~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/sound/mips/snd-n64.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *   Sound driver for Nintendo 64.
  4  *
  5  *   Copyright 2021 Lauri Kasanen
  6  */
  7 
  8 #include <linux/dma-mapping.h>
  9 #include <linux/init.h>
 10 #include <linux/interrupt.h>
 11 #include <linux/io.h>
 12 #include <linux/log2.h>
 13 #include <linux/module.h>
 14 #include <linux/platform_device.h>
 15 #include <linux/spinlock.h>
 16 
 17 #include <sound/control.h>
 18 #include <sound/core.h>
 19 #include <sound/initval.h>
 20 #include <sound/pcm.h>
 21 #include <sound/pcm_params.h>
 22 
 23 MODULE_AUTHOR("Lauri Kasanen <cand@gmx.com>");
 24 MODULE_DESCRIPTION("N64 Audio");
 25 MODULE_LICENSE("GPL");
 26 
 27 #define AI_NTSC_DACRATE 48681812
 28 #define AI_STATUS_BUSY  (1 << 30)
 29 #define AI_STATUS_FULL  (1 << 31)
 30 
 31 #define AI_ADDR_REG 0
 32 #define AI_LEN_REG 1
 33 #define AI_CONTROL_REG 2
 34 #define AI_STATUS_REG 3
 35 #define AI_RATE_REG 4
 36 #define AI_BITCLOCK_REG 5
 37 
 38 #define MI_INTR_REG 2
 39 #define MI_MASK_REG 3
 40 
 41 #define MI_INTR_AI 0x04
 42 
 43 #define MI_MASK_CLR_AI 0x0010
 44 #define MI_MASK_SET_AI 0x0020
 45 
 46 
 47 struct n64audio {
 48         u32 __iomem *ai_reg_base;
 49         u32 __iomem *mi_reg_base;
 50 
 51         void *ring_base;
 52         dma_addr_t ring_base_dma;
 53 
 54         struct snd_card *card;
 55 
 56         struct {
 57                 struct snd_pcm_substream *substream;
 58                 int pos, nextpos;
 59                 u32 writesize;
 60                 u32 bufsize;
 61                 spinlock_t lock;
 62         } chan;
 63 };
 64 
 65 static void n64audio_write_reg(struct n64audio *priv, const u8 reg, const u32 value)
 66 {
 67         writel(value, priv->ai_reg_base + reg);
 68 }
 69 
 70 static void n64mi_write_reg(struct n64audio *priv, const u8 reg, const u32 value)
 71 {
 72         writel(value, priv->mi_reg_base + reg);
 73 }
 74 
 75 static u32 n64mi_read_reg(struct n64audio *priv, const u8 reg)
 76 {
 77         return readl(priv->mi_reg_base + reg);
 78 }
 79 
 80 static void n64audio_push(struct n64audio *priv)
 81 {
 82         struct snd_pcm_runtime *runtime = priv->chan.substream->runtime;
 83         unsigned long flags;
 84         u32 count;
 85 
 86         spin_lock_irqsave(&priv->chan.lock, flags);
 87 
 88         count = priv->chan.writesize;
 89 
 90         memcpy(priv->ring_base + priv->chan.nextpos,
 91                runtime->dma_area + priv->chan.nextpos, count);
 92 
 93         /*
 94          * The hw registers are double-buffered, and the IRQ fires essentially
 95          * one period behind. The core only allows one period's distance, so we
 96          * keep a private DMA buffer to afford two.
