~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/sound/pci/emu10k1/io.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  4  *                   Lee Revell <rlrevell@joe-job.com>
  5  *                   James Courtier-Dutton <James@superbug.co.uk>
  6  *                   Oswald Buddenhagen <oswald.buddenhagen@gmx.de>
  7  *                   Creative Labs, Inc.
  8  *
  9  *  Routines for control of EMU10K1 chips
 10  */
 11 
 12 #include <linux/time.h>
 13 #include <sound/core.h>
 14 #include <sound/emu10k1.h>
 15 #include <linux/delay.h>
 16 #include <linux/export.h>
 17 #include "p17v.h"
 18 
 19 static inline bool check_ptr_reg(struct snd_emu10k1 *emu, unsigned int reg)
 20 {
 21         if (snd_BUG_ON(!emu))
 22                 return false;
 23         if (snd_BUG_ON(reg & (emu->audigy ? (0xffff0000 & ~A_PTR_ADDRESS_MASK)
 24                                           : (0xffff0000 & ~PTR_ADDRESS_MASK))))
 25                 return false;
 26         if (snd_BUG_ON(reg & 0x0000ffff & ~PTR_CHANNELNUM_MASK))
 27                 return false;
 28         return true;
 29 }
 30 
 31 unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn)
 32 {
 33         unsigned long flags;
 34         unsigned int regptr, val;
 35         unsigned int mask;
 36 
 37         regptr = (reg << 16) | chn;
 38         if (!check_ptr_reg(emu, regptr))
 39                 return 0;
 40 
 41         spin_lock_irqsave(&emu->emu_lock, flags);
 42         outl(regptr, emu->port + PTR);
 43         val = inl(emu->port + DATA);
 44         spin_unlock_irqrestore(&emu->emu_lock, flags);
 45 
 46         if (reg & 0xff000000) {
 47                 unsigned char size, offset;
 48                 
 49                 size = (reg >> 24) & 0x3f;
 50                 offset = (reg >> 16) & 0x1f;
 51                 mask = (1 << size) - 1;
 52                 
 53                 return (val >> offset) & mask;
 54         } else {
 55                 return val;
 56         }
 57 }
 58 
 59 EXPORT_SYMBOL(snd_emu10k1_ptr_read);
 60 
 61 void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data)
 62 {
 63         unsigned int regptr;
 64         unsigned long flags;
 65         unsigned int mask;
 66 
 67         regptr = (reg << 16) | chn;
 68         if (!check_ptr_reg(emu, regptr))
 69                 return;
 70 
 71         if (reg & 0xff000000) {
 72                 unsigned char size, offset;
 73 
 74                 size = (reg >> 24) & 0x3f;
 75                 offset = (reg >> 16) & 0x1f;
 76                 mask = (1 << size) - 1;
 77                 if (snd_BUG_ON(data & ~mask))
 78                         return;
 79                 mask <<= offset;
 80                 data <<= offset;
 81 
 82                 spin_lock_irqsave(&emu->emu_lock, flags);
 83                 outl(regptr, emu->port + PTR);
 84                 data |= inl(emu->port + DATA) & ~mask;
 85         } else {
 86                 spin_lock_irqsave(&emu->emu_lock, flags);
 87                 outl(regptr, emu->port + PTR);
 88         }
 89         outl(data, emu->port + DATA);
 90         spin_unlock_irqrestore(&emu->emu_lock, flags);
 91 }
 92 
 93 EXPORT_SYMBOL(snd_emu10k1_ptr_write);
 94 
 95 void snd_emu10k1_ptr_write_multiple(struct snd_emu10k1 *emu, unsigned int chn, ...)
