1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Digital Audio (PCM) abstract layer 4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 5 * Abramo Bagnara <abramo@alsa-project.org> 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/sched/signal.h> 10 #include <linux/time.h> 11 #include <linux/math64.h> 12 #include <linux/export.h> 13 #include <sound/core.h> 14 #include <sound/control.h> 15 #include <sound/tlv.h> 16 #include <sound/info.h> 17 #include <sound/pcm.h> 18 #include <sound/pcm_params.h> 19 #include <sound/timer.h> 20 21 #include "pcm_local.h" 22 23 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 24 #define CREATE_TRACE_POINTS 25 #include "pcm_trace.h" 26 #else 27 #define trace_hwptr(substream, pos, in_interrupt) 28 #define trace_xrun(substream) 29 #define trace_hw_ptr_error(substream, reason) 30 #define trace_applptr(substream, prev, curr) 31 #endif 32 33 static int fill_silence_frames(struct snd_pcm_substream *substream, 34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames); 35 36 37 static inline void update_silence_vars(struct snd_pcm_runtime *runtime, 38 snd_pcm_uframes_t ptr, 39 snd_pcm_uframes_t new_ptr) 40 { 41 snd_pcm_sframes_t delta; 42 43 delta = new_ptr - ptr; 44 if (delta == 0) 45 return; 46 if (delta < 0) 47 delta += runtime->boundary; 48 if ((snd_pcm_uframes_t)delta < runtime->silence_filled) 49 runtime->silence_filled -= delta; 50 else 51 runtime->silence_filled = 0; 52 runtime->silence_start = new_ptr; 53 } 54 55 /* 56 * fill ring buffer with silence 57 * runtime->silence_start: starting pointer to silence area 58 * runtime->silence_filled: size filled with silence 59 * runtime->silence_threshold: threshold from application 60 * runtime->silence_size: maximal size from application 61 * 62 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 63 */ 64 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 65 { 66 struct snd_pcm_runtime *runtime = substream->runtime; 67 snd_pcm_uframes_t frames, ofs, transfer; 68 int err; 69 70 if (runtime->silence_size < runtime->boundary) { 71 snd_pcm_sframes_t noise_dist; 72 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr); 73 update_silence_vars(runtime, runtime->silence_start, appl_ptr); 74 /* initialization outside pointer updates */ 75 if (new_hw_ptr == ULONG_MAX) 76 new_hw_ptr = runtime->status->hw_ptr; 77 /* get hw_avail with the boundary crossing */ 78 noise_dist = appl_ptr - new_hw_ptr; 79 if (noise_dist < 0) 80 noise_dist += runtime->boundary; 81 /* total noise distance */ 82 noise_dist += runtime->silence_filled; 83 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 84 return; 85 frames = runtime->silence_threshold - noise_dist; 86 if (frames > runtime->silence_size) 87 frames = runtime->silence_size; 88 } else { 89 /* 90 * This filling mode aims at free-running mode (used for example by dmix), 91 * which doesn't update the application pointer. 92 */ 93 snd_pcm_uframes_t hw_ptr = runtime->status->hw_ptr; 94 if (new_hw_ptr == ULONG_MAX) { 95 /* 96 * Initialization, fill the whole unused buffer with silence. 97 * 98 * Usually, this is entered while stopped, before data is queued, 99 * so both pointers are expected to be zero. 100 */ 101 snd_pcm_sframes_t avail = runtime->control->appl_ptr - hw_ptr; 102 if (avail < 0) 103 avail += runtime->boundary; 104 /* 105 * In free-running mode, appl_ptr will be zero even while running, 106 * so we end up with a huge number. There is no useful way to 107 * handle this, so we just clear the whole buffer. 108 */ 109 runtime->silence_filled = avail > runtime->buffer_size ? 0 : avail; 110 runtime->silence_start = hw_ptr; 111 } else { 112 /* Silence the just played area immediately */ 113 update_silence_vars(runtime, hw_ptr, new_hw_ptr); 114 } 115 /* 116 * In this mode, silence_filled actually includes the valid 117 * sample data from the user. 118 */ 119 frames = runtime->buffer_size - runtime->silence_filled; 120 } 121 if (snd_BUG_ON(frames > runtime->buffer_size)) 122 return; 123 if (frames == 0) 124 return; 125 ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size; 126 do { 127 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 128 err = fill_silence_frames(substream, ofs, transfer); 129 snd_BUG_ON(err < 0); 130 runtime->silence_filled += transfer; 131 frames -= transfer; 132 ofs = 0; 133 } while (frames > 0); 134 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE); 135 } 136 137 #ifdef CONFIG_SND_DEBUG 138 void snd_pcm_debug_name(struct snd_pcm_substream *substream, 139 char *name, size_t len) 140 { 141 snprintf(name, len, "pcmC%dD%d%c:%d", 142 substream->pcm->card->number, 143 substream->pcm->device, 144 substream->stream ? 'c' : 'p', 145 substream->number); 146 } 147 EXPORT_SYMBOL(snd_pcm_debug_name); 148 #endif 149 150 #define XRUN_DEBUG_BASIC (1<<0) 151 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 152 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 153 154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 155 156 #define xrun_debug(substream, mask) \ 157 ((substream)->pstr->xrun_debug & (mask)) 158 #else 159 #define xrun_debug(substream, mask) 0 160 #endif 161 162 #define dump_stack_on_xrun(substream) do { \ 163 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 164 dump_stack(); \ 165 } while (0) 166 167 /* call with stream lock held */ 168 void __snd_pcm_xrun(struct snd_pcm_substream *substream) 169 { 170 struct snd_pcm_runtime *runtime = substream->runtime; 171 172 trace_xrun(substream); 173 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 174 struct timespec64 tstamp; 175 176 snd_pcm_gettime(runtime, &tstamp); 177 runtime->status->tstamp.tv_sec = tstamp.tv_sec; 178 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec; 179 } 180 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 181 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 182 char name[16]; 183 snd_pcm_debug_name(substream, name, sizeof(name)); 184 pcm_warn(substream->pcm, "XRUN: %s\n", name); 185 dump_stack_on_xrun(substream); 186 } 187 } 188 189 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 190 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \ 191 do { \ 192 trace_hw_ptr_error(substream, reason); \ 193 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 194 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \ 195 (in_interrupt) ? 'Q' : 'P', ##args); \ 196 dump_stack_on_xrun(substream); \ 197 } \ 198 } while (0) 199 200 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 201 202 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 203 204 #endif 205 206 int snd_pcm_update_state(struct snd_pcm_substream *substream, 207 struct snd_pcm_runtime *runtime) 208 { 209 snd_pcm_uframes_t avail; 210 211 avail = snd_pcm_avail(substream); 212 if (avail > runtime->avail_max) 213 runtime->avail_max = avail; 214 if (runtime->state == SNDRV_PCM_STATE_DRAINING) { 215 if (avail >= runtime->buffer_size) { 216 snd_pcm_drain_done(substream); 217 return -EPIPE; 218 } 219 } else { 220 if (avail >= runtime->stop_threshold) { 221 __snd_pcm_xrun(substream); 222 return -EPIPE; 223 } 224 } 225 if (runtime->twake) { 226 if (avail >= runtime->twake) 227 wake_up(&runtime->tsleep); 228 } else if (avail >= runtime->control->avail_min) 229 wake_up(&runtime->sleep); 230 return 0; 231 } 232 233 static void update_audio_tstamp(struct snd_pcm_substream *substream, 234 struct timespec64 *curr_tstamp, 235 struct timespec64 *audio_tstamp) 236 { 237 struct snd_pcm_runtime *runtime = substream->runtime; 238 u64 audio_frames, audio_nsecs; 239 struct timespec64 driver_tstamp; 240 241 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE) 242 return; 243 244 if (!(substream->ops->get_time_info) || 245 (runtime->audio_tstamp_report.actual_type == 246 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 247 248 /* 249 * provide audio timestamp derived from pointer position 250 * add delay only if requested 251 */ 252 253 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr; 254 255 if (runtime->audio_tstamp_config.report_delay) { 256 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 257 audio_frames -= runtime->delay; 258 else 259 audio_frames += runtime->delay; 260 } 261 audio_nsecs = div_u64(audio_frames * 1000000000LL, 262 runtime->rate); 263 *audio_tstamp = ns_to_timespec64(audio_nsecs); 264 } 265 266 if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec || 267 runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) { 268 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec; 269 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec; 270 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec; 271 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec; 272 } 273 274 275 /* 276 * re-take a driver timestamp to let apps detect if the reference tstamp 277 * read by low-level hardware was provided with a delay 278 */ 279 snd_pcm_gettime(substream->runtime, &driver_tstamp); 280 runtime->driver_tstamp = driver_tstamp; 281 } 282 283 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 284 unsigned int in_interrupt) 285 { 286 struct snd_pcm_runtime *runtime = substream->runtime; 287 snd_pcm_uframes_t pos; 288 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 289 snd_pcm_sframes_t hdelta, delta; 290 unsigned long jdelta; 291 unsigned long curr_jiffies; 292 struct timespec64 curr_tstamp; 293 struct timespec64 audio_tstamp; 294 int crossed_boundary = 0; 295 296 old_hw_ptr = runtime->status->hw_ptr; 297 298 /* 299 * group pointer, time and jiffies reads to allow for more 300 * accurate correlations/corrections. 