1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Dummy soundcard 4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 5 */ 6 7 #include <linux/init.h> 8 #include <linux/err.h> 9 #include <linux/platform_device.h> 10 #include <linux/jiffies.h> 11 #include <linux/slab.h> 12 #include <linux/time.h> 13 #include <linux/wait.h> 14 #include <linux/hrtimer.h> 15 #include <linux/math64.h> 16 #include <linux/module.h> 17 #include <sound/core.h> 18 #include <sound/control.h> 19 #include <sound/tlv.h> 20 #include <sound/pcm.h> 21 #include <sound/rawmidi.h> 22 #include <sound/info.h> 23 #include <sound/initval.h> 24 25 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>"); 26 MODULE_DESCRIPTION("Dummy soundcard (/dev/null)"); 27 MODULE_LICENSE("GPL"); 28 29 #define MAX_PCM_DEVICES 4 30 #define MAX_PCM_SUBSTREAMS 128 31 #define MAX_MIDI_DEVICES 2 32 33 /* defaults */ 34 #define MAX_BUFFER_SIZE (64*1024) 35 #define MIN_PERIOD_SIZE 64 36 #define MAX_PERIOD_SIZE MAX_BUFFER_SIZE 37 #define USE_FORMATS (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE) 38 #define USE_RATE SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000 39 #define USE_RATE_MIN 5500 40 #define USE_RATE_MAX 48000 41 #define USE_CHANNELS_MIN 1 42 #define USE_CHANNELS_MAX 2 43 #define USE_PERIODS_MIN 1 44 #define USE_PERIODS_MAX 1024 45 #define USE_MIXER_VOLUME_LEVEL_MIN -50 46 #define USE_MIXER_VOLUME_LEVEL_MAX 100 47 48 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 49 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 50 static bool enable[SNDRV_CARDS] = {1, [1 ... (SNDRV_CARDS - 1)] = 0}; 51 static char *model[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = NULL}; 52 static int pcm_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1}; 53 static int pcm_substreams[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 8}; 54 //static int midi_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2}; 55 static int mixer_volume_level_min = USE_MIXER_VOLUME_LEVEL_MIN; 56 static int mixer_volume_level_max = USE_MIXER_VOLUME_LEVEL_MAX; 57 #ifdef CONFIG_HIGH_RES_TIMERS 58 static bool hrtimer = 1; 59 #endif 60 static bool fake_buffer = 1; 61 62 module_param_array(index, int, NULL, 0444); 63 MODULE_PARM_DESC(index, "Index value for dummy soundcard."); 64 module_param_array(id, charp, NULL, 0444); 65 MODULE_PARM_DESC(id, "ID string for dummy soundcard."); 66 module_param_array(enable, bool, NULL, 0444); 67 MODULE_PARM_DESC(enable, "Enable this dummy soundcard."); 68 module_param_array(model, charp, NULL, 0444); 69 MODULE_PARM_DESC(model, "Soundcard model."); 70 module_param_array(pcm_devs, int, NULL, 0444); 71 MODULE_PARM_DESC(pcm_devs, "PCM devices # (0-4) for dummy driver."); 72 module_param_array(pcm_substreams, int, NULL, 0444); 73 MODULE_PARM_DESC(pcm_substreams, "PCM substreams # (1-128) for dummy driver."); 74 //module_param_array(midi_devs, int, NULL, 0444); 75 //MODULE_PARM_DESC(midi_devs, "MIDI devices # (0-2) for dummy driver."); 76 module_param(mixer_volume_level_min, int, 0444); 77 MODULE_PARM_DESC(mixer_volume_level_min, "Minimum mixer volume level for dummy driver. Default: -50"); 78 module_param(mixer_volume_level_max, int, 0444); 79 MODULE_PARM_DESC(mixer_volume_level_max, "Maximum mixer volume level for dummy driver. Default: 100"); 80 module_param(fake_buffer, bool, 0444); 81 MODULE_PARM_DESC(fake_buffer, "Fake buffer allocations."); 82 #ifdef CONFIG_HIGH_RES_TIMERS 83 module_param(hrtimer, bool, 0644); 84 MODULE_PARM_DESC(hrtimer, "Use hrtimer as the timer source."); 85 #endif 86 87 static struct platform_device *devices[SNDRV_CARDS]; 88 89 #define MIXER_ADDR_MASTER 0 90 #define MIXER_ADDR_LINE 1 91 #define MIXER_ADDR_MIC 2 92 #define MIXER_ADDR_SYNTH 3 93 #define MIXER_ADDR_CD 4 94 #define MIXER_ADDR_LAST 4 95 96 struct dummy_timer_ops { 97 int (*create)(struct snd_pcm_substream *); 98 void (*free)(struct snd_pcm_substream *); 99 int (*prepare)(struct snd_pcm_substream *); 100 int (*start)(struct snd_pcm_substream *); 101 int (*stop)(struct snd_pcm_substream *); 102 snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *); 103 }; 104 105 #define get_dummy_ops(substream) \ 106 (*(const struct dummy_timer_ops **)(substream)->runtime->private_data) 107 108 struct dummy_model { 109 const char *name; 110 int (*playback_constraints)(struct snd_pcm_runtime *runtime); 111 int (*capture_constraints)(struct snd_pcm_runtime *runtime); 112 u64 formats; 113 size_t buffer_bytes_max; 114 