 96 {
 97         va_list va;
 98         u32 addr_mask;
 99         unsigned long flags;
100 
101         if (snd_BUG_ON(!emu))
102                 return;
103         if (snd_BUG_ON(chn & ~PTR_CHANNELNUM_MASK))
104                 return;
105         addr_mask = ~((emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK) >> 16);
106 
107         va_start(va, chn);
108         spin_lock_irqsave(&emu->emu_lock, flags);
109         for (;;) {
110                 u32 data;
111                 u32 reg = va_arg(va, u32);
112                 if (reg == REGLIST_END)
113                         break;
114                 data = va_arg(va, u32);
115                 if (snd_BUG_ON(reg & addr_mask))  // Only raw registers supported here
116                         continue;
117                 outl((reg << 16) | chn, emu->port + PTR);
118                 outl(data, emu->port + DATA);
119         }
120         spin_unlock_irqrestore(&emu->emu_lock, flags);
121         va_end(va);
122 }
123 
124 EXPORT_SYMBOL(snd_emu10k1_ptr_write_multiple);
125 
126 unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu, 
127                                           unsigned int reg, 
128                                           unsigned int chn)
129 {
130         unsigned long flags;
131         unsigned int regptr, val;
132   
133         regptr = (reg << 16) | chn;
134 
135         spin_lock_irqsave(&emu->emu_lock, flags);
136         outl(regptr, emu->port + PTR2);
137         val = inl(emu->port + DATA2);
138         spin_unlock_irqrestore(&emu->emu_lock, flags);
139         return val;
140 }
141 
142 void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu, 
143                                    unsigned int reg, 
144                                    unsigned int chn, 
145                                    unsigned int data)
146 {
147         unsigned int regptr;
148         unsigned long flags;
149 
150         regptr = (reg << 16) | chn;
151 
152         spin_lock_irqsave(&emu->emu_lock, flags);
153         outl(regptr, emu->port + PTR2);
154         outl(data, emu->port + DATA2);
155         spin_unlock_irqrestore(&emu->emu_lock, flags);
156 }
157 
158 int snd_emu10k1_spi_write(struct snd_emu10k1 * emu,
159                                    unsigned int data)
160 {
161         unsigned int reset, set;
162         unsigned int reg, tmp;
163         int n, result;
164         int err = 0;
165 
166         /* This function is not re-entrant, so protect against it. */
167         spin_lock(&emu->spi_lock);
168         if (emu->card_capabilities->ca0108_chip)
169                 reg = P17V_SPI;
170         else {
171                 /* For other chip types the SPI register
172                  * is currently unknown. */
173                 err = 1;
174                 goto spi_write_exit;
175         }
176         if (data > 0xffff) {
177                 /* Only 16bit values allowed */
178                 err = 1;
179                 goto spi_write_exit;
180         }
181 
182         tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
183         reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
184         set = reset | 0x10000; /* Set xxx1xxxx */
185         snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
186         tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */
187         snd_emu10k1_ptr20_write(emu, reg, 0, set | data);
188         result = 1;
189         /* Wait for status bit to return to 0 */
190         for (n = 0; n < 100; n++) {
191                 udelay(10);
192                 tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
193                 if (!(tmp & 0x10000)) {
194                         result = 0;
195                         break;
196                 }
197         }
198         if (result) {
199                 /* Timed out */
200                 err = 1;
201                 goto spi_write_exit;
202         }
203         snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
204         tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */
205         err = 0;
206 spi_write_exit:
207         spin_unlock(&emu->spi_lock);
208         return err;
209 }
210 
211 /* The ADC does not support i2c read, so only write is implemented */
212 int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu,
213                                 u32 reg,
214                                 u32 value)
215 {
216         u32 tmp;
217         int timeout = 0;
218         int status;
219         int retry;
220         int err = 0;
221 
222         if ((reg > 0x7f) || (value > 0x1ff)) {
223                 dev_err(emu->card->dev, "i2c_write: invalid values.\n");