301 * The values are stored at the end of this routine after 302 * corrections for hw_ptr position 303 */ 304 pos = substream->ops->pointer(substream); 305 curr_jiffies = jiffies; 306 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 307 if ((substream->ops->get_time_info) && 308 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 309 substream->ops->get_time_info(substream, &curr_tstamp, 310 &audio_tstamp, 311 &runtime->audio_tstamp_config, 312 &runtime->audio_tstamp_report); 313 314 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */ 315 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT) 316 snd_pcm_gettime(runtime, &curr_tstamp); 317 } else 318 snd_pcm_gettime(runtime, &curr_tstamp); 319 } 320 321 if (pos == SNDRV_PCM_POS_XRUN) { 322 __snd_pcm_xrun(substream); 323 return -EPIPE; 324 } 325 if (pos >= runtime->buffer_size) { 326 if (printk_ratelimit()) { 327 char name[16]; 328 snd_pcm_debug_name(substream, name, sizeof(name)); 329 pcm_err(substream->pcm, 330 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n", 331 name, pos, runtime->buffer_size, 332 runtime->period_size); 333 } 334 pos = 0; 335 } 336 pos -= pos % runtime->min_align; 337 trace_hwptr(substream, pos, in_interrupt); 338 hw_base = runtime->hw_ptr_base; 339 new_hw_ptr = hw_base + pos; 340 if (in_interrupt) { 341 /* we know that one period was processed */ 342 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 343 delta = runtime->hw_ptr_interrupt + runtime->period_size; 344 if (delta > new_hw_ptr) { 345 /* check for double acknowledged interrupts */ 346 hdelta = curr_jiffies - runtime->hw_ptr_jiffies; 347 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) { 348 hw_base += runtime->buffer_size; 349 if (hw_base >= runtime->boundary) { 350 hw_base = 0; 351 crossed_boundary++; 352 } 353 new_hw_ptr = hw_base + pos; 354 goto __delta; 355 } 356 } 357 } 358 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 359 /* pointer crosses the end of the ring buffer */ 360 if (new_hw_ptr < old_hw_ptr) { 361 hw_base += runtime->buffer_size; 362 if (hw_base >= runtime->boundary) { 363 hw_base = 0; 364 crossed_boundary++; 365 } 366 new_hw_ptr = hw_base + pos; 367 } 368 __delta: 369 delta = new_hw_ptr - old_hw_ptr; 370 if (delta < 0) 371 delta += runtime->boundary; 372 373 if (runtime->no_period_wakeup) { 374 snd_pcm_sframes_t xrun_threshold; 375 /* 376 * Without regular period interrupts, we have to check 377 * the elapsed time to detect xruns. 378 */ 379 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 380 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 381 goto no_delta_check; 382 hdelta = jdelta - delta * HZ / runtime->rate; 383 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 384 while (hdelta > xrun_threshold) { 385 delta += runtime->buffer_size; 386 hw_base += runtime->buffer_size; 387 if (hw_base >= runtime->boundary) { 388 hw_base = 0; 389 crossed_boundary++; 390 } 391 new_hw_ptr = hw_base + pos; 392 hdelta -= runtime->hw_ptr_buffer_jiffies; 393 } 394 goto no_delta_check; 395 } 396 397 /* something must be really wrong */ 398 if (delta >= runtime->buffer_size + runtime->period_size) { 399 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr", 400 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 401 substream->stream, (long)pos, 402 (long)new_hw_ptr, (long)old_hw_ptr); 403 return 0; 404 } 405 406 /* Do jiffies check only in xrun_debug mode */ 407 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 408 goto no_jiffies_check; 409 410 /* Skip the jiffies check for hardwares with BATCH flag. 411 * Such hardware usually just increases the position at each IRQ, 412 * thus it can't give any strange position. 413 */ 414 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 415 goto no_jiffies_check; 416 hdelta = delta; 417 if (hdelta < runtime->delay) 418 goto no_jiffies_check; 419 hdelta -= runtime->delay; 420 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 421 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 422 delta = jdelta / 423 (((runtime->period_size * HZ) / runtime->rate) 424 + HZ/100); 425 /* move new_hw_ptr according jiffies not pos variable */ 426 new_hw_ptr = old_hw_ptr; 427 hw_base = delta; 428 /* use loop to avoid checks for delta overflows */ 429 /* the delta value is small or zero in most cases */ 430 while (delta > 0) { 431 new_hw_ptr += runtime->period_size; 432 if (new_hw_ptr >= runtime->boundary) { 433 new_hw_ptr -= runtime->boundary; 434 crossed_boundary--; 435 } 436 delta--; 437 } 438 /* align hw_base to buffer_size */ 439 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping", 440 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 441 (long)pos, (long)hdelta, 442 (long)runtime->period_size, jdelta, 443 ((hdelta * HZ) / runtime->rate), hw_base, 444 (unsigned long)old_hw_ptr, 445 (unsigned long)new_hw_ptr); 446 /* reset values to proper state */ 447 delta = 0; 448 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 449 } 450 no_jiffies_check: 451 if (delta > runtime->period_size + runtime->period_size / 2) { 452 hw_ptr_error(substream, in_interrupt, 453 "Lost interrupts?", 454 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 455 substream->stream, (long)delta, 456 (long)new_hw_ptr, 457 (long)old_hw_ptr); 458 } 459 460 no_delta_check: 461 if (runtime->status->hw_ptr == new_hw_ptr) { 462 runtime->hw_ptr_jiffies = curr_jiffies; 463 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 464 return 0; 465 } 466 467 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 468 runtime->silence_size > 0) 469 snd_pcm_playback_silence(substream, new_hw_ptr); 470 471 if (in_interrupt) { 472 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 473 if (delta < 0) 474 delta += runtime->boundary; 475 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 476 runtime->hw_ptr_interrupt += delta; 477 if (runtime->hw_ptr_interrupt >= runtime->boundary) 478 runtime->hw_ptr_interrupt -= runtime->boundary; 479 } 480 runtime->hw_ptr_base = hw_base; 481 runtime->status->hw_ptr = new_hw_ptr; 482 runtime->hw_ptr_jiffies = curr_jiffies; 483 if (crossed_boundary) { 484 snd_BUG_ON(crossed_boundary != 1); 485 runtime->hw_ptr_wrap += runtime->boundary; 486 } 487 488 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 489 490 return snd_pcm_update_state(substream, runtime); 491 } 492 493 /* CAUTION: call it with irq disabled */ 494 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 495 { 496 return snd_pcm_update_hw_ptr0(substream, 0); 497 } 498 499 /** 500 * snd_pcm_set_ops - set the PCM operators 501 * @pcm: the pcm instance 502 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 503 * @ops: the operator table 504 * 505 * Sets the given PCM operators to the pcm instance. 506 */ 507 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, 508 const struct snd_pcm_ops *ops) 509 { 510 struct snd_pcm_str *stream = &pcm->streams[direction]; 511 struct snd_pcm_substream *substream; 512 513 for (substream = stream->substream; substream != NULL; substream = substream->next) 514 substream->ops = ops; 515 } 516 EXPORT_SYMBOL(snd_pcm_set_ops); 517 518 /** 519 * snd_pcm_set_sync_per_card - set the PCM sync id with card number 520 * @substream: the pcm substream 521 * @params: modified hardware parameters 522 * @id: identifier (max 12 bytes) 523 * @len: identifier length (max 12 bytes) 524 * 525 * Sets the PCM sync identifier for the card with zero padding. 526 * 527 * User space or any user should use this 16-byte identifier for a comparison only 528 * to check if two IDs are similar or different. Special case is the identifier 529 * containing only zeros. Interpretation for this combination is - empty (not set). 530 * The contents of the identifier should not be interpreted in any other way. 531 * 532 * The synchronization ID must be unique per clock source (usually one sound card, 533 * but multiple soundcard may use one PCM word clock source which means that they 534 * are fully synchronized). 535 * 536 * This routine composes this ID using card number in first four bytes and 537 * 12-byte additional ID. When other ID composition is used (e.g. for multiple 538 * sound cards), make sure that the composition does not clash with this 539 * composition scheme. 540 */ 541 void snd_pcm_set_sync_per_card(struct snd_pcm_substream *substream, 542 struct snd_pcm_hw_params *params, 543 const unsigned char *id, unsigned int len) 544 { 545 *(__u32 *)params->sync = cpu_to_le32(substream->pcm->card->number); 546 len = min(12, len); 547 memcpy(params->sync + 4, id, len); 548 memset(params->sync + 4 + len, 0, 12 - len); 549 } 550 EXPORT_SYMBOL_GPL(snd_pcm_set_sync_per_card); 551 552 /* 553 * Standard ioctl routine 554 */ 555 556 static inline unsigned int div32(unsigned int a, unsigned int b, 557 unsigned int *r) 558 { 559 if (b == 0) { 560 *r = 0; 561 return UINT_MAX; 562 } 563 *r = a % b; 564 return a / b; 565 } 566 567 static inline unsigned int div_down(unsigned int a, unsigned int b) 568 { 569 if (b == 0) 570 return UINT_MAX; 571 return a / b; 572 } 573 574 static inline unsigned int div_up(unsigned int a, unsigned int b) 575 { 576 unsigned int r; 577 unsigned int q; 578 if (b == 0) 579 return UINT_MAX; 580 q = div32(a, b, &r); 581 if (r) 582 ++q; 583 return q; 584 } 585 586 static inline unsigned int mul(unsigned int a, unsigned int b) 587 { 588 if (a == 0) 589 return 0; 590 if (div_down(UINT_MAX, a) < b) 591 return UINT_MAX; 592 return a * b; 593 } 594 595 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 596 unsigned int c, unsigned int *r) 597 { 598 u_int64_t n = (u_int64_t) a * b; 599 if (c == 0) { 600 *r = 0; 601 return UINT_MAX; 602 } 603 n = div_u64_rem(n, c, r); 604 if (n >= UINT_MAX) { 605 *r = 0; 606 return UINT_MAX; 607 } 608 return n; 609 } 610 611 /** 612 * snd_interval_refine - refine the interval value of configurator 613 * @i: the interval value to refine 614 * @v: the interval value to refer to 615 * 616 * Refines the interval value with the reference value. 617 * The interval is changed to the range satisfying both intervals. 618 * The interval status (min, max, integer, etc.) are evaluated. 