 97          */
 98         n64audio_write_reg(priv, AI_ADDR_REG, priv->ring_base_dma + priv->chan.nextpos);
 99         barrier();
100         n64audio_write_reg(priv, AI_LEN_REG, count);
101 
102         priv->chan.nextpos += count;
103         priv->chan.nextpos %= priv->chan.bufsize;
104 
105         runtime->delay = runtime->period_size;
106 
107         spin_unlock_irqrestore(&priv->chan.lock, flags);
108 }
109 
110 static irqreturn_t n64audio_isr(int irq, void *dev_id)
111 {
112         struct n64audio *priv = dev_id;
113         const u32 intrs = n64mi_read_reg(priv, MI_INTR_REG);
114         unsigned long flags;
115 
116         // Check it's ours
117         if (!(intrs & MI_INTR_AI))
118                 return IRQ_NONE;
119 
120         n64audio_write_reg(priv, AI_STATUS_REG, 1);
121 
122         if (priv->chan.substream && snd_pcm_running(priv->chan.substream)) {
123                 spin_lock_irqsave(&priv->chan.lock, flags);
124 
125                 priv->chan.pos = priv->chan.nextpos;
126 
127                 spin_unlock_irqrestore(&priv->chan.lock, flags);
128 
129                 snd_pcm_period_elapsed(priv->chan.substream);
130                 if (priv->chan.substream && snd_pcm_running(priv->chan.substream))
131                         n64audio_push(priv);
132         }
133 
134         return IRQ_HANDLED;
135 }
136 
137 static const struct snd_pcm_hardware n64audio_pcm_hw = {
138         .info = (SNDRV_PCM_INFO_MMAP |
139                  SNDRV_PCM_INFO_MMAP_VALID |
140                  SNDRV_PCM_INFO_INTERLEAVED |
141                  SNDRV_PCM_INFO_BLOCK_TRANSFER),
142         .formats =          SNDRV_PCM_FMTBIT_S16_BE,
143         .rates =            SNDRV_PCM_RATE_8000_48000,
144         .rate_min =         8000,
145         .rate_max =         48000,
146         .channels_min =     2,
147         .channels_max =     2,
148         .buffer_bytes_max = 32768,
149         .period_bytes_min = 1024,
150         .period_bytes_max = 32768,
151         .periods_min =      3,
152         // 3 periods lets the double-buffering hw read one buffer behind safely
153         .periods_max =      128,
154 };
155 
156 static int hw_rule_period_size(struct snd_pcm_hw_params *params,
157                                struct snd_pcm_hw_rule *rule)
158 {
159         struct snd_interval *c = hw_param_interval(params,
160                                                    SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
161         int changed = 0;
162 
163         /*
164          * The DMA unit has errata on (start + len) & 0x3fff == 0x2000.
165          * This constraint makes sure that the period size is not a power of two,
166          * which combined with dma_alloc_coherent aligning the buffer to the largest
167          * PoT <= size guarantees it won't be hit.
168          */
169 
170         if (is_power_of_2(c->min)) {
171                 c->min += 2;
172                 changed = 1;
173         }
174         if (is_power_of_2(c->max)) {
175                 c->max -= 2;
176                 changed = 1;
177         }
178         if (snd_interval_checkempty(c)) {
179                 c->empty = 1;
180                 return -EINVAL;
181         }
182 
183         return changed;
184 }
185 
186 static int n64audio_pcm_open(struct snd_pcm_substream *substream)
187 {
188         struct snd_pcm_runtime *runtime = substream->runtime;
189         int err;
190 
191         runtime->hw = n64audio_pcm_hw;
192         err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
193         if (err < 0)
194                 return err;
195 
196         err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
197         if (err < 0)
198                 return err;
199 
200         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
201                             hw_rule_period_size, NULL, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, -1);
202         if (err < 0)
203                 return err;
204 
205         return 0;
206 }
207 
208 static int n64audio_pcm_prepare(struct snd_pcm_substream *substream)
209 {
210         struct snd_pcm_runtime *runtime = substream->runtime;
211         struct n64audio *priv = substream->pcm->private_data;
212         u32 rate;
213 
214         rate = ((2 * AI_NTSC_DACRATE / runtime->rate) + 1) / 2 - 1;
215 
216         n64audio_write_reg(priv, AI_RATE_REG, rate);
217 
218         rate /= 66;
219         if (rate > 16)
220                 rate = 16;
221         n64audio_write_reg(priv, AI_BITCLOCK_REG, rate - 1);
222 
223         spin_lock_irq(&priv->chan.lock);
224 
225         /* Setup the pseudo-dma transfer pointers.  */
226         priv->chan.pos = 0;
227         priv->chan.nextpos = 0;
228         priv->chan.substream = substream;
229         priv->chan.writesize = snd_pcm_lib_period_bytes(substream);
230         priv->chan.bufsize = snd_pcm_lib_buffer_bytes(substream);
231 