224                 return -EINVAL;
225         }
226 
227         /* This function is not re-entrant, so protect against it. */
228         spin_lock(&emu->i2c_lock);
229 
230         tmp = reg << 25 | value << 16;
231 
232         /* This controls the I2C connected to the WM8775 ADC Codec */
233         snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp);
234         tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */
235 
236         for (retry = 0; retry < 10; retry++) {
237                 /* Send the data to i2c */
238                 tmp = 0;
239                 tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
240                 snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp);
241 
242                 /* Wait till the transaction ends */
243                 while (1) {
244                         mdelay(1);
245                         status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0);
246                         timeout++;
247                         if ((status & I2C_A_ADC_START) == 0)
248                                 break;
249 
250                         if (timeout > 1000) {
251                                 dev_warn(emu->card->dev,
252                                            "emu10k1:I2C:timeout status=0x%x\n",
253                                            status);
254                                 break;
255                         }
256                 }
257                 //Read back and see if the transaction is successful
258                 if ((status & I2C_A_ADC_ABORT) == 0)
259                         break;
260         }
261 
262         if (retry == 10) {
263                 dev_err(emu->card->dev, "Writing to ADC failed!\n");
264                 dev_err(emu->card->dev, "status=0x%x, reg=%d, value=%d\n",
265                         status, reg, value);
266                 /* dump_stack(); */
267                 err = -EINVAL;
268         }
269     
270         spin_unlock(&emu->i2c_lock);
271         return err;
272 }
273 
274 static void snd_emu1010_fpga_write_locked(struct snd_emu10k1 *emu, u32 reg, u32 value)
275 {
276         if (snd_BUG_ON(reg > 0x3f))
277                 return;
278         reg += 0x40; /* 0x40 upwards are registers. */
279         if (snd_BUG_ON(value > 0x3f)) /* 0 to 0x3f are values */
280                 return;
281         outw(reg, emu->port + A_GPIO);
282         udelay(10);
283         outw(reg | 0x80, emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
284         udelay(10);
285         outw(value, emu->port + A_GPIO);
286         udelay(10);
287         outw(value | 0x80 , emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
288         udelay(10);
289 }
290 
291 void snd_emu1010_fpga_write(struct snd_emu10k1 *emu, u32 reg, u32 value)
292 {
293         if (snd_BUG_ON(!mutex_is_locked(&emu->emu1010.lock)))
294                 return;
295         snd_emu1010_fpga_write_locked(emu, reg, value);
296 }
297 
298 void snd_emu1010_fpga_write_lock(struct snd_emu10k1 *emu, u32 reg, u32 value)
299 {
300         snd_emu1010_fpga_lock(emu);
301         snd_emu1010_fpga_write_locked(emu, reg, value);
302         snd_emu1010_fpga_unlock(emu);
303 }
304 
305 void snd_emu1010_fpga_read(struct snd_emu10k1 *emu, u32 reg, u32 *value)
306 {
307         // The higest input pin is used as the designated interrupt trigger,
308         // so it needs to be masked out.
309         // But note that any other input pin change will also cause an IRQ,
310         // so using this function often causes an IRQ as a side effect.
311         u32 mask = emu->card_capabilities->ca0108_chip ? 0x1f : 0x7f;
312 
313         if (snd_BUG_ON(!mutex_is_locked(&emu->emu1010.lock)))
314                 return;
315         if (snd_BUG_ON(reg > 0x3f))
316                 return;
317         reg += 0x40; /* 0x40 upwards are registers. */
318         outw(reg, emu->port + A_GPIO);
319         udelay(10);
320         outw(reg | 0x80, emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
321         udelay(10);
322         *value = ((inw(emu->port + A_GPIO) >> 8) & mask);
323 }
324 
325 /* Each Destination has one and only one Source,
326  * but one Source can feed any number of Destinations simultaneously.
327  */
328 void snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 *emu, u32 dst, u32 src)
329 {
330         if (snd_BUG_ON(dst & ~0x71f))
331                 return;
332         if (snd_BUG_ON(src & ~0x71f))
333                 return;
334         snd_emu1010_fpga_write(emu, EMU_HANA_DESTHI, dst >> 8);
335         snd_emu1010_fpga_write(emu, EMU_HANA_DESTLO, dst & 0x1f);