619 * 620 * Return: Positive if the value is changed, zero if it's not changed, or a 621 * negative error code. 622 */ 623 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 624 { 625 int changed = 0; 626 if (snd_BUG_ON(snd_interval_empty(i))) 627 return -EINVAL; 628 if (i->min < v->min) { 629 i->min = v->min; 630 i->openmin = v->openmin; 631 changed = 1; 632 } else if (i->min == v->min && !i->openmin && v->openmin) { 633 i->openmin = 1; 634 changed = 1; 635 } 636 if (i->max > v->max) { 637 i->max = v->max; 638 i->openmax = v->openmax; 639 changed = 1; 640 } else if (i->max == v->max && !i->openmax && v->openmax) { 641 i->openmax = 1; 642 changed = 1; 643 } 644 if (!i->integer && v->integer) { 645 i->integer = 1; 646 changed = 1; 647 } 648 if (i->integer) { 649 if (i->openmin) { 650 i->min++; 651 i->openmin = 0; 652 } 653 if (i->openmax) { 654 i->max--; 655 i->openmax = 0; 656 } 657 } else if (!i->openmin && !i->openmax && i->min == i->max) 658 i->integer = 1; 659 if (snd_interval_checkempty(i)) { 660 snd_interval_none(i); 661 return -EINVAL; 662 } 663 return changed; 664 } 665 EXPORT_SYMBOL(snd_interval_refine); 666 667 static int snd_interval_refine_first(struct snd_interval *i) 668 { 669 const unsigned int last_max = i->max; 670 671 if (snd_BUG_ON(snd_interval_empty(i))) 672 return -EINVAL; 673 if (snd_interval_single(i)) 674 return 0; 675 i->max = i->min; 676 if (i->openmin) 677 i->max++; 678 /* only exclude max value if also excluded before refine */ 679 i->openmax = (i->openmax && i->max >= last_max); 680 return 1; 681 } 682 683 static int snd_interval_refine_last(struct snd_interval *i) 684 { 685 const unsigned int last_min = i->min; 686 687 if (snd_BUG_ON(snd_interval_empty(i))) 688 return -EINVAL; 689 if (snd_interval_single(i)) 690 return 0; 691 i->min = i->max; 692 if (i->openmax) 693 i->min--; 694 /* only exclude min value if also excluded before refine */ 695 i->openmin = (i->openmin && i->min <= last_min); 696 return 1; 697 } 698 699 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 700 { 701 if (a->empty || b->empty) { 702 snd_interval_none(c); 703 return; 704 } 705 c->empty = 0; 706 c->min = mul(a->min, b->min); 707 c->openmin = (a->openmin || b->openmin); 708 c->max = mul(a->max, b->max); 709 c->openmax = (a->openmax || b->openmax); 710 c->integer = (a->integer && b->integer); 711 } 712 713 /** 714 * snd_interval_div - refine the interval value with division 715 * @a: dividend 716 * @b: divisor 717 * @c: quotient 718 * 719 * c = a / b 720 * 721 * Returns non-zero if the value is changed, zero if not changed. 722 */ 723 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 724 { 725 unsigned int r; 726 if (a->empty || b->empty) { 727 snd_interval_none(c); 728 return; 729 } 730 c->empty = 0; 731 c->min = div32(a->min, b->max, &r); 732 c->openmin = (r || a->openmin || b->openmax); 733 if (b->min > 0) { 734 c->max = div32(a->max, b->min, &r); 735 if (r) { 736 c->max++; 737 c->openmax = 1; 738 } else 739 c->openmax = (a->openmax || b->openmin); 740 } else { 741 c->max = UINT_MAX; 742 c->openmax = 0; 743 } 744 c->integer = 0; 745 } 746 747 /** 748 * snd_interval_muldivk - refine the interval value 749 * @a: dividend 1 750 * @b: dividend 2 751 * @k: divisor (as integer) 752 * @c: result 753 * 754 * c = a * b / k 755 * 756 * Returns non-zero if the value is changed, zero if not changed. 757 */ 758 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 759 unsigned int k, struct snd_interval *c) 760 { 761 unsigned int r; 762 if (a->empty || b->empty) { 763 snd_interval_none(c); 764 return; 765 } 766 c->empty = 0; 767 c->min = muldiv32(a->min, b->min, k, &r); 768 c->openmin = (r || a->openmin || b->openmin); 769 c->max = muldiv32(a->max, b->max, k, &r); 770 if (r) { 771 c->max++; 772 c->openmax = 1; 773 } else 774 c->openmax = (a->openmax || b->openmax); 775 c->integer = 0; 776 } 777 778 /** 779 * snd_interval_mulkdiv - refine the interval value 780 * @a: dividend 1 781 * @k: dividend 2 (as integer) 782 * @b: divisor 783 * @c: result 784 * 785 * c = a * k / b 786 * 787 * Returns non-zero if the value is changed, zero if not changed. 788 */ 789 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 790 const struct snd_interval *b, struct snd_interval *c) 791 { 792 unsigned int r; 793 if (a->empty || b->empty) { 794 snd_interval_none(c); 795 return; 796 } 797 c->empty = 0; 798 c->min = muldiv32(a->min, k, b->max, &r); 799 c->openmin = (r || a->openmin || b->openmax); 800 if (b->min > 0) { 801 c->max = muldiv32(a->max, k, b->min, &r); 802 if (r) { 803 c->max++; 804 c->openmax = 1; 805 } else 806 c->openmax = (a->openmax || b->openmin); 807 } else { 808 c->max = UINT_MAX; 809 c->openmax = 0; 810 } 811 c->integer = 0; 812 } 813 814 /* ---- */ 815 816 817 /** 818 * snd_interval_ratnum - refine the interval value 819 * @i: interval to refine 820 * @rats_count: number of ratnum_t 821 * @rats: ratnum_t array 822 * @nump: pointer to store the resultant numerator 823 * @denp: pointer to store the resultant denominator 824 * 825 * Return: Positive if the value is changed, zero if it's not changed, or a 826 * negative error code. 827 */ 828 int snd_interval_ratnum(struct snd_interval *i, 829 unsigned int rats_count, const struct snd_ratnum *rats, 830 unsigned int *nump, unsigned int *denp) 831 { 832 unsigned int best_num, best_den; 833 int best_diff; 834 unsigned int k; 835 struct snd_interval t; 836 int err; 837 unsigned int result_num, result_den; 838 int result_diff; 839 840 best_num = best_den = best_diff = 0; 841 for (k = 0; k < rats_count; ++k) { 842 unsigned int num = rats[k].num; 843 unsigned int den; 844 unsigned int q = i->min; 845 int diff; 846 if (q == 0) 847 q = 1; 848 den = div_up(num, q); 849 if (den < rats[k].den_min) 850 continue; 851 if (den > rats[k].den_max) 852 den = rats[k].den_max; 853 else { 854 unsigned int r; 855 r = (den - rats[k].den_min) % rats[k].den_step; 856 if (r != 0) 857 den -= r; 858 } 859 diff = num - q * den; 860 if (diff < 0) 861 diff = -diff; 862 if (best_num == 0 || 863 diff * best_den < best_diff * den) { 864 best_diff = diff; 865 best_den = den; 866 best_num = num; 867 } 868 } 869 if (best_den == 0) { 870 i->empty = 1; 871 return -EINVAL; 872 } 873 t.min = div_down(best_num, best_den); 874 t.openmin = !!(best_num % best_den); 875 876 result_num = best_num; 877 result_diff = best_diff; 878 result_den = best_den; 879 best_num = best_den = best_diff = 0; 880 for (k = 0; k < rats_count; ++k) { 881 unsigned int num = rats[k].num; 882 unsigned int den; 883 unsigned int q = i->max; 884 int diff; 885 if (q == 0) { 886 i->empty = 1; 887 return -EINVAL; 888 } 889 den = div_down(num, q); 890 if (den > rats[k].den_max) 891 continue; 892 if (den < rats[k].den_min) 893 den = rats[k].den_min; 894 else { 895 unsigned int r; 896 r = (den - rats[k].den_min) % rats[k].den_step; 897 if (r != 0) 898 den += rats[k].den_step - r; 899 } 900 diff = q * den - num; 901 if (diff < 0) 902 diff = -diff; 903 if (best_num == 0 || 904 diff * best_den < best_diff * den) { 905 best_diff = diff; 906 best_den = den; 907 best_num = num; 908 } 909 } 910 if (best_den == 0) { 911 i->empty = 1; 912 return -EINVAL; 913 } 914 t.max = div_up(best_num, best_den); 915 t.openmax = !!(best_num % best_den); 916 t.integer = 0; 917 err = snd_interval_refine(i, &t); 918 if (err < 0) 919 return err; 920 921 if (snd_interval_single(i)) { 922 if (best_diff * result_den < result_diff * best_den) { 923 result_num = best_num; 924 result_den = best_den; 925 } 926 if (nump) 927 *nump = result_num; 928 if (denp) 929 *denp = result_den; 930 } 931 return err; 932 } 933 EXPORT_SYMBOL(snd_interval_ratnum); 934 935 /** 936 * snd_interval_ratden - refine the interval value 937 * @i: interval to refine 938 * @rats_count: number of struct ratden 939 * @rats: struct ratden array 940 * @nump: pointer to store the resultant numerator 941 * @denp: pointer to store the resultant denominator 942 * 943 * Return: Positive if the value is changed, zero if it's not changed, or a 944 * negative error code. 945 */ 946 static int snd_interval_ratden(struct snd_interval *i, 947 unsigned int rats_count, 948 const struct snd_ratden *rats, 949 unsigned int *nump, unsigned int *denp) 950 { 951 unsigned int best_num, best_diff, best_den; 952 unsigned int k; 953 struct snd_interval t; 954 int err; 955 956 best_num = best_den = best_diff = 0; 957 for (k = 0; k < rats_count; ++k) { 958 unsigned int num; 959 unsigned int den = rats[k].den; 960 unsigned int q = i->min; 961 int diff; 962 num = mul(q, den); 963 if (num > rats[k].num_max) 964 continue; 965 if (num < rats[k].num_min) 966 num = rats[k].num_max; 967 else { 968 unsigned int r; 969 r = (num - rats[k].num_min) % rats[k].num_step; 970 if (r != 0) 971 num += rats[k].num_step - r; 972 } 973 diff = num - q * den; 974 if (best_num == 0 || 975 diff * best_den < best_diff * den) { 976 best_diff = diff; 977 best_den = den; 978 best_num = num; 979 } 980 } 981 if (best_den == 0) { 982 i->empty = 1; 983 return -EINVAL; 984 } 985 t.min = div_down(best_num, best_den); 986 t.openmin = !!(best_num % best_den); 987 988 best_num = best_den = best_diff = 0; 989 for (k = 0; k < rats_count; ++k) { 990 unsigned int num; 991 unsigned int den = rats[k].den; 992 unsigned int q = i->max; 993 int diff; 994 num = mul(q, den); 995 if (num < rats[k].num_min) 996 continue; 997 if (num > rats[k].num_max) 998 num = rats[k].num_max; 999 else { 1000 unsigned int r; 1001 r = (num - rats[k].num_min) % rats[k].num_step; 1002 if (r != 0) 1003 num -= r; 1004 } 1005 diff = q * den - num; 1006 if (best_num == 0 || 1007 diff * best_den < best_diff * den) { 1008 best_diff = diff; 1009 best_den = den; 1010 best_num = num; 1011 } 1012 } 1013 if (best_den == 0) { 1014 i->empty = 1; 1015 return -EINVAL; 1016 } 1017 t.max = div_up(best_num, best_den); 1018 t.openmax = !!(best_num % best_den); 1019 t.integer = 0; 1020 err = snd_interval_refine(i, &t); 1021 if (err < 0) 1022 return err; 1023 1024 if (snd_interval_single(i)) { 1025 if (nump) 1026 *nump = best_num; 1027 if (denp) 1028 *denp = best_den; 1029 } 1030 return err; 1031 } 1032 1033 /** 1034 * snd_interval_list - refine the interval value from the list 1035 * @i: the interval value to refine 1036 * @count: the number of elements in the list 1037 * @list: the value list 1038 * @mask: the bit-mask to evaluate 1039 * 1040 * Refines the interval value from the list. 1041 * When mask is non-zero, only the elements corresponding to bit 1 are 1042 * evaluated. 