1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for A2 audio system used in SGI machines 4 * Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de> 5 * 6 * Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which 7 * was based on code from Ulf Carlsson 8 */ 9 #include <linux/kernel.h> 10 #include <linux/init.h> 11 #include <linux/interrupt.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/platform_device.h> 14 #include <linux/io.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 18 #include <asm/sgi/hpc3.h> 19 #include <asm/sgi/ip22.h> 20 21 #include <sound/core.h> 22 #include <sound/control.h> 23 #include <sound/pcm.h> 24 #include <sound/pcm-indirect.h> 25 #include <sound/initval.h> 26 27 #include "hal2.h" 28 29 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ 30 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ 31 32 module_param(index, int, 0444); 33 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard."); 34 module_param(id, charp, 0444); 35 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard."); 36 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio"); 37 MODULE_AUTHOR("Thomas Bogendoerfer"); 38 MODULE_LICENSE("GPL"); 39 40 41 #define H2_BLOCK_SIZE 1024 42 #define H2_BUF_SIZE 16384 43 44 struct hal2_pbus { 45 struct hpc3_pbus_dmacregs *pbus; 46 int pbusnr; 47 unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */ 48 }; 49 50 struct hal2_desc { 51 struct hpc_dma_desc desc; 52 u32 pad; /* padding */ 53 }; 54 55 struct hal2_codec { 56 struct snd_pcm_indirect pcm_indirect; 57 struct snd_pcm_substream *substream; 58 59 unsigned char *buffer; 60 dma_addr_t buffer_dma; 61 struct hal2_desc *desc; 62 dma_addr_t desc_dma; 63 int desc_count; 64 struct hal2_pbus pbus; 65 int voices; /* mono/stereo */ 66 unsigned int sample_rate; 67 unsigned int master; /* Master frequency */ 68 unsigned short mod; /* MOD value */ 69 unsigned short inc; /* INC value */ 70 }; 71 72 #define H2_MIX_OUTPUT_ATT 0 73 #define H2_MIX_INPUT_GAIN 1 74 75 struct snd_hal2 { 76 struct snd_card *card; 77 78 struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */ 79 struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */ 80 struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */ 81 struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */ 82 83 struct hal2_codec dac; 84 struct hal2_codec adc; 85 }; 86 87 #define H2_INDIRECT_WAIT(regs) while (hal2_read(®s->isr) & H2_ISR_TSTATUS); 88 89 #define H2_READ_ADDR(addr) (addr | (1<<7)) 90 #define H2_WRITE_ADDR(addr) (addr) 91 92 static inline u32 hal2_read(u32 *reg) 93 { 94 return __raw_readl(reg); 95 } 96 97 static inline void hal2_write(u32 val, u32 *reg) 98 { 99 __raw_writel(val, reg); 100 } 101 102 103 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr) 104 { 105 u32 ret; 106 struct hal2_ctl_regs *regs = hal2->ctl_regs; 107 108 hal2_write(H2_READ_ADDR(addr), ®s->iar); 109 H2_INDIRECT_WAIT(regs); 110 ret = hal2_read(®s->idr0) & 0xffff; 111 hal2_write(H2_READ_ADDR(addr) | 0x1, ®s->iar); 112 H2_INDIRECT_WAIT(regs); 113 ret |= (hal2_read(®s->idr0) & 0xffff) << 16; 114 return ret; 115 } 116 117 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val) 118 { 119 struct hal2_ctl_regs *regs = hal2->ctl_regs; 120 121 hal2_write(val, ®s->idr0); 122 hal2_write(0, ®s->idr1); 123 hal2_write(0, ®s->idr2); 124 hal2_write(0, ®s->idr3); 125 hal2_write(H2_WRITE_ADDR(addr), ®s->iar); 126 H2_INDIRECT_WAIT(regs); 127 } 128 129 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val) 130 { 131 struct hal2_ctl_regs *regs = hal2->ctl_regs; 132 133 hal2_write(val & 0xffff, ®s->idr0); 134 hal2_write(val >> 16, ®s->idr1); 135 hal2_write(0, ®s->idr2); 136 hal2_write(0, ®s->idr3); 137 hal2_write(H2_WRITE_ADDR(addr), ®s->iar); 138 H2_INDIRECT_WAIT(regs); 139 } 140 141 