~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/sound/core/pcm_lib.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  *  Digital Audio (PCM) abstract layer
  4  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  5  *                   Abramo Bagnara <abramo@alsa-project.org>
  6  */
  7 
  8 #include <linux/slab.h>
  9 #include <linux/sched/signal.h>
 10 #include <linux/time.h>
 11 #include <linux/math64.h>
 12 #include <linux/export.h>
 13 #include <sound/core.h>
 14 #include <sound/control.h>
 15 #include <sound/tlv.h>
 16 #include <sound/info.h>
 17 #include <sound/pcm.h>
 18 #include <sound/pcm_params.h>
 19 #include <sound/timer.h>
 20 
 21 #include "pcm_local.h"
 22 
 23 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
 24 #define CREATE_TRACE_POINTS
 25 #include "pcm_trace.h"
 26 #else
 27 #define trace_hwptr(substream, pos, in_interrupt)
 28 #define trace_xrun(substream)
 29 #define trace_hw_ptr_error(substream, reason)
 30 #define trace_applptr(substream, prev, curr)
 31 #endif
 32 
 33 static int fill_silence_frames(struct snd_pcm_substream *substream,
 34                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
 35 
 36 
 37 static inline void update_silence_vars(struct snd_pcm_runtime *runtime,
 38                                        snd_pcm_uframes_t ptr,
 39                                        snd_pcm_uframes_t new_ptr)
 40 {
 41         snd_pcm_sframes_t delta;
 42 
 43         delta = new_ptr - ptr;
 44         if (delta == 0)
 45                 return;
 46         if (delta < 0)
 47                 delta += runtime->boundary;
 48         if ((snd_pcm_uframes_t)delta < runtime->silence_filled)
 49                 runtime->silence_filled -= delta;
 50         else
 51                 runtime->silence_filled = 0;
 52         runtime->silence_start = new_ptr;
 53 }
 54 
 55 /*
 56  * fill ring buffer with silence
 57  * runtime->silence_start: starting pointer to silence area
 58  * runtime->silence_filled: size filled with silence
 59  * runtime->silence_threshold: threshold from application
 60  * runtime->silence_size: maximal size from application
 61  *
 62  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
 63  */
 64 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
 65 {
 66         struct snd_pcm_runtime *runtime = substream->runtime;
 67         snd_pcm_uframes_t frames, ofs, transfer;
 68         int err;
 69 
 70         if (runtime->silence_size < runtime->boundary) {
 71                 snd_pcm_sframes_t noise_dist;
 72                 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
 73                 update_silence_vars(runtime, runtime->silence_start, appl_ptr);
 74                 /* initialization outside pointer updates */
 75                 if (new_hw_ptr == ULONG_MAX)
 76                         new_hw_ptr = runtime->status->hw_ptr;
 77                 /* get hw_avail with the boundary crossing */
 78                 noise_dist = appl_ptr - new_hw_ptr;
 79                 if (noise_dist < 0)
 80                         noise_dist += runtime->boundary;
 81                 /* total noise distance */
 82                 noise_dist += runtime->silence_filled;
 83                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
 84                         return;
 85                 frames = runtime->silence_threshold - noise_dist;
 86                 if (frames > runtime->silence_size)
 87                         frames = runtime->silence_size;
 88         } else {
 89                 /*
 90                  * This filling mode aims at free-running mode (used for example by dmix),
 91                  * which doesn't update the application pointer.
 92                  */
 93                 snd_pcm_uframes_t hw_ptr = runtime->status->hw_ptr;
 94                 if (new_hw_ptr == ULONG_MAX) {
 95                         /*
 96                          * Initialization, fill the whole unused buffer with silence.
 97                          *
 98                          * Usually, this is entered while stopped, before data is queued,
 99                          * so both pointers are expected to be zero.
100                          */
101                         snd_pcm_sframes_t avail = runtime->control->appl_ptr - hw_ptr;
102                         if (avail < 0)
103                                 avail += runtime->boundary;
104                         /*
105                          * In free-running mode, appl_ptr will be zero even while running,
106                          * so we end up with a huge number. There is no useful way to
107                          * handle this, so we just clear the whole buffer.
108                          */
109                         runtime->silence_filled = avail > runtime->buffer_size ? 0 : avail;
110                         runtime->silence_start = hw_ptr;
111                 } else {
112                         /* Silence the just played area immediately */
113                         update_silence_vars(runtime, hw_ptr, new_hw_ptr);
114                 }
115                 /*
116                  * In this mode, silence_filled actually includes the valid
117                  * sample data from the user.
118                  */
119                 frames = runtime->buffer_size - runtime->silence_filled;
120         }
121         if (snd_BUG_ON(frames > runtime->buffer_size))
122                 return;
123         if (frames == 0)
124                 return;
125         ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
126         do {
127                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
128                 err = fill_silence_frames(substream, ofs, transfer);
129                 snd_BUG_ON(err < 0);
130                 runtime->silence_filled += transfer;
131                 frames -= transfer;
132                 ofs = 0;
133         } while (frames > 0);
134         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
135 }
136 
137 #ifdef CONFIG_SND_DEBUG
138 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
139                            char *name, size_t len)
140 {
141         snprintf(name, len, "pcmC%dD%d%c:%d",
142                  substream->pcm->card->number,
143                  substream->pcm->device,
144                  substream->stream ? 'c' : 'p',
145                  substream->number);
146 }
147 EXPORT_SYMBOL(snd_pcm_debug_name);
148 #endif
149 
150 #define XRUN_DEBUG_BASIC        (1<<0)
151 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
152 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
153 
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155 
156 #define xrun_debug(substream, mask) \
157                         ((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask)     0
160 #endif
161 
162 #define dump_stack_on_xrun(substream) do {                      \
163                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
164                         dump_stack();                           \
165         } while (0)
166 
167 /* call with stream lock held */
168 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
169 {
170         struct snd_pcm_runtime *runtime = substream->runtime;
171 
172         trace_xrun(substream);
173         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
174                 struct timespec64 tstamp;
175 
176                 snd_pcm_gettime(runtime, &tstamp);
177                 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
178                 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
179         }
180         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
181         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
182                 char name[16];
183                 snd_pcm_debug_name(substream, name, sizeof(name));
184                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
185                 dump_stack_on_xrun(substream);
186         }
187 }
188 
189 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
190 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
191         do {                                                            \
192                 trace_hw_ptr_error(substream, reason);  \
193                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
194                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
195                                            (in_interrupt) ? 'Q' : 'P', ##args); \
196                         dump_stack_on_xrun(substream);                  \
197                 }                                                       \
198         } while (0)
199 
200 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
201 
202 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
203 
204 #endif
205 
206 int snd_pcm_update_state(struct snd_pcm_substream *substream,
207                          struct snd_pcm_runtime *runtime)
208 {
209         snd_pcm_uframes_t avail;
210 
211         avail = snd_pcm_avail(substream);
212         if (avail > runtime->avail_max)
213                 runtime->avail_max = avail;
214         if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
215                 if (avail >= runtime->buffer_size) {
216                         snd_pcm_drain_done(substream);
217                         return -EPIPE;
218                 }
219         } else {
220                 if (avail >= runtime->stop_threshold) {
221                         __snd_pcm_xrun(substream);
222                         return -EPIPE;
223                 }
224         }
225         if (runtime->twake) {
226                 if (avail >= runtime->twake)
227                         wake_up(&runtime->tsleep);
228         } else if (avail >= runtime->control->avail_min)
229                 wake_up(&runtime->sleep);
230         return 0;
231 }
232 
233 static void update_audio_tstamp(struct snd_pcm_substream *substream,
234                                 struct timespec64 *curr_tstamp,
235                                 struct timespec64 *audio_tstamp)
236 {
237         struct snd_pcm_runtime *runtime = substream->runtime;
238         u64 audio_frames, audio_nsecs;
239         struct timespec64 driver_tstamp;
240 
241         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
242                 return;
243 
244         if (!(substream->ops->get_time_info) ||
245                 (runtime->audio_tstamp_report.actual_type ==
246                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
247 
248                 /*
249                  * provide audio timestamp derived from pointer position
250                  * add delay only if requested
251                  */
252 
253                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
254 
255                 if (runtime->audio_tstamp_config.report_delay) {
256                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
257                                 audio_frames -=  runtime->delay;
258                         else
259                                 audio_frames +=  runtime->delay;
260                 }
261                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
262                                 runtime->rate);
263                 *audio_tstamp = ns_to_timespec64(audio_nsecs);
264         }
265 
266         if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
267             runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
268                 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
269                 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
270                 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
271                 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
272         }
273 
274 
275         /*
276          * re-take a driver timestamp to let apps detect if the reference tstamp
277          * read by low-level hardware was provided with a delay
278          */
279         snd_pcm_gettime(substream->runtime, &driver_tstamp);
280         runtime->driver_tstamp = driver_tstamp;
281 }
282 
283 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
284                                   unsigned int in_interrupt)
285 {
286         struct snd_pcm_runtime *runtime = substream->runtime;
287         snd_pcm_uframes_t pos;
288         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
289         snd_pcm_sframes_t hdelta, delta;
290         unsigned long jdelta;
291         unsigned long curr_jiffies;
292         struct timespec64 curr_tstamp;
293         struct timespec64 audio_tstamp;
294         int crossed_boundary = 0;
295 
296         old_hw_ptr = runtime->status->hw_ptr;
297 
298         /*
299          * group pointer, time and jiffies reads to allow for more
300          * accurate correlations/corrections.