size_t period_bytes_min; 115 size_t period_bytes_max; 116 unsigned int periods_min; 117 unsigned int periods_max; 118 unsigned int rates; 119 unsigned int rate_min; 120 unsigned int rate_max; 121 unsigned int channels_min; 122 unsigned int channels_max; 123 }; 124 125 struct snd_dummy { 126 struct snd_card *card; 127 const struct dummy_model *model; 128 struct snd_pcm *pcm; 129 struct snd_pcm_hardware pcm_hw; 130 spinlock_t mixer_lock; 131 int mixer_volume[MIXER_ADDR_LAST+1][2]; 132 int capture_source[MIXER_ADDR_LAST+1][2]; 133 int iobox; 134 struct snd_kcontrol *cd_volume_ctl; 135 struct snd_kcontrol *cd_switch_ctl; 136 }; 137 138 /* 139 * card models 140 */ 141 142 static int emu10k1_playback_constraints(struct snd_pcm_runtime *runtime) 143 { 144 int err; 145 err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 146 if (err < 0) 147 return err; 148 err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 256, UINT_MAX); 149 if (err < 0) 150 return err; 151 return 0; 152 } 153 154 static const struct dummy_model model_emu10k1 = { 155 .name = "emu10k1", 156 .playback_constraints = emu10k1_playback_constraints, 157 .buffer_bytes_max = 128 * 1024, 158 }; 159 160 static const struct dummy_model model_rme9652 = { 161 .name = "rme9652", 162 .buffer_bytes_max = 26 * 64 * 1024, 163 .formats = SNDRV_PCM_FMTBIT_S32_LE, 164 .channels_min = 26, 165 .channels_max = 26, 166 .periods_min = 2, 167 .periods_max = 2, 168 }; 169 170 static const struct dummy_model model_ice1712 = { 171 .name = "ice1712", 172 .buffer_bytes_max = 256 * 1024, 173 .formats = SNDRV_PCM_FMTBIT_S32_LE, 174 .channels_min = 10, 175 .channels_max = 10, 176 .periods_min = 1, 177 .periods_max = 1024, 178 }; 179 180 static const struct dummy_model model_uda1341 = { 181 .name = "uda1341", 182 .buffer_bytes_max = 16380, 183 .formats = SNDRV_PCM_FMTBIT_S16_LE, 184 .channels_min = 2, 185 .channels_max = 2, 186 .periods_min = 2, 187 .periods_max = 255, 188 }; 189 190 static const struct dummy_model model_ac97 = { 191 .name = "ac97", 192 .formats = SNDRV_PCM_FMTBIT_S16_LE, 193 .channels_min = 2, 194 .channels_max = 2, 195 .rates = SNDRV_PCM_RATE_48000, 196 .rate_min = 48000, 197 .rate_max = 48000, 198 }; 199 200 static const struct dummy_model model_ca0106 = { 201 .name = "ca0106", 202 .formats = SNDRV_PCM_FMTBIT_S16_LE, 203 .buffer_bytes_max = ((65536-64)*8), 204 .period_bytes_max = (65536-64), 205 .periods_min = 2, 206 .periods_max = 8, 207 .channels_min = 2, 208 .channels_max = 2, 209 .rates = SNDRV_PCM_RATE_48000|SNDRV_PCM_RATE_96000|SNDRV_PCM_RATE_192000, 210 .rate_min = 48000, 211 .rate_max = 192000, 212 }; 213 214 static const struct dummy_model *dummy_models[] = { 215 &model_emu10k1, 216 &model_rme9652, 217 &model_ice1712, 218 &model_uda1341, 219 &model_ac97, 220 &model_ca0106, 221 NULL 222 }; 223 224 /* 225 * system timer interface 226 */ 227 228 struct dummy_systimer_pcm { 229 /* ops must be the first item */ 230 const struct dummy_timer_ops *timer_ops; 231 spinlock_t lock; 232 struct timer_list timer; 233 unsigned long base_time; 234 unsigned int frac_pos; /* fractional sample position (based HZ) */ 235 unsigned int frac_period_rest; 236 unsigned int frac_buffer_size; /* buffer_size * HZ */ 237 unsigned int frac_period_size; /* period_size * HZ */ 238 unsigned int rate; 239 int elapsed; 240 struct snd_pcm_substream *substream; 241 }; 242 243 static void dummy_systimer_rearm(struct dummy_systimer_pcm *dpcm) 244 { 245 mod_timer(&dpcm->timer, jiffies + 246 DIV_ROUND_UP(dpcm->frac_period_rest, dpcm->rate)); 247 } 248 249 static void dummy_systimer_update(struct dummy_systimer_pcm *dpcm) 250 { 251 unsigned long delta; 252 253 delta = jiffies - dpcm->base_time; 254 if (!delta) 255 return; 256 dpcm->base_time += delta; 257 delta *= dpcm->rate; 258 dpcm->frac_pos += delta; 259 while (dpcm->frac_pos >= dpcm->frac_buffer_size) 260 dpcm->frac_pos -= dpcm->frac_buffer_size; 261 while (dpcm->frac_period_rest <= delta) { 262 dpcm->elapsed++; 263 dpcm->frac_period_rest += dpcm->frac_period_size; 264 } 265 dpcm->frac_period_rest -= delta; 266 } 267 268 static int dummy_systimer_start(struct snd_pcm_substream *substream) 269 { 270 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 271 spin_lock(&dpcm->lock); 272 dpcm->base_time = jiffies; 273 dummy_systimer_rearm(dpcm); 274 spin_unlock(&dpcm->lock); 275 return 0; 276 } 277 278 static int dummy_systimer_stop(struct snd_pcm_substream *substream) 279 { 280 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 