~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/sound/core/memalloc.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  4  *                   Takashi Iwai <tiwai@suse.de>
  5  * 
  6  *  Generic memory allocators
  7  */
  8 
  9 #include <linux/slab.h>
 10 #include <linux/mm.h>
 11 #include <linux/dma-mapping.h>
 12 #include <linux/dma-map-ops.h>
 13 #include <linux/genalloc.h>
 14 #include <linux/highmem.h>
 15 #include <linux/vmalloc.h>
 16 #ifdef CONFIG_X86
 17 #include <asm/set_memory.h>
 18 #endif
 19 #include <sound/memalloc.h>
 20 #include "memalloc_local.h"
 21 
 22 #define DEFAULT_GFP \
 23         (GFP_KERNEL | \
 24          __GFP_RETRY_MAYFAIL | /* don't trigger OOM-killer */ \
 25          __GFP_NOWARN)   /* no stack trace print - this call is non-critical */
 26 
 27 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
 28 
 29 #ifdef CONFIG_SND_DMA_SGBUF
 30 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size);
 31 #endif
 32 
 33 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
 34 {
 35         const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
 36 
 37         if (WARN_ON_ONCE(!ops || !ops->alloc))
 38                 return NULL;
 39         return ops->alloc(dmab, size);
 40 }
 41 
 42 /**
 43  * snd_dma_alloc_dir_pages - allocate the buffer area according to the given
 44  *      type and direction
 45  * @type: the DMA buffer type
 46  * @device: the device pointer
 47  * @dir: DMA direction
 48  * @size: the buffer size to allocate
 49  * @dmab: buffer allocation record to store the allocated data
 50  *
 51  * Calls the memory-allocator function for the corresponding
 52  * buffer type.
 53  *
 54  * Return: Zero if the buffer with the given size is allocated successfully,
 55  * otherwise a negative value on error.
 56  */
 57 int snd_dma_alloc_dir_pages(int type, struct device *device,
 58                             enum dma_data_direction dir, size_t size,
 59                             struct snd_dma_buffer *dmab)
 60 {
 61         if (WARN_ON(!size))
 62                 return -ENXIO;
 63         if (WARN_ON(!dmab))
 64                 return -ENXIO;
 65 
 66         size = PAGE_ALIGN(size);
 67         dmab->dev.type = type;
 68         dmab->dev.dev = device;
 69         dmab->dev.dir = dir;
 70         dmab->bytes = 0;
 71         dmab->addr = 0;
 72         dmab->private_data = NULL;
 73         dmab->area = __snd_dma_alloc_pages(dmab, size);
 74         if (!dmab->area)
 75                 return -ENOMEM;
 76         dmab->bytes = size;
 77         return 0;
 78 }
 79 EXPORT_SYMBOL(snd_dma_alloc_dir_pages);
 80 
 81 /**
 82  * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
 83  * @type: the DMA buffer type
 84  * @device: the device pointer
 85  * @size: the buffer size to allocate
 86  * @dmab: buffer allocation record to store the allocated data
 87  *
 88  * Calls the memory-allocator function for the corresponding
 89  * buffer type.  When no space is left, this function reduces the size and
 90  * tries to allocate again.  The size actually allocated is stored in
 91  * res_size argument.
 92  *
 93  * Return: Zero if the buffer with the given size is allocated successfully,
 94  * otherwise a negative value on error.
 95  */
 96 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
 97                                  struct snd_dma_buffer *dmab)
 98 {
 99         int err;
100 
101         while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
102                 if (err != -ENOMEM)
103                         return err;
104                 if (size <= PAGE_SIZE)
105                         return -ENOMEM;
106                 size >>= 1;
107                 size = PAGE_SIZE << get_order(size);
108         }
109         if (! dmab->area)
110                 return -ENOMEM;
111         return 0;
112 }
113 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
114 
115 /**
116  * snd_dma_free_pages - release the allocated buffer
117  * @dmab: the buffer allocation record to release
118  *
119  * Releases the allocated buffer via snd_dma_alloc_pages().