1043 * 1044 * Return: Positive if the value is changed, zero if it's not changed, or a 1045 * negative error code. 1046 */ 1047 int snd_interval_list(struct snd_interval *i, unsigned int count, 1048 const unsigned int *list, unsigned int mask) 1049 { 1050 unsigned int k; 1051 struct snd_interval list_range; 1052 1053 if (!count) { 1054 i->empty = 1; 1055 return -EINVAL; 1056 } 1057 snd_interval_any(&list_range); 1058 list_range.min = UINT_MAX; 1059 list_range.max = 0; 1060 for (k = 0; k < count; k++) { 1061 if (mask && !(mask & (1 << k))) 1062 continue; 1063 if (!snd_interval_test(i, list[k])) 1064 continue; 1065 list_range.min = min(list_range.min, list[k]); 1066 list_range.max = max(list_range.max, list[k]); 1067 } 1068 return snd_interval_refine(i, &list_range); 1069 } 1070 EXPORT_SYMBOL(snd_interval_list); 1071 1072 /** 1073 * snd_interval_ranges - refine the interval value from the list of ranges 1074 * @i: the interval value to refine 1075 * @count: the number of elements in the list of ranges 1076 * @ranges: the ranges list 1077 * @mask: the bit-mask to evaluate 1078 * 1079 * Refines the interval value from the list of ranges. 1080 * When mask is non-zero, only the elements corresponding to bit 1 are 1081 * evaluated. 1082 * 1083 * Return: Positive if the value is changed, zero if it's not changed, or a 1084 * negative error code. 1085 */ 1086 int snd_interval_ranges(struct snd_interval *i, unsigned int count, 1087 const struct snd_interval *ranges, unsigned int mask) 1088 { 1089 unsigned int k; 1090 struct snd_interval range_union; 1091 struct snd_interval range; 1092 1093 if (!count) { 1094 snd_interval_none(i); 1095 return -EINVAL; 1096 } 1097 snd_interval_any(&range_union); 1098 range_union.min = UINT_MAX; 1099 range_union.max = 0; 1100 for (k = 0; k < count; k++) { 1101 if (mask && !(mask & (1 << k))) 1102 continue; 1103 snd_interval_copy(&range, &ranges[k]); 1104 if (snd_interval_refine(&range, i) < 0) 1105 continue; 1106 if (snd_interval_empty(&range)) 1107 continue; 1108 1109 if (range.min < range_union.min) { 1110 range_union.min = range.min; 1111 range_union.openmin = 1; 1112 } 1113 if (range.min == range_union.min && !range.openmin) 1114 range_union.openmin = 0; 1115 if (range.max > range_union.max) { 1116 range_union.max = range.max; 1117 range_union.openmax = 1; 1118 } 1119 if (range.max == range_union.max && !range.openmax) 1120 range_union.openmax = 0; 1121 } 1122 return snd_interval_refine(i, &range_union); 1123 } 1124 EXPORT_SYMBOL(snd_interval_ranges); 1125 1126 static int snd_interval_step(struct snd_interval *i, unsigned int step) 1127 { 1128 unsigned int n; 1129 int changed = 0; 1130 n = i->min % step; 1131 if (n != 0 || i->openmin) { 1132 i->min += step - n; 1133 i->openmin = 0; 1134 changed = 1; 1135 } 1136 n = i->max % step; 1137 if (n != 0 || i->openmax) { 1138 i->max -= n; 1139 i->openmax = 0; 1140 changed = 1; 1141 } 1142 if (snd_interval_checkempty(i)) { 1143 i->empty = 1; 1144 return -EINVAL; 1145 } 1146 return changed; 1147 } 1148 1149 /* Info constraints helpers */ 1150 1151 /** 1152 * snd_pcm_hw_rule_add - add the hw-constraint rule 1153 * @runtime: the pcm runtime instance 1154 * @cond: condition bits 1155 * @var: the variable to evaluate 1156 * @func: the evaluation function 1157 * @private: the private data pointer passed to function 1158 * @dep: the dependent variables 1159 * 1160 * Return: Zero if successful, or a negative error code on failure. 1161 */ 1162 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1163 int var, 1164 snd_pcm_hw_rule_func_t func, void *private, 1165 int dep, ...) 1166 { 1167 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1168 struct snd_pcm_hw_rule *c; 1169 unsigned int k; 1170 va_list args; 1171 va_start(args, dep); 1172 if (constrs->rules_num >= constrs->rules_all) { 1173 struct snd_pcm_hw_rule *new; 1174 unsigned int new_rules = constrs->rules_all + 16; 1175 new = krealloc_array(constrs->rules, new_rules, 1176 sizeof(*c), GFP_KERNEL); 1177 if (!new) { 1178 va_end(args); 1179 return -ENOMEM; 1180 } 1181 constrs->rules = new; 1182 constrs->rules_all = new_rules; 1183 } 1184 c = &constrs->rules[constrs->rules_num]; 1185 c->cond = cond; 1186 c->func = func; 1187 c->var = var; 1188 c->private = private; 1189 k = 0; 1190 while (1) { 1191 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1192 va_end(args); 1193 return -EINVAL; 1194 } 1195 c->deps[k++] = dep; 1196 if (dep < 0) 1197 break; 1198 dep = va_arg(args, int); 1199 } 1200 constrs->rules_num++; 1201 va_end(args); 1202 return 0; 1203 } 1204 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1205 1206 /** 1207 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1208 * @runtime: PCM runtime instance 1209 * @var: hw_params variable to apply the mask 1210 * @mask: the bitmap mask 1211 * 1212 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1213 * 1214 * Return: Zero if successful, or a negative error code on failure. 1215 */ 1216 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1217 u_int32_t mask) 1218 { 1219 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1220 struct snd_mask *maskp = constrs_mask(constrs, var); 1221 *maskp->bits &= mask; 1222 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1223 if (*maskp->bits == 0) 1224 return -EINVAL; 1225 return 0; 1226 } 1227 1228 /** 1229 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1230 * @runtime: PCM runtime instance 1231 * @var: hw_params variable to apply the mask 1232 * @mask: the 64bit bitmap mask 1233 * 1234 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1235 * 1236 * Return: Zero if successful, or a negative error code on failure. 1237 */ 1238 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1239 u_int64_t mask) 1240 { 1241 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1242 struct snd_mask *maskp = constrs_mask(constrs, var); 1243 maskp->bits[0] &= (u_int32_t)mask; 1244 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1245 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1246 if (! maskp->bits[0] && ! maskp->bits[1]) 1247 return -EINVAL; 1248 return 0; 1249 } 1250 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64); 1251 1252 /** 1253 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1254 * @runtime: PCM runtime instance 1255 * @var: hw_params variable to apply the integer constraint 1256 * 1257 * Apply the constraint of integer to an interval parameter. 1258 * 1259 * Return: Positive if the value is changed, zero if it's not changed, or a 1260 * negative error code. 1261 */ 1262 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1263 { 1264 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1265 return snd_interval_setinteger(constrs_interval(constrs, var)); 1266 } 1267 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1268 1269 /** 1270 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1271 * @runtime: PCM runtime instance 1272 * @var: hw_params variable to apply the range 1273 * @min: the minimal value 1274 * @max: the maximal value 1275 * 1276 * Apply the min/max range constraint to an interval parameter. 1277 * 1278 * Return: Positive if the value is changed, zero if it's not changed, or a 1279 * negative error code. 1280 */ 1281 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1282 unsigned int min, unsigned int max) 1283 { 1284 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1285 struct snd_interval t; 1286 t.min = min; 1287 t.max = max; 1288 t.openmin = t.openmax = 0; 1289 t.integer = 0; 1290 return snd_interval_refine(constrs_interval(constrs, var), &t); 1291 } 1292 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1293 1294 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1295 struct snd_pcm_hw_rule *rule) 1296 { 1297 struct snd_pcm_hw_constraint_list *list = rule->private; 1298 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1299 } 1300 1301 1302 /** 1303 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1304 * @runtime: PCM runtime instance 1305 * @cond: condition bits 1306 * @var: hw_params variable to apply the list constraint 1307 * @l: list 1308 * 1309 * Apply the list of constraints to an interval parameter. 1310 * 1311 * Return: Zero if successful, or a negative error code on failure. 1312 */ 1313 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1314 unsigned int cond, 1315 snd_pcm_hw_param_t var, 1316 const struct snd_pcm_hw_constraint_list *l) 1317 { 1318 return snd_pcm_hw_rule_add(runtime, cond, var, 1319 snd_pcm_hw_rule_list, (void *)l, 1320 var, -1); 1321 } 1322 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1323 1324 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params, 1325 struct snd_pcm_hw_rule *rule) 1326 { 1327 struct snd_pcm_hw_constraint_ranges *r = rule->private; 1328 return snd_interval_ranges(hw_param_interval(params, rule->var), 1329 r->count, r->ranges, r->mask); 1330 } 1331 1332 1333 /** 1334 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter 1335 * @runtime: PCM runtime instance 1336 * @cond: condition bits 1337 * @var: hw_params variable to apply the list of range constraints 1338 * @r: ranges 1339 * 1340 * Apply the list of range constraints to an interval parameter. 1341 * 1342 * Return: Zero if successful, or a negative error code on failure. 1343 */ 1344 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime, 1345 unsigned int cond, 1346 snd_pcm_hw_param_t var, 1347 const struct snd_pcm_hw_constraint_ranges *r) 1348 { 1349 return snd_pcm_hw_rule_add(runtime, cond, var, 1350 snd_pcm_hw_rule_ranges, (void *)r, 1351 var, -1); 1352 } 1353 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges); 1354 1355 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1356 struct snd_pcm_hw_rule *rule) 1357 { 1358 const struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1359 unsigned int num = 0, den = 0; 1360 int err; 1361 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1362 r->nrats, r->rats, &num, &den); 1363 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1364 params->rate_num = num; 1365 params->rate_den = den; 1366 } 1367 return err; 1368 } 1369 1370 /** 1371 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1372 * @runtime: PCM runtime instance 1373 * @cond: condition bits 1374 * @var: hw_params variable to apply the ratnums constraint 1375 * @r: struct snd_ratnums constriants 1376 * 1377 * Return: Zero if successful, or a negative error code on failure. 