281 spin_lock(&dpcm->lock); 282 del_timer(&dpcm->timer); 283 spin_unlock(&dpcm->lock); 284 return 0; 285 } 286 287 static int dummy_systimer_prepare(struct snd_pcm_substream *substream) 288 { 289 struct snd_pcm_runtime *runtime = substream->runtime; 290 struct dummy_systimer_pcm *dpcm = runtime->private_data; 291 292 dpcm->frac_pos = 0; 293 dpcm->rate = runtime->rate; 294 dpcm->frac_buffer_size = runtime->buffer_size * HZ; 295 dpcm->frac_period_size = runtime->period_size * HZ; 296 dpcm->frac_period_rest = dpcm->frac_period_size; 297 dpcm->elapsed = 0; 298 299 return 0; 300 } 301 302 static void dummy_systimer_callback(struct timer_list *t) 303 { 304 struct dummy_systimer_pcm *dpcm = from_timer(dpcm, t, timer); 305 unsigned long flags; 306 int elapsed = 0; 307 308 spin_lock_irqsave(&dpcm->lock, flags); 309 dummy_systimer_update(dpcm); 310 dummy_systimer_rearm(dpcm); 311 elapsed = dpcm->elapsed; 312 dpcm->elapsed = 0; 313 spin_unlock_irqrestore(&dpcm->lock, flags); 314 if (elapsed) 315 snd_pcm_period_elapsed(dpcm->substream); 316 } 317 318 static snd_pcm_uframes_t 319 dummy_systimer_pointer(struct snd_pcm_substream *substream) 320 { 321 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 322 snd_pcm_uframes_t pos; 323 324 spin_lock(&dpcm->lock); 325 dummy_systimer_update(dpcm); 326 pos = dpcm->frac_pos / HZ; 327 spin_unlock(&dpcm->lock); 328 return pos; 329 } 330 331 static int dummy_systimer_create(struct snd_pcm_substream *substream) 332 { 333 struct dummy_systimer_pcm *dpcm; 334 335 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 336 if (!dpcm) 337 return -ENOMEM; 338 substream->runtime->private_data = dpcm; 339 timer_setup(&dpcm->timer, dummy_systimer_callback, 0); 340 spin_lock_init(&dpcm->lock); 341 dpcm->substream = substream; 342 return 0; 343 } 344 345 static void dummy_systimer_free(struct snd_pcm_substream *substream) 346 { 347 kfree(substream->runtime->private_data); 348 } 349 350 static const struct dummy_timer_ops dummy_systimer_ops = { 351 .create = dummy_systimer_create, 352 .free = dummy_systimer_free, 353 .prepare = dummy_systimer_prepare, 354 .start = dummy_systimer_start, 355 .stop = dummy_systimer_stop, 356 .pointer = dummy_systimer_pointer, 357 }; 358 359 #ifdef CONFIG_HIGH_RES_TIMERS 360 /* 361 * hrtimer interface 362 */ 363 364 struct dummy_hrtimer_pcm { 365 /* ops must be the first item */ 366 const struct dummy_timer_ops *timer_ops; 367 ktime_t base_time; 368 ktime_t period_time; 369 atomic_t running; 370 struct hrtimer timer; 371 struct snd_pcm_substream *substream; 372 }; 373 374 static enum hrtimer_restart dummy_hrtimer_callback(struct hrtimer *timer) 375 { 376 struct dummy_hrtimer_pcm *dpcm; 377 378 dpcm = container_of(timer, struct dummy_hrtimer_pcm, timer); 379 if (!atomic_read(&dpcm->running)) 380 return HRTIMER_NORESTART; 381 /* 382 * In cases of XRUN and draining, this calls .trigger to stop PCM 383 * substream. 384 */ 385 snd_pcm_period_elapsed(dpcm->substream); 386 if (!atomic_read(&dpcm->running)) 387 return HRTIMER_NORESTART; 388 389 hrtimer_forward_now(timer, dpcm->period_time); 390 return HRTIMER_RESTART; 391 } 392 393 static int dummy_hrtimer_start(struct snd_pcm_substream *substream) 394 { 395 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 396 397 dpcm->base_time = hrtimer_cb_get_time(&dpcm->timer); 398 hrtimer_start(&dpcm->timer, dpcm->period_time, HRTIMER_MODE_REL_SOFT); 399 atomic_set(&dpcm->running, 1); 400 return 0; 401 } 402 403 static int dummy_hrtimer_stop(struct snd_pcm_substream *substream) 404 { 405 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 406 407 atomic_set(&dpcm->running, 0); 408 if (!hrtimer_callback_running(&dpcm->timer)) 409 hrtimer_cancel(&dpcm->timer); 410 return 0; 411 } 412 413 static inline void dummy_hrtimer_sync(struct dummy_hrtimer_pcm *dpcm) 414 { 415 hrtimer_cancel(&dpcm->timer); 416 } 417 418 static snd_pcm_uframes_t 419 dummy_hrtimer_pointer(struct snd_pcm_substream *substream) 420 { 421 struct snd_pcm_runtime *runtime = substream->runtime; 422 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 423 u64 delta; 424 u32 pos; 425 426 delta = ktime_us_delta(hrtimer_cb_get_time(&dpcm->timer), 427 dpcm->base_time); 428 delta = div_u64(delta * runtime->rate + 999999, 1000000); 429 div_u64_rem(delta, runtime->buffer_size, &pos); 430 return pos; 431 } 432 433 static int dummy_hrtimer_prepare(struct snd_pcm_substream *substream) 434 { 435 struct snd_pcm_runtime *runtime = substream->runtime; 436 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 437 unsigned int period, rate; 438 long sec; 439 unsigned long nsecs; 440 441 dummy_hrtimer_sync(dpcm); 442 period = runtime->period_size; 443 rate = runtime->rate; 444 sec = period / rate; 445 period %= rate; 446 nsecs = div_u64((u64)period * 1000000000UL + rate - 1, rate); 447 dpcm->period_time = ktime_set(sec, nsecs); 448 449 return 0; 450 } 451 452 static int dummy_hrtimer_create(struct snd_pcm_substream *substream) 453 { 454 struct dummy_hrtimer_pcm *dpcm; 455 456 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 457 if (!dpcm) 458 return -ENOMEM; 459 substream->runtime->private_data = dpcm; 460 hrtimer_init(&dpcm->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT); 461 dpcm->timer.function = dummy_hrtimer_callback; 462 dpcm->substream = substream; 463 atomic_set(&dpcm->running, 0); 464 return 0; 465 } 466 467 static void dummy_hrtimer_free(struct snd_pcm_substream *substream) 468 { 469 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 470 dummy_hrtimer_sync(dpcm); 471 kfree(dpcm); 472 } 473 474 static const struct dummy_timer_ops dummy_hrtimer_ops = { 475 .create = dummy_hrtimer_create, 476 .free = dummy_hrtimer_free, 477 .prepare = dummy_hrtimer_prepare, 478 .start = dummy_hrtimer_start, 479 .stop = dummy_hrtimer_stop, 480 .pointer = dummy_hrtimer_pointer, 481 }; 482 483 #endif /* CONFIG_HIGH_RES_TIMERS */ 484 485 /* 486 * PCM interface 487 */ 488 489 static int dummy_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 490 { 491 switch (cmd) { 492 case SNDRV_PCM_TRIGGER_START: 493 case SNDRV_PCM_TRIGGER_RESUME: 494 return get_dummy_ops(substream)->start(substream); 495 case SNDRV_PCM_TRIGGER_STOP: 496 case SNDRV_PCM_TRIGGER_SUSPEND: 497 return get_dummy_ops(substream)->stop(substream); 498 } 499 return -EINVAL; 500 } 501 502 static int dummy_pcm_prepare(struct snd_pcm_substream *substream) 503 { 504 return get_dummy_ops(substream)->prepare(substream); 505 } 506 507 static snd_pcm_uframes_t dummy_pcm_pointer(struct snd_pcm_substream *substream) 508 { 509 return get_dummy_ops(substream)->pointer(substream); 510 } 511 512 static const struct snd_pcm_hardware dummy_pcm_hardware = { 513 .info = (SNDRV_PCM_INFO_MMAP | 514 SNDRV_PCM_INFO_INTERLEAVED | 515 SNDRV_PCM_INFO_RESUME | 516 SNDRV_PCM_INFO_MMAP_VALID), 517 .formats = USE_FORMATS, 518 .rates = USE_RATE, 519 .rate_min = USE_RATE_MIN, 520 .rate_max = USE_RATE_MAX, 521 .channels_min = USE_CHANNELS_MIN, 522 .channels_max = USE_CHANNELS_MAX, 523 .buffer_bytes_max = MAX_BUFFER_SIZE, 524 .period_bytes_min = MIN_PERIOD_SIZE, 525 .period_bytes_max = MAX_PERIOD_SIZE, 526 .periods_min = USE_PERIODS_MIN, 527 .periods_max = USE_PERIODS_MAX, 528 .fifo_size = 0, 529 }; 530 531 static int dummy_pcm_hw_params(struct snd_pcm_substream *substream, 532 struct snd_pcm_hw_params *hw_params) 533 { 534 if (fake_buffer) { 535 /* runtime->dma_bytes has to be set manually to allow mmap */ 536 substream->runtime->dma_bytes = params_buffer_bytes(hw_params); 537 return 0; 538 } 539 return 0; 540 } 541 542 static int dummy_pcm_open(struct snd_pcm_substream *substream) 543 { 544 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 545 const struct dummy_model *model = dummy->model; 546 struct snd_pcm_runtime *runtime = substream->runtime; 547 const struct dummy_timer_ops *ops; 548 int err; 549 550 ops = &dummy_systimer_ops; 551 #ifdef CONFIG_HIGH_RES_TIMERS 552 if (hrtimer) 553 ops = &dummy_hrtimer_ops; 554 #endif 555 556 err = ops->create(substream); 557 if (err < 0) 558 return err; 559 get_dummy_ops(substream) = ops; 560 561 runtime->hw = dummy->pcm_hw; 562 if (substream->pcm->device & 1) { 563 runtime->hw.info &= ~SNDRV_PCM_INFO_INTERLEAVED; 564 runtime->hw.info |= SNDRV_PCM_INFO_NONINTERLEAVED; 565 } 566 if (substream->pcm->device & 2) 567 runtime->hw.info &= ~(SNDRV_PCM_INFO_MMAP | 568 SNDRV_PCM_INFO_MMAP_VALID); 569 570 if (model == NULL) 571 return 0; 572 573 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 574 if (model->playback_constraints) 575 err = model->playback_constraints(substream->runtime); 576 } else { 577 if (model->capture_constraints) 578 err = model->capture_constraints(substream->runtime); 579 } 580 if (err < 0) { 581 get_dummy_ops(substream)->free(substream); 582 return err; 583 } 584 return 0; 585 } 586 587 static int dummy_pcm_close(struct snd_pcm_substream *substream) 588 { 589 get_dummy_ops(substream)->free(substream); 590 