336         snd_emu1010_fpga_write(emu, EMU_HANA_SRCHI, src >> 8);
337         snd_emu1010_fpga_write(emu, EMU_HANA_SRCLO, src & 0x1f);
338 }
339 
340 u32 snd_emu1010_fpga_link_dst_src_read(struct snd_emu10k1 *emu, u32 dst)
341 {
342         u32 hi, lo;
343 
344         if (snd_BUG_ON(dst & ~0x71f))
345                 return 0;
346         snd_emu1010_fpga_write(emu, EMU_HANA_DESTHI, dst >> 8);
347         snd_emu1010_fpga_write(emu, EMU_HANA_DESTLO, dst & 0x1f);
348         snd_emu1010_fpga_read(emu, EMU_HANA_SRCHI, &hi);
349         snd_emu1010_fpga_read(emu, EMU_HANA_SRCLO, &lo);
350         return (hi << 8) | lo;
351 }
352 
353 int snd_emu1010_get_raw_rate(struct snd_emu10k1 *emu, u8 src)
354 {
355         u32 reg_lo, reg_hi, value, value2;
356 
357         switch (src) {
358         case EMU_HANA_WCLOCK_HANA_SPDIF_IN:
359                 snd_emu1010_fpga_read(emu, EMU_HANA_SPDIF_MODE, &value);
360                 if (value & EMU_HANA_SPDIF_MODE_RX_INVALID)
361                         return 0;
362                 reg_lo = EMU_HANA_WC_SPDIF_LO;
363                 reg_hi = EMU_HANA_WC_SPDIF_HI;
364                 break;
365         case EMU_HANA_WCLOCK_HANA_ADAT_IN:
366                 reg_lo = EMU_HANA_WC_ADAT_LO;
367                 reg_hi = EMU_HANA_WC_ADAT_HI;
368                 break;
369         case EMU_HANA_WCLOCK_SYNC_BNC:
370                 reg_lo = EMU_HANA_WC_BNC_LO;
371                 reg_hi = EMU_HANA_WC_BNC_HI;
372                 break;
373         case EMU_HANA_WCLOCK_2ND_HANA:
374                 reg_lo = EMU_HANA2_WC_SPDIF_LO;
375                 reg_hi = EMU_HANA2_WC_SPDIF_HI;
376                 break;
377         default:
378                 return 0;
379         }
380         snd_emu1010_fpga_read(emu, reg_hi, &value);
381         snd_emu1010_fpga_read(emu, reg_lo, &value2);
382         // FIXME: The /4 is valid for 0404b, but contradicts all other info.
383         return 0x1770000 / 4 / (((value << 5) | value2) + 1);
384 }
385 
386 void snd_emu1010_update_clock(struct snd_emu10k1 *emu)
387 {
388         int clock;
389         u32 leds;
390 
391         switch (emu->emu1010.wclock) {
392         case EMU_HANA_WCLOCK_INT_44_1K | EMU_HANA_WCLOCK_1X:
393                 clock = 44100;
394                 leds = EMU_HANA_DOCK_LEDS_2_44K;
395                 break;
396         case EMU_HANA_WCLOCK_INT_48K | EMU_HANA_WCLOCK_1X:
397                 clock = 48000;
398                 leds = EMU_HANA_DOCK_LEDS_2_48K;
399                 break;
400         default:
401                 clock = snd_emu1010_get_raw_rate(
402                                 emu, emu->emu1010.wclock & EMU_HANA_WCLOCK_SRC_MASK);
403                 // The raw rate reading is rather coarse (it cannot accurately
404                 // represent 44.1 kHz) and fluctuates slightly. Luckily, the
405                 // clock comes from digital inputs, which use standardized rates.
406                 // So we round to the closest standard rate and ignore discrepancies.
407                 if (clock < 46000) {
408                         clock = 44100;
409                         leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_44K;
410                 } else {
411                         clock = 48000;
412                         leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_48K;
413                 }
414                 break;
415         }
416         emu->emu1010.word_clock = clock;
417 
418         // FIXME: this should probably represent the AND of all currently
419         // used sources' lock status. But we don't know how to get that ...
420         leds |= EMU_HANA_DOCK_LEDS_2_LOCK;
421 
422         snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2, leds);
423 }
424 
425 void snd_emu1010_load_firmware_entry(struct snd_emu10k1 *emu, int dock,
426                                      const struct firmware *fw_entry)
427 {
428         __always_unused u16 write_post;
429 
430         // On E-MU 1010 rev1 the FPGA is a Xilinx Spartan IIE XC2S50E.
431         // On E-MU 0404b it is a Xilinx Spartan III XC3S50.
432         // The wiring is as follows:
433         // GPO7 -> FPGA input & 1K resistor -> FPGA /PGMN <- FPGA output
434         //   In normal operation, the active low reset line is held up by
435         //   an FPGA output, while the GPO pin performs its duty as control
436         //   register access strobe signal. Writing the respective bit to
437         //   EMU_HANA_FPGA_CONFIG puts the FPGA output into high-Z mode, at
438         //   which point the GPO pin can control the reset line through the
439         //   resistor.