301          * The values are stored at the end of this routine after
302          * corrections for hw_ptr position
303          */
304         pos = substream->ops->pointer(substream);
305         curr_jiffies = jiffies;
306         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
307                 if ((substream->ops->get_time_info) &&
308                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
309                         substream->ops->get_time_info(substream, &curr_tstamp,
310                                                 &audio_tstamp,
311                                                 &runtime->audio_tstamp_config,
312                                                 &runtime->audio_tstamp_report);
313 
314                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
315                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
316                                 snd_pcm_gettime(runtime, &curr_tstamp);
317                 } else
318                         snd_pcm_gettime(runtime, &curr_tstamp);
319         }
320 
321         if (pos == SNDRV_PCM_POS_XRUN) {
322                 __snd_pcm_xrun(substream);
323                 return -EPIPE;
324         }
325         if (pos >= runtime->buffer_size) {
326                 if (printk_ratelimit()) {
327                         char name[16];
328                         snd_pcm_debug_name(substream, name, sizeof(name));
329                         pcm_err(substream->pcm,
330                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
331                                 name, pos, runtime->buffer_size,
332                                 runtime->period_size);
333                 }
334                 pos = 0;
335         }
336         pos -= pos % runtime->min_align;
337         trace_hwptr(substream, pos, in_interrupt);
338         hw_base = runtime->hw_ptr_base;
339         new_hw_ptr = hw_base + pos;
340         if (in_interrupt) {
341                 /* we know that one period was processed */
342                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
343                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
344                 if (delta > new_hw_ptr) {
345                         /* check for double acknowledged interrupts */
346                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
347                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
348                                 hw_base += runtime->buffer_size;
349                                 if (hw_base >= runtime->boundary) {
350                                         hw_base = 0;
351                                         crossed_boundary++;
352                                 }
353                                 new_hw_ptr = hw_base + pos;
354                                 goto __delta;
355                         }
356                 }
357         }
358         /* new_hw_ptr might be lower than old_hw_ptr in case when */
359         /* pointer crosses the end of the ring buffer */
360         if (new_hw_ptr < old_hw_ptr) {
361                 hw_base += runtime->buffer_size;
362                 if (hw_base >= runtime->boundary) {
363                         hw_base = 0;
364                         crossed_boundary++;
365                 }
366                 new_hw_ptr = hw_base + pos;
367         }
368       __delta:
369         delta = new_hw_ptr - old_hw_ptr;
370         if (delta < 0)
371                 delta += runtime->boundary;
372 
373         if (runtime->no_period_wakeup) {
374                 snd_pcm_sframes_t xrun_threshold;
375                 /*
376                  * Without regular period interrupts, we have to check
377                  * the elapsed time to detect xruns.
378                  */
379                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
380                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
381                         goto no_delta_check;
382                 hdelta = jdelta - delta * HZ / runtime->rate;
383                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
384                 while (hdelta > xrun_threshold) {
385                         delta += runtime->buffer_size;
386                         hw_base += runtime->buffer_size;
387                         if (hw_base >= runtime->boundary) {
388                                 hw_base = 0;
389                                 crossed_boundary++;
390                         }
391                         new_hw_ptr = hw_base + pos;
392                         hdelta -= runtime->hw_ptr_buffer_jiffies;
393                 }
394                 goto no_delta_check;
395         }
396 
397         /* something must be really wrong */
398         if (delta >= runtime->buffer_size + runtime->period_size) {
399                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
400                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
401                              substream->stream, (long)pos,
402                              (long)new_hw_ptr, (long)old_hw_ptr);
403                 return 0;
404         }
405 
406         /* Do jiffies check only in xrun_debug mode */
407         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
408                 goto no_jiffies_check;
409 
410         /* Skip the jiffies check for hardwares with BATCH flag.
411          * Such hardware usually just increases the position at each IRQ,
412          * thus it can't give any strange position.
413          */
414         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
415                 goto no_jiffies_check;
416         hdelta = delta;
417         if (hdelta < runtime->delay)
418                 goto no_jiffies_check;
419         hdelta -= runtime->delay;
420         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
421         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
422                 delta = jdelta /
423                         (((runtime->period_size * HZ) / runtime->rate)
424                                                                 + HZ/100);
425                 /* move new_hw_ptr according jiffies not pos variable */
426                 new_hw_ptr = old_hw_ptr;
427                 hw_base = delta;
428                 /* use loop to avoid checks for delta overflows */
429                 /* the delta value is small or zero in most cases */
430                 while (delta > 0) {
431                         new_hw_ptr += runtime->period_size;
432                         if (new_hw_ptr >= runtime->boundary) {
433                                 new_hw_ptr -= runtime->boundary;
434                                 crossed_boundary--;
435                         }
436                         delta--;
437                 }
438                 /* align hw_base to buffer_size */
439                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
440                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
441                              (long)pos, (long)hdelta,
442                              (long)runtime->period_size, jdelta,
443                              ((hdelta * HZ) / runtime->rate), hw_base,
444                              (unsigned long)old_hw_ptr,
445                              (unsigned long)new_hw_ptr);
446                 /* reset values to proper state */
447                 delta = 0;
448                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
449         }
450  no_jiffies_check:
451         if (delta > runtime->period_size + runtime->period_size / 2) {
452                 hw_ptr_error(substream, in_interrupt,
453                              "Lost interrupts?",
454                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
455                              substream->stream, (long)delta,
456                              (long)new_hw_ptr,
457                              (long)old_hw_ptr);
458         }
459 
460  no_delta_check:
461         if (runtime->status->hw_ptr == new_hw_ptr) {
462                 runtime->hw_ptr_jiffies = curr_jiffies;
463                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
464                 return 0;
465         }
466 
467         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
468             runtime->silence_size > 0)
469                 snd_pcm_playback_silence(substream, new_hw_ptr);
470 
471         if (in_interrupt) {
472                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
473                 if (delta < 0)
474                         delta += runtime->boundary;
475                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
476                 runtime->hw_ptr_interrupt += delta;
477                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
478                         runtime->hw_ptr_interrupt -= runtime->boundary;
479         }
480         runtime->hw_ptr_base = hw_base;
481         runtime->status->hw_ptr = new_hw_ptr;
482         runtime->hw_ptr_jiffies = curr_jiffies;
483         if (crossed_boundary) {
484                 snd_BUG_ON(crossed_boundary != 1);
485                 runtime->hw_ptr_wrap += runtime->boundary;
486         }
487 
488         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
489 
490         return snd_pcm_update_state(substream, runtime);
491 }
492 
493 /* CAUTION: call it with irq disabled */
494 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
495 {
496         return snd_pcm_update_hw_ptr0(substream, 0);
497 }
498 
499 /**
500  * snd_pcm_set_ops - set the PCM operators
501  * @pcm: the pcm instance
502  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
503  * @ops: the operator table
504  *
505  * Sets the given PCM operators to the pcm instance.
506  */
507 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
508                      const struct snd_pcm_ops *ops)
509 {
510         struct snd_pcm_str *stream = &pcm->streams[direction];
511         struct snd_pcm_substream *substream;
512         
513         for (substream = stream->substream; substream != NULL; substream = substream->next)
514                 substream->ops = ops;
515 }
516 EXPORT_SYMBOL(snd_pcm_set_ops);
517 
518 /**
519  * snd_pcm_set_sync_per_card - set the PCM sync id with card number
520  * @substream: the pcm substream
521  * @params: modified hardware parameters
522  * @id: identifier (max 12 bytes)
523  * @len: identifier length (max 12 bytes)
524  *
525  * Sets the PCM sync identifier for the card with zero padding.
526  *
527  * User space or any user should use this 16-byte identifier for a comparison only
528  * to check if two IDs are similar or different. Special case is the identifier
529  * containing only zeros. Interpretation for this combination is - empty (not set).
530  * The contents of the identifier should not be interpreted in any other way.
531  *
532  * The synchronization ID must be unique per clock source (usually one sound card,
533  * but multiple soundcard may use one PCM word clock source which means that they
534  * are fully synchronized).
535  *
536  * This routine composes this ID using card number in first four bytes and
537  * 12-byte additional ID. When other ID composition is used (e.g. for multiple
538  * sound cards), make sure that the composition does not clash with this
539  * composition scheme.
540  */
541 void snd_pcm_set_sync_per_card(struct snd_pcm_substream *substream,
542                                struct snd_pcm_hw_params *params,
543                                const unsigned char *id, unsigned int len)
544 {
545         *(__u32 *)params->sync = cpu_to_le32(substream->pcm->card->number);
546         len = min(12, len);
547         memcpy(params->sync + 4, id, len);
548         memset(params->sync + 4 + len, 0, 12 - len);
549 }
550 EXPORT_SYMBOL_GPL(snd_pcm_set_sync_per_card);
551 
552 /*
553  *  Standard ioctl routine
554  */
555 
556 static inline unsigned int div32(unsigned int a, unsigned int b, 
557                                  unsigned int *r)
558 {
559         if (b == 0) {
560                 *r = 0;
561                 return UINT_MAX;
562         }
563         *r = a % b;
564         return a / b;
565 }
566 
567 static inline unsigned int div_down(unsigned int a, unsigned int b)
568 {
569         if (b == 0)
570                 return UINT_MAX;
571         return a / b;
572 }
573 
574 static inline unsigned int div_up(unsigned int a, unsigned int b)
575 {
576         unsigned int r;
577         unsigned int q;
578         if (b == 0)
579                 return UINT_MAX;
580         q = div32(a, b, &r);
581         if (r)
582                 ++q;
583         return q;
584 }
585 
586 static inline unsigned int mul(unsigned int a, unsigned int b)
587 {
588         if (a == 0)
589                 return 0;
590         if (div_down(UINT_MAX, a) < b)
591                 return UINT_MAX;
592         return a * b;
593 }
594 
595 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
596                                     unsigned int c, unsigned int *r)
597 {
598         u_int64_t n = (u_int64_t) a * b;
599         if (c == 0) {
600                 *r = 0;
601                 return UINT_MAX;
602         }
603         n = div_u64_rem(n, c, r);
604         if (n >= UINT_MAX) {
605                 *r = 0;
606                 return UINT_MAX;
607         }
608         return n;
609 }
610 
611 /**
612  * snd_interval_refine - refine the interval value of configurator
613  * @i: the interval value to refine
614  * @v: the interval value to refer to
615  *
616  * Refines the interval value with the reference value.
617  * The interval is changed to the range satisfying both intervals.
618  * The interval status (min, max, integer, etc.) are evaluated.
619  *
620  * Return: Positive if the value is changed, zero if it's not changed, or a
621  * negative error code.