return 0; 591 } 592 593 /* 594 * dummy buffer handling 595 */ 596 597 static void *dummy_page[2]; 598 599 static void free_fake_buffer(void) 600 { 601 if (fake_buffer) { 602 int i; 603 for (i = 0; i < 2; i++) 604 if (dummy_page[i]) { 605 free_page((unsigned long)dummy_page[i]); 606 dummy_page[i] = NULL; 607 } 608 } 609 } 610 611 static int alloc_fake_buffer(void) 612 { 613 int i; 614 615 if (!fake_buffer) 616 return 0; 617 for (i = 0; i < 2; i++) { 618 dummy_page[i] = (void *)get_zeroed_page(GFP_KERNEL); 619 if (!dummy_page[i]) { 620 free_fake_buffer(); 621 return -ENOMEM; 622 } 623 } 624 return 0; 625 } 626 627 static int dummy_pcm_copy(struct snd_pcm_substream *substream, 628 int channel, unsigned long pos, 629 struct iov_iter *iter, unsigned long bytes) 630 { 631 return 0; /* do nothing */ 632 } 633 634 static int dummy_pcm_silence(struct snd_pcm_substream *substream, 635 int channel, unsigned long pos, 636 unsigned long bytes) 637 { 638 return 0; /* do nothing */ 639 } 640 641 static struct page *dummy_pcm_page(struct snd_pcm_substream *substream, 642 unsigned long offset) 643 { 644 return virt_to_page(dummy_page[substream->stream]); /* the same page */ 645 } 646 647 static const struct snd_pcm_ops dummy_pcm_ops = { 648 .open = dummy_pcm_open, 649 .close = dummy_pcm_close, 650 .hw_params = dummy_pcm_hw_params, 651 .prepare = dummy_pcm_prepare, 652 .trigger = dummy_pcm_trigger, 653 .pointer = dummy_pcm_pointer, 654 }; 655 656 static const struct snd_pcm_ops dummy_pcm_ops_no_buf = { 657 .open = dummy_pcm_open, 658 .close = dummy_pcm_close, 659 .hw_params = dummy_pcm_hw_params, 660 .prepare = dummy_pcm_prepare, 661 .trigger = dummy_pcm_trigger, 662 .pointer = dummy_pcm_pointer, 663 .copy = dummy_pcm_copy, 664 .fill_silence = dummy_pcm_silence, 665 .page = dummy_pcm_page, 666 }; 667 668 static int snd_card_dummy_pcm(struct snd_dummy *dummy, int device, 669 int substreams) 670 { 671 struct snd_pcm *pcm; 672 const struct snd_pcm_ops *ops; 673 int err; 674 675 err = snd_pcm_new(dummy->card, "Dummy PCM", device, 676 substreams, substreams, &pcm); 677 if (err < 0) 678 return err; 679 dummy->pcm = pcm; 680 if (fake_buffer) 681 ops = &dummy_pcm_ops_no_buf; 682 else 683 ops = &dummy_pcm_ops; 684 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, ops); 685 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, ops); 686 pcm->private_data = dummy; 687 pcm->info_flags = 0; 688 strcpy(pcm->name, "Dummy PCM"); 689 if (!fake_buffer) { 690 snd_pcm_set_managed_buffer_all(pcm, 691 SNDRV_DMA_TYPE_CONTINUOUS, 692 NULL, 693 0, 64*1024); 694 } 695 return 0; 696 } 697 698 /* 699 * mixer interface 700 */ 701 702 #define DUMMY_VOLUME(xname, xindex, addr) \ 703 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 704 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 705 .name = xname, .index = xindex, \ 706 .info = snd_dummy_volume_info, \ 707 .get = snd_dummy_volume_get, .put = snd_dummy_volume_put, \ 708 .private_value = addr, \ 709 .tlv = { .p = db_scale_dummy } } 710 711 static int snd_dummy_volume_info(struct snd_kcontrol *kcontrol, 712 struct snd_ctl_elem_info *uinfo) 713 { 714 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 715 uinfo->count = 2; 716 uinfo->value.integer.min = mixer_volume_level_min; 717 uinfo->value.integer.max = mixer_volume_level_max; 718 return 0; 719 } 720 721 static int snd_dummy_volume_get(struct snd_kcontrol *kcontrol, 722 struct snd_ctl_elem_value *ucontrol) 723 { 724 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 725 int addr = kcontrol->private_value; 726 727 spin_lock_irq(&dummy->mixer_lock); 728 ucontrol->value.integer.value[0] = dummy->mixer_volume[addr][0]; 729 ucontrol->value.integer.value[1] = dummy->mixer_volume[addr][1]; 730 spin_unlock_irq(&dummy->mixer_lock); 731 return 0; 732 } 733 734 static int snd_dummy_volume_put(struct snd_kcontrol *kcontrol, 735 struct snd_ctl_elem_value *ucontrol) 736 { 737 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 738 int change, addr = kcontrol->private_value; 739 int left, right; 740 741 left = ucontrol->value.integer.value[0]; 742 if (left < mixer_volume_level_min) 743 left = mixer_volume_level_min; 744 if (left > mixer_volume_level_max) 745 left = mixer_volume_level_max; 746 right = ucontrol->value.integer.value[1]; 747 if (right < mixer_volume_level_min) 748 right = mixer_volume_level_min; 749 if (right > mixer_volume_level_max) 750 right = mixer_volume_level_max; 751 spin_lock_irq(&dummy->mixer_lock); 