1378 */ 1379 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1380 unsigned int cond, 1381 snd_pcm_hw_param_t var, 1382 const struct snd_pcm_hw_constraint_ratnums *r) 1383 { 1384 return snd_pcm_hw_rule_add(runtime, cond, var, 1385 snd_pcm_hw_rule_ratnums, (void *)r, 1386 var, -1); 1387 } 1388 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1389 1390 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1391 struct snd_pcm_hw_rule *rule) 1392 { 1393 const struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1394 unsigned int num = 0, den = 0; 1395 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1396 r->nrats, r->rats, &num, &den); 1397 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1398 params->rate_num = num; 1399 params->rate_den = den; 1400 } 1401 return err; 1402 } 1403 1404 /** 1405 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1406 * @runtime: PCM runtime instance 1407 * @cond: condition bits 1408 * @var: hw_params variable to apply the ratdens constraint 1409 * @r: struct snd_ratdens constriants 1410 * 1411 * Return: Zero if successful, or a negative error code on failure. 1412 */ 1413 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1414 unsigned int cond, 1415 snd_pcm_hw_param_t var, 1416 const struct snd_pcm_hw_constraint_ratdens *r) 1417 { 1418 return snd_pcm_hw_rule_add(runtime, cond, var, 1419 snd_pcm_hw_rule_ratdens, (void *)r, 1420 var, -1); 1421 } 1422 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1423 1424 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1425 struct snd_pcm_hw_rule *rule) 1426 { 1427 unsigned int l = (unsigned long) rule->private; 1428 int width = l & 0xffff; 1429 unsigned int msbits = l >> 16; 1430 const struct snd_interval *i = 1431 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1432 1433 if (!snd_interval_single(i)) 1434 return 0; 1435 1436 if ((snd_interval_value(i) == width) || 1437 (width == 0 && snd_interval_value(i) > msbits)) 1438 params->msbits = min_not_zero(params->msbits, msbits); 1439 1440 return 0; 1441 } 1442 1443 /** 1444 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1445 * @runtime: PCM runtime instance 1446 * @cond: condition bits 1447 * @width: sample bits width 1448 * @msbits: msbits width 1449 * 1450 * This constraint will set the number of most significant bits (msbits) if a 1451 * sample format with the specified width has been select. If width is set to 0 1452 * the msbits will be set for any sample format with a width larger than the 1453 * specified msbits. 1454 * 1455 * Return: Zero if successful, or a negative error code on failure. 1456 */ 1457 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1458 unsigned int cond, 1459 unsigned int width, 1460 unsigned int msbits) 1461 { 1462 unsigned long l = (msbits << 16) | width; 1463 return snd_pcm_hw_rule_add(runtime, cond, -1, 1464 snd_pcm_hw_rule_msbits, 1465 (void*) l, 1466 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1467 } 1468 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1469 1470 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1471 struct snd_pcm_hw_rule *rule) 1472 { 1473 unsigned long step = (unsigned long) rule->private; 1474 return snd_interval_step(hw_param_interval(params, rule->var), step); 1475 } 1476 1477 /** 1478 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1479 * @runtime: PCM runtime instance 1480 * @cond: condition bits 1481 * @var: hw_params variable to apply the step constraint 1482 * @step: step size 1483 * 1484 * Return: Zero if successful, or a negative error code on failure. 1485 */ 1486 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1487 unsigned int cond, 1488 snd_pcm_hw_param_t var, 1489 unsigned long step) 1490 { 1491 return snd_pcm_hw_rule_add(runtime, cond, var, 1492 snd_pcm_hw_rule_step, (void *) step, 1493 var, -1); 1494 } 1495 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1496 1497 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1498 { 1499 static const unsigned int pow2_sizes[] = { 1500 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1501 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1502 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1503 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1504 }; 1505 return snd_interval_list(hw_param_interval(params, rule->var), 1506 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1507 } 1508 1509 /** 1510 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1511 * @runtime: PCM runtime instance 1512 * @cond: condition bits 1513 * @var: hw_params variable to apply the power-of-2 constraint 1514 * 1515 * Return: Zero if successful, or a negative error code on failure. 1516 */ 1517 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1518 unsigned int cond, 1519 snd_pcm_hw_param_t var) 1520 { 1521 return snd_pcm_hw_rule_add(runtime, cond, var, 1522 snd_pcm_hw_rule_pow2, NULL, 1523 var, -1); 1524 } 1525 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1526 1527 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, 1528 struct snd_pcm_hw_rule *rule) 1529 { 1530 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; 1531 struct snd_interval *rate; 1532 1533 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 1534 return snd_interval_list(rate, 1, &base_rate, 0); 1535 } 1536 1537 /** 1538 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling 1539 * @runtime: PCM runtime instance 1540 * @base_rate: the rate at which the hardware does not resample 1541 * 1542 * Return: Zero if successful, or a negative error code on failure. 1543 */ 1544 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, 1545 unsigned int base_rate) 1546 { 1547 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, 1548 SNDRV_PCM_HW_PARAM_RATE, 1549 snd_pcm_hw_rule_noresample_func, 1550 (void *)(uintptr_t)base_rate, 1551 SNDRV_PCM_HW_PARAM_RATE, -1); 1552 } 1553 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); 1554 1555 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1556 snd_pcm_hw_param_t var) 1557 { 1558 if (hw_is_mask(var)) { 1559 snd_mask_any(hw_param_mask(params, var)); 1560 params->cmask |= 1 << var; 1561 params->rmask |= 1 << var; 1562 return; 1563 } 1564 if (hw_is_interval(var)) { 1565 snd_interval_any(hw_param_interval(params, var)); 1566 params->cmask |= 1 << var; 1567 params->rmask |= 1 << var; 1568 return; 1569 } 1570 snd_BUG(); 1571 } 1572 1573 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1574 { 1575 unsigned int k; 1576 memset(params, 0, sizeof(*params)); 1577 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1578 _snd_pcm_hw_param_any(params, k); 1579 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1580 _snd_pcm_hw_param_any(params, k); 1581 params->info = ~0U; 1582 } 1583 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1584 1585 /** 1586 * snd_pcm_hw_param_value - return @params field @var value 1587 * @params: the hw_params instance 1588 * @var: parameter to retrieve 1589 * @dir: pointer to the direction (-1,0,1) or %NULL 1590 * 1591 * Return: The value for field @var if it's fixed in configuration space 1592 * defined by @params. -%EINVAL otherwise. 1593 */ 1594 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1595 snd_pcm_hw_param_t var, int *dir) 1596 { 1597 if (hw_is_mask(var)) { 1598 const struct snd_mask *mask = hw_param_mask_c(params, var); 1599 if (!snd_mask_single(mask)) 1600 return -EINVAL; 1601 if (dir) 1602 *dir = 0; 1603 return snd_mask_value(mask); 1604 } 1605 if (hw_is_interval(var)) { 1606 const struct snd_interval *i = hw_param_interval_c(params, var); 1607 if (!snd_interval_single(i)) 1608 return -EINVAL; 1609 if (dir) 1610 *dir = i->openmin; 1611 return snd_interval_value(i); 1612 } 1613 return -EINVAL; 1614 } 1615 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1616 1617 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1618 snd_pcm_hw_param_t var) 1619 { 1620 if (hw_is_mask(var)) { 1621 snd_mask_none(hw_param_mask(params, var)); 1622 params->cmask |= 1 << var; 1623 params->rmask |= 1 << var; 1624 } else if (hw_is_interval(var)) { 1625 snd_interval_none(hw_param_interval(params, var)); 1626 params->cmask |= 1 << var; 1627 params->rmask |= 1 << var; 1628 } else { 1629 snd_BUG(); 1630 } 1631 } 1632 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1633 1634 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1635 snd_pcm_hw_param_t var) 1636 { 1637 int changed; 1638 if (hw_is_mask(var)) 1639 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1640 else if (hw_is_interval(var)) 1641 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1642 else 1643 return -EINVAL; 1644 if (changed > 0) { 1645 params->cmask |= 1 << var; 1646 params->rmask |= 1 << var; 1647 } 1648 return changed; 1649 } 1650 1651 1652 /** 1653 * snd_pcm_hw_param_first - refine config space and return minimum value 1654 * @pcm: PCM instance 1655 * @params: the hw_params instance 1656 * @var: parameter to retrieve 1657 * @dir: pointer to the direction (-1,0,1) or %NULL 1658 * 1659 * Inside configuration space defined by @params remove from @var all 1660 * values > minimum. Reduce configuration space accordingly. 1661 * 1662 * Return: The minimum, or a negative error code on failure. 