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit) 142 { 143 struct hal2_ctl_regs *regs = hal2->ctl_regs; 144 145 hal2_write(H2_READ_ADDR(addr), ®s->iar); 146 H2_INDIRECT_WAIT(regs); 147 hal2_write((hal2_read(®s->idr0) & 0xffff) | bit, ®s->idr0); 148 hal2_write(0, ®s->idr1); 149 hal2_write(0, ®s->idr2); 150 hal2_write(0, ®s->idr3); 151 hal2_write(H2_WRITE_ADDR(addr), ®s->iar); 152 H2_INDIRECT_WAIT(regs); 153 } 154 155 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit) 156 { 157 struct hal2_ctl_regs *regs = hal2->ctl_regs; 158 159 hal2_write(H2_READ_ADDR(addr), ®s->iar); 160 H2_INDIRECT_WAIT(regs); 161 hal2_write((hal2_read(®s->idr0) & 0xffff) & ~bit, ®s->idr0); 162 hal2_write(0, ®s->idr1); 163 hal2_write(0, ®s->idr2); 164 hal2_write(0, ®s->idr3); 165 hal2_write(H2_WRITE_ADDR(addr), ®s->iar); 166 H2_INDIRECT_WAIT(regs); 167 } 168 169 static int hal2_gain_info(struct snd_kcontrol *kcontrol, 170 struct snd_ctl_elem_info *uinfo) 171 { 172 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 173 uinfo->count = 2; 174 uinfo->value.integer.min = 0; 175 switch ((int)kcontrol->private_value) { 176 case H2_MIX_OUTPUT_ATT: 177 uinfo->value.integer.max = 31; 178 break; 179 case H2_MIX_INPUT_GAIN: 180 uinfo->value.integer.max = 15; 181 break; 182 } 183 return 0; 184 } 185 186 static int hal2_gain_get(struct snd_kcontrol *kcontrol, 187 struct snd_ctl_elem_value *ucontrol) 188 { 189 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol); 190 u32 tmp; 191 int l, r; 192 193 switch ((int)kcontrol->private_value) { 194 case H2_MIX_OUTPUT_ATT: 195 tmp = hal2_i_read32(hal2, H2I_DAC_C2); 196 if (tmp & H2I_C2_MUTE) { 197 l = 0; 198 r = 0; 199 } else { 200 l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31); 201 r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31); 202 } 203 break; 204 case H2_MIX_INPUT_GAIN: 205 tmp = hal2_i_read32(hal2, H2I_ADC_C2); 206 l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15; 207 r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15; 208 break; 209 default: 210 return -EINVAL; 211 } 212 ucontrol->value.integer.value[0] = l; 213 ucontrol->value.integer.value[1] = r; 214 215 return 0; 216 } 217 218 static int hal2_gain_put(struct snd_kcontrol *kcontrol, 219 struct snd_ctl_elem_value *ucontrol) 220 { 221 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol); 222 u32 old, new; 223 int l, r; 224 225 l = ucontrol->value.integer.value[0]; 226 r = ucontrol->value.integer.value[1]; 227 228 switch ((int)kcontrol->private_value) { 229 case H2_MIX_OUTPUT_ATT: 230 old = hal2_i_read32(hal2, H2I_DAC_C2); 231 new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE); 232 if (l | r) { 233 l = 31 - l; 234 r = 31 - r; 235 new |= (l << H2I_C2_L_ATT_SHIFT); 236 new |= (r << H2I_C2_R_ATT_SHIFT); 237 } else 238 new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE; 239 hal2_i_write32(hal2, H2I_DAC_C2, new); 240 break; 241 case H2_MIX_INPUT_GAIN: 242 old = hal2_i_read32(hal2, H2I_ADC_C2); 243 new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M); 244 new |= (l << H2I_C2_L_GAIN_SHIFT); 245 new |= (r << H2I_C2_R_GAIN_SHIFT); 246 hal2_i_write32(hal2, H2I_ADC_C2, new); 247 break; 248 default: 249 return -EINVAL; 250 } 251 return old != new; 252 } 253 254 static const struct snd_kcontrol_new hal2_ctrl_headphone = { 255 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 256 .name = "Headphone Playback Volume", 257 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 258 .private_value = H2_MIX_OUTPUT_ATT, 259 .info = hal2_gain_info, 260 .get = hal2_gain_get, 261 .put = hal2_gain_put, 262 }; 263 264 static const struct snd_kcontrol_new hal2_ctrl_mic = { 265 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 266 .name = "Mic Capture Volume", 267 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 268 .private_value = H2_MIX_INPUT_GAIN, 269 .info = hal2_gain_info, 270 .get = hal2_gain_get, 271 .put = hal2_gain_put, 272 }; 273 274 static int hal2_mixer_create(struct snd_hal2 *hal2) 275 { 276 int err; 277 278 /* mute DAC */ 279 hal2_i_write32(hal2, H2I_DAC_C2, 280 H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE); 281 /* mute ADC */ 282 hal2_i_write32(hal2, H2I_ADC_C2, 0); 283 284 err = snd_ctl_add(hal2->card, 285 snd_ctl_new1(&hal2_ctrl_headphone, hal2)); 286 if (err < 0) 287 return err; 288 289 err = snd_ctl_add(hal2->card, 290 snd_ctl_new1(&hal2_ctrl_mic, hal2)); 291 if (err < 0) 292 return err; 293 294 return 0; 295 } 296 297 static irqreturn_t hal2_interrupt(int irq, void *dev_id) 298 { 299 struct snd_hal2 *hal2 = dev_id; 300 irqreturn_t ret = IRQ_NONE; 301 302 /* decide what caused this interrupt */ 303 if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) { 304 snd_pcm_period_elapsed(hal2->dac.substream); 305 ret = IRQ_HANDLED; 306 } 307 if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) { 308 snd_pcm_period_elapsed(hal2->adc.substream); 309 ret = IRQ_HANDLED; 310 } 311 return ret; 312 } 313 314 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate) 315 { 316 unsigned short mod; 317 318 if (44100 % rate < 48000 % rate) { 319 mod = 4 * 44100 / rate; 320 codec->master = 44100; 321 } else { 322 mod = 4 * 48000 / rate; 323 codec->master = 48000; 324 } 325 326 codec->inc = 4; 327 codec->mod = mod; 328 rate = 4 * codec->master / mod; 329 330 return rate; 331 } 332 333 static void hal2_set_dac_rate(struct snd_hal2 *hal2) 334 { 335 unsigned int master = hal2->dac.master; 336 int inc = hal2->dac.inc; 337 int mod = hal2->dac.mod; 338 339 hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0); 340 hal2_i_write32(hal2, H2I_BRES1_C2, 341 ((0xffff & (inc - mod - 1)) << 16) | inc); 342 } 343 344 static void hal2_set_adc_rate(struct snd_hal2 *hal2) 345 { 346 unsigned int master = hal2->adc.master; 347 int inc = hal2->adc.inc; 348 int mod = hal2->adc.mod; 349 350 hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0); 351 hal2_i_write32(hal2, H2I_BRES2_C2, 352 ((0xffff & (inc - mod - 1)) << 16) | inc); 353 } 354 355 static void hal2_setup_dac(struct snd_hal2 *hal2) 356 { 357 unsigned int fifobeg, fifoend, highwater, sample_size; 358 struct hal2_pbus *pbus = &hal2->dac.pbus; 359 360 /* Now we set up some PBUS information. The PBUS needs information about 361 * what portion of the fifo it will use. If it's receiving or 362 * transmitting, and finally whether the stream is little endian or big 363 * endian. The information is written later, on the start call. 364 */ 365 sample_size = 2 * hal2->dac.voices; 366 /* Fifo should be set to hold exactly four samples. Highwater mark 367 * should be set to two samples. */ 368 highwater = (sample_size * 2) >> 1; /* halfwords */ 369 fifobeg = 0; /* playback is first */ 370 fifoend = (sample_size * 4) >> 3; /* doublewords */ 371 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD | 372 (highwater << 8) | (fifobeg << 16) | (fifoend << 24); 373 /* We disable everything before we do anything at all */ 374 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; 375 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); 376 /* Setup the HAL2 for playback */ 377 hal2_set_dac_rate(hal2); 378 /* Set endianess */ 379 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX); 380 /* Set DMA bus */ 381 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); 382 /* We are using 1st Bresenham clock generator for playback */ 383 hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) 384 | (1 << H2I_C1_CLKID_SHIFT) 385 | (hal2->dac.voices << H2I_C1_DATAT_SHIFT)); 386 } 387 388 static void hal2_setup_adc(struct snd_hal2 *hal2) 389 { 390 unsigned int fifobeg, fifoend, highwater, sample_size; 391 struct