752 change = dummy->mixer_volume[addr][0] != left || 753 dummy->mixer_volume[addr][1] != right; 754 dummy->mixer_volume[addr][0] = left; 755 dummy->mixer_volume[addr][1] = right; 756 spin_unlock_irq(&dummy->mixer_lock); 757 return change; 758 } 759 760 static const DECLARE_TLV_DB_SCALE(db_scale_dummy, -4500, 30, 0); 761 762 #define DUMMY_CAPSRC(xname, xindex, addr) \ 763 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 764 .info = snd_dummy_capsrc_info, \ 765 .get = snd_dummy_capsrc_get, .put = snd_dummy_capsrc_put, \ 766 .private_value = addr } 767 768 #define snd_dummy_capsrc_info snd_ctl_boolean_stereo_info 769 770 static int snd_dummy_capsrc_get(struct snd_kcontrol *kcontrol, 771 struct snd_ctl_elem_value *ucontrol) 772 { 773 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 774 int addr = kcontrol->private_value; 775 776 spin_lock_irq(&dummy->mixer_lock); 777 ucontrol->value.integer.value[0] = dummy->capture_source[addr][0]; 778 ucontrol->value.integer.value[1] = dummy->capture_source[addr][1]; 779 spin_unlock_irq(&dummy->mixer_lock); 780 return 0; 781 } 782 783 static int snd_dummy_capsrc_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 784 { 785 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 786 int change, addr = kcontrol->private_value; 787 int left, right; 788 789 left = ucontrol->value.integer.value[0] & 1; 790 right = ucontrol->value.integer.value[1] & 1; 791 spin_lock_irq(&dummy->mixer_lock); 792 change = dummy->capture_source[addr][0] != left && 793 dummy->capture_source[addr][1] != right; 794 dummy->capture_source[addr][0] = left; 795 dummy->capture_source[addr][1] = right; 796 spin_unlock_irq(&dummy->mixer_lock); 797 return change; 798 } 799 800 static int snd_dummy_iobox_info(struct snd_kcontrol *kcontrol, 801 struct snd_ctl_elem_info *info) 802 { 803 static const char *const names[] = { "None", "CD Player" }; 804 805 return snd_ctl_enum_info(info, 1, 2, names); 806 } 807 808 static int snd_dummy_iobox_get(struct snd_kcontrol *kcontrol, 809 struct snd_ctl_elem_value *value) 810 { 811 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 812 813 value->value.enumerated.item[0] = dummy->iobox; 814 return 0; 815 } 816 817 static int snd_dummy_iobox_put(struct snd_kcontrol *kcontrol, 818 struct snd_ctl_elem_value *value) 819 { 820 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 821 int changed; 822 823 if (value->value.enumerated.item[0] > 1) 824 return -EINVAL; 825 826 changed = value->value.enumerated.item[0] != dummy->iobox; 827 if (changed) { 828 dummy->iobox = value->value.enumerated.item[0]; 829 830 if (dummy->iobox) { 831 dummy->cd_volume_ctl->vd[0].access &= 832 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 833 dummy->cd_switch_ctl->vd[0].access &= 834 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 835 } else { 836 dummy->cd_volume_ctl->vd[0].access |= 837 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 838 dummy->cd_switch_ctl->vd[0].access |= 839 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 840 } 841 842 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 843 &dummy->cd_volume_ctl->id); 844 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 845 &dummy->cd_switch_ctl->id); 846 } 847 848 return changed; 849 } 850 851 static const struct snd_kcontrol_new snd_dummy_controls[] = { 852 DUMMY_VOLUME("Master Volume", 0, MIXER_ADDR_MASTER), 853 DUMMY_CAPSRC("Master Capture Switch", 0, MIXER_ADDR_MASTER), 854 DUMMY_VOLUME("Synth Volume", 0, MIXER_ADDR_SYNTH), 855 DUMMY_CAPSRC("Synth Capture Switch", 0, MIXER_ADDR_SYNTH), 856 DUMMY_VOLUME("Line Volume", 0, MIXER_ADDR_LINE), 857 DUMMY_CAPSRC("Line Capture Switch", 0, MIXER_ADDR_LINE), 858 DUMMY_VOLUME("Mic Volume", 0, MIXER_ADDR_MIC), 859 DUMMY_CAPSRC("Mic Capture Switch", 0, MIXER_ADDR_MIC), 860 DUMMY_VOLUME("CD Volume", 0, MIXER_ADDR_CD), 861 DUMMY_CAPSRC("CD Capture Switch", 0, MIXER_ADDR_CD), 862 { 863 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 864 .name = "External I/O Box", 865 .info = snd_dummy_iobox_info, 866 .get = snd_dummy_iobox_get, 867 .put = snd_dummy_iobox_put, 868 }, 869 }; 870 871 static int snd_card_dummy_new_mixer(struct snd_dummy *dummy) 872 { 873 struct snd_card *card = dummy->card; 874 struct snd_kcontrol *kcontrol; 875 unsigned int idx; 876 int err; 877 878 spin_lock_init(&dummy->mixer_lock); 879 strcpy(card->mixername, "Dummy Mixer"); 880 dummy->iobox = 1; 881 882 for (idx = 0; idx < ARRAY_SIZE(snd_dummy_controls); idx++) { 