622  */
623 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
624 {
625         int changed = 0;
626         if (snd_BUG_ON(snd_interval_empty(i)))
627                 return -EINVAL;
628         if (i->min < v->min) {
629                 i->min = v->min;
630                 i->openmin = v->openmin;
631                 changed = 1;
632         } else if (i->min == v->min && !i->openmin && v->openmin) {
633                 i->openmin = 1;
634                 changed = 1;
635         }
636         if (i->max > v->max) {
637                 i->max = v->max;
638                 i->openmax = v->openmax;
639                 changed = 1;
640         } else if (i->max == v->max && !i->openmax && v->openmax) {
641                 i->openmax = 1;
642                 changed = 1;
643         }
644         if (!i->integer && v->integer) {
645                 i->integer = 1;
646                 changed = 1;
647         }
648         if (i->integer) {
649                 if (i->openmin) {
650                         i->min++;
651                         i->openmin = 0;
652                 }
653                 if (i->openmax) {
654                         i->max--;
655                         i->openmax = 0;
656                 }
657         } else if (!i->openmin && !i->openmax && i->min == i->max)
658                 i->integer = 1;
659         if (snd_interval_checkempty(i)) {
660                 snd_interval_none(i);
661                 return -EINVAL;
662         }
663         return changed;
664 }
665 EXPORT_SYMBOL(snd_interval_refine);
666 
667 static int snd_interval_refine_first(struct snd_interval *i)
668 {
669         const unsigned int last_max = i->max;
670 
671         if (snd_BUG_ON(snd_interval_empty(i)))
672                 return -EINVAL;
673         if (snd_interval_single(i))
674                 return 0;
675         i->max = i->min;
676         if (i->openmin)
677                 i->max++;
678         /* only exclude max value if also excluded before refine */
679         i->openmax = (i->openmax && i->max >= last_max);
680         return 1;
681 }
682 
683 static int snd_interval_refine_last(struct snd_interval *i)
684 {
685         const unsigned int last_min = i->min;
686 
687         if (snd_BUG_ON(snd_interval_empty(i)))
688                 return -EINVAL;
689         if (snd_interval_single(i))
690                 return 0;
691         i->min = i->max;
692         if (i->openmax)
693                 i->min--;
694         /* only exclude min value if also excluded before refine */
695         i->openmin = (i->openmin && i->min <= last_min);
696         return 1;
697 }
698 
699 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
700 {
701         if (a->empty || b->empty) {
702                 snd_interval_none(c);
703                 return;
704         }
705         c->empty = 0;
706         c->min = mul(a->min, b->min);
707         c->openmin = (a->openmin || b->openmin);
708         c->max = mul(a->max,  b->max);
709         c->openmax = (a->openmax || b->openmax);
710         c->integer = (a->integer && b->integer);
711 }
712 
713 /**
714  * snd_interval_div - refine the interval value with division
715  * @a: dividend
716  * @b: divisor
717  * @c: quotient
718  *
719  * c = a / b
720  *
721  * Returns non-zero if the value is changed, zero if not changed.
722  */
723 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
724 {
725         unsigned int r;
726         if (a->empty || b->empty) {
727                 snd_interval_none(c);
728                 return;
729         }
730         c->empty = 0;
731         c->min = div32(a->min, b->max, &r);
732         c->openmin = (r || a->openmin || b->openmax);
733         if (b->min > 0) {
734                 c->max = div32(a->max, b->min, &r);
735                 if (r) {
736                         c->max++;
737                         c->openmax = 1;
738                 } else
739                         c->openmax = (a->openmax || b->openmin);
740         } else {
741                 c->max = UINT_MAX;
742                 c->openmax = 0;
743         }
744         c->integer = 0;
745 }
746 
747 /**
748  * snd_interval_muldivk - refine the interval value
749  * @a: dividend 1
750  * @b: dividend 2
751  * @k: divisor (as integer)
752  * @c: result
753   *
754  * c = a * b / k
755  *
756  * Returns non-zero if the value is changed, zero if not changed.
757  */
758 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
759                       unsigned int k, struct snd_interval *c)
760 {
761         unsigned int r;
762         if (a->empty || b->empty) {
763                 snd_interval_none(c);
764                 return;
765         }
766         c->empty = 0;
767         c->min = muldiv32(a->min, b->min, k, &r);
768         c->openmin = (r || a->openmin || b->openmin);
769         c->max = muldiv32(a->max, b->max, k, &r);
770         if (r) {
771                 c->max++;
772                 c->openmax = 1;
773         } else
774                 c->openmax = (a->openmax || b->openmax);
775         c->integer = 0;
776 }
777 
778 /**
779  * snd_interval_mulkdiv - refine the interval value
780  * @a: dividend 1
781  * @k: dividend 2 (as integer)
782  * @b: divisor
783  * @c: result
784  *
785  * c = a * k / b
786  *
787  * Returns non-zero if the value is changed, zero if not changed.
788  */
789 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
790                       const struct snd_interval *b, struct snd_interval *c)
791 {
792         unsigned int r;
793         if (a->empty || b->empty) {
794                 snd_interval_none(c);
795                 return;
796         }
797         c->empty = 0;
798         c->min = muldiv32(a->min, k, b->max, &r);
799         c->openmin = (r || a->openmin || b->openmax);
800         if (b->min > 0) {
801                 c->max = muldiv32(a->max, k, b->min, &r);
802                 if (r) {
803                         c->max++;
804                         c->openmax = 1;
805                 } else
806                         c->openmax = (a->openmax || b->openmin);
807         } else {
808                 c->max = UINT_MAX;
809                 c->openmax = 0;
810         }
811         c->integer = 0;
812 }
813 
814 /* ---- */
815 
816 
817 /**
818  * snd_interval_ratnum - refine the interval value
819  * @i: interval to refine
820  * @rats_count: number of ratnum_t 
821  * @rats: ratnum_t array
822  * @nump: pointer to store the resultant numerator
823  * @denp: pointer to store the resultant denominator
824  *
825  * Return: Positive if the value is changed, zero if it's not changed, or a
826  * negative error code.
827  */
828 int snd_interval_ratnum(struct snd_interval *i,
829                         unsigned int rats_count, const struct snd_ratnum *rats,
830                         unsigned int *nump, unsigned int *denp)
831 {
832         unsigned int best_num, best_den;
833         int best_diff;
834         unsigned int k;
835         struct snd_interval t;
836         int err;
837         unsigned int result_num, result_den;
838         int result_diff;
839 
840         best_num = best_den = best_diff = 0;
841         for (k = 0; k < rats_count; ++k) {
842                 unsigned int num = rats[k].num;
843                 unsigned int den;
844                 unsigned int q = i->min;
845                 int diff;
846                 if (q == 0)
847                         q = 1;
848                 den = div_up(num, q);
849                 if (den < rats[k].den_min)
850                         continue;
851                 if (den > rats[k].den_max)
852                         den = rats[k].den_max;
853                 else {
854                         unsigned int r;
855                         r = (den - rats[k].den_min) % rats[k].den_step;
856                         if (r != 0)
857                                 den -= r;
858                 }
859                 diff = num - q * den;
860                 if (diff < 0)
861                         diff = -diff;
862                 if (best_num == 0 ||
863                     diff * best_den < best_diff * den) {
864                         best_diff = diff;
865                         best_den = den;
866                         best_num = num;
867                 }
868         }
869         if (best_den == 0) {
870                 i->empty = 1;
871                 return -EINVAL;
872         }
873         t.min = div_down(best_num, best_den);
874         t.openmin = !!(best_num % best_den);
875         
876         result_num = best_num;
877         result_diff = best_diff;
878         result_den = best_den;
879         best_num = best_den = best_diff = 0;
880         for (k = 0; k < rats_count; ++k) {
881                 unsigned int num = rats[k].num;
882                 unsigned int den;
883                 unsigned int q = i->max;
884                 int diff;
885                 if (q == 0) {
886                         i->empty = 1;
887                         return -EINVAL;
888                 }
889                 den = div_down(num, q);
890                 if (den > rats[k].den_max)
891                         continue;
892                 if (den < rats[k].den_min)
893                         den = rats[k].den_min;
894                 else {
895                         unsigned int r;
896                         r = (den - rats[k].den_min) % rats[k].den_step;
897                         if (r != 0)
898                                 den += rats[k].den_step - r;
899                 }
900                 diff = q * den - num;
901                 if (diff < 0)
902                         diff = -diff;
903                 if (best_num == 0 ||
904                     diff * best_den < best_diff * den) {
905                         best_diff = diff;
906                         best_den = den;
907                         best_num = num;
908                 }
909         }
910         if (best_den == 0) {
911                 i->empty = 1;
912                 return -EINVAL;
913         }
914         t.max = div_up(best_num, best_den);
915         t.openmax = !!(best_num % best_den);
916         t.integer = 0;
917         err = snd_interval_refine(i, &t);
918         if (err < 0)
919                 return err;
920 
921         if (snd_interval_single(i)) {
922                 if (best_diff * result_den < result_diff * best_den) {
923                         result_num = best_num;
924                         result_den = best_den;
925                 }
926                 if (nump)
927                         *nump = result_num;
928                 if (denp)
929                         *denp = result_den;
930         }
931         return err;
932 }
933 EXPORT_SYMBOL(snd_interval_ratnum);
934 
935 /**
936  * snd_interval_ratden - refine the interval value
937  * @i: interval to refine
938  * @rats_count: number of struct ratden
939  * @rats: struct ratden array
940  * @nump: pointer to store the resultant numerator
941  * @denp: pointer to store the resultant denominator
942  *
943  * Return: Positive if the value is changed, zero if it's not changed, or a
944  * negative error code.