1663 */ 1664 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1665 struct snd_pcm_hw_params *params, 1666 snd_pcm_hw_param_t var, int *dir) 1667 { 1668 int changed = _snd_pcm_hw_param_first(params, var); 1669 if (changed < 0) 1670 return changed; 1671 if (params->rmask) { 1672 int err = snd_pcm_hw_refine(pcm, params); 1673 if (err < 0) 1674 return err; 1675 } 1676 return snd_pcm_hw_param_value(params, var, dir); 1677 } 1678 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1679 1680 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1681 snd_pcm_hw_param_t var) 1682 { 1683 int changed; 1684 if (hw_is_mask(var)) 1685 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1686 else if (hw_is_interval(var)) 1687 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1688 else 1689 return -EINVAL; 1690 if (changed > 0) { 1691 params->cmask |= 1 << var; 1692 params->rmask |= 1 << var; 1693 } 1694 return changed; 1695 } 1696 1697 1698 /** 1699 * snd_pcm_hw_param_last - refine config space and return maximum value 1700 * @pcm: PCM instance 1701 * @params: the hw_params instance 1702 * @var: parameter to retrieve 1703 * @dir: pointer to the direction (-1,0,1) or %NULL 1704 * 1705 * Inside configuration space defined by @params remove from @var all 1706 * values < maximum. Reduce configuration space accordingly. 1707 * 1708 * Return: The maximum, or a negative error code on failure. 1709 */ 1710 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1711 struct snd_pcm_hw_params *params, 1712 snd_pcm_hw_param_t var, int *dir) 1713 { 1714 int changed = _snd_pcm_hw_param_last(params, var); 1715 if (changed < 0) 1716 return changed; 1717 if (params->rmask) { 1718 int err = snd_pcm_hw_refine(pcm, params); 1719 if (err < 0) 1720 return err; 1721 } 1722 return snd_pcm_hw_param_value(params, var, dir); 1723 } 1724 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1725 1726 /** 1727 * snd_pcm_hw_params_bits - Get the number of bits per the sample. 1728 * @p: hardware parameters 1729 * 1730 * Return: The number of bits per sample based on the format, 1731 * subformat and msbits the specified hw params has. 1732 */ 1733 int snd_pcm_hw_params_bits(const struct snd_pcm_hw_params *p) 1734 { 1735 snd_pcm_subformat_t subformat = params_subformat(p); 1736 snd_pcm_format_t format = params_format(p); 1737 1738 switch (format) { 1739 case SNDRV_PCM_FORMAT_S32_LE: 1740 case SNDRV_PCM_FORMAT_U32_LE: 1741 case SNDRV_PCM_FORMAT_S32_BE: 1742 case SNDRV_PCM_FORMAT_U32_BE: 1743 switch (subformat) { 1744 case SNDRV_PCM_SUBFORMAT_MSBITS_20: 1745 return 20; 1746 case SNDRV_PCM_SUBFORMAT_MSBITS_24: 1747 return 24; 1748 case SNDRV_PCM_SUBFORMAT_MSBITS_MAX: 1749 case SNDRV_PCM_SUBFORMAT_STD: 1750 default: 1751 break; 1752 } 1753 fallthrough; 1754 default: 1755 return snd_pcm_format_width(format); 1756 } 1757 } 1758 EXPORT_SYMBOL(snd_pcm_hw_params_bits); 1759 1760 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1761 void *arg) 1762 { 1763 struct snd_pcm_runtime *runtime = substream->runtime; 1764 1765 guard(pcm_stream_lock_irqsave)(substream); 1766 if (snd_pcm_running(substream) && 1767 snd_pcm_update_hw_ptr(substream) >= 0) 1768 runtime->status->hw_ptr %= runtime->buffer_size; 1769 else { 1770 runtime->status->hw_ptr = 0; 1771 runtime->hw_ptr_wrap = 0; 1772 } 1773 return 0; 1774 } 1775 1776 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1777 void *arg) 1778 { 1779 struct snd_pcm_channel_info *info = arg; 1780 struct snd_pcm_runtime *runtime = substream->runtime; 1781 int width; 1782 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1783 info->offset = -1; 1784 return 0; 1785 } 1786 width = snd_pcm_format_physical_width(runtime->format); 1787 if (width < 0) 1788 return width; 1789 info->offset = 0; 1790 switch (runtime->access) { 1791 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1792 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1793 info->first = info->channel * width; 1794 info->step = runtime->channels * width; 1795 break; 1796 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1797 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1798 { 1799 size_t size = runtime->dma_bytes / runtime->channels; 1800 info->first = info->channel * size * 8; 1801 info->step = width; 1802 break; 1803 } 1804 default: 1805 snd_BUG(); 1806 break; 1807 } 1808 return 0; 1809 } 1810 1811 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1812 void *arg) 1813 { 1814 struct snd_pcm_hw_params *params = arg; 1815 snd_pcm_format_t format; 1816 int channels; 1817 ssize_t frame_size; 1818 1819 params->fifo_size = substream->runtime->hw.fifo_size; 1820 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1821 format = params_format(params); 1822 channels = params_channels(params); 1823 frame_size = snd_pcm_format_size(format, channels); 1824 if (frame_size > 0) 1825 params->fifo_size /= frame_size; 1826 } 1827 return 0; 1828 } 1829 1830 static int snd_pcm_lib_ioctl_sync_id(struct snd_pcm_substream *substream, 1831 void *arg) 1832 { 1833 static const unsigned char id[12] = { 0xff, 0xff, 0xff, 0xff, 1834 0xff, 0xff, 0xff, 0xff, 1835 0xff, 0xff, 0xff, 0xff }; 1836 1837 if (substream->runtime->std_sync_id) 1838 snd_pcm_set_sync_per_card(substream, arg, id, sizeof(id)); 1839 return 0; 1840 } 1841 1842 /** 1843 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1844 * @substream: the pcm substream instance 1845 * @cmd: ioctl command 1846 * @arg: ioctl argument 1847 * 1848 * Processes the generic ioctl commands for PCM. 1849 * Can be passed as the ioctl callback for PCM ops. 1850 * 1851 * Return: Zero if successful, or a negative error code on failure. 1852 */ 1853 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1854 unsigned int cmd, void *arg) 1855 { 1856 switch (cmd) { 1857 case SNDRV_PCM_IOCTL1_RESET: 1858 return snd_pcm_lib_ioctl_reset(substream, arg); 1859 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1860 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1861 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1862 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1863 case SNDRV_PCM_IOCTL1_SYNC_ID: 1864 return snd_pcm_lib_ioctl_sync_id(substream, arg); 1865 } 1866 return -ENXIO; 1867 } 1868 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1869 1870 /** 1871 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period 1872 * under acquired lock of PCM substream. 1873 * @substream: the instance of pcm substream. 1874 * 1875 * This function is called when the batch of audio data frames as the same size as the period of 1876 * buffer is already processed in audio data transmission. 1877 * 1878 * The call of function updates the status of runtime with the latest position of audio data 1879 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for 1880 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM 1881 * substream according to configured threshold. 1882 * 1883 * The function is intended to use for the case that PCM driver operates audio data frames under 1884 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process 1885 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead 1886 * since lock of PCM substream should be acquired in advance. 1887 * 1888 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of 1889 * function: 1890 * 1891 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state. 1892 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state. 1893 * - .get_time_info - to retrieve audio time stamp if needed. 1894 * 1895 * Even if more than one periods have elapsed since the last call, you have to call this only once. 1896 */ 1897 void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream) 1898 { 1899 struct snd_pcm_runtime *runtime; 1900 1901 if (PCM_RUNTIME_CHECK(substream)) 1902 return; 1903 runtime = substream->runtime; 1904 1905 if (!snd_pcm_running(substream) || 1906 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1907 goto _end; 1908 1909 #ifdef CONFIG_SND_PCM_TIMER 1910 if (substream->timer_running) 1911 snd_timer_interrupt(substream->timer, 1); 1912 #endif 1913 _end: 1914 snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN); 1915 } 1916 EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock); 1917 1918 /** 1919 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of 1920 * PCM substream. 1921 * @substream: the instance of PCM substream. 1922 * 1923 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for 1924 * acquiring lock of PCM substream voluntarily. 1925 * 1926 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that 1927 * the batch of audio data frames as the same size as the period of buffer is already processed in 1928 * audio data transmission. 1929 */ 1930 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1931 { 1932 if (snd_BUG_ON(!substream)) 1933 return; 1934 1935 guard(pcm_stream_lock_irqsave)(substream); 1936 snd_pcm_period_elapsed_under_stream_lock(substream); 1937 } 1938 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1939 1940 /* 1941 * Wait until avail_min data becomes available 1942 * Returns a negative error code if any error occurs during operation. 1943 * The available space is stored on availp. When err = 0 and avail = 0 1944 * on the capture stream, it indicates the stream is in DRAINING state. 1945 */ 1946 static int wait_for_avail(struct snd_pcm_substream *substream, 1947 snd_pcm_uframes_t *availp) 1948 { 1949 struct snd_pcm_runtime *runtime = substream->runtime; 1950 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1951 wait_queue_entry_t wait; 1952 int err = 0; 1953 snd_pcm_uframes_t avail = 0; 1954 long wait_time, tout; 1955 1956 init_waitqueue_entry(&wait, current); 1957 set_current_state(TASK_INTERRUPTIBLE); 1958 add_wait_queue(&runtime->tsleep, &wait); 1959 1960 if (runtime->no_period_wakeup) 1961 wait_time = MAX_SCHEDULE_TIMEOUT; 1962 else { 1963 /* use wait time from substream if available */ 1964 if (substream->wait_time) { 1965 wait_time = substream->wait_time; 1966 } else { 1967 wait_time = 100; 1968 1969 if (runtime->rate) { 1970 long t = runtime->buffer_size * 1100 / runtime->rate; 1971 wait_time = max(t, wait_time); 1972 } 1973 } 1974 wait_time = msecs_to_jiffies(wait_time); 1975 } 1976 1977 for (;;) { 1978 if (signal_pending(current)) { 1979 err = -ERESTARTSYS; 1980 break; 1981 } 1982 1983 /* 1984 * We need to check if space became available already 1985 * (and thus the wakeup happened already) first to close 1986 * the race of space already having become available. 1987 * This check must happen after been added to the waitqueue 1988 * and having current state be INTERRUPTIBLE. 