120  */
121 void snd_dma_free_pages(struct snd_dma_buffer *dmab)
122 {
123         const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
124 
125         if (ops && ops->free)
126                 ops->free(dmab);
127 }
128 EXPORT_SYMBOL(snd_dma_free_pages);
129 
130 /* called by devres */
131 static void __snd_release_pages(struct device *dev, void *res)
132 {
133         snd_dma_free_pages(res);
134 }
135 
136 /**
137  * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres
138  * @dev: the device pointer
139  * @type: the DMA buffer type
140  * @dir: DMA direction
141  * @size: the buffer size to allocate
142  *
143  * Allocate buffer pages depending on the given type and manage using devres.
144  * The pages will be released automatically at the device removal.
145  *
146  * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
147  * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
148  * SNDRV_DMA_TYPE_VMALLOC type.
149  *
150  * Return: the snd_dma_buffer object at success, or NULL if failed
151  */
152 struct snd_dma_buffer *
153 snd_devm_alloc_dir_pages(struct device *dev, int type,
154                          enum dma_data_direction dir, size_t size)
155 {
156         struct snd_dma_buffer *dmab;
157         int err;
158 
159         if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
160                     type == SNDRV_DMA_TYPE_VMALLOC))
161                 return NULL;
162 
163         dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
164         if (!dmab)
165                 return NULL;
166 
167         err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab);
168         if (err < 0) {
169                 devres_free(dmab);
170                 return NULL;
171         }
172 
173         devres_add(dev, dmab);
174         return dmab;
175 }
176 EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages);
177 
178 /**
179  * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
180  * @dmab: buffer allocation information
181  * @area: VM area information
182  *
183  * Return: zero if successful, or a negative error code
184  */
185 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
186                         struct vm_area_struct *area)
187 {
188         const struct snd_malloc_ops *ops;
189 
190         if (!dmab)
191                 return -ENOENT;
192         ops = snd_dma_get_ops(dmab);
193         if (ops && ops->mmap)
194                 return ops->mmap(dmab, area);
195         else
196                 return -ENOENT;
197 }
198 EXPORT_SYMBOL(snd_dma_buffer_mmap);
199 
200 #ifdef CONFIG_HAS_DMA
201 /**
202  * snd_dma_buffer_sync - sync DMA buffer between CPU and device
203  * @dmab: buffer allocation information
204  * @mode: sync mode
205  */
206 void snd_dma_buffer_sync(struct snd_dma_buffer *dmab,
207                          enum snd_dma_sync_mode mode)
208 {
209         const struct snd_malloc_ops *ops;
210 
211         if (!dmab || !dmab->dev.need_sync)
212                 return;
213         ops = snd_dma_get_ops(dmab);
214         if (ops && ops->sync)
215                 ops->sync(dmab, mode);
216 }
217 EXPORT_SYMBOL_GPL(snd_dma_buffer_sync);
218 #endif /* CONFIG_HAS_DMA */
219 
220 /**
221  * snd_sgbuf_get_addr - return the physical address at the corresponding offset
222  * @dmab: buffer allocation information
223  * @offset: offset in the ring buffer
224  *
225  * Return: the physical address
226  */
227 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
228 {
229         const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
230 
231         if (ops && ops->get_addr)
232                 return ops->get_addr(dmab, offset);
233         else
234                 return dmab->addr + offset;
235 }
236 EXPORT_SYMBOL(snd_sgbuf_get_addr);
237 
238 /**
239  * snd_sgbuf_get_page - return the physical page at the corresponding offset
240  * @dmab: buffer allocation information
241  * @offset: offset in the ring buffer
242  *
243  * Return: the page pointer
244  */
245 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
246 {
247         const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
248 
249         if (ops && ops->get_page)
250                 return ops->get_page(dmab, offset);
251         else
252                 return virt_to_page(dmab->area + offset);
253 }
254 EXPORT_SYMBOL(snd_sgbuf_get_page);
255 
256 /**
257  * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
258  *      on sg-buffer
259  * @dmab: buffer allocation information
260  * @ofs: offset in the ring buffer
261  * @size: the requested size
262  *
263  * Return: the chunk size
264  */
265 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
266                                       unsigned int ofs, unsigned int size)
267 {
268         const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
269 
270         if (ops && ops->get_chunk_size)
271                 return ops->get_chunk_size(dmab, ofs, size);
272         else
273                 return size;
274 }
275 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
276 
277 /*
278  * Continuous pages allocator
279  */
280 static void *do_alloc_pages(struct device *dev, size_t size, dma_addr_t *addr,