945  */
946 static int snd_interval_ratden(struct snd_interval *i,
947                                unsigned int rats_count,
948                                const struct snd_ratden *rats,
949                                unsigned int *nump, unsigned int *denp)
950 {
951         unsigned int best_num, best_diff, best_den;
952         unsigned int k;
953         struct snd_interval t;
954         int err;
955 
956         best_num = best_den = best_diff = 0;
957         for (k = 0; k < rats_count; ++k) {
958                 unsigned int num;
959                 unsigned int den = rats[k].den;
960                 unsigned int q = i->min;
961                 int diff;
962                 num = mul(q, den);
963                 if (num > rats[k].num_max)
964                         continue;
965                 if (num < rats[k].num_min)
966                         num = rats[k].num_max;
967                 else {
968                         unsigned int r;
969                         r = (num - rats[k].num_min) % rats[k].num_step;
970                         if (r != 0)
971                                 num += rats[k].num_step - r;
972                 }
973                 diff = num - q * den;
974                 if (best_num == 0 ||
975                     diff * best_den < best_diff * den) {
976                         best_diff = diff;
977                         best_den = den;
978                         best_num = num;
979                 }
980         }
981         if (best_den == 0) {
982                 i->empty = 1;
983                 return -EINVAL;
984         }
985         t.min = div_down(best_num, best_den);
986         t.openmin = !!(best_num % best_den);
987         
988         best_num = best_den = best_diff = 0;
989         for (k = 0; k < rats_count; ++k) {
990                 unsigned int num;
991                 unsigned int den = rats[k].den;
992                 unsigned int q = i->max;
993                 int diff;
994                 num = mul(q, den);
995                 if (num < rats[k].num_min)
996                         continue;
997                 if (num > rats[k].num_max)
998                         num = rats[k].num_max;
999                 else {
1000                         unsigned int r;
1001                         r = (num - rats[k].num_min) % rats[k].num_step;
1002                         if (r != 0)
1003                                 num -= r;
1004                 }
1005                 diff = q * den - num;
1006                 if (best_num == 0 ||
1007                     diff * best_den < best_diff * den) {
1008                         best_diff = diff;
1009                         best_den = den;
1010                         best_num = num;
1011                 }
1012         }
1013         if (best_den == 0) {
1014                 i->empty = 1;
1015                 return -EINVAL;
1016         }
1017         t.max = div_up(best_num, best_den);
1018         t.openmax = !!(best_num % best_den);
1019         t.integer = 0;
1020         err = snd_interval_refine(i, &t);
1021         if (err < 0)
1022                 return err;
1023 
1024         if (snd_interval_single(i)) {
1025                 if (nump)
1026                         *nump = best_num;
1027                 if (denp)
1028                         *denp = best_den;
1029         }
1030         return err;
1031 }
1032 
1033 /**
1034  * snd_interval_list - refine the interval value from the list
1035  * @i: the interval value to refine
1036  * @count: the number of elements in the list
1037  * @list: the value list
1038  * @mask: the bit-mask to evaluate
1039  *
1040  * Refines the interval value from the list.
1041  * When mask is non-zero, only the elements corresponding to bit 1 are
1042  * evaluated.
1043  *
1044  * Return: Positive if the value is changed, zero if it's not changed, or a
1045  * negative error code.
1046  */
1047 int snd_interval_list(struct snd_interval *i, unsigned int count,
1048                       const unsigned int *list, unsigned int mask)
1049 {
1050         unsigned int k;
1051         struct snd_interval list_range;
1052 
1053         if (!count) {
1054                 i->empty = 1;
1055                 return -EINVAL;
1056         }
1057         snd_interval_any(&list_range);
1058         list_range.min = UINT_MAX;
1059         list_range.max = 0;
1060         for (k = 0; k < count; k++) {
1061                 if (mask && !(mask & (1 << k)))
1062                         continue;
1063                 if (!snd_interval_test(i, list[k]))
1064                         continue;
1065                 list_range.min = min(list_range.min, list[k]);
1066                 list_range.max = max(list_range.max, list[k]);
1067         }
1068         return snd_interval_refine(i, &list_range);
1069 }
1070 EXPORT_SYMBOL(snd_interval_list);
1071 
1072 /**
1073  * snd_interval_ranges - refine the interval value from the list of ranges
1074  * @i: the interval value to refine
1075  * @count: the number of elements in the list of ranges
1076  * @ranges: the ranges list
1077  * @mask: the bit-mask to evaluate
1078  *
1079  * Refines the interval value from the list of ranges.
1080  * When mask is non-zero, only the elements corresponding to bit 1 are
1081  * evaluated.
1082  *
1083  * Return: Positive if the value is changed, zero if it's not changed, or a
1084  * negative error code.
1085  */
1086 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1087                         const struct snd_interval *ranges, unsigned int mask)
1088 {
1089         unsigned int k;
1090         struct snd_interval range_union;
1091         struct snd_interval range;
1092 
1093         if (!count) {
1094                 snd_interval_none(i);
1095                 return -EINVAL;
1096         }
1097         snd_interval_any(&range_union);
1098         range_union.min = UINT_MAX;
1099         range_union.max = 0;
1100         for (k = 0; k < count; k++) {
1101                 if (mask && !(mask & (1 << k)))
1102                         continue;
1103                 snd_interval_copy(&range, &ranges[k]);
1104                 if (snd_interval_refine(&range, i) < 0)
1105                         continue;
1106                 if (snd_interval_empty(&range))
1107                         continue;
1108 
1109                 if (range.min < range_union.min) {
1110                         range_union.min = range.min;
1111                         range_union.openmin = 1;
1112                 }
1113                 if (range.min == range_union.min && !range.openmin)
1114                         range_union.openmin = 0;
1115                 if (range.max > range_union.max) {
1116                         range_union.max = range.max;
1117                         range_union.openmax = 1;
1118                 }
1119                 if (range.max == range_union.max && !range.openmax)
1120                         range_union.openmax = 0;
1121         }
1122         return snd_interval_refine(i, &range_union);
1123 }
1124 EXPORT_SYMBOL(snd_interval_ranges);
1125 
1126 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1127 {
1128         unsigned int n;
1129         int changed = 0;
1130         n = i->min % step;
1131         if (n != 0 || i->openmin) {
1132                 i->min += step - n;
1133                 i->openmin = 0;
1134                 changed = 1;
1135         }
1136         n = i->max % step;
1137         if (n != 0 || i->openmax) {
1138                 i->max -= n;
1139                 i->openmax = 0;
1140                 changed = 1;
1141         }
1142         if (snd_interval_checkempty(i)) {
1143                 i->empty = 1;
1144                 return -EINVAL;
1145         }
1146         return changed;
1147 }
1148 
1149 /* Info constraints helpers */
1150 
1151 /**
1152  * snd_pcm_hw_rule_add - add the hw-constraint rule
1153  * @runtime: the pcm runtime instance
1154  * @cond: condition bits
1155  * @var: the variable to evaluate
1156  * @func: the evaluation function
1157  * @private: the private data pointer passed to function
1158  * @dep: the dependent variables
1159  *
1160  * Return: Zero if successful, or a negative error code on failure.
1161  */
1162 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1163                         int var,
1164                         snd_pcm_hw_rule_func_t func, void *private,
1165                         int dep, ...)
1166 {
1167         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1168         struct snd_pcm_hw_rule *c;
1169         unsigned int k;
1170         va_list args;
1171         va_start(args, dep);
1172         if (constrs->rules_num >= constrs->rules_all) {
1173                 struct snd_pcm_hw_rule *new;
1174                 unsigned int new_rules = constrs->rules_all + 16;
1175                 new = krealloc_array(constrs->rules, new_rules,
1176                                      sizeof(*c), GFP_KERNEL);
1177                 if (!new) {
1178                         va_end(args);
1179                         return -ENOMEM;
1180                 }
1181                 constrs->rules = new;
1182                 constrs->rules_all = new_rules;
1183         }
1184         c = &constrs->rules[constrs->rules_num];
1185         c->cond = cond;
1186         c->func = func;
1187         c->var = var;
1188         c->private = private;
1189         k = 0;
1190         while (1) {
1191                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1192                         va_end(args);
1193                         return -EINVAL;
1194                 }
1195                 c->deps[k++] = dep;
1196                 if (dep < 0)
1197                         break;
1198                 dep = va_arg(args, int);
1199         }
1200         constrs->rules_num++;
1201         va_end(args);
1202         return 0;
1203 }
1204 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1205 
1206 /**
1207  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1208  * @runtime: PCM runtime instance
1209  * @var: hw_params variable to apply the mask
1210  * @mask: the bitmap mask
1211  *
1212  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1213  *
1214  * Return: Zero if successful, or a negative error code on failure.
1215  */
1216 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1217                                u_int32_t mask)
1218 {
1219         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1220         struct snd_mask *maskp = constrs_mask(constrs, var);
1221         *maskp->bits &= mask;
1222         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1223         if (*maskp->bits == 0)
1224                 return -EINVAL;
1225         return 0;
1226 }
1227 
1228 /**
1229  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1230  * @runtime: PCM runtime instance
1231  * @var: hw_params variable to apply the mask
1232  * @mask: the 64bit bitmap mask
1233  *
1234  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1235  *
1236  * Return: Zero if successful, or a negative error code on failure.
1237  */
1238 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1239                                  u_int64_t mask)
1240 {
1241         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1242         struct snd_mask *maskp = constrs_mask(constrs, var);
1243         maskp->bits[0] &= (u_int32_t)mask;
1244         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1245         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1246         if (! maskp->bits[0] && ! maskp->bits[1])
1247                 return -EINVAL;
1248         return 0;
1249 }
1250 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1251 
1252 /**
1253  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1254  * @runtime: PCM runtime instance
1255  * @var: hw_params variable to apply the integer constraint
1256  *
1257  * Apply the constraint of integer to an interval parameter.
1258  *
1259  * Return: Positive if the value is changed, zero if it's not changed, or a
1260  * negative error code.
1261  */
1262 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1263 {
1264         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1265         return snd_interval_setinteger(constrs_interval(constrs, var));
1266 }
1267 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1268 
1269 /**
1270  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1271  * @runtime: PCM runtime instance
1272  * @var: hw_params variable to apply the range
1273  * @min: the minimal value
1274  * @max: the maximal value
1275  * 
1276  * Apply the min/max range constraint to an interval parameter.
1277  *
1278  * Return: Positive if the value is changed, zero if it's not changed, or a
1279  * negative error code.
1280  */
1281 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1282                                  unsigned int min, unsigned int max)
1283 {
1284         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1285         struct snd_interval t;
1286         t.min = min;
1287         t.max = max;
1288         t.openmin = t.openmax = 0;
1289         t.integer = 0;
1290         return snd_interval_refine(constrs_interval(constrs, var), &t);
1291 }
1292 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1293 
1294 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1295                                 struct snd_pcm_hw_rule *rule)
1296 {
1297         struct snd_pcm_hw_constraint_list *list = rule->private;
1298         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1299 }               
1300 
1301 
1302 /**
1303  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1304  * @runtime: PCM runtime instance
1305  * @cond: condition bits
1306  * @var: hw_params variable to apply the list constraint
1307  * @l: list
1308  * 
1309  * Apply the list of constraints to an interval parameter.
1310  *
1311  * Return: Zero if successful, or a negative error code on failure.
1312  */
1313 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1314                                unsigned int cond,
1315                                snd_pcm_hw_param_t var,
1316                                const struct snd_pcm_hw_constraint_list *l)
1317 {
1318         return snd_pcm_hw_rule_add(runtime, cond, var,
1319                                    snd_pcm_hw_rule_list, (void *)l,
1320                                    var, -1);
1321 }
1322 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1323 
1324 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1325                                   struct snd_pcm_hw_rule *rule)
1326 {
1327         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1328         return snd_interval_ranges(hw_param_interval(params, rule->var),
1329                                    r->count, r->ranges, r->mask);
1330 }
1331 
1332 
1333 /**
1334  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1335  * @runtime: PCM runtime instance
1336  * @cond: condition bits
1337  * @var: hw_params variable to apply the list of range constraints
1338  * @r: ranges
1339  *
1340  * Apply the list of range constraints to an interval parameter.
