1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Routines for control of YMF724/740/744/754 chips 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/firmware.h> 9 #include <linux/init.h> 10 #include <linux/interrupt.h> 11 #include <linux/pci.h> 12 #include <linux/sched.h> 13 #include <linux/slab.h> 14 #include <linux/mutex.h> 15 #include <linux/module.h> 16 #include <linux/io.h> 17 18 #include <sound/core.h> 19 #include <sound/control.h> 20 #include <sound/info.h> 21 #include <sound/tlv.h> 22 #include "ymfpci.h" 23 #include <sound/asoundef.h> 24 #include <sound/mpu401.h> 25 26 #include <asm/byteorder.h> 27 28 /* 29 * common I/O routines 30 */ 31 32 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip); 33 34 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val) 35 { 36 writeb(val, chip->reg_area_virt + offset); 37 } 38 39 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset) 40 { 41 return readw(chip->reg_area_virt + offset); 42 } 43 44 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val) 45 { 46 writew(val, chip->reg_area_virt + offset); 47 } 48 49 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset) 50 { 51 return readl(chip->reg_area_virt + offset); 52 } 53 54 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val) 55 { 56 writel(val, chip->reg_area_virt + offset); 57 } 58 59 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary) 60 { 61 unsigned long end_time; 62 u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR; 63 64 end_time = jiffies + msecs_to_jiffies(750); 65 do { 66 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0) 67 return 0; 68 schedule_timeout_uninterruptible(1); 69 } while (time_before(jiffies, end_time)); 70 dev_err(chip->card->dev, 71 "codec_ready: codec %i is not ready [0x%x]\n", 72 secondary, snd_ymfpci_readw(chip, reg)); 73 return -EBUSY; 74 } 75 76 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val) 77 { 78 struct snd_ymfpci *chip = ac97->private_data; 79 u32 cmd; 80 81 snd_ymfpci_codec_ready(chip, 0); 82 cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val; 83 snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd); 84 } 85 86 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg) 87 { 88 struct snd_ymfpci *chip = ac97->private_data; 89 90 if (snd_ymfpci_codec_ready(chip, 0)) 91 return ~0; 92 snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg); 93 if (snd_ymfpci_codec_ready(chip, 0)) 94 return ~0; 95 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) { 96 int i; 97 for (i = 0; i < 600; i++) 98 snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 99 } 100 return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 101 } 102 103 /* 104 * Misc routines 105 */ 106 107 static u32 snd_ymfpci_calc_delta(u32 rate) 108 { 109 switch (rate) { 110 case 8000: return 0x02aaab00; 111 case 11025: return 0x03accd00; 112 case 16000: return 0x05555500; 113 case 22050: return 0x07599a00; 114 case 32000: return 0x0aaaab00; 115 case 44100: return 0x0eb33300; 116 default: return ((rate << 16) / 375) << 5; 117 } 118 } 119 120 static const u32 def_rate[8] = { 121 100, 2000, 8000, 11025, 16000, 22050, 32000, 48000 122 }; 123 124 static u32 snd_ymfpci_calc_lpfK(u32 rate) 125 { 126 u32 i; 127 static const u32 val[8] = { 128 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000, 129 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000 130 }; 131 132 if (rate == 44100) 133 return 0x40000000; /* FIXME: What's the right value? */ 134 for (i = 0; i < 8; i++) 135 if (rate <= def_rate[i]) 136 return val[i]; 137 return val[0]; 138 } 139 140 static u32 snd_ymfpci_calc_lpfQ(u32 rate) 141 { 142 u32 i; 143 static const u32 val[8] = { 144 0x35280000, 0x34A70000, 0x32020000, 0x31770000, 145 0x31390000, 0x31C90000, 0x33D00000, 0x40000000 146 }; 147 148 if (rate == 44100) 149 return 0x370A0000; 150 for (i = 0; i < 8; i++) 151 if (rate <= def_rate[i]) 152 return val[i]; 153 return val[0]; 154 } 155 156 /* 157 * Hardware start management 158 */ 159 160 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip) 161 { 162 unsigned long flags; 163 164 spin_lock_irqsave(&chip->reg_lock, flags); 165 if (chip->start_count++ > 0) 166 goto __end; 167 snd_ymfpci_writel(chip, YDSXGR_MODE, 168 snd_ymfpci_readl(chip, YDSXGR_MODE) | 3); 169 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 170 __end: 171 spin_unlock_irqrestore(&chip->reg_lock, flags); 172 } 173 174 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip) 175 { 176 unsigned long flags; 177 long timeout = 1000; 178 179 spin_lock_irqsave(&chip->reg_lock, flags); 