hal2_pbus *pbus = &hal2->adc.pbus; 392 393 sample_size = 2 * hal2->adc.voices; 394 highwater = (sample_size * 2) >> 1; /* halfwords */ 395 fifobeg = (4 * 4) >> 3; /* record is second */ 396 fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */ 397 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD | 398 (highwater << 8) | (fifobeg << 16) | (fifoend << 24); 399 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; 400 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); 401 /* Setup the HAL2 for record */ 402 hal2_set_adc_rate(hal2); 403 /* Set endianess */ 404 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR); 405 /* Set DMA bus */ 406 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); 407 /* We are using 2nd Bresenham clock generator for record */ 408 hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) 409 | (2 << H2I_C1_CLKID_SHIFT) 410 | (hal2->adc.voices << H2I_C1_DATAT_SHIFT)); 411 } 412 413 static void hal2_start_dac(struct snd_hal2 *hal2) 414 { 415 struct hal2_pbus *pbus = &hal2->dac.pbus; 416 417 pbus->pbus->pbdma_dptr = hal2->dac.desc_dma; 418 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; 419 /* enable DAC */ 420 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); 421 } 422 423 static void hal2_start_adc(struct snd_hal2 *hal2) 424 { 425 struct hal2_pbus *pbus = &hal2->adc.pbus; 426 427 pbus->pbus->pbdma_dptr = hal2->adc.desc_dma; 428 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; 429 /* enable ADC */ 430 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); 431 } 432 433 static inline void hal2_stop_dac(struct snd_hal2 *hal2) 434 { 435 hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; 436 /* The HAL2 itself may remain enabled safely */ 437 } 438 439 static inline void hal2_stop_adc(struct snd_hal2 *hal2) 440 { 441 hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; 442 } 443 444 static int hal2_alloc_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec, 445 enum dma_data_direction buffer_dir) 446 { 447 struct device *dev = hal2->card->dev; 448 struct hal2_desc *desc; 449 dma_addr_t desc_dma, buffer_dma; 450 int count = H2_BUF_SIZE / H2_BLOCK_SIZE; 451 int i; 452 453 codec->buffer = dma_alloc_noncoherent(dev, H2_BUF_SIZE, &buffer_dma, 454 buffer_dir, GFP_KERNEL); 455 if (!codec->buffer) 456 return -ENOMEM; 457 desc = dma_alloc_noncoherent(dev, count * sizeof(struct hal2_desc), 458 &desc_dma, DMA_BIDIRECTIONAL, GFP_KERNEL); 459 if (!desc) { 460 dma_free_noncoherent(dev, H2_BUF_SIZE, codec->buffer, buffer_dma, 461 buffer_dir); 462 return -ENOMEM; 463 } 464 codec->buffer_dma = buffer_dma; 465 codec->desc_dma = desc_dma; 466 codec->desc = desc; 467 for (i = 0; i < count; i++) { 468 desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE; 469 desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE; 470 desc->desc.pnext = (i == count - 1) ? 471 desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc); 472 desc++; 473 } 474 dma_sync_single_for_device(dev, codec->desc_dma, 475 count * sizeof(struct hal2_desc), 476 DMA_BIDIRECTIONAL); 477 codec->desc_count = count; 478 return 0; 479 } 480 481 static void hal2_free_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec, 482 enum dma_data_direction buffer_dir) 483 { 484 struct device *dev = hal2->card->dev; 485 486 dma_free_noncoherent(dev, codec->desc_count * sizeof(struct hal2_desc), 487 codec->desc, codec->desc_dma, DMA_BIDIRECTIONAL); 488 dma_free_noncoherent(dev, H2_BUF_SIZE, codec->buffer, codec->buffer_dma, 489 buffer_dir); 490 } 491 492 static const struct snd_pcm_hardware hal2_pcm_hw = { 493 .info = (SNDRV_PCM_INFO_MMAP | 494 SNDRV_PCM_INFO_MMAP_VALID | 495 SNDRV_PCM_INFO_INTERLEAVED | 496 SNDRV_PCM_INFO_BLOCK_TRANSFER | 497 SNDRV_PCM_INFO_SYNC_APPLPTR), 498 .formats = SNDRV_PCM_FMTBIT_S16_BE, 499 .rates = SNDRV_PCM_RATE_8000_48000, 500 .rate_min = 8000, 501 .rate_max = 48000, 502 .channels_min = 2, 503 .channels_max = 2, 504 .buffer_bytes_max = 65536, 505 .period_bytes_min = 1024, 506 .period_bytes_max = 65536, 507 .periods_min = 2, 508 .periods_max = 1024, 509 }; 510 511 static int hal2_playback_open(struct snd_pcm_substream *substream) 512 { 513 struct snd_pcm_runtime *runtime = substream->runtime; 514 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 515 516 runtime->hw = hal2_pcm_hw; 517 return hal2_alloc_dmabuf(hal2, &hal2->dac, DMA_TO_DEVICE); 518 } 519 520 static int hal2_playback_close(struct snd_pcm_substream *substream) 521 { 522 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 523 524 hal2_free_dmabuf(hal2, &hal2->dac, DMA_TO_DEVICE); 525 return 0; 526 } 527 528 static int hal2_playback_prepare(struct snd_pcm_substream *substream) 529 { 530 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 531 struct snd_pcm_runtime *runtime = substream->runtime; 532 struct hal2_codec *dac = &hal2->dac; 533 534 dac->voices = runtime->channels; 535 dac->sample_rate = hal2_compute_rate(dac, runtime->rate); 536 memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect)); 537 dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE; 538 dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2; 539 dac->pcm_indirect.hw_io = dac->buffer_dma; 540 dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 541 dac->substream = substream; 542 hal2_setup_dac(hal2); 543 return 0; 544 } 545 546 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd) 547 { 548 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 549 550 switch (cmd) { 551 case SNDRV_PCM_TRIGGER_START: 552 hal2_start_dac(hal2); 553 break; 554 case SNDRV_PCM_TRIGGER_STOP: 555 hal2_stop_dac(hal2); 556 break; 557 default: 558 return -EINVAL; 559 } 560 return 0; 561 } 562 563 static snd_pcm_uframes_t 564 hal2_playback_pointer(struct snd_pcm_substream *substream) 565 { 566 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 567 struct hal2_codec *dac = &hal2->dac; 568 569 return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect, 570 dac->pbus.pbus->pbdma_bptr); 571 } 572 573 static void hal2_playback_transfer(struct snd_pcm_substream *substream, 574 struct snd_pcm_indirect *rec, size_t bytes) 575 { 576 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 577 unsigned char *buf = hal2->dac.buffer + rec->hw_data; 578 579 memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes); 580 dma_sync_single_for_device(hal2->card->dev, 581 hal2->dac.buffer_dma + rec->hw_data, bytes, 582 DMA_TO_DEVICE); 583 584 } 585 586 static int hal2_playback_ack(struct snd_pcm_substream *substream) 587 { 588 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 589 struct hal2_codec *dac = &hal2->dac; 590 591 return snd_pcm_indirect_playback_transfer(substream, 592 &dac->pcm_indirect, 593 hal2_playback_transfer); 594 } 595 596 static int hal2_capture_open(struct snd_pcm_substream *substream) 597 { 598 struct snd_pcm_runtime *runtime = substream->runtime; 599 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 600 601 runtime->hw = hal2_pcm_hw; 602 return hal2_alloc_dmabuf(hal2, &hal2->adc, DMA_FROM_DEVICE); 603 } 604 605 static int hal2_capture_close(struct snd_pcm_substream *substream) 606 { 607 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 608 609 hal2_free_dmabuf(hal2, &hal2->adc, DMA_FROM_DEVICE); 610 return 0; 611 } 612 613 static int hal2_capture_prepare(struct snd_pcm_substream *substream) 614 { 615 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 616 struct snd_pcm_runtime *runtime = substream->runtime; 617 struct hal2_codec *adc = &hal2->adc; 618 619 adc->voices = runtime->channels; 620 adc->sample_rate = hal2_compute_rate(adc, runtime->rate); 621 memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect)); 622 adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE; 623 adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2; 624 adc->pcm_indirect.hw_io = adc->buffer_dma; 625 adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 626 adc->substream = substream; 627 hal2_setup_adc(hal2); 628 return 0; 629 } 630 631 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd) 632 { 633 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 634 635 switch (cmd) { 636 case SNDRV_PCM_TRIGGER_START: 637 hal2_start_adc(hal2); 638 break; 639 case SNDRV_PCM_TRIGGER_STOP: 640 hal2_stop_adc(hal2); 641 break; 642 default: 643 return -EINVAL; 644 } 645 return 0; 646 } 647 648 static snd_pcm_uframes_t 649 hal2_capture_pointer(struct snd_pcm_substream *substream) 650 { 651 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 652 struct hal2_codec *adc = &hal2->adc; 653 654 return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect, 655 adc->pbus.pbus->pbdma_bptr); 656 } 657 658 static void hal2_capture_transfer(struct snd_pcm_substream *substream, 659 struct snd_pcm_indirect *rec, size_t bytes) 660 { 661 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 662 unsigned char *buf = hal2->adc.buffer + rec->hw_data; 663 664 dma_sync_single_for_cpu(hal2->card->dev, 665 hal2->adc.buffer_dma + rec->hw_data, bytes, 666 DMA_FROM_DEVICE); 667 memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes); 668 } 669 670 static int hal2_capture_ack(struct snd_pcm_substream *substream) 671 { 672 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 673 struct hal2_codec *adc = &hal2->adc; 674 675 return snd_pcm_indirect_capture_transfer(substream, 676 &adc->pcm_indirect, 677 hal2_capture_transfer); 678 } 679 680 static const struct snd_pcm_ops hal2_playback_ops = { 681 .open = hal2_playback_open, 682 .close = hal2_playback_close, 683 .prepare = hal2_playback_prepare, 684 .trigger = hal2_playback_trigger, 685 .pointer = hal2_playback_pointer, 686 .ack = hal2_playback_ack, 687 }; 688 689 static const struct snd_pcm_ops hal2_capture_ops = { 690 .open = hal2_capture_open, 691 .close = hal2_capture_close, 692 .prepare = hal2_capture_prepare, 693 .trigger = hal2_capture_trigger, 694 .pointer = hal2_capture_pointer, 695 .ack = hal2_capture_ack, 696 }; 697 698 static int hal2_pcm_create(struct snd_hal2 *hal2) 699 { 700 struct snd_pcm *pcm; 701 int err; 702 703 /* create first pcm device with one outputs and one input */ 704 err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm); 705 if (err < 0) 706 return err; 707 708 pcm->private_data = hal2; 709 strcpy(pcm->name, "SGI HAL2"); 710 711 /* set operators */ 712 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 713 &hal2_playback_ops); 714 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, 715 &hal2_capture_ops); 716 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS, 717 NULL, 0, 1024 * 1024); 718 719 return 0; 720 } 721 722 static int hal2_dev_free(struct snd_device *device) 723 { 724 struct snd_hal2 *hal2 = device->device_data; 725 726 free_irq(SGI_HPCDMA_IRQ, hal2); 727 kfree(hal2); 728 return 0; 729 } 730 731 static const struct snd_device_ops hal2_ops = { 732 .dev_free = hal2_dev_free, 733 }; 734 735 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3, 736 int index) 737 { 738 codec->pbus.pbusnr = index; 739 codec->pbus.pbus = &hpc3->pbdma[index]; 740 } 741 742 static int hal2_detect(struct snd_hal2 *hal2) 743 { 744 unsigned short board, major, minor; 745 unsigned short rev; 746 747 /* reset HAL2 */ 748 hal2_write(0, &hal2->ctl_regs->isr); 749 750 /* release reset */ 751 hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N, 752 &hal2->ctl_regs->isr); 753 754 755 hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE); 756 rev = hal2_read(&hal2->ctl_regs->rev); 757 if (rev & H2_REV_AUDIO_PRESENT) 758 return -ENODEV; 759 760 board = (rev & H2_REV_BOARD_M) >> 12; 761 major = (rev & H2_REV_MAJOR_CHIP_M) >> 4; 762 minor = (rev & H2_REV_MINOR_CHIP_M); 763 764 printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n", 765 board, major, minor); 766 767 return 0; 768 } 769 770 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip) 771 { 772 struct snd_hal2 *hal2; 773 struct hpc3_regs *hpc3 = hpc3c0; 774 int err; 775 776 hal2 = kzalloc(sizeof(*hal2), GFP_KERNEL); 777 if (!hal2) 778 return -ENOMEM; 779 780 hal2->card = card; 781 782 if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED, 783 "SGI HAL2", hal2)) { 784 printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ); 785 kfree(hal2); 786 return -EAGAIN; 787 } 788 789 hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0]; 790 hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1]; 791 hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2]; 792 hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3]; 793 794 if (hal2_detect(hal2) < 0) { 795 kfree(hal2); 796 return -ENODEV; 797 } 798 799 hal2_init_codec(&hal2->dac, hpc3, 0); 800 hal2_init_codec(&hal2->adc, hpc3, 1); 801 802 /* 803 * All DMA channel interfaces in HAL2 are designed to operate with 804 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles 805 * in D5. HAL2 is a 16-bit device which can accept both big and little 806 * endian format. It assumes that even address bytes are on high 807 * portion of PBUS (15:8) and assumes that HPC3 is programmed to 808 * accept a live (unsynchronized) version of P_DREQ_N from HAL2. 809 */ 810 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \ 811 (2 << HPC3_DMACFG_D4R_SHIFT) | \ 812 (2 << HPC3_DMACFG_D5R_SHIFT) | \ 813 (0 << HPC3_DMACFG_D3W_SHIFT) | \ 814 (2 << HPC3_DMACFG_D4W_SHIFT) | \ 815 (2 << HPC3_DMACFG_D5W_SHIFT) | \ 816 HPC3_DMACFG_DS16 | \ 817 HPC3_DMACFG_EVENHI | \ 818 HPC3_DMACFG_RTIME | \ 819 (8 << HPC3_DMACFG_BURST_SHIFT) | \ 820 HPC3_DMACFG_DRQLIVE) 821 /* 822 * Ignore what's mentioned in the specification and write value which 823 * works in The Real World (TM) 824 */ 825 hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844; 826 hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844; 827 828 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops); 829 if (err < 0) { 830 free_irq(SGI_HPCDMA_IRQ, hal2); 831 kfree(hal2); 832 return err; 833 } 834 *rchip = hal2; 835 return 0; 836 } 837 838 static int hal2_probe(struct platform_device *pdev) 839 { 840 struct snd_card *card; 841 struct snd_hal2 *chip; 842 int err; 843 844 err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card); 845 if (err < 0) 846 return err; 847 848 err = hal2_create(card, &chip); 849 if (err < 0) { 850 snd_card_free(card); 851 return err; 852 } 853 854 err = hal2_pcm_create(chip); 855 if (err < 0) { 856 snd_card_free(card); 857 return err; 858 } 859 err = hal2_mixer_create(chip); 860 if (err < 0) { 861 snd_card_free(card); 862 return err; 863 } 864 865 strcpy(card->driver, "SGI HAL2 Audio"); 866 strcpy(card->shortname, "SGI HAL2 Audio"); 867 sprintf(card->longname, "%s irq %i", 868 card->shortname, 869 SGI_HPCDMA_IRQ); 870 871 err = snd_card_register(card); 872 if (err < 0) { 873 snd_card_free(card); 874 return err; 875 } 876 platform_set_drvdata(pdev, card); 877 return 0; 878 } 879 880 static void hal2_remove(struct platform_device *pdev) 881 { 882 struct snd_card *card = platform_get_drvdata(pdev); 883 884 snd_card_free(card); 885 } 886 887 static struct platform_driver hal2_driver = { 888 .probe = hal2_probe, 889 .remove_new = hal2_remove, 890 .driver = { 891 .name = "sgihal2", 892 } 893 }; 894 895 module_platform_driver(hal2_driver); 896
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.