1341  *
1342  * Return: Zero if successful, or a negative error code on failure.
1343  */
1344 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1345                                  unsigned int cond,
1346                                  snd_pcm_hw_param_t var,
1347                                  const struct snd_pcm_hw_constraint_ranges *r)
1348 {
1349         return snd_pcm_hw_rule_add(runtime, cond, var,
1350                                    snd_pcm_hw_rule_ranges, (void *)r,
1351                                    var, -1);
1352 }
1353 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1354 
1355 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1356                                    struct snd_pcm_hw_rule *rule)
1357 {
1358         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1359         unsigned int num = 0, den = 0;
1360         int err;
1361         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1362                                   r->nrats, r->rats, &num, &den);
1363         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1364                 params->rate_num = num;
1365                 params->rate_den = den;
1366         }
1367         return err;
1368 }
1369 
1370 /**
1371  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1372  * @runtime: PCM runtime instance
1373  * @cond: condition bits
1374  * @var: hw_params variable to apply the ratnums constraint
1375  * @r: struct snd_ratnums constriants
1376  *
1377  * Return: Zero if successful, or a negative error code on failure.
1378  */
1379 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1380                                   unsigned int cond,
1381                                   snd_pcm_hw_param_t var,
1382                                   const struct snd_pcm_hw_constraint_ratnums *r)
1383 {
1384         return snd_pcm_hw_rule_add(runtime, cond, var,
1385                                    snd_pcm_hw_rule_ratnums, (void *)r,
1386                                    var, -1);
1387 }
1388 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1389 
1390 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1391                                    struct snd_pcm_hw_rule *rule)
1392 {
1393         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1394         unsigned int num = 0, den = 0;
1395         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1396                                   r->nrats, r->rats, &num, &den);
1397         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1398                 params->rate_num = num;
1399                 params->rate_den = den;
1400         }
1401         return err;
1402 }
1403 
1404 /**
1405  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1406  * @runtime: PCM runtime instance
1407  * @cond: condition bits
1408  * @var: hw_params variable to apply the ratdens constraint
1409  * @r: struct snd_ratdens constriants
1410  *
1411  * Return: Zero if successful, or a negative error code on failure.
1412  */
1413 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1414                                   unsigned int cond,
1415                                   snd_pcm_hw_param_t var,
1416                                   const struct snd_pcm_hw_constraint_ratdens *r)
1417 {
1418         return snd_pcm_hw_rule_add(runtime, cond, var,
1419                                    snd_pcm_hw_rule_ratdens, (void *)r,
1420                                    var, -1);
1421 }
1422 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1423 
1424 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1425                                   struct snd_pcm_hw_rule *rule)
1426 {
1427         unsigned int l = (unsigned long) rule->private;
1428         int width = l & 0xffff;
1429         unsigned int msbits = l >> 16;
1430         const struct snd_interval *i =
1431                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1432 
1433         if (!snd_interval_single(i))
1434                 return 0;
1435 
1436         if ((snd_interval_value(i) == width) ||
1437             (width == 0 && snd_interval_value(i) > msbits))
1438                 params->msbits = min_not_zero(params->msbits, msbits);
1439 
1440         return 0;
1441 }
1442 
1443 /**
1444  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1445  * @runtime: PCM runtime instance
1446  * @cond: condition bits
1447  * @width: sample bits width
1448  * @msbits: msbits width
1449  *
1450  * This constraint will set the number of most significant bits (msbits) if a
1451  * sample format with the specified width has been select. If width is set to 0
1452  * the msbits will be set for any sample format with a width larger than the
1453  * specified msbits.
1454  *
1455  * Return: Zero if successful, or a negative error code on failure.
1456  */
1457 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1458                                  unsigned int cond,
1459                                  unsigned int width,
1460                                  unsigned int msbits)
1461 {
1462         unsigned long l = (msbits << 16) | width;
1463         return snd_pcm_hw_rule_add(runtime, cond, -1,
1464                                     snd_pcm_hw_rule_msbits,
1465                                     (void*) l,
1466                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1467 }
1468 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1469 
1470 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1471                                 struct snd_pcm_hw_rule *rule)
1472 {
1473         unsigned long step = (unsigned long) rule->private;
1474         return snd_interval_step(hw_param_interval(params, rule->var), step);
1475 }
1476 
1477 /**
1478  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1479  * @runtime: PCM runtime instance
1480  * @cond: condition bits
1481  * @var: hw_params variable to apply the step constraint
1482  * @step: step size
1483  *
1484  * Return: Zero if successful, or a negative error code on failure.
1485  */
1486 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1487                                unsigned int cond,
1488                                snd_pcm_hw_param_t var,
1489                                unsigned long step)
1490 {
1491         return snd_pcm_hw_rule_add(runtime, cond, var, 
1492                                    snd_pcm_hw_rule_step, (void *) step,
1493                                    var, -1);
1494 }
1495 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1496 
1497 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1498 {
1499         static const unsigned int pow2_sizes[] = {
1500                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1501                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1502                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1503                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1504         };
1505         return snd_interval_list(hw_param_interval(params, rule->var),
1506                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1507 }               
1508 
1509 /**
1510  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1511  * @runtime: PCM runtime instance
1512  * @cond: condition bits
1513  * @var: hw_params variable to apply the power-of-2 constraint
1514  *
1515  * Return: Zero if successful, or a negative error code on failure.
1516  */
1517 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1518                                unsigned int cond,
1519                                snd_pcm_hw_param_t var)
1520 {
1521         return snd_pcm_hw_rule_add(runtime, cond, var, 
1522                                    snd_pcm_hw_rule_pow2, NULL,
1523                                    var, -1);
1524 }
1525 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1526 
1527 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1528                                            struct snd_pcm_hw_rule *rule)
1529 {
1530         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1531         struct snd_interval *rate;
1532 
1533         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1534         return snd_interval_list(rate, 1, &base_rate, 0);
1535 }
1536 
1537 /**
1538  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1539  * @runtime: PCM runtime instance
1540  * @base_rate: the rate at which the hardware does not resample
1541  *
1542  * Return: Zero if successful, or a negative error code on failure.
1543  */
1544 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1545                                unsigned int base_rate)
1546 {
1547         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1548                                    SNDRV_PCM_HW_PARAM_RATE,
1549                                    snd_pcm_hw_rule_noresample_func,
1550                                    (void *)(uintptr_t)base_rate,
1551                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1552 }
1553 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1554 
1555 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1556                                   snd_pcm_hw_param_t var)
1557 {
1558         if (hw_is_mask(var)) {
1559                 snd_mask_any(hw_param_mask(params, var));
1560                 params->cmask |= 1 << var;
1561                 params->rmask |= 1 << var;
1562                 return;
1563         }
1564         if (hw_is_interval(var)) {
1565                 snd_interval_any(hw_param_interval(params, var));
1566                 params->cmask |= 1 << var;
1567                 params->rmask |= 1 << var;
1568                 return;
1569         }
1570         snd_BUG();
1571 }
1572 
1573 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1574 {
1575         unsigned int k;
1576         memset(params, 0, sizeof(*params));
1577         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1578                 _snd_pcm_hw_param_any(params, k);
1579         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1580                 _snd_pcm_hw_param_any(params, k);
1581         params->info = ~0U;
1582 }
1583 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1584 
1585 /**
1586  * snd_pcm_hw_param_value - return @params field @var value
1587  * @params: the hw_params instance
1588  * @var: parameter to retrieve
1589  * @dir: pointer to the direction (-1,0,1) or %NULL
1590  *
1591  * Return: The value for field @var if it's fixed in configuration space
1592  * defined by @params. -%EINVAL otherwise.
1593  */
1594 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1595                            snd_pcm_hw_param_t var, int *dir)
1596 {
1597         if (hw_is_mask(var)) {
1598                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1599                 if (!snd_mask_single(mask))
1600                         return -EINVAL;
1601                 if (dir)
1602                         *dir = 0;
1603                 return snd_mask_value(mask);
1604         }
1605         if (hw_is_interval(var)) {
1606                 const struct snd_interval *i = hw_param_interval_c(params, var);
1607                 if (!snd_interval_single(i))
1608                         return -EINVAL;
1609                 if (dir)
1610                         *dir = i->openmin;
1611                 return snd_interval_value(i);
1612         }
1613         return -EINVAL;
1614 }
1615 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1616 
1617 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1618                                 snd_pcm_hw_param_t var)
1619 {
1620         if (hw_is_mask(var)) {
1621                 snd_mask_none(hw_param_mask(params, var));
1622                 params->cmask |= 1 << var;
1623                 params->rmask |= 1 << var;
1624         } else if (hw_is_interval(var)) {
1625                 snd_interval_none(hw_param_interval(params, var));
1626                 params->cmask |= 1 << var;
1627                 params->rmask |= 1 << var;
1628         } else {
1629                 snd_BUG();
1630         }
1631 }
1632 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1633 
1634 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1635                                    snd_pcm_hw_param_t var)
1636 {
1637         int changed;
1638         if (hw_is_mask(var))
1639                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1640         else if (hw_is_interval(var))
1641                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1642         else
1643                 return -EINVAL;
1644         if (changed > 0) {
1645                 params->cmask |= 1 << var;
1646                 params->rmask |= 1 << var;
1647         }
1648         return changed;
1649 }
1650 
1651 
1652 /**
1653  * snd_pcm_hw_param_first - refine config space and return minimum value
1654  * @pcm: PCM instance
1655  * @params: the hw_params instance
1656  * @var: parameter to retrieve
1657  * @dir: pointer to the direction (-1,0,1) or %NULL
1658  *
1659  * Inside configuration space defined by @params remove from @var all
1660  * values > minimum. Reduce configuration space accordingly.
1661  *
1662  * Return: The minimum, or a negative error code on failure.