1989 */ 1990 avail = snd_pcm_avail(substream); 1991 if (avail >= runtime->twake) 1992 break; 1993 snd_pcm_stream_unlock_irq(substream); 1994 1995 tout = schedule_timeout(wait_time); 1996 1997 snd_pcm_stream_lock_irq(substream); 1998 set_current_state(TASK_INTERRUPTIBLE); 1999 switch (runtime->state) { 2000 case SNDRV_PCM_STATE_SUSPENDED: 2001 err = -ESTRPIPE; 2002 goto _endloop; 2003 case SNDRV_PCM_STATE_XRUN: 2004 err = -EPIPE; 2005 goto _endloop; 2006 case SNDRV_PCM_STATE_DRAINING: 2007 if (is_playback) 2008 err = -EPIPE; 2009 else 2010 avail = 0; /* indicate draining */ 2011 goto _endloop; 2012 case SNDRV_PCM_STATE_OPEN: 2013 case SNDRV_PCM_STATE_SETUP: 2014 case SNDRV_PCM_STATE_DISCONNECTED: 2015 err = -EBADFD; 2016 goto _endloop; 2017 case SNDRV_PCM_STATE_PAUSED: 2018 continue; 2019 } 2020 if (!tout) { 2021 pcm_dbg(substream->pcm, 2022 "%s timeout (DMA or IRQ trouble?)\n", 2023 is_playback ? "playback write" : "capture read"); 2024 err = -EIO; 2025 break; 2026 } 2027 } 2028 _endloop: 2029 set_current_state(TASK_RUNNING); 2030 remove_wait_queue(&runtime->tsleep, &wait); 2031 *availp = avail; 2032 return err; 2033 } 2034 2035 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream, 2036 int channel, unsigned long hwoff, 2037 struct iov_iter *iter, unsigned long bytes); 2038 2039 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *, 2040 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f, 2041 bool); 2042 2043 /* calculate the target DMA-buffer position to be written/read */ 2044 static void *get_dma_ptr(struct snd_pcm_runtime *runtime, 2045 int channel, unsigned long hwoff) 2046 { 2047 return runtime->dma_area + hwoff + 2048 channel * (runtime->dma_bytes / runtime->channels); 2049 } 2050 2051 /* default copy ops for write; used for both interleaved and non- modes */ 2052 static int default_write_copy(struct snd_pcm_substream *substream, 2053 int channel, unsigned long hwoff, 2054 struct iov_iter *iter, unsigned long bytes) 2055 { 2056 if (copy_from_iter(get_dma_ptr(substream->runtime, channel, hwoff), 2057 bytes, iter) != bytes) 2058 return -EFAULT; 2059 return 0; 2060 } 2061 2062 /* fill silence instead of copy data; called as a transfer helper 2063 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when 2064 * a NULL buffer is passed 2065 */ 2066 static int fill_silence(struct snd_pcm_substream *substream, int channel, 2067 unsigned long hwoff, struct iov_iter *iter, 2068 unsigned long bytes) 2069 { 2070 struct snd_pcm_runtime *runtime = substream->runtime; 2071 2072 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK) 2073 return 0; 2074 if (substream->ops->fill_silence) 2075 return substream->ops->fill_silence(substream, channel, 2076 hwoff, bytes); 2077 2078 snd_pcm_format_set_silence(runtime->format, 2079 get_dma_ptr(runtime, channel, hwoff), 2080 bytes_to_samples(runtime, bytes)); 2081 return 0; 2082 } 2083 2084 /* default copy ops for read; used for both interleaved and non- modes */ 2085 static int default_read_copy(struct snd_pcm_substream *substream, 2086 int channel, unsigned long hwoff, 2087 struct iov_iter *iter, unsigned long bytes) 2088 { 2089 if (copy_to_iter(get_dma_ptr(substream->runtime, channel, hwoff), 2090 bytes, iter) != bytes) 2091 return -EFAULT; 2092 return 0; 2093 } 2094 2095 /* call transfer with the filled iov_iter */ 2096 static int do_transfer(struct snd_pcm_substream *substream, int c, 2097 unsigned long hwoff, void *data, unsigned long bytes, 2098 pcm_transfer_f transfer, bool in_kernel) 2099 { 2100 struct iov_iter iter; 2101 int err, type; 2102 2103 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 2104 type = ITER_SOURCE; 2105 else 2106 type = ITER_DEST; 2107 2108 if (in_kernel) { 2109 struct kvec kvec = { data, bytes }; 2110 2111 iov_iter_kvec(&iter, type, &kvec, 1, bytes); 2112 return transfer(substream, c, hwoff, &iter, bytes); 2113 } 2114 2115 err = import_ubuf(type, (__force void __user *)data, bytes, &iter); 2116 if (err) 2117 return err; 2118 return transfer(substream, c, hwoff, &iter, bytes); 2119 } 2120 2121 /* call transfer function with the converted pointers and sizes; 2122 * for interleaved mode, it's one shot for all samples 2123 */ 2124 static int interleaved_copy(struct snd_pcm_substream *substream, 2125 snd_pcm_uframes_t hwoff, void *data, 2126 snd_pcm_uframes_t off, 2127 snd_pcm_uframes_t frames, 2128 pcm_transfer_f transfer, 2129 bool in_kernel) 2130 { 2131 struct snd_pcm_runtime *runtime = substream->runtime; 2132 2133 /* convert to bytes */ 2134 hwoff = frames_to_bytes(runtime, hwoff); 2135 off = frames_to_bytes(runtime, off); 2136 frames = frames_to_bytes(runtime, frames); 2137 2138 return do_transfer(substream, 0, hwoff, data + off, frames, transfer, 2139 in_kernel); 2140 } 2141 2142 /* call transfer function with the converted pointers and sizes for each 2143 * non-interleaved channel; when buffer is NULL, silencing instead of copying 2144 */ 2145 static int noninterleaved_copy(struct snd_pcm_substream *substream, 2146 snd_pcm_uframes_t hwoff, void *data, 2147 snd_pcm_uframes_t off, 2148 snd_pcm_uframes_t frames, 2149 pcm_transfer_f transfer, 2150 bool in_kernel) 2151 { 2152 struct snd_pcm_runtime *runtime = substream->runtime; 2153 int channels = runtime->channels; 2154 void **bufs = data; 2155 int c, err; 2156 2157 /* convert to bytes; note that it's not frames_to_bytes() here. 2158 * in non-interleaved mode, we copy for each channel, thus 2159 * each copy is n_samples bytes x channels = whole frames. 2160 */ 2161 off = samples_to_bytes(runtime, off); 2162 frames = samples_to_bytes(runtime, frames); 2163 hwoff = samples_to_bytes(runtime, hwoff); 2164 for (c = 0; c < channels; ++c, ++bufs) { 2165 if (!data || !*bufs) 2166 err = fill_silence(substream, c, hwoff, NULL, frames); 2167 else 2168 err = do_transfer(substream, c, hwoff, *bufs + off, 2169 frames, transfer, in_kernel); 2170 if (err < 0) 2171 return err; 2172 } 2173 return 0; 2174 } 2175 2176 /* fill silence on the given buffer position; 2177 * called from snd_pcm_playback_silence() 2178 */ 2179 static int fill_silence_frames(struct snd_pcm_substream *substream, 2180 snd_pcm_uframes_t off, snd_pcm_uframes_t frames) 2181 { 2182 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 2183 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) 2184 return interleaved_copy(substream, off, NULL, 0, frames, 2185 fill_silence, true); 2186 else 2187 return noninterleaved_copy(substream, off, NULL, 0, frames, 2188 fill_silence, true); 2189 } 2190 2191 /* sanity-check for read/write methods */ 2192 static int pcm_sanity_check(struct snd_pcm_substream *substream) 2193 { 2194 struct snd_pcm_runtime *runtime; 2195 if (PCM_RUNTIME_CHECK(substream)) 2196 return -ENXIO; 2197 runtime = substream->runtime; 2198 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area)) 2199 return -EINVAL; 2200 if (runtime->state == SNDRV_PCM_STATE_OPEN) 2201 return -EBADFD; 2202 return 0; 2203 } 2204 2205 static int pcm_accessible_state(struct snd_pcm_runtime *runtime) 2206 { 2207 switch (runtime->state) { 2208 case SNDRV_PCM_STATE_PREPARED: 2209 case SNDRV_PCM_STATE_RUNNING: 2210 case SNDRV_PCM_STATE_PAUSED: 2211 return 0; 2212 case SNDRV_PCM_STATE_XRUN: 2213 return -EPIPE; 2214 case SNDRV_PCM_STATE_SUSPENDED: 2215 return -ESTRPIPE; 2216 default: 2217 return -EBADFD; 2218 } 2219 } 2220 2221 /* update to the given appl_ptr and call ack callback if needed; 2222 * when an error is returned, take back to the original value 2223 */ 2224 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream, 2225 snd_pcm_uframes_t appl_ptr) 2226 { 2227 struct snd_pcm_runtime *runtime = substream->runtime; 2228 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr; 2229 snd_pcm_sframes_t diff; 2230 int ret; 2231 2232 if (old_appl_ptr == appl_ptr) 2233 return 0; 2234 2235 if (appl_ptr >= runtime->boundary) 2236 return -EINVAL; 2237 /* 2238 * check if a rewind is requested by the application 2239 */ 2240 if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) { 2241 diff = appl_ptr - old_appl_ptr; 2242 if (diff >= 0) { 2243 if (diff > runtime->buffer_size) 2244 return -EINVAL; 2245 } else { 2246 if (runtime->boundary + diff > runtime->buffer_size) 2247 return -EINVAL; 2248 } 2249 } 2250 2251 runtime->control->appl_ptr = appl_ptr; 2252 if (substream->ops->ack) { 2253 ret = substream->ops->ack(substream); 2254 if (ret < 0) { 2255 runtime->control->appl_ptr = old_appl_ptr; 2256 if (ret == -EPIPE) 2257 __snd_pcm_xrun(substream); 2258 return ret; 2259 } 2260 } 2261 2262 trace_applptr(substream, old_appl_ptr, appl_ptr); 2263 2264 return 0; 2265 } 2266 2267 /* the common loop for read/write data */ 2268 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream, 2269 void *data, bool interleaved, 2270 snd_pcm_uframes_t size, bool in_kernel) 2271 { 2272 struct snd_pcm_runtime *runtime = substream->runtime; 2273 snd_pcm_uframes_t xfer = 0; 2274 snd_pcm_uframes_t offset = 0; 2275 snd_pcm_uframes_t avail; 2276 pcm_copy_f writer; 2277 pcm_transfer_f transfer; 2278 bool nonblock; 2279 bool is_playback; 2280 int err; 2281 2282 err = pcm_sanity_check(substream); 2283 if (err < 0) 2284 return err; 2285 2286 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 2287 if (interleaved) { 2288 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2289 runtime->channels > 1) 2290 return -EINVAL; 2291 writer = interleaved_copy; 2292 } else { 2293 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2294 return -EINVAL; 2295 writer = noninterleaved_copy; 2296 } 2297 2298 if (!data) { 2299 if (is_playback) 2300 transfer = fill_silence; 2301 else 2302 return -EINVAL; 2303 } else { 2304 if (substream->ops->copy) 2305 transfer = substream->ops->copy; 2306 else 2307 transfer = is_playback ? 2308 default_write_copy : default_read_copy; 2309 } 2310 2311 if (size == 0) 2312 return 0; 2313 2314 nonblock = !!