883 kcontrol = snd_ctl_new1(&snd_dummy_controls[idx], dummy); 884 err = snd_ctl_add(card, kcontrol); 885 if (err < 0) 886 return err; 887 if (!strcmp(kcontrol->id.name, "CD Volume")) 888 dummy->cd_volume_ctl = kcontrol; 889 else if (!strcmp(kcontrol->id.name, "CD Capture Switch")) 890 dummy->cd_switch_ctl = kcontrol; 891 892 } 893 return 0; 894 } 895 896 #if defined(CONFIG_SND_DEBUG) && defined(CONFIG_SND_PROC_FS) 897 /* 898 * proc interface 899 */ 900 static void print_formats(struct snd_dummy *dummy, 901 struct snd_info_buffer *buffer) 902 { 903 snd_pcm_format_t i; 904 905 pcm_for_each_format(i) { 906 if (dummy->pcm_hw.formats & pcm_format_to_bits(i)) 907 snd_iprintf(buffer, " %s", snd_pcm_format_name(i)); 908 } 909 } 910 911 static void print_rates(struct snd_dummy *dummy, 912 struct snd_info_buffer *buffer) 913 { 914 static const int rates[] = { 915 5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000, 916 64000, 88200, 96000, 176400, 192000, 917 }; 918 int i; 919 920 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_CONTINUOUS) 921 snd_iprintf(buffer, " continuous"); 922 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_KNOT) 923 snd_iprintf(buffer, " knot"); 924 for (i = 0; i < ARRAY_SIZE(rates); i++) 925 if (dummy->pcm_hw.rates & (1 << i)) 926 snd_iprintf(buffer, " %d", rates[i]); 927 } 928 929 #define get_dummy_int_ptr(dummy, ofs) \ 930 (unsigned int *)((char *)&((dummy)->pcm_hw) + (ofs)) 931 #define get_dummy_ll_ptr(dummy, ofs) \ 932 (unsigned long long *)((char *)&((dummy)->pcm_hw) + (ofs)) 933 934 struct dummy_hw_field { 935 const char *name; 936 const char *format; 937 unsigned int offset; 938 unsigned int size; 939 }; 940 #define FIELD_ENTRY(item, fmt) { \ 941 .name = #item, \ 942 .format = fmt, \ 943 .offset = offsetof(struct snd_pcm_hardware, item), \ 944 .size = sizeof(dummy_pcm_hardware.item) } 945 946 static const struct dummy_hw_field fields[] = { 947 FIELD_ENTRY(formats, "%#llx"), 948 FIELD_ENTRY(rates, "%#x"), 949 FIELD_ENTRY(rate_min, "%d"), 950 FIELD_ENTRY(rate_max, "%d"), 951 FIELD_ENTRY(channels_min, "%d"), 952 FIELD_ENTRY(channels_max, "%d"), 953 FIELD_ENTRY(buffer_bytes_max, "%ld"), 954 FIELD_ENTRY(period_bytes_min, "%ld"), 955 FIELD_ENTRY(period_bytes_max, "%ld"), 956 FIELD_ENTRY(periods_min, "%d"), 957 FIELD_ENTRY(periods_max, "%d"), 958 }; 959 960 static void dummy_proc_read(struct snd_info_entry *entry, 961 struct snd_info_buffer *buffer) 962 { 963 struct snd_dummy *dummy = entry->private_data; 964 int i; 965 966 for (i = 0; i < ARRAY_SIZE(fields); i++) { 967 snd_iprintf(buffer, "%s ", fields[i].name); 968 if (fields[i].size == sizeof(int)) 969 snd_iprintf(buffer, fields[i].format, 970 *get_dummy_int_ptr(dummy, fields[i].offset)); 971 else 972 snd_iprintf(buffer, fields[i].format, 973 *get_dummy_ll_ptr(dummy, fields[i].offset)); 974 if (!strcmp(fields[i].name, "formats")) 975 print_formats(dummy, buffer); 976 else if (!strcmp(fields[i].name, "rates")) 977 print_rates(dummy, buffer); 978 snd_iprintf(buffer, "\n"); 979 } 980 } 981 982 static void dummy_proc_write(struct snd_info_entry *entry, 983 struct snd_info_buffer *buffer) 984 { 985 struct snd_dummy *dummy = entry->private_data; 986 char line[64]; 987 988 while (!snd_info_get_line(buffer, line, sizeof(line))) { 989 char item[20]; 990 const char *ptr; 991 unsigned long long val; 992 int i; 993 994 ptr = snd_info_get_str(item, line, sizeof(item)); 995 for (i = 0; i < ARRAY_SIZE(fields); i++) { 996 if (!strcmp(item, fields[i].name)) 997 break; 998 } 999 if (i >= ARRAY_SIZE(fields)) 1000 continue; 1001 snd_info_get_str(item, ptr, sizeof(item)); 1002 if (kstrtoull(item, 0, &val)) 1003 continue; 1004 if (fields[i].size == sizeof(int)) 1005 *get_dummy_int_ptr(dummy, fields[i].offset) = val; 1006 else 1007 *get_dummy_ll_ptr(dummy, fields[i].offset) = val; 1008 } 1009 } 1010 1011 static void dummy_proc_init(struct snd_dummy *chip) 1012 { 1013 snd_card_rw_proc_new(chip->card, "dummy_pcm", chip, 1014 dummy_proc_read, dummy_proc_write); 1015 } 1016 #else 1017 #define dummy_proc_init(x) 1018 #endif /* CONFIG_SND_DEBUG && CONFIG_SND_PROC_FS */ 1019 1020 static int snd_dummy_probe(struct platform_device *devptr) 1021 { 1022 struct snd_card *card; 1023 struct snd_dummy *dummy; 1024 const struct dummy_model *m = NULL, **mdl; 1025 int idx, err; 1026 int dev = devptr->id; 1027 1028 err = snd_devm_card_new(&devptr->dev, index[dev], id[dev], THIS_MODULE, 1029 sizeof(struct snd_dummy), &card); 1030 