232         spin_unlock_irq(&priv->chan.lock);
233         return 0;
234 }
235 
236 static int n64audio_pcm_trigger(struct snd_pcm_substream *substream,
237                                 int cmd)
238 {
239         struct n64audio *priv = substream->pcm->private_data;
240 
241         switch (cmd) {
242         case SNDRV_PCM_TRIGGER_START:
243                 n64audio_push(substream->pcm->private_data);
244                 n64audio_write_reg(priv, AI_CONTROL_REG, 1);
245                 n64mi_write_reg(priv, MI_MASK_REG, MI_MASK_SET_AI);
246                 break;
247         case SNDRV_PCM_TRIGGER_STOP:
248                 n64audio_write_reg(priv, AI_CONTROL_REG, 0);
249                 n64mi_write_reg(priv, MI_MASK_REG, MI_MASK_CLR_AI);
250                 break;
251         default:
252                 return -EINVAL;
253         }
254         return 0;
255 }
256 
257 static snd_pcm_uframes_t n64audio_pcm_pointer(struct snd_pcm_substream *substream)
258 {
259         struct n64audio *priv = substream->pcm->private_data;
260 
261         return bytes_to_frames(substream->runtime,
262                                priv->chan.pos);
263 }
264 
265 static int n64audio_pcm_close(struct snd_pcm_substream *substream)
266 {
267         struct n64audio *priv = substream->pcm->private_data;
268 
269         priv->chan.substream = NULL;
270 
271         return 0;
272 }
273 
274 static const struct snd_pcm_ops n64audio_pcm_ops = {
275         .open =         n64audio_pcm_open,
276         .prepare =      n64audio_pcm_prepare,
277         .trigger =      n64audio_pcm_trigger,
278         .pointer =      n64audio_pcm_pointer,
279         .close =        n64audio_pcm_close,
280 };
281 
282 /*
283  * The target device is embedded and RAM-constrained. We save RAM
284  * by initializing in __init code that gets dropped late in boot.
285  * For the same reason there is no module or unloading support.
286  */
287 static int __init n64audio_probe(struct platform_device *pdev)
288 {
289         struct snd_card *card;
290         struct snd_pcm *pcm;
291         struct n64audio *priv;
292         int err, irq;
293 
294         err = snd_card_new(&pdev->dev, SNDRV_DEFAULT_IDX1,
295                            SNDRV_DEFAULT_STR1,
296                            THIS_MODULE, sizeof(*priv), &card);
297         if (err < 0)
298                 return err;
299 
300         priv = card->private_data;
301 
302         spin_lock_init(&priv->chan.lock);
303 
304         priv->card = card;
305 
306         priv->ring_base = dma_alloc_coherent(card->dev, 32 * 1024, &priv->ring_base_dma,
307                                              GFP_DMA|GFP_KERNEL);
308         if (!priv->ring_base) {
309                 err = -ENOMEM;
310                 goto fail_card;
311         }
312 
313         priv->mi_reg_base = devm_platform_ioremap_resource(pdev, 0);
314         if (IS_ERR(priv->mi_reg_base)) {
315                 err = PTR_ERR(priv->mi_reg_base);
316                 goto fail_dma_alloc;
317         }
318 
319         priv->ai_reg_base = devm_platform_ioremap_resource(pdev, 1);
320         if (IS_ERR(priv->ai_reg_base)) {
321                 err = PTR_ERR(priv->ai_reg_base);
322                 goto fail_dma_alloc;
323         }
324 
325         err = snd_pcm_new(card, "N64 Audio", 0, 1, 0, &pcm);
326         if (err < 0)
327                 goto fail_dma_alloc;
328 
329         pcm->private_data = priv;
330         strcpy(pcm->name, "N64 Audio");
331 
332         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &n64audio_pcm_ops);
333         snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, card->dev, 0, 0);
334 
335         strcpy(card->driver, "N64 Audio");
336         strcpy(card->shortname, "N64 Audio");
337         strcpy(card->longname, "N64 Audio");
338 
339         irq = platform_get_irq(pdev, 0);
340         if (irq < 0) {
341                 err = -EINVAL;
342                 goto fail_dma_alloc;
343         }
344         if (devm_request_irq(&pdev->dev, irq, n64audio_isr,
345                                 IRQF_SHARED, "N64 Audio", priv)) {
346                 err = -EBUSY;
347                 goto fail_dma_alloc;
348         }
349 
350         err = snd_card_register(card);
351         if (err < 0)
352                 goto fail_dma_alloc;
353 
354         return 0;
355 
356 fail_dma_alloc:
357         dma_free_coherent(card->dev, 32 * 1024, priv->ring_base, priv->ring_base_dma);
358 
359 fail_card:
360         snd_card_free(card);
361         return err;
362 }
363 
364 static struct platform_driver n64audio_driver = {
365         .driver = {
366                 .name = "n64audio",
367         },
368 };
369 
370 static int __init n64audio_init(void)
371 {
372         return platform_driver_probe(&n64audio_driver, n64audio_probe);
373 }
374 
375 module_init(n64audio_init);
376 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php