(substream->f_flags & O_NONBLOCK); 2315 2316 snd_pcm_stream_lock_irq(substream); 2317 err = pcm_accessible_state(runtime); 2318 if (err < 0) 2319 goto _end_unlock; 2320 2321 runtime->twake = runtime->control->avail_min ? : 1; 2322 if (runtime->state == SNDRV_PCM_STATE_RUNNING) 2323 snd_pcm_update_hw_ptr(substream); 2324 2325 /* 2326 * If size < start_threshold, wait indefinitely. Another 2327 * thread may start capture 2328 */ 2329 if (!is_playback && 2330 runtime->state == SNDRV_PCM_STATE_PREPARED && 2331 size >= runtime->start_threshold) { 2332 err = snd_pcm_start(substream); 2333 if (err < 0) 2334 goto _end_unlock; 2335 } 2336 2337 avail = snd_pcm_avail(substream); 2338 2339 while (size > 0) { 2340 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2341 snd_pcm_uframes_t cont; 2342 if (!avail) { 2343 if (!is_playback && 2344 runtime->state == SNDRV_PCM_STATE_DRAINING) { 2345 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2346 goto _end_unlock; 2347 } 2348 if (nonblock) { 2349 err = -EAGAIN; 2350 goto _end_unlock; 2351 } 2352 runtime->twake = min_t(snd_pcm_uframes_t, size, 2353 runtime->control->avail_min ? : 1); 2354 err = wait_for_avail(substream, &avail); 2355 if (err < 0) 2356 goto _end_unlock; 2357 if (!avail) 2358 continue; /* draining */ 2359 } 2360 frames = size > avail ? avail : size; 2361 appl_ptr = READ_ONCE(runtime->control->appl_ptr); 2362 appl_ofs = appl_ptr % runtime->buffer_size; 2363 cont = runtime->buffer_size - appl_ofs; 2364 if (frames > cont) 2365 frames = cont; 2366 if (snd_BUG_ON(!frames)) { 2367 err = -EINVAL; 2368 goto _end_unlock; 2369 } 2370 if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) { 2371 err = -EBUSY; 2372 goto _end_unlock; 2373 } 2374 snd_pcm_stream_unlock_irq(substream); 2375 if (!is_playback) 2376 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU); 2377 err = writer(substream, appl_ofs, data, offset, frames, 2378 transfer, in_kernel); 2379 if (is_playback) 2380 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE); 2381 snd_pcm_stream_lock_irq(substream); 2382 atomic_dec(&runtime->buffer_accessing); 2383 if (err < 0) 2384 goto _end_unlock; 2385 err = pcm_accessible_state(runtime); 2386 if (err < 0) 2387 goto _end_unlock; 2388 appl_ptr += frames; 2389 if (appl_ptr >= runtime->boundary) 2390 appl_ptr -= runtime->boundary; 2391 err = pcm_lib_apply_appl_ptr(substream, appl_ptr); 2392 if (err < 0) 2393 goto _end_unlock; 2394 2395 offset += frames; 2396 size -= frames; 2397 xfer += frames; 2398 avail -= frames; 2399 if (is_playback && 2400 runtime->state == SNDRV_PCM_STATE_PREPARED && 2401 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 2402 err = snd_pcm_start(substream); 2403 if (err < 0) 2404 goto _end_unlock; 2405 } 2406 } 2407 _end_unlock: 2408 runtime->twake = 0; 2409 if (xfer > 0 && err >= 0) 2410 snd_pcm_update_state(substream, runtime); 2411 snd_pcm_stream_unlock_irq(substream); 2412 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2413 } 2414 EXPORT_SYMBOL(__snd_pcm_lib_xfer); 2415 2416 /* 2417 * standard channel mapping helpers 2418 */ 2419 2420 /* default channel maps for multi-channel playbacks, up to 8 channels */ 2421 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = { 2422 { .channels = 1, 2423 .map = { SNDRV_CHMAP_MONO } }, 2424 { .channels = 2, 2425 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2426 { .channels = 4, 2427 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2428 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2429 { .channels = 6, 2430 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2431 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2432 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } }, 2433 { .channels = 8, 2434 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2435 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2436 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2437 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2438 { } 2439 }; 2440 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps); 2441 2442 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */ 2443 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = { 2444 { .channels = 1, 2445 .map = { SNDRV_CHMAP_MONO } }, 2446 { .channels = 2, 2447 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2448 { .channels = 4, 2449 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2450 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2451 { .channels = 6, 2452 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2453 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2454 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2455 { .channels = 8, 2456 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2457 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2458 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2459 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2460 { } 2461 }; 2462 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps); 2463 2464 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch) 2465 { 2466 if (ch > info->max_channels) 2467 return false; 2468 return !info->channel_mask || (info->channel_mask & (1U << ch)); 2469 } 2470 2471 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol, 2472 struct snd_ctl_elem_info *uinfo) 2473 { 2474 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2475 2476 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2477 uinfo->count = info->max_channels; 2478 uinfo->value.integer.min = 0; 2479 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 2480 return 0; 2481 } 2482 2483 /* get callback for channel map ctl element 2484 * stores the channel position firstly matching with the current channels 2485 */ 2486 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol, 2487 struct snd_ctl_elem_value *ucontrol) 2488 { 2489 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2490 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); 2491 struct snd_pcm_substream *substream; 2492 const struct snd_pcm_chmap_elem *map; 2493 2494 if (!info->chmap) 2495 return -EINVAL; 2496 substream = snd_pcm_chmap_substream(info, idx); 2497 if (!substream) 2498 return -ENODEV; 2499 memset(ucontrol->value.integer.value, 0, 2500 sizeof(long) * info->max_channels); 2501 if (!substream->runtime) 2502 return 0; /* no channels set */ 2503 for (map = info->chmap; map->channels; map++) { 2504 int i; 2505 if (map->channels == substream->runtime->channels && 2506 valid_chmap_channels(info, map->channels)) { 2507 for (i = 0; i < map->channels; i++) 2508 ucontrol->value.integer.value[i] = map->map[i]; 2509 return 0; 2510 } 2511 } 2512 return -EINVAL; 2513 } 2514 2515 /* tlv callback for channel map ctl element 2516 * expands the pre-defined channel maps in a form of TLV 2517 */ 2518 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag, 2519 unsigned int size, unsigned int __user *tlv) 2520 { 2521 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2522 const struct snd_pcm_chmap_elem *map; 2523 unsigned int __user *dst; 2524 int c, count = 0; 2525 2526 if (!info->chmap) 2527 return -EINVAL; 2528 if (size < 8) 2529 return -ENOMEM; 2530 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv)) 2531 return -EFAULT; 2532 size -= 8; 2533 dst = tlv + 2; 2534 for (map = info->chmap; map->channels; map++) { 2535 int chs_bytes = map->channels * 4; 2536 if (!valid_chmap_channels(info, map->channels)) 2537 continue; 2538 if (size < 8) 2539 return -ENOMEM; 2540 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) || 2541 put_user(chs_bytes, dst + 1)) 2542 return -EFAULT; 2543 dst += 2; 2544 size -= 8; 2545 count += 8; 2546 if (size < chs_bytes) 2547 return -ENOMEM; 2548 size -= chs_bytes; 2549 count += chs_bytes; 2550 for (c = 0; c < map->channels; c++) { 2551 if (put_user(map->map[c], dst)) 2552 return -EFAULT; 2553 dst++; 2554 } 2555 } 2556 if (put_user(count, tlv + 1)) 2557 return -EFAULT; 2558 return 0; 2559 } 2560 2561 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol) 2562 { 2563 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2564 info->pcm->streams[info->stream].chmap_kctl = NULL; 2565 kfree(info); 2566 } 2567 2568 /** 2569 * snd_pcm_add_chmap_ctls - create channel-mapping control elements 2570 * @pcm: the assigned PCM instance 2571 * @stream: stream direction 2572 * @chmap: channel map elements (for query) 2573 * @max_channels: the max number of channels for the stream 2574 * @private_value: the value passed to each kcontrol's private_value field 2575 * @info_ret: store struct snd_pcm_chmap instance if non-NULL 2576 * 2577 * Create channel-mapping control elements assigned to the given PCM stream(s). 2578 * Return: Zero if successful, or a negative error value. 2579 */ 2580 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream, 2581 const struct snd_pcm_chmap_elem *chmap, 2582 int max_channels, 2583 unsigned long private_value, 2584 struct snd_pcm_chmap **info_ret) 2585 { 2586 struct snd_pcm_chmap *info; 2587 struct snd_kcontrol_new knew = { 2588 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2589 .access = SNDRV_CTL_ELEM_ACCESS_READ | 2590 SNDRV_CTL_ELEM_ACCESS_VOLATILE | 2591 SNDRV_CTL_ELEM_ACCESS_TLV_READ | 2592 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, 2593 .info = pcm_chmap_ctl_info, 2594 .get = pcm_chmap_ctl_get, 2595 .tlv.c = pcm_chmap_ctl_tlv, 2596 }; 2597 int err; 2598 2599 if (WARN_ON(pcm->streams[stream].chmap_kctl)) 2600 return -EBUSY; 2601 info = kzalloc(sizeof(*info), GFP_KERNEL); 2602 if (!info) 2603 return -ENOMEM; 2604 info->pcm = pcm; 2605 info->stream = stream; 2606 info->chmap = chmap; 2607 info->max_channels = max_channels; 2608 if (stream == SNDRV_PCM_STREAM_PLAYBACK) 2609 knew.name = "Playback Channel Map"; 2610 else 2611 knew.name = "Capture Channel Map"; 2612 knew.device = pcm->device; 2613 knew.count = pcm->streams[stream].substream_count; 2614 knew.private_value = private_value; 2615 info->kctl = snd_ctl_new1(&knew, info); 2616 if (!info->kctl) { 2617 kfree(info); 2618 return -ENOMEM; 2619 } 2620 info->kctl->private_free = pcm_chmap_ctl_private_free; 2621 err = snd_ctl_add(pcm->card, info->kctl); 2622 if (err < 0) 2623 return err; 2624 pcm->streams[stream].chmap_kctl = info->kctl; 2625 if (info_ret) 2626 *info_ret = info; 2627 return 0; 2628 } 2629 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls); 2630
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.