281                             bool wc)
282 {
283         void *p;
284         gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
285 
286  again:
287         p = alloc_pages_exact(size, gfp);
288         if (!p)
289                 return NULL;
290         *addr = page_to_phys(virt_to_page(p));
291         if (!dev)
292                 return p;
293         if ((*addr + size - 1) & ~dev->coherent_dma_mask) {
294                 if (IS_ENABLED(CONFIG_ZONE_DMA32) && !(gfp & GFP_DMA32)) {
295                         gfp |= GFP_DMA32;
296                         goto again;
297                 }
298                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
299                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
300                         goto again;
301                 }
302         }
303 #ifdef CONFIG_X86
304         if (wc)
305                 set_memory_wc((unsigned long)(p), size >> PAGE_SHIFT);
306 #endif
307         return p;
308 }
309 
310 static void do_free_pages(void *p, size_t size, bool wc)
311 {
312 #ifdef CONFIG_X86
313         if (wc)
314                 set_memory_wb((unsigned long)(p), size >> PAGE_SHIFT);
315 #endif
316         free_pages_exact(p, size);
317 }
318 
319 
320 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
321 {
322         return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, false);
323 }
324 
325 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
326 {
327         do_free_pages(dmab->area, dmab->bytes, false);
328 }
329 
330 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
331                                    struct vm_area_struct *area)
332 {
333         return remap_pfn_range(area, area->vm_start,
334                                dmab->addr >> PAGE_SHIFT,
335                                area->vm_end - area->vm_start,
336                                area->vm_page_prot);
337 }
338 
339 static const struct snd_malloc_ops snd_dma_continuous_ops = {
340         .alloc = snd_dma_continuous_alloc,
341         .free = snd_dma_continuous_free,
342         .mmap = snd_dma_continuous_mmap,
343 };
344 
345 /*
346  * VMALLOC allocator
347  */
348 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
349 {
350         return vmalloc(size);
351 }
352 
353 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
354 {
355         vfree(dmab->area);
356 }
357 
358 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
359                                 struct vm_area_struct *area)
360 {
361         return remap_vmalloc_range(area, dmab->area, 0);
362 }
363 
364 #define get_vmalloc_page_addr(dmab, offset) \
365         page_to_phys(vmalloc_to_page((dmab)->area + (offset)))
366 
367 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
368                                            size_t offset)
369 {
370         return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE;
371 }
372 
373 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
374                                              size_t offset)
375 {
376         return vmalloc_to_page(dmab->area + offset);
377 }
378 
379 static unsigned int
380 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
381                                unsigned int ofs, unsigned int size)
382 {
383         unsigned int start, end;
384         unsigned long addr;
385 
386         start = ALIGN_DOWN(ofs, PAGE_SIZE);
387         end = ofs + size - 1; /* the last byte address */
388         /* check page continuity */
389         addr = get_vmalloc_page_addr(dmab, start);
390         for (;;) {
391                 start += PAGE_SIZE;
392                 if (start > end)
393                         break;
394                 addr += PAGE_SIZE;
395                 if (get_vmalloc_page_addr(dmab, start) != addr)
396                         return start - ofs;
397         }
398         /* ok, all on continuous pages */
399         return size;
400 }
401 
402 static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
403         .alloc = snd_dma_vmalloc_alloc,
404         .free = snd_dma_vmalloc_free,
405         .mmap = snd_dma_vmalloc_mmap,
406         .get_addr = snd_dma_vmalloc_get_addr,
407         .get_page = snd_dma_vmalloc_get_page,
408         .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
409 };
410 
411 #ifdef CONFIG_HAS_DMA
412 /*
413  * IRAM allocator
414  */
415 #ifdef CONFIG_GENERIC_ALLOCATOR
416 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
417 {
418         struct device *dev = dmab->dev.dev;
419         struct gen_pool *pool;
420         void *p;
421 
422         if (dev->of_node) {
423                 pool = of_gen_pool_get(dev->of_node, "iram", 0);
424                 /* Assign the pool into private_data field */
425                 dmab->private_data = pool;
426 
427                 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
428                 if (p)
429                         return p;
430         }
431 
432         /* Internal memory might have limited size and no enough space,
433          * so if we fail to malloc, try to fetch memory traditionally.
