         selinux_ip_postroute,
7495                 .pf =           NFPROTO_IPV4,
7496                 .hooknum =      NF_INET_POST_ROUTING,
7497                 .priority =     NF_IP_PRI_SELINUX_LAST,
7498         },
7499         {
7500                 .hook =         selinux_ip_forward,
7501                 .pf =           NFPROTO_IPV4,
7502                 .hooknum =      NF_INET_FORWARD,
7503                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7504         },
7505         {
7506                 .hook =         selinux_ip_output,
7507                 .pf =           NFPROTO_IPV4,
7508                 .hooknum =      NF_INET_LOCAL_OUT,
7509                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7510         },
7511 #if IS_ENABLED(CONFIG_IPV6)
7512         {
7513                 .hook =         selinux_ip_postroute,
7514                 .pf =           NFPROTO_IPV6,
7515                 .hooknum =      NF_INET_POST_ROUTING,
7516                 .priority =     NF_IP6_PRI_SELINUX_LAST,
7517         },
7518         {
7519                 .hook =         selinux_ip_forward,
7520                 .pf =           NFPROTO_IPV6,
7521                 .hooknum =      NF_INET_FORWARD,
7522                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7523         },
7524         {
7525                 .hook =         selinux_ip_output,
7526                 .pf =           NFPROTO_IPV6,
7527                 .hooknum =      NF_INET_LOCAL_OUT,
7528                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7529         },
7530 #endif  /* IPV6 */
7531 };
7532 
7533 static int __net_init selinux_nf_register(struct net *net)
7534 {
7535         return nf_register_net_hooks(net, selinux_nf_ops,
7536                                      ARRAY_SIZE(selinux_nf_ops));
7537 }
7538 
7539 static void __net_exit selinux_nf_unregister(struct net *net)
7540 {
7541         nf_unregister_net_hooks(net, selinux_nf_ops,
7542                                 ARRAY_SIZE(selinux_nf_ops));
7543 }
7544 
7545 static struct pernet_operations selinux_net_ops = {
7546         .init = selinux_nf_register,
7547         .exit = selinux_nf_unregister,
7548 };
7549 
7550 static int __init selinux_nf_ip_init(void)
7551 {
7552         int err;
7553 
7554         if (!selinux_enabled_boot)
7555                 return 0;
7556 
7557         pr_debug("SELinux:  Registering netfilter hooks\n");
7558 
7559         err = register_pernet_subsys(&selinux_net_ops);
7560         if (err)
7561                 panic("SELinux: register_pernet_subsys: error %d\n", err);
7562 
7563         return 0;
7564 }
7565 __initcall(selinux_nf_ip_init);
7566 #endif /* CONFIG_NETFILTER */
7567 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php