1663  */
1664 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1665                            struct snd_pcm_hw_params *params, 
1666                            snd_pcm_hw_param_t var, int *dir)
1667 {
1668         int changed = _snd_pcm_hw_param_first(params, var);
1669         if (changed < 0)
1670                 return changed;
1671         if (params->rmask) {
1672                 int err = snd_pcm_hw_refine(pcm, params);
1673                 if (err < 0)
1674                         return err;
1675         }
1676         return snd_pcm_hw_param_value(params, var, dir);
1677 }
1678 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1679 
1680 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1681                                   snd_pcm_hw_param_t var)
1682 {
1683         int changed;
1684         if (hw_is_mask(var))
1685                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1686         else if (hw_is_interval(var))
1687                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1688         else
1689                 return -EINVAL;
1690         if (changed > 0) {
1691                 params->cmask |= 1 << var;
1692                 params->rmask |= 1 << var;
1693         }
1694         return changed;
1695 }
1696 
1697 
1698 /**
1699  * snd_pcm_hw_param_last - refine config space and return maximum value
1700  * @pcm: PCM instance
1701  * @params: the hw_params instance
1702  * @var: parameter to retrieve
1703  * @dir: pointer to the direction (-1,0,1) or %NULL
1704  *
1705  * Inside configuration space defined by @params remove from @var all
1706  * values < maximum. Reduce configuration space accordingly.
1707  *
1708  * Return: The maximum, or a negative error code on failure.
1709  */
1710 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1711                           struct snd_pcm_hw_params *params,
1712                           snd_pcm_hw_param_t var, int *dir)
1713 {
1714         int changed = _snd_pcm_hw_param_last(params, var);
1715         if (changed < 0)
1716                 return changed;
1717         if (params->rmask) {
1718                 int err = snd_pcm_hw_refine(pcm, params);
1719                 if (err < 0)
1720                         return err;
1721         }
1722         return snd_pcm_hw_param_value(params, var, dir);
1723 }
1724 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1725 
1726 /**
1727  * snd_pcm_hw_params_bits - Get the number of bits per the sample.
1728  * @p: hardware parameters
1729  *
1730  * Return: The number of bits per sample based on the format,
1731  * subformat and msbits the specified hw params has.
1732  */
1733 int snd_pcm_hw_params_bits(const struct snd_pcm_hw_params *p)
1734 {
1735         snd_pcm_subformat_t subformat = params_subformat(p);
1736         snd_pcm_format_t format = params_format(p);
1737 
1738         switch (format) {
1739         case SNDRV_PCM_FORMAT_S32_LE:
1740         case SNDRV_PCM_FORMAT_U32_LE:
1741         case SNDRV_PCM_FORMAT_S32_BE:
1742         case SNDRV_PCM_FORMAT_U32_BE:
1743                 switch (subformat) {
1744                 case SNDRV_PCM_SUBFORMAT_MSBITS_20:
1745                         return 20;
1746                 case SNDRV_PCM_SUBFORMAT_MSBITS_24:
1747                         return 24;
1748                 case SNDRV_PCM_SUBFORMAT_MSBITS_MAX:
1749                 case SNDRV_PCM_SUBFORMAT_STD:
1750                 default:
1751                         break;
1752                 }
1753                 fallthrough;
1754         default:
1755                 return snd_pcm_format_width(format);
1756         }
1757 }
1758 EXPORT_SYMBOL(snd_pcm_hw_params_bits);
1759 
1760 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1761                                    void *arg)
1762 {
1763         struct snd_pcm_runtime *runtime = substream->runtime;
1764 
1765         guard(pcm_stream_lock_irqsave)(substream);
1766         if (snd_pcm_running(substream) &&
1767             snd_pcm_update_hw_ptr(substream) >= 0)
1768                 runtime->status->hw_ptr %= runtime->buffer_size;
1769         else {
1770                 runtime->status->hw_ptr = 0;
1771                 runtime->hw_ptr_wrap = 0;
1772         }
1773         return 0;
1774 }
1775 
1776 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1777                                           void *arg)
1778 {
1779         struct snd_pcm_channel_info *info = arg;
1780         struct snd_pcm_runtime *runtime = substream->runtime;
1781         int width;
1782         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1783                 info->offset = -1;
1784                 return 0;
1785         }
1786         width = snd_pcm_format_physical_width(runtime->format);
1787         if (width < 0)
1788                 return width;
1789         info->offset = 0;
1790         switch (runtime->access) {
1791         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1792         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1793                 info->first = info->channel * width;
1794                 info->step = runtime->channels * width;
1795                 break;
1796         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1797         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1798         {
1799                 size_t size = runtime->dma_bytes / runtime->channels;
1800                 info->first = info->channel * size * 8;
1801                 info->step = width;
1802                 break;
1803         }
1804         default:
1805                 snd_BUG();
1806                 break;
1807         }
1808         return 0;
1809 }
1810 
1811 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1812                                        void *arg)
1813 {
1814         struct snd_pcm_hw_params *params = arg;
1815         snd_pcm_format_t format;
1816         int channels;
1817         ssize_t frame_size;
1818 
1819         params->fifo_size = substream->runtime->hw.fifo_size;
1820         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1821                 format = params_format(params);
1822                 channels = params_channels(params);
1823                 frame_size = snd_pcm_format_size(format, channels);
1824                 if (frame_size > 0)
1825                         params->fifo_size /= frame_size;
1826         }
1827         return 0;
1828 }
1829 
1830 static int snd_pcm_lib_ioctl_sync_id(struct snd_pcm_substream *substream,
1831                                      void *arg)
1832 {
1833         static const unsigned char id[12] = { 0xff, 0xff, 0xff, 0xff,
1834                                               0xff, 0xff, 0xff, 0xff,
1835                                               0xff, 0xff, 0xff, 0xff };
1836 
1837         if (substream->runtime->std_sync_id)
1838                 snd_pcm_set_sync_per_card(substream, arg, id, sizeof(id));
1839         return 0;
1840 }
1841 
1842 /**
1843  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1844  * @substream: the pcm substream instance
1845  * @cmd: ioctl command
1846  * @arg: ioctl argument
1847  *
1848  * Processes the generic ioctl commands for PCM.
1849  * Can be passed as the ioctl callback for PCM ops.
1850  *
1851  * Return: Zero if successful, or a negative error code on failure.
1852  */
1853 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1854                       unsigned int cmd, void *arg)
1855 {
1856         switch (cmd) {
1857         case SNDRV_PCM_IOCTL1_RESET:
1858                 return snd_pcm_lib_ioctl_reset(substream, arg);
1859         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1860                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1861         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1862                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1863         case SNDRV_PCM_IOCTL1_SYNC_ID:
1864                 return snd_pcm_lib_ioctl_sync_id(substream, arg);
1865         }
1866         return -ENXIO;
1867 }
1868 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1869 
1870 /**
1871  * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1872  *                                              under acquired lock of PCM substream.
1873  * @substream: the instance of pcm substream.
1874  *
1875  * This function is called when the batch of audio data frames as the same size as the period of
1876  * buffer is already processed in audio data transmission.
1877  *
1878  * The call of function updates the status of runtime with the latest position of audio data
1879  * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1880  * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1881  * substream according to configured threshold.
1882  *
1883  * The function is intended to use for the case that PCM driver operates audio data frames under
1884  * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1885  * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1886  * since lock of PCM substream should be acquired in advance.
1887  *
1888  * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1889  * function:
1890  *
1891  * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1892  * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1893  * - .get_time_info - to retrieve audio time stamp if needed.
1894  *
1895  * Even if more than one periods have elapsed since the last call, you have to call this only once.
1896  */
1897 void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1898 {
1899         struct snd_pcm_runtime *runtime;
1900 
1901         if (PCM_RUNTIME_CHECK(substream))
1902                 return;
1903         runtime = substream->runtime;
1904 
1905         if (!snd_pcm_running(substream) ||
1906             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1907                 goto _end;
1908 
1909 #ifdef CONFIG_SND_PCM_TIMER
1910         if (substream->timer_running)
1911                 snd_timer_interrupt(substream->timer, 1);
1912 #endif
1913  _end:
1914         snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1915 }
1916 EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1917 
1918 /**
1919  * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1920  *                            PCM substream.
1921  * @substream: the instance of PCM substream.
1922  *
1923  * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1924  * acquiring lock of PCM substream voluntarily.
1925  *
1926  * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1927  * the batch of audio data frames as the same size as the period of buffer is already processed in
1928  * audio data transmission.
1929  */
1930 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1931 {
1932         if (snd_BUG_ON(!substream))
1933                 return;
1934 
1935         guard(pcm_stream_lock_irqsave)(substream);
1936         snd_pcm_period_elapsed_under_stream_lock(substream);
1937 }
1938 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1939 
1940 /*
1941  * Wait until avail_min data becomes available
1942  * Returns a negative error code if any error occurs during operation.
1943  * The available space is stored on availp.  When err = 0 and avail = 0
1944  * on the capture stream, it indicates the stream is in DRAINING state.
1945  */
1946 static int wait_for_avail(struct snd_pcm_substream *substream,
1947                               snd_pcm_uframes_t *availp)
1948 {
1949         struct snd_pcm_runtime *runtime = substream->runtime;
1950         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1951         wait_queue_entry_t wait;
1952         int err = 0;
1953         snd_pcm_uframes_t avail = 0;
1954         long wait_time, tout;
1955 
1956         init_waitqueue_entry(&wait, current);
1957         set_current_state(TASK_INTERRUPTIBLE);
1958         add_wait_queue(&runtime->tsleep, &wait);
1959 
1960         if (runtime->no_period_wakeup)
1961                 wait_time = MAX_SCHEDULE_TIMEOUT;
1962         else {
1963                 /* use wait time from substream if available */
1964                 if (substream->wait_time) {
1965                         wait_time = substream->wait_time;
1966                 } else {
1967                         wait_time = 100;
1968 
1969                         if (runtime->rate) {
1970                                 long t = runtime->buffer_size * 1100 / runtime->rate;
1971                                 wait_time = max(t, wait_time);
1972                         }
1973                 }
1974                 wait_time = msecs_to_jiffies(wait_time);
1975         }
1976 
1977         for (;;) {
1978                 if (signal_pending(current)) {
1979                         err = -ERESTARTSYS;
1980                         break;
1981                 }
1982 
1983                 /*
1984                  * We need to check if space became available already
1985                  * (and thus the wakeup happened already) first to close
1986                  * the race of space already having become available.
1987                  * This check must happen after been added to the waitqueue
1988                  * and having current state be INTERRUPTIBLE.