434          */
435         dmab->dev.type = SNDRV_DMA_TYPE_DEV;
436         return __snd_dma_alloc_pages(dmab, size);
437 }
438 
439 static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
440 {
441         struct gen_pool *pool = dmab->private_data;
442 
443         if (pool && dmab->area)
444                 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
445 }
446 
447 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
448                              struct vm_area_struct *area)
449 {
450         area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
451         return remap_pfn_range(area, area->vm_start,
452                                dmab->addr >> PAGE_SHIFT,
453                                area->vm_end - area->vm_start,
454                                area->vm_page_prot);
455 }
456 
457 static const struct snd_malloc_ops snd_dma_iram_ops = {
458         .alloc = snd_dma_iram_alloc,
459         .free = snd_dma_iram_free,
460         .mmap = snd_dma_iram_mmap,
461 };
462 #endif /* CONFIG_GENERIC_ALLOCATOR */
463 
464 /*
465  * Coherent device pages allocator
466  */
467 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
468 {
469         return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
470 }
471 
472 static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
473 {
474         dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
475 }
476 
477 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
478                             struct vm_area_struct *area)
479 {
480         return dma_mmap_coherent(dmab->dev.dev, area,
481                                  dmab->area, dmab->addr, dmab->bytes);
482 }
483 
484 static const struct snd_malloc_ops snd_dma_dev_ops = {
485         .alloc = snd_dma_dev_alloc,
486         .free = snd_dma_dev_free,
487         .mmap = snd_dma_dev_mmap,
488 };
489 
490 /*
491  * Write-combined pages
492  */
493 /* x86-specific allocations */
494 #ifdef CONFIG_SND_DMA_SGBUF
495 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
496 {
497         return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, true);
498 }
499 
500 static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
501 {
502         do_free_pages(dmab->area, dmab->bytes, true);
503 }
504 
505 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
506                            struct vm_area_struct *area)
507 {
508         area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
509         return snd_dma_continuous_mmap(dmab, area);
510 }
511 #else
512 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
513 {
514         return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
515 }
516 
517 static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
518 {
519         dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
520 }
521 
522 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
523                            struct vm_area_struct *area)
524 {
525         return dma_mmap_wc(dmab->dev.dev, area,
526                            dmab->area, dmab->addr, dmab->bytes);
527 }
528 #endif /* CONFIG_SND_DMA_SGBUF */
529 
530 static const struct snd_malloc_ops snd_dma_wc_ops = {
531         .alloc = snd_dma_wc_alloc,
532         .free = snd_dma_wc_free,
533         .mmap = snd_dma_wc_mmap,
534 };
535 
536 /*
537  * Non-contiguous pages allocator
538  */
539 static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size)
540 {
541         struct sg_table *sgt;
542         void *p;
543 
544 #ifdef CONFIG_SND_DMA_SGBUF
545         if (cpu_feature_enabled(X86_FEATURE_XENPV))
546                 return snd_dma_sg_fallback_alloc(dmab, size);
547 #endif
548         sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir,
549                                       DEFAULT_GFP, 0);
550 #ifdef CONFIG_SND_DMA_SGBUF
551         if (!sgt && !get_dma_ops(dmab->dev.dev))
552                 return snd_dma_sg_fallback_alloc(dmab, size);
553 #endif
554         if (!sgt)
555                 return NULL;
556 
557         dmab->dev.need_sync = dma_need_sync(dmab->dev.dev,
558                                             sg_dma_address(sgt->sgl));
559         p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt);
560         if (p) {
561                 dmab->private_data = sgt;
562                 /* store the first page address for convenience */
563                 dmab->addr = snd_sgbuf_get_addr(dmab, 0);
564         } else {
565                 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir);
566         }
567         return p;
568 }
569 
570 static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab)
571 {
572         dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area);
573         dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data,
574                                dmab->dev.dir);
575 }
576 
577 static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab,
578                                   struct vm_area_struct *area)
579 {