440         // GPO6 -> FPGA CCLK & FPGA input
441         // GPO5 -> FPGA DIN (dual function)
442 
443         // If the FPGA is already programmed, return it to programming mode
444         snd_emu1010_fpga_write(emu, EMU_HANA_FPGA_CONFIG,
445                                dock ? EMU_HANA_FPGA_CONFIG_AUDIODOCK :
446                                       EMU_HANA_FPGA_CONFIG_HANA);
447 
448         // Assert reset line for 100uS
449         outw(0x00, emu->port + A_GPIO);
450         write_post = inw(emu->port + A_GPIO);
451         udelay(100);
452         outw(0x80, emu->port + A_GPIO);
453         write_post = inw(emu->port + A_GPIO);
454         udelay(100);  // Allow FPGA memory to clean
455 
456         // Upload the netlist. Keep reset line high!
457         for (int n = 0; n < fw_entry->size; n++) {
458                 u8 value = fw_entry->data[n];
459                 for (int i = 0; i < 8; i++) {
460                         u16 reg = 0x80;
461                         if (value & 1)
462                                 reg |= 0x20;
463                         value >>= 1;
464                         outw(reg, emu->port + A_GPIO);
465                         write_post = inw(emu->port + A_GPIO);
466                         outw(reg | 0x40, emu->port + A_GPIO);
467                         write_post = inw(emu->port + A_GPIO);
468                 }
469         }
470 
471         // After programming, set GPIO bit 4 high again.
472         // This appears to be a config word that the rev1 Hana
473         // firmware reads; weird things happen without this.
474         outw(0x10, emu->port + A_GPIO);
475         write_post = inw(emu->port + A_GPIO);
476 }
477 
478 void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb)
479 {
480         unsigned long flags;
481         unsigned int enable;
482 
483         spin_lock_irqsave(&emu->emu_lock, flags);
484         enable = inl(emu->port + INTE) | intrenb;
485         outl(enable, emu->port + INTE);
486         spin_unlock_irqrestore(&emu->emu_lock, flags);
487 }
488 
489 void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb)
490 {
491         unsigned long flags;
492         unsigned int enable;
493 
494         spin_lock_irqsave(&emu->emu_lock, flags);
495         enable = inl(emu->port + INTE) & ~intrenb;
496         outl(enable, emu->port + INTE);
497         spin_unlock_irqrestore(&emu->emu_lock, flags);
498 }
499 
500 void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
501 {
502         unsigned long flags;
503         unsigned int val;
504 
505         spin_lock_irqsave(&emu->emu_lock, flags);
506         if (voicenum >= 32) {
507                 outl(CLIEH << 16, emu->port + PTR);
508                 val = inl(emu->port + DATA);
509                 val |= 1 << (voicenum - 32);
510         } else {
511                 outl(CLIEL << 16, emu->port + PTR);
512                 val = inl(emu->port + DATA);
513                 val |= 1 << voicenum;
514         }
515         outl(val, emu->port + DATA);
516         spin_unlock_irqrestore(&emu->emu_lock, flags);
517 }
518 
519 void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
520 {
521         unsigned long flags;
522         unsigned int val;
523 
524         spin_lock_irqsave(&emu->emu_lock, flags);
525         if (voicenum >= 32) {
526                 outl(CLIEH << 16, emu->port + PTR);
527                 val = inl(emu->port + DATA);
528                 val &= ~(1 << (voicenum - 32));
529         } else {
530                 outl(CLIEL << 16, emu->port + PTR);
531                 val = inl(emu->port + DATA);
532                 val &= ~(1 << voicenum);
533         }
534         outl(val, emu->port + DATA);
535         spin_unlock_irqrestore(&emu->emu_lock, flags);
536 }
537 
538 void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
539 {
540         unsigned long flags;
541 
542         spin_lock_irqsave(&emu->emu_lock, flags);
543         if (voicenum >= 32) {
544                 outl(CLIPH << 16, emu->port + PTR);
545                 voicenum = 1 << (voicenum - 32);
546         } else {
547                 outl(CLIPL << 16, emu->port + PTR);
548                 voicenum = 1 << voicenum;
549         }
550         outl(voicenum, emu->port + DATA);
551         spin_unlock_irqrestore(&emu->emu_lock, flags);
552 }
553 
554 void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
555 {
556         unsigned long flags;
557         unsigned int val;
558 
559         spin_lock_irqsave(&emu->emu_lock, flags);
560         if (voicenum >= 32) {
561                 outl(HLIEH << 16, emu->port + PTR);
562                 val = inl(emu->port + DATA);