if (err < 0) 1031 return err; 1032 dummy = card->private_data; 1033 dummy->card = card; 1034 for (mdl = dummy_models; *mdl && model[dev]; mdl++) { 1035 if (strcmp(model[dev], (*mdl)->name) == 0) { 1036 printk(KERN_INFO 1037 "snd-dummy: Using model '%s' for card %i\n", 1038 (*mdl)->name, card->number); 1039 m = dummy->model = *mdl; 1040 break; 1041 } 1042 } 1043 for (idx = 0; idx < MAX_PCM_DEVICES && idx < pcm_devs[dev]; idx++) { 1044 if (pcm_substreams[dev] < 1) 1045 pcm_substreams[dev] = 1; 1046 if (pcm_substreams[dev] > MAX_PCM_SUBSTREAMS) 1047 pcm_substreams[dev] = MAX_PCM_SUBSTREAMS; 1048 err = snd_card_dummy_pcm(dummy, idx, pcm_substreams[dev]); 1049 if (err < 0) 1050 return err; 1051 } 1052 1053 dummy->pcm_hw = dummy_pcm_hardware; 1054 if (m) { 1055 if (m->formats) 1056 dummy->pcm_hw.formats = m->formats; 1057 if (m->buffer_bytes_max) 1058 dummy->pcm_hw.buffer_bytes_max = m->buffer_bytes_max; 1059 if (m->period_bytes_min) 1060 dummy->pcm_hw.period_bytes_min = m->period_bytes_min; 1061 if (m->period_bytes_max) 1062 dummy->pcm_hw.period_bytes_max = m->period_bytes_max; 1063 if (m->periods_min) 1064 dummy->pcm_hw.periods_min = m->periods_min; 1065 if (m->periods_max) 1066 dummy->pcm_hw.periods_max = m->periods_max; 1067 if (m->rates) 1068 dummy->pcm_hw.rates = m->rates; 1069 if (m->rate_min) 1070 dummy->pcm_hw.rate_min = m->rate_min; 1071 if (m->rate_max) 1072 dummy->pcm_hw.rate_max = m->rate_max; 1073 if (m->channels_min) 1074 dummy->pcm_hw.channels_min = m->channels_min; 1075 if (m->channels_max) 1076 dummy->pcm_hw.channels_max = m->channels_max; 1077 } 1078 1079 if (mixer_volume_level_min > mixer_volume_level_max) { 1080 pr_warn("snd-dummy: Invalid mixer volume level: min=%d, max=%d. Fall back to default value.\n", 1081 mixer_volume_level_min, mixer_volume_level_max); 1082 mixer_volume_level_min = USE_MIXER_VOLUME_LEVEL_MIN; 1083 mixer_volume_level_max = USE_MIXER_VOLUME_LEVEL_MAX; 1084 } 1085 err = snd_card_dummy_new_mixer(dummy); 1086 if (err < 0) 1087 return err; 1088 strcpy(card->driver, "Dummy"); 1089 strcpy(card->shortname, "Dummy"); 1090 sprintf(card->longname, "Dummy %i", dev + 1); 1091 1092 dummy_proc_init(dummy); 1093 1094 err = snd_card_register(card); 1095 if (err < 0) 1096 return err; 1097 platform_set_drvdata(devptr, card); 1098 return 0; 1099 } 1100 1101 static int snd_dummy_suspend(struct device *pdev) 1102 { 1103 struct snd_card *card = dev_get_drvdata(pdev); 1104 1105 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1106 return 0; 1107 } 1108 1109 static int snd_dummy_resume(struct device *pdev) 1110 { 1111 struct snd_card *card = dev_get_drvdata(pdev); 1112 1113 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1114 return 0; 1115 } 1116 1117 static DEFINE_SIMPLE_DEV_PM_OPS(snd_dummy_pm, snd_dummy_suspend, snd_dummy_resume); 1118 1119 #define SND_DUMMY_DRIVER "snd_dummy" 1120 1121 static struct platform_driver snd_dummy_driver = { 1122 .probe = snd_dummy_probe, 1123 .driver = { 1124 .name = SND_DUMMY_DRIVER, 1125 .pm = &snd_dummy_pm, 1126 }, 1127 }; 1128 1129 static void snd_dummy_unregister_all(void) 1130 { 1131 int i; 1132 1133 for (i = 0; i < ARRAY_SIZE(devices); ++i) 1134 platform_device_unregister(devices[i]); 1135 platform_driver_unregister(&snd_dummy_driver); 1136 free_fake_buffer(); 1137 } 1138 1139 static int __init alsa_card_dummy_init(void) 1140 { 1141 int i, cards, err; 1142 1143 err = platform_driver_register(&snd_dummy_driver); 1144 if (err < 0) 1145 return err; 1146 1147 err = alloc_fake_buffer(); 1148 if (err < 0) { 1149 platform_driver_unregister(&snd_dummy_driver); 1150 return err; 1151 } 1152 1153 cards = 0; 1154 for (i = 0; i < SNDRV_CARDS; i++) { 1155 struct platform_device *device; 1156 if (! enable[i]) 1157 continue; 1158 device = platform_device_register_simple(SND_DUMMY_DRIVER, 1159 i, NULL, 0); 1160 if (IS_ERR(device)) 1161 continue; 1162 if (!platform_get_drvdata(device)) { 1163 platform_device_unregister(device); 1164 continue; 1165 } 1166 devices[i] = device; 1167 cards++; 1168 } 1169 if (!cards) { 1170 #ifdef MODULE 1171 printk(KERN_ERR "Dummy soundcard not found or device busy\n"); 1172 #endif 1173 snd_dummy_unregister_all(); 1174 return -ENODEV; 1175 } 1176 return 0; 1177 } 1178 1179 static void __exit alsa_card_dummy_exit(void) 1180 { 1181 snd_dummy_unregister_all(); 1182 } 1183 1184 module_init(alsa_card_dummy_init) 1185 module_exit(alsa_card_dummy_exit) 1186
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.