580         return dma_mmap_noncontiguous(dmab->dev.dev, area,
581                                       dmab->bytes, dmab->private_data);
582 }
583 
584 static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab,
585                                    enum snd_dma_sync_mode mode)
586 {
587         if (mode == SNDRV_DMA_SYNC_CPU) {
588                 if (dmab->dev.dir == DMA_TO_DEVICE)
589                         return;
590                 invalidate_kernel_vmap_range(dmab->area, dmab->bytes);
591                 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data,
592                                          dmab->dev.dir);
593         } else {
594                 if (dmab->dev.dir == DMA_FROM_DEVICE)
595                         return;
596                 flush_kernel_vmap_range(dmab->area, dmab->bytes);
597                 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data,
598                                             dmab->dev.dir);
599         }
600 }
601 
602 static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab,
603                                               struct sg_page_iter *piter,
604                                               size_t offset)
605 {
606         struct sg_table *sgt = dmab->private_data;
607 
608         __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents,
609                              offset >> PAGE_SHIFT);
610 }
611 
612 static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab,
613                                              size_t offset)
614 {
615         struct sg_dma_page_iter iter;
616 
617         snd_dma_noncontig_iter_set(dmab, &iter.base, offset);
618         __sg_page_iter_dma_next(&iter);
619         return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE;
620 }
621 
622 static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab,
623                                                size_t offset)
624 {
625         struct sg_page_iter iter;
626 
627         snd_dma_noncontig_iter_set(dmab, &iter, offset);
628         __sg_page_iter_next(&iter);
629         return sg_page_iter_page(&iter);
630 }
631 
632 static unsigned int
633 snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab,
634                                  unsigned int ofs, unsigned int size)
635 {
636         struct sg_dma_page_iter iter;
637         unsigned int start, end;
638         unsigned long addr;
639 
640         start = ALIGN_DOWN(ofs, PAGE_SIZE);
641         end = ofs + size - 1; /* the last byte address */
642         snd_dma_noncontig_iter_set(dmab, &iter.base, start);
643         if (!__sg_page_iter_dma_next(&iter))
644                 return 0;
645         /* check page continuity */
646         addr = sg_page_iter_dma_address(&iter);
647         for (;;) {
648                 start += PAGE_SIZE;
649                 if (start > end)
650                         break;
651                 addr += PAGE_SIZE;
652                 if (!__sg_page_iter_dma_next(&iter) ||
653                     sg_page_iter_dma_address(&iter) != addr)
654                         return start - ofs;
655         }
656         /* ok, all on continuous pages */
657         return size;
658 }
659 
660 static const struct snd_malloc_ops snd_dma_noncontig_ops = {
661         .alloc = snd_dma_noncontig_alloc,
662         .free = snd_dma_noncontig_free,
663         .mmap = snd_dma_noncontig_mmap,
664         .sync = snd_dma_noncontig_sync,
665         .get_addr = snd_dma_noncontig_get_addr,
666         .get_page = snd_dma_noncontig_get_page,
667         .get_chunk_size = snd_dma_noncontig_get_chunk_size,
668 };
669 
670 /* x86-specific SG-buffer with WC pages */
671 #ifdef CONFIG_SND_DMA_SGBUF
672 #define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it)))
673 
674 static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
675 {
676         void *p = snd_dma_noncontig_alloc(dmab, size);
677         struct sg_table *sgt = dmab->private_data;
678         struct sg_page_iter iter;
679 
680         if (!p)
681                 return NULL;
682         if (dmab->dev.type != SNDRV_DMA_TYPE_DEV_WC_SG)
683                 return p;
684         for_each_sgtable_page(sgt, &iter, 0)
685                 set_memory_wc(sg_wc_address(&iter), 1);
686         return p;
687 }
688 
689 static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab)
690 {
691         struct sg_table *sgt = dmab->private_data;
692         struct sg_page_iter iter;
693 
694         for_each_sgtable_page(sgt, &iter, 0)
695                 set_memory_wb(sg_wc_address(&iter), 1);
696         snd_dma_noncontig_free(dmab);
697 }
698 
699 static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab,
700                               struct vm_area_struct *area)
701 {
702         area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
703         return dma_mmap_noncontiguous(dmab->dev.dev, area,
704                                       dmab->bytes, dmab->private_data);
705 }
706 
707 static const struct snd_malloc_ops snd_dma_sg_wc_ops = {