563                 val |= 1 << (voicenum - 32);
564         } else {
565                 outl(HLIEL << 16, emu->port + PTR);
566                 val = inl(emu->port + DATA);
567                 val |= 1 << voicenum;
568         }
569         outl(val, emu->port + DATA);
570         spin_unlock_irqrestore(&emu->emu_lock, flags);
571 }
572 
573 void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
574 {
575         unsigned long flags;
576         unsigned int val;
577 
578         spin_lock_irqsave(&emu->emu_lock, flags);
579         if (voicenum >= 32) {
580                 outl(HLIEH << 16, emu->port + PTR);
581                 val = inl(emu->port + DATA);
582                 val &= ~(1 << (voicenum - 32));
583         } else {
584                 outl(HLIEL << 16, emu->port + PTR);
585                 val = inl(emu->port + DATA);
586                 val &= ~(1 << voicenum);
587         }
588         outl(val, emu->port + DATA);
589         spin_unlock_irqrestore(&emu->emu_lock, flags);
590 }
591 
592 void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
593 {
594         unsigned long flags;
595 
596         spin_lock_irqsave(&emu->emu_lock, flags);
597         if (voicenum >= 32) {
598                 outl(HLIPH << 16, emu->port + PTR);
599                 voicenum = 1 << (voicenum - 32);
600         } else {
601                 outl(HLIPL << 16, emu->port + PTR);
602                 voicenum = 1 << voicenum;
603         }
604         outl(voicenum, emu->port + DATA);
605         spin_unlock_irqrestore(&emu->emu_lock, flags);
606 }
607 
608 #if 0
609 void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
610 {
611         unsigned long flags;
612         unsigned int sol;
613 
614         spin_lock_irqsave(&emu->emu_lock, flags);
615         if (voicenum >= 32) {
616                 outl(SOLEH << 16, emu->port + PTR);
617                 sol = inl(emu->port + DATA);
618                 sol |= 1 << (voicenum - 32);
619         } else {
620                 outl(SOLEL << 16, emu->port + PTR);
621                 sol = inl(emu->port + DATA);
622                 sol |= 1 << voicenum;
623         }
624         outl(sol, emu->port + DATA);
625         spin_unlock_irqrestore(&emu->emu_lock, flags);
626 }
627 
628 void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
629 {
630         unsigned long flags;
631         unsigned int sol;
632 
633         spin_lock_irqsave(&emu->emu_lock, flags);
634         if (voicenum >= 32) {
635                 outl(SOLEH << 16, emu->port + PTR);
636                 sol = inl(emu->port + DATA);
637                 sol &= ~(1 << (voicenum - 32));
638         } else {
639                 outl(SOLEL << 16, emu->port + PTR);
640                 sol = inl(emu->port + DATA);
641                 sol &= ~(1 << voicenum);
642         }
643         outl(sol, emu->port + DATA);
644         spin_unlock_irqrestore(&emu->emu_lock, flags);
645 }
646 #endif
647 
648 void snd_emu10k1_voice_set_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
649 {
650         unsigned long flags;
651 
652         spin_lock_irqsave(&emu->emu_lock, flags);
653         outl(SOLEL << 16, emu->port + PTR);
654         outl(inl(emu->port + DATA) | (u32)voices, emu->port + DATA);
655         outl(SOLEH << 16, emu->port + PTR);
656         outl(inl(emu->port + DATA) | (u32)(voices >> 32), emu->port + DATA);
657         spin_unlock_irqrestore(&emu->emu_lock, flags);
658 }
659 
660 void snd_emu10k1_voice_clear_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
661 {
662         unsigned long flags;
663 
664         spin_lock_irqsave(&emu->emu_lock, flags);
665         outl(SOLEL << 16, emu->port + PTR);
666         outl(inl(emu->port + DATA) & (u32)~voices, emu->port + DATA);
667         outl(SOLEH << 16, emu->port + PTR);
668         outl(inl(emu->port + DATA) & (u32)(~voices >> 32), emu->port + DATA);
669         spin_unlock_irqrestore(&emu->emu_lock, flags);
670 }
671 
672 int snd_emu10k1_voice_clear_loop_stop_multiple_atomic(struct snd_emu10k1 *emu, u64 voices)
673 {
674         unsigned long flags;
675         u32 soll, solh;
676         int ret = -EIO;
677 
678         spin_lock_irqsave(&emu->emu_lock, flags);
679 
680         outl(SOLEL << 16, emu->port + PTR);
681         soll = inl(emu->port + DATA);
682         outl(SOLEH << 16, emu->port + PTR);
683         solh = inl(emu->port + DATA);
684 
685         soll &= (u32)~voices;
686         solh &= (u32)(~voices >> 32);
687 
688         for (int tries = 0; tries < 1000; tries++) {
689                 const u32 quart = 1U << (REG_SIZE(WC_CURRENTCHANNEL) - 2);
690                 // First we wait for the third quarter of the sample cycle ...