1989                  */
1990                 avail = snd_pcm_avail(substream);
1991                 if (avail >= runtime->twake)
1992                         break;
1993                 snd_pcm_stream_unlock_irq(substream);
1994 
1995                 tout = schedule_timeout(wait_time);
1996 
1997                 snd_pcm_stream_lock_irq(substream);
1998                 set_current_state(TASK_INTERRUPTIBLE);
1999                 switch (runtime->state) {
2000                 case SNDRV_PCM_STATE_SUSPENDED:
2001                         err = -ESTRPIPE;
2002                         goto _endloop;
2003                 case SNDRV_PCM_STATE_XRUN:
2004                         err = -EPIPE;
2005                         goto _endloop;
2006                 case SNDRV_PCM_STATE_DRAINING:
2007                         if (is_playback)
2008                                 err = -EPIPE;
2009                         else 
2010                                 avail = 0; /* indicate draining */
2011                         goto _endloop;
2012                 case SNDRV_PCM_STATE_OPEN:
2013                 case SNDRV_PCM_STATE_SETUP:
2014                 case SNDRV_PCM_STATE_DISCONNECTED:
2015                         err = -EBADFD;
2016                         goto _endloop;
2017                 case SNDRV_PCM_STATE_PAUSED:
2018                         continue;
2019                 }
2020                 if (!tout) {
2021                         pcm_dbg(substream->pcm,
2022                                 "%s timeout (DMA or IRQ trouble?)\n",
2023                                 is_playback ? "playback write" : "capture read");
2024                         err = -EIO;
2025                         break;
2026                 }
2027         }
2028  _endloop:
2029         set_current_state(TASK_RUNNING);
2030         remove_wait_queue(&runtime->tsleep, &wait);
2031         *availp = avail;
2032         return err;
2033 }
2034         
2035 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
2036                               int channel, unsigned long hwoff,
2037                               struct iov_iter *iter, unsigned long bytes);
2038 
2039 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
2040                           snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f,
2041                           bool);
2042 
2043 /* calculate the target DMA-buffer position to be written/read */
2044 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
2045                            int channel, unsigned long hwoff)
2046 {
2047         return runtime->dma_area + hwoff +
2048                 channel * (runtime->dma_bytes / runtime->channels);
2049 }
2050 
2051 /* default copy ops for write; used for both interleaved and non- modes */
2052 static int default_write_copy(struct snd_pcm_substream *substream,
2053                               int channel, unsigned long hwoff,
2054                               struct iov_iter *iter, unsigned long bytes)
2055 {
2056         if (copy_from_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2057                            bytes, iter) != bytes)
2058                 return -EFAULT;
2059         return 0;
2060 }
2061 
2062 /* fill silence instead of copy data; called as a transfer helper
2063  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
2064  * a NULL buffer is passed
2065  */
2066 static int fill_silence(struct snd_pcm_substream *substream, int channel,
2067                         unsigned long hwoff, struct iov_iter *iter,
2068                         unsigned long bytes)
2069 {
2070         struct snd_pcm_runtime *runtime = substream->runtime;
2071 
2072         if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
2073                 return 0;
2074         if (substream->ops->fill_silence)
2075                 return substream->ops->fill_silence(substream, channel,
2076                                                     hwoff, bytes);
2077 
2078         snd_pcm_format_set_silence(runtime->format,
2079                                    get_dma_ptr(runtime, channel, hwoff),
2080                                    bytes_to_samples(runtime, bytes));
2081         return 0;
2082 }
2083 
2084 /* default copy ops for read; used for both interleaved and non- modes */
2085 static int default_read_copy(struct snd_pcm_substream *substream,
2086                              int channel, unsigned long hwoff,
2087                              struct iov_iter *iter, unsigned long bytes)
2088 {
2089         if (copy_to_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2090                          bytes, iter) != bytes)
2091                 return -EFAULT;
2092         return 0;
2093 }
2094 
2095 /* call transfer with the filled iov_iter */
2096 static int do_transfer(struct snd_pcm_substream *substream, int c,
2097                        unsigned long hwoff, void *data, unsigned long bytes,
2098                        pcm_transfer_f transfer, bool in_kernel)
2099 {
2100         struct iov_iter iter;
2101         int err, type;
2102 
2103         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
2104                 type = ITER_SOURCE;
2105         else
2106                 type = ITER_DEST;
2107 
2108         if (in_kernel) {
2109                 struct kvec kvec = { data, bytes };
2110 
2111                 iov_iter_kvec(&iter, type, &kvec, 1, bytes);
2112                 return transfer(substream, c, hwoff, &iter, bytes);
2113         }
2114 
2115         err = import_ubuf(type, (__force void __user *)data, bytes, &iter);
2116         if (err)
2117                 return err;
2118         return transfer(substream, c, hwoff, &iter, bytes);
2119 }
2120 
2121 /* call transfer function with the converted pointers and sizes;
2122  * for interleaved mode, it's one shot for all samples
2123  */
2124 static int interleaved_copy(struct snd_pcm_substream *substream,
2125                             snd_pcm_uframes_t hwoff, void *data,
2126                             snd_pcm_uframes_t off,
2127                             snd_pcm_uframes_t frames,
2128                             pcm_transfer_f transfer,
2129                             bool in_kernel)
2130 {
2131         struct snd_pcm_runtime *runtime = substream->runtime;
2132 
2133         /* convert to bytes */
2134         hwoff = frames_to_bytes(runtime, hwoff);
2135         off = frames_to_bytes(runtime, off);
2136         frames = frames_to_bytes(runtime, frames);
2137 
2138         return do_transfer(substream, 0, hwoff, data + off, frames, transfer,
2139                            in_kernel);
2140 }
2141 
2142 /* call transfer function with the converted pointers and sizes for each
2143  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2144  */
2145 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2146                                snd_pcm_uframes_t hwoff, void *data,
2147                                snd_pcm_uframes_t off,
2148                                snd_pcm_uframes_t frames,
2149                                pcm_transfer_f transfer,
2150                                bool in_kernel)
2151 {
2152         struct snd_pcm_runtime *runtime = substream->runtime;
2153         int channels = runtime->channels;
2154         void **bufs = data;
2155         int c, err;
2156 
2157         /* convert to bytes; note that it's not frames_to_bytes() here.
2158          * in non-interleaved mode, we copy for each channel, thus
2159          * each copy is n_samples bytes x channels = whole frames.
2160          */
2161         off = samples_to_bytes(runtime, off);
2162         frames = samples_to_bytes(runtime, frames);
2163         hwoff = samples_to_bytes(runtime, hwoff);
2164         for (c = 0; c < channels; ++c, ++bufs) {
2165                 if (!data || !*bufs)
2166                         err = fill_silence(substream, c, hwoff, NULL, frames);
2167                 else
2168                         err = do_transfer(substream, c, hwoff, *bufs + off,
2169                                           frames, transfer, in_kernel);
2170                 if (err < 0)
2171                         return err;
2172         }
2173         return 0;
2174 }
2175 
2176 /* fill silence on the given buffer position;
2177  * called from snd_pcm_playback_silence()
2178  */
2179 static int fill_silence_frames(struct snd_pcm_substream *substream,
2180                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2181 {
2182         if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2183             substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2184                 return interleaved_copy(substream, off, NULL, 0, frames,
2185                                         fill_silence, true);
2186         else
2187                 return noninterleaved_copy(substream, off, NULL, 0, frames,
2188                                            fill_silence, true);
2189 }
2190 
2191 /* sanity-check for read/write methods */
2192 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2193 {
2194         struct snd_pcm_runtime *runtime;
2195         if (PCM_RUNTIME_CHECK(substream))
2196                 return -ENXIO;
2197         runtime = substream->runtime;
2198         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2199                 return -EINVAL;
2200         if (runtime->state == SNDRV_PCM_STATE_OPEN)
2201                 return -EBADFD;
2202         return 0;
2203 }
2204 
2205 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2206 {
2207         switch (runtime->state) {
2208         case SNDRV_PCM_STATE_PREPARED:
2209         case SNDRV_PCM_STATE_RUNNING:
2210         case SNDRV_PCM_STATE_PAUSED:
2211                 return 0;
2212         case SNDRV_PCM_STATE_XRUN:
2213                 return -EPIPE;
2214         case SNDRV_PCM_STATE_SUSPENDED:
2215                 return -ESTRPIPE;
2216         default:
2217                 return -EBADFD;
2218         }
2219 }
2220 
2221 /* update to the given appl_ptr and call ack callback if needed;
2222  * when an error is returned, take back to the original value
2223  */
2224 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2225                            snd_pcm_uframes_t appl_ptr)
2226 {
2227         struct snd_pcm_runtime *runtime = substream->runtime;
2228         snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2229         snd_pcm_sframes_t diff;
2230         int ret;
2231 
2232         if (old_appl_ptr == appl_ptr)
2233                 return 0;
2234 
2235         if (appl_ptr >= runtime->boundary)
2236                 return -EINVAL;
2237         /*
2238          * check if a rewind is requested by the application
2239          */
2240         if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2241                 diff = appl_ptr - old_appl_ptr;
2242                 if (diff >= 0) {
2243                         if (diff > runtime->buffer_size)
2244                                 return -EINVAL;
2245                 } else {
2246                         if (runtime->boundary + diff > runtime->buffer_size)
2247                                 return -EINVAL;
2248                 }
2249         }
2250 
2251         runtime->control->appl_ptr = appl_ptr;
2252         if (substream->ops->ack) {
2253                 ret = substream->ops->ack(substream);
2254                 if (ret < 0) {
2255                         runtime->control->appl_ptr = old_appl_ptr;
2256                         if (ret == -EPIPE)
2257                                 __snd_pcm_xrun(substream);
2258                         return ret;
2259                 }
2260         }
2261 
2262         trace_applptr(substream, old_appl_ptr, appl_ptr);
2263 
2264         return 0;
2265 }
2266 
2267 /* the common loop for read/write data */
2268 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2269                                      void *data, bool interleaved,
2270                                      snd_pcm_uframes_t size, bool in_kernel)
2271 {
2272         struct snd_pcm_runtime *runtime = substream->runtime;
2273         snd_pcm_uframes_t xfer = 0;
2274         snd_pcm_uframes_t offset = 0;
2275         snd_pcm_uframes_t avail;
2276         pcm_copy_f writer;
2277         pcm_transfer_f transfer;
2278         bool nonblock;
2279         bool is_playback;
2280         int err;
2281 
2282         err = pcm_sanity_check(substream);
2283         if (err < 0)
2284                 return err;
2285 
2286         is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2287         if (interleaved) {
2288                 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2289                     runtime->channels > 1)
2290                         return -EINVAL;
2291                 writer = interleaved_copy;
2292         } else {
2293                 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2294                         return -EINVAL;
2295                 writer = noninterleaved_copy;
2296         }
2297 
2298         if (!data) {
2299                 if (is_playback)
2300                         transfer = fill_silence;
2301                 else
2302                         return -EINVAL;
2303         } else {
2304                 if (substream->ops->copy)
2305                         transfer = substream->ops->copy;
2306                 else
2307                         transfer = is_playback ?