708         .alloc = snd_dma_sg_wc_alloc,
709         .free = snd_dma_sg_wc_free,
710         .mmap = snd_dma_sg_wc_mmap,
711         .sync = snd_dma_noncontig_sync,
712         .get_addr = snd_dma_noncontig_get_addr,
713         .get_page = snd_dma_noncontig_get_page,
714         .get_chunk_size = snd_dma_noncontig_get_chunk_size,
715 };
716 
717 /* Fallback SG-buffer allocations for x86 */
718 struct snd_dma_sg_fallback {
719         bool use_dma_alloc_coherent;
720         size_t count;
721         struct page **pages;
722         /* DMA address array; the first page contains #pages in ~PAGE_MASK */
723         dma_addr_t *addrs;
724 };
725 
726 static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab,
727                                        struct snd_dma_sg_fallback *sgbuf)
728 {
729         size_t i, size;
730 
731         if (sgbuf->pages && sgbuf->addrs) {
732                 i = 0;
733                 while (i < sgbuf->count) {
734                         if (!sgbuf->pages[i] || !sgbuf->addrs[i])
735                                 break;
736                         size = sgbuf->addrs[i] & ~PAGE_MASK;
737                         if (WARN_ON(!size))
738                                 break;
739                         if (sgbuf->use_dma_alloc_coherent)
740                                 dma_free_coherent(dmab->dev.dev, size << PAGE_SHIFT,
741                                                   page_address(sgbuf->pages[i]),
742                                                   sgbuf->addrs[i] & PAGE_MASK);
743                         else
744                                 do_free_pages(page_address(sgbuf->pages[i]),
745                                               size << PAGE_SHIFT, false);
746                         i += size;
747                 }
748         }
749         kvfree(sgbuf->pages);
750         kvfree(sgbuf->addrs);
751         kfree(sgbuf);
752 }
753 
754 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size)
755 {
756         struct snd_dma_sg_fallback *sgbuf;
757         struct page **pagep, *curp;
758         size_t chunk, npages;
759         dma_addr_t *addrp;
760         dma_addr_t addr;
761         void *p;
762 
763         /* correct the type */
764         if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_SG)
765                 dmab->dev.type = SNDRV_DMA_TYPE_DEV_SG_FALLBACK;
766         else if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG)
767                 dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;
768 
769         sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL);
770         if (!sgbuf)
771                 return NULL;
772         sgbuf->use_dma_alloc_coherent = cpu_feature_enabled(X86_FEATURE_XENPV);
773         size = PAGE_ALIGN(size);
774         sgbuf->count = size >> PAGE_SHIFT;
775         sgbuf->pages = kvcalloc(sgbuf->count, sizeof(*sgbuf->pages), GFP_KERNEL);
776         sgbuf->addrs = kvcalloc(sgbuf->count, sizeof(*sgbuf->addrs), GFP_KERNEL);
777         if (!sgbuf->pages || !sgbuf->addrs)
778                 goto error;
779 
780         pagep = sgbuf->pages;
781         addrp = sgbuf->addrs;
782         chunk = (PAGE_SIZE - 1) << PAGE_SHIFT; /* to fit in low bits in addrs */
783         while (size > 0) {
784                 chunk = min(size, chunk);
785                 if (sgbuf->use_dma_alloc_coherent)
786                         p = dma_alloc_coherent(dmab->dev.dev, chunk, &addr, DEFAULT_GFP);
787                 else
788                         p = do_alloc_pages(dmab->dev.dev, chunk, &addr, false);
789                 if (!p) {
790                         if (chunk <= PAGE_SIZE)
791                                 goto error;
792                         chunk >>= 1;
793                         chunk = PAGE_SIZE << get_order(chunk);
794                         continue;
795                 }
796 
797                 size -= chunk;
798                 /* fill pages */
799                 npages = chunk >> PAGE_SHIFT;
800                 *addrp = npages; /* store in lower bits */
801                 curp = virt_to_page(p);
802                 while (npages--) {
803                         *pagep++ = curp++;
804                         *addrp++ |= addr;
805                         addr += PAGE_SIZE;
806                 }
807         }
808 
809         p = vmap(sgbuf->pages, sgbuf->count, VM_MAP, PAGE_KERNEL);
810         if (!p)
811                 goto error;
812 
813         if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
814                 set_pages_array_wc(sgbuf->pages, sgbuf->count);
815 
816         dmab->private_data = sgbuf;
817         /* store the first page address for convenience */
818         dmab->addr = sgbuf->addrs[0] & PAGE_MASK;
819         return p;
820 
821  error:
822         __snd_dma_sg_fallback_free(dmab, sgbuf);
823         return NULL;
824 }
825 
826 static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab)
827 {
828         struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