691                 u32 wc = inl(emu->port + WC);
692                 u32 cc = REG_VAL_GET(WC_CURRENTCHANNEL, wc);
693                 if (cc >= quart * 2 && cc < quart * 3) {
694                         // ... and release the low voices, while the high ones are serviced.
695                         outl(SOLEL << 16, emu->port + PTR);
696                         outl(soll, emu->port + DATA);
697                         // Then we wait for the first quarter of the next sample cycle ...
698                         for (; tries < 1000; tries++) {
699                                 cc = REG_VAL_GET(WC_CURRENTCHANNEL, inl(emu->port + WC));
700                                 if (cc < quart)
701                                         goto good;
702                                 // We will block for 10+ us with interrupts disabled. This is
703                                 // not nice at all, but necessary for reasonable reliability.
704                                 udelay(1);
705                         }
706                         break;
707                 good:
708                         // ... and release the high voices, while the low ones are serviced.
709                         outl(SOLEH << 16, emu->port + PTR);
710                         outl(solh, emu->port + DATA);
711                         // Finally we verify that nothing interfered in fact.
712                         if (REG_VAL_GET(WC_SAMPLECOUNTER, inl(emu->port + WC)) ==
713                             ((REG_VAL_GET(WC_SAMPLECOUNTER, wc) + 1) & REG_MASK0(WC_SAMPLECOUNTER))) {
714                                 ret = 0;
715                         } else {
716                                 ret = -EAGAIN;
717                         }
718                         break;
719                 }
720                 // Don't block for too long
721                 spin_unlock_irqrestore(&emu->emu_lock, flags);
722                 udelay(1);
723                 spin_lock_irqsave(&emu->emu_lock, flags);
724         }
725 
726         spin_unlock_irqrestore(&emu->emu_lock, flags);
727         return ret;
728 }
729 
730 void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait)
731 {
732         volatile unsigned count;
733         unsigned int newtime = 0, curtime;
734 
735         curtime = inl(emu->port + WC) >> 6;
736         while (wait-- > 0) {
737                 count = 0;
738                 while (count++ < 16384) {
739                         newtime = inl(emu->port + WC) >> 6;
740                         if (newtime != curtime)
741                                 break;
742                 }
743                 if (count > 16384)
744                         break;
745                 curtime = newtime;
746         }
747 }
748 
749 unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
750 {
751         struct snd_emu10k1 *emu = ac97->private_data;
752         unsigned long flags;
753         unsigned short val;
754 
755         spin_lock_irqsave(&emu->emu_lock, flags);
756         outb(reg, emu->port + AC97ADDRESS);
757         val = inw(emu->port + AC97DATA);
758         spin_unlock_irqrestore(&emu->emu_lock, flags);
759         return val;
760 }
761 
762 void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data)
763 {
764         struct snd_emu10k1 *emu = ac97->private_data;
765         unsigned long flags;
766 
767         spin_lock_irqsave(&emu->emu_lock, flags);
768         outb(reg, emu->port + AC97ADDRESS);
769         outw(data, emu->port + AC97DATA);
770         spin_unlock_irqrestore(&emu->emu_lock, flags);
771 }
772 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php