2308                                 default_write_copy : default_read_copy;
2309         }
2310 
2311         if (size == 0)
2312                 return 0;
2313 
2314         nonblock = !!(substream->f_flags & O_NONBLOCK);
2315 
2316         snd_pcm_stream_lock_irq(substream);
2317         err = pcm_accessible_state(runtime);
2318         if (err < 0)
2319                 goto _end_unlock;
2320 
2321         runtime->twake = runtime->control->avail_min ? : 1;
2322         if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2323                 snd_pcm_update_hw_ptr(substream);
2324 
2325         /*
2326          * If size < start_threshold, wait indefinitely. Another
2327          * thread may start capture
2328          */
2329         if (!is_playback &&
2330             runtime->state == SNDRV_PCM_STATE_PREPARED &&
2331             size >= runtime->start_threshold) {
2332                 err = snd_pcm_start(substream);
2333                 if (err < 0)
2334                         goto _end_unlock;
2335         }
2336 
2337         avail = snd_pcm_avail(substream);
2338 
2339         while (size > 0) {
2340                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2341                 snd_pcm_uframes_t cont;
2342                 if (!avail) {
2343                         if (!is_playback &&
2344                             runtime->state == SNDRV_PCM_STATE_DRAINING) {
2345                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2346                                 goto _end_unlock;
2347                         }
2348                         if (nonblock) {
2349                                 err = -EAGAIN;
2350                                 goto _end_unlock;
2351                         }
2352                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2353                                         runtime->control->avail_min ? : 1);
2354                         err = wait_for_avail(substream, &avail);
2355                         if (err < 0)
2356                                 goto _end_unlock;
2357                         if (!avail)
2358                                 continue; /* draining */
2359                 }
2360                 frames = size > avail ? avail : size;
2361                 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2362                 appl_ofs = appl_ptr % runtime->buffer_size;
2363                 cont = runtime->buffer_size - appl_ofs;
2364                 if (frames > cont)
2365                         frames = cont;
2366                 if (snd_BUG_ON(!frames)) {
2367                         err = -EINVAL;
2368                         goto _end_unlock;
2369                 }
2370                 if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2371                         err = -EBUSY;
2372                         goto _end_unlock;
2373                 }
2374                 snd_pcm_stream_unlock_irq(substream);
2375                 if (!is_playback)
2376                         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2377                 err = writer(substream, appl_ofs, data, offset, frames,
2378                              transfer, in_kernel);
2379                 if (is_playback)
2380                         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2381                 snd_pcm_stream_lock_irq(substream);
2382                 atomic_dec(&runtime->buffer_accessing);
2383                 if (err < 0)
2384                         goto _end_unlock;
2385                 err = pcm_accessible_state(runtime);
2386                 if (err < 0)
2387                         goto _end_unlock;
2388                 appl_ptr += frames;
2389                 if (appl_ptr >= runtime->boundary)
2390                         appl_ptr -= runtime->boundary;
2391                 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2392                 if (err < 0)
2393                         goto _end_unlock;
2394 
2395                 offset += frames;
2396                 size -= frames;
2397                 xfer += frames;
2398                 avail -= frames;
2399                 if (is_playback &&
2400                     runtime->state == SNDRV_PCM_STATE_PREPARED &&
2401                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2402                         err = snd_pcm_start(substream);
2403                         if (err < 0)
2404                                 goto _end_unlock;
2405                 }
2406         }
2407  _end_unlock:
2408         runtime->twake = 0;
2409         if (xfer > 0 && err >= 0)
2410                 snd_pcm_update_state(substream, runtime);
2411         snd_pcm_stream_unlock_irq(substream);
2412         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2413 }
2414 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2415 
2416 /*
2417  * standard channel mapping helpers
2418  */
2419 
2420 /* default channel maps for multi-channel playbacks, up to 8 channels */
2421 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2422         { .channels = 1,
2423           .map = { SNDRV_CHMAP_MONO } },
2424         { .channels = 2,
2425           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2426         { .channels = 4,
2427           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2428                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2429         { .channels = 6,
2430           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2431                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2432                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2433         { .channels = 8,
2434           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2435                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2436                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2437                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2438         { }
2439 };
2440 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2441 
2442 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2443 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2444         { .channels = 1,
2445           .map = { SNDRV_CHMAP_MONO } },
2446         { .channels = 2,
2447           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2448         { .channels = 4,
2449           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2450                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2451         { .channels = 6,
2452           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2453                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2454                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2455         { .channels = 8,
2456           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2457                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2458                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2459                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2460         { }
2461 };
2462 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2463 
2464 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2465 {
2466         if (ch > info->max_channels)
2467                 return false;
2468         return !info->channel_mask || (info->channel_mask & (1U << ch));
2469 }
2470 
2471 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2472                               struct snd_ctl_elem_info *uinfo)
2473 {
2474         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2475 
2476         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2477         uinfo->count = info->max_channels;
2478         uinfo->value.integer.min = 0;
2479         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2480         return 0;
2481 }
2482 
2483 /* get callback for channel map ctl element
2484  * stores the channel position firstly matching with the current channels
2485  */
2486 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2487                              struct snd_ctl_elem_value *ucontrol)
2488 {
2489         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2490         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2491         struct snd_pcm_substream *substream;
2492         const struct snd_pcm_chmap_elem *map;
2493 
2494         if (!info->chmap)
2495                 return -EINVAL;
2496         substream = snd_pcm_chmap_substream(info, idx);
2497         if (!substream)
2498                 return -ENODEV;
2499         memset(ucontrol->value.integer.value, 0,
2500                sizeof(long) * info->max_channels);
2501         if (!substream->runtime)
2502                 return 0; /* no channels set */
2503         for (map = info->chmap; map->channels; map++) {
2504                 int i;
2505                 if (map->channels == substream->runtime->channels &&
2506                     valid_chmap_channels(info, map->channels)) {
2507                         for (i = 0; i < map->channels; i++)
2508                                 ucontrol->value.integer.value[i] = map->map[i];
2509                         return 0;
2510                 }
2511         }
2512         return -EINVAL;
2513 }
2514 
2515 /* tlv callback for channel map ctl element
2516  * expands the pre-defined channel maps in a form of TLV
2517  */
2518 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2519                              unsigned int size, unsigned int __user *tlv)
2520 {
2521         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2522         const struct snd_pcm_chmap_elem *map;
2523         unsigned int __user *dst;
2524         int c, count = 0;
2525 
2526         if (!info->chmap)
2527                 return -EINVAL;
2528         if (size < 8)
2529                 return -ENOMEM;
2530         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2531                 return -EFAULT;
2532         size -= 8;
2533         dst = tlv + 2;
2534         for (map = info->chmap; map->channels; map++) {
2535                 int chs_bytes = map->channels * 4;
2536                 if (!valid_chmap_channels(info, map->channels))
2537                         continue;
2538                 if (size < 8)
2539                         return -ENOMEM;
2540                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2541                     put_user(chs_bytes, dst + 1))
2542                         return -EFAULT;
2543                 dst += 2;
2544                 size -= 8;
2545                 count += 8;
2546                 if (size < chs_bytes)
2547                         return -ENOMEM;
2548                 size -= chs_bytes;
2549                 count += chs_bytes;
2550                 for (c = 0; c < map->channels; c++) {
2551                         if (put_user(map->map[c], dst))
2552                                 return -EFAULT;
2553                         dst++;
2554                 }
2555         }
2556         if (put_user(count, tlv + 1))
2557                 return -EFAULT;
2558         return 0;
2559 }
2560 
2561 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2562 {
2563         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2564         info->pcm->streams[info->stream].chmap_kctl = NULL;
2565         kfree(info);
2566 }
2567 
2568 /**
2569  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2570  * @pcm: the assigned PCM instance
2571  * @stream: stream direction
2572  * @chmap: channel map elements (for query)
2573  * @max_channels: the max number of channels for the stream
2574  * @private_value: the value passed to each kcontrol's private_value field
2575  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2576  *
2577  * Create channel-mapping control elements assigned to the given PCM stream(s).
2578  * Return: Zero if successful, or a negative error value.
2579  */
2580 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2581                            const struct snd_pcm_chmap_elem *chmap,
2582                            int max_channels,
2583                            unsigned long private_value,
2584                            struct snd_pcm_chmap **info_ret)
2585 {
2586         struct snd_pcm_chmap *info;
2587         struct snd_kcontrol_new knew = {
2588                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2589                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2590                         SNDRV_CTL_ELEM_ACCESS_VOLATILE |
2591                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2592                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2593                 .info = pcm_chmap_ctl_info,
2594                 .get = pcm_chmap_ctl_get,
2595                 .tlv.c = pcm_chmap_ctl_tlv,
2596         };
2597         int err;
2598 
2599         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2600                 return -EBUSY;
2601         info = kzalloc(sizeof(*info), GFP_KERNEL);
2602         if (!info)
2603                 return -ENOMEM;
2604         info->pcm = pcm;
2605         info->stream = stream;
2606         info->chmap = chmap;
2607         info->max_channels = max_channels;
2608         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2609                 knew.name = "Playback Channel Map";
2610         else
2611                 knew.name = "Capture Channel Map";
2612         knew.device = pcm->device;
2613         knew.count = pcm->streams[stream].substream_count;
2614         knew.private_value = private_value;
2615         info->kctl = snd_ctl_new1(&knew, info);
2616         if (!info->kctl) {
2617                 kfree(info);
2618                 return -ENOMEM;
2619         }
2620         info->kctl->private_free = pcm_chmap_ctl_private_free;
2621         err = snd_ctl_add(pcm->card, info->kctl);
2622         if (err < 0)
2623                 return err;
2624         pcm->streams[stream].chmap_kctl = info->kctl;
2625         if (info_ret)
2626                 *info_ret = info;
2627         return 0;
2628 }
2629 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2630 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php