829 
830         if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
831                 set_pages_array_wb(sgbuf->pages, sgbuf->count);
832         vunmap(dmab->area);
833         __snd_dma_sg_fallback_free(dmab, dmab->private_data);
834 }
835 
836 static dma_addr_t snd_dma_sg_fallback_get_addr(struct snd_dma_buffer *dmab,
837                                                size_t offset)
838 {
839         struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
840         size_t index = offset >> PAGE_SHIFT;
841 
842         return (sgbuf->addrs[index] & PAGE_MASK) | (offset & ~PAGE_MASK);
843 }
844 
845 static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab,
846                                     struct vm_area_struct *area)
847 {
848         struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
849 
850         if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
851                 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
852         return vm_map_pages(area, sgbuf->pages, sgbuf->count);
853 }
854 
855 static const struct snd_malloc_ops snd_dma_sg_fallback_ops = {
856         .alloc = snd_dma_sg_fallback_alloc,
857         .free = snd_dma_sg_fallback_free,
858         .mmap = snd_dma_sg_fallback_mmap,
859         .get_addr = snd_dma_sg_fallback_get_addr,
860         /* reuse vmalloc helpers */
861         .get_page = snd_dma_vmalloc_get_page,
862         .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
863 };
864 #endif /* CONFIG_SND_DMA_SGBUF */
865 
866 /*
867  * Non-coherent pages allocator
868  */
869 static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size)
870 {
871         void *p;
872 
873         p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr,
874                                   dmab->dev.dir, DEFAULT_GFP);
875         if (p)
876                 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr);
877         return p;
878 }
879 
880 static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab)
881 {
882         dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area,
883                              dmab->addr, dmab->dev.dir);
884 }
885 
886 static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab,
887                                     struct vm_area_struct *area)
888 {
889         area->vm_page_prot = vm_get_page_prot(area->vm_flags);
890         return dma_mmap_pages(dmab->dev.dev, area,
891                               area->vm_end - area->vm_start,
892                               virt_to_page(dmab->area));
893 }
894 
895 static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab,
896                                      enum snd_dma_sync_mode mode)
897 {
898         if (mode == SNDRV_DMA_SYNC_CPU) {
899                 if (dmab->dev.dir != DMA_TO_DEVICE)
900                         dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr,
901                                                 dmab->bytes, dmab->dev.dir);
902         } else {
903                 if (dmab->dev.dir != DMA_FROM_DEVICE)
904                         dma_sync_single_for_device(dmab->dev.dev, dmab->addr,
905                                                    dmab->bytes, dmab->dev.dir);
906         }
907 }
908 
909 static const struct snd_malloc_ops snd_dma_noncoherent_ops = {
910         .alloc = snd_dma_noncoherent_alloc,
911         .free = snd_dma_noncoherent_free,
912         .mmap = snd_dma_noncoherent_mmap,
913         .sync = snd_dma_noncoherent_sync,
914 };
915 
916 #endif /* CONFIG_HAS_DMA */
917 
918 /*
919  * Entry points
920  */
921 static const struct snd_malloc_ops *snd_dma_ops[] = {
922         [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
923         [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
924 #ifdef CONFIG_HAS_DMA
925         [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
926         [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops,
927         [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops,
928         [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops,
929 #ifdef CONFIG_SND_DMA_SGBUF
930         [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops,
931 #endif
932 #ifdef CONFIG_GENERIC_ALLOCATOR
933         [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
934 #endif /* CONFIG_GENERIC_ALLOCATOR */
935 #ifdef CONFIG_SND_DMA_SGBUF
936         [SNDRV_DMA_TYPE_DEV_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
937         [SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
938 #endif
939 #endif /* CONFIG_HAS_DMA */
940 };
941 
942 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
943 {
944         if (WARN_ON_ONCE(!dmab))
945                 return NULL;
946         if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
947                          dmab->dev.type >= ARRAY_SIZE(snd_dma_ops)))
948                 return NULL;
949         return snd_dma_ops[dmab->dev.type];
950 }
951 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php