180 if (--chip->start_count > 0) 181 goto __end; 182 snd_ymfpci_writel(chip, YDSXGR_MODE, 183 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3); 184 while (timeout-- > 0) { 185 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0) 186 break; 187 } 188 if (atomic_read(&chip->interrupt_sleep_count)) { 189 atomic_set(&chip->interrupt_sleep_count, 0); 190 wake_up(&chip->interrupt_sleep); 191 } 192 __end: 193 spin_unlock_irqrestore(&chip->reg_lock, flags); 194 } 195 196 /* 197 * Playback voice management 198 */ 199 200 static int voice_alloc(struct snd_ymfpci *chip, 201 enum snd_ymfpci_voice_type type, int pair, 202 struct snd_ymfpci_voice **rvoice) 203 { 204 struct snd_ymfpci_voice *voice, *voice2; 205 int idx; 206 207 *rvoice = NULL; 208 for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) { 209 voice = &chip->voices[idx]; 210 voice2 = pair ? &chip->voices[idx+1] : NULL; 211 if (voice->use || (voice2 && voice2->use)) 212 continue; 213 voice->use = 1; 214 if (voice2) 215 voice2->use = 1; 216 switch (type) { 217 case YMFPCI_PCM: 218 voice->pcm = 1; 219 if (voice2) 220 voice2->pcm = 1; 221 break; 222 case YMFPCI_SYNTH: 223 voice->synth = 1; 224 break; 225 case YMFPCI_MIDI: 226 voice->midi = 1; 227 break; 228 } 229 snd_ymfpci_hw_start(chip); 230 if (voice2) 231 snd_ymfpci_hw_start(chip); 232 *rvoice = voice; 233 return 0; 234 } 235 return -ENOMEM; 236 } 237 238 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip, 239 enum snd_ymfpci_voice_type type, int pair, 240 struct snd_ymfpci_voice **rvoice) 241 { 242 unsigned long flags; 243 int result; 244 245 if (snd_BUG_ON(!rvoice)) 246 return -EINVAL; 247 if (snd_BUG_ON(pair && type != YMFPCI_PCM)) 248 return -EINVAL; 249 250 spin_lock_irqsave(&chip->voice_lock, flags); 251 for (;;) { 252 result = voice_alloc(chip, type, pair, rvoice); 253 if (result == 0 || type != YMFPCI_PCM) 254 break; 255 /* TODO: synth/midi voice deallocation */ 256 break; 257 } 258 spin_unlock_irqrestore(&chip->voice_lock, flags); 259 return result; 260 } 261 262 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice) 263 { 264 unsigned long flags; 265 266 if (snd_BUG_ON(!pvoice)) 267 return -EINVAL; 268 snd_ymfpci_hw_stop(chip); 269 spin_lock_irqsave(&chip->voice_lock, flags); 270 if (pvoice->number == chip->src441_used) { 271 chip->src441_used = -1; 272 pvoice->ypcm->use_441_slot = 0; 273 } 274 pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0; 275 pvoice->ypcm = NULL; 276 pvoice->interrupt = NULL; 277 spin_unlock_irqrestore(&chip->voice_lock, flags); 278 return 0; 279 } 280 281 /* 282 * PCM part 283 */ 284 285 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice) 286 { 287 struct snd_ymfpci_pcm *ypcm; 288 u32 pos, delta; 289 290 ypcm = voice->ypcm; 291 if (!ypcm) 292 return; 293 if (ypcm->substream == NULL) 294 return; 295 spin_lock(&chip->reg_lock); 296 if (ypcm->running) { 297 pos = le32_to_cpu(voice->bank[chip->active_bank].start); 298 if (pos < ypcm->last_pos) 299 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 300 else 301 delta = pos - ypcm->last_pos; 302 ypcm->period_pos += delta; 303 ypcm->last_pos = pos; 304 if (ypcm->period_pos >= ypcm->period_size) { 305 /* 306 dev_dbg(chip->card->dev, 307 "done - active_bank = 0x%x, start = 0x%x\n", 308 chip->active_bank, 309 voice->bank[chip->active_bank].start); 310 */ 311 ypcm->period_pos %= ypcm->period_size; 312 spin_unlock(&chip->reg_lock); 313 snd_pcm_period_elapsed(ypcm->substream); 314 spin_lock(&chip->reg_lock); 315 } 316 317 if (unlikely(ypcm->update_pcm_vol)) { 318 unsigned int subs = ypcm->substream->number; 319 unsigned int next_bank = 1 - chip->active_bank; 320 struct snd_ymfpci_playback_bank *bank; 321 __le32 volume; 322 323 bank = &voice->bank[next_bank]; 324 volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15); 325 bank->left_gain_end = volume; 326 if (ypcm->output_rear) 327 bank->eff2_gain_end = volume; 328 if (ypcm->voices[1]) 329 bank = &ypcm->voices[1]->bank[next_bank]; 330 volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15); 331 bank->right_gain_end = volume; 332 if (ypcm->output_rear) 333 bank->eff3_gain_end = volume; 334 ypcm->update_pcm_vol--; 335 } 336 } 337 spin_unlock(&chip->reg_lock); 338 } 339 340 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream) 341 { 342 struct snd_pcm_runtime *runtime = substream->runtime; 343 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 344 struct snd_ymfpci *chip = ypcm->chip; 345 u32 pos, delta; 346 347 spin_lock(&chip->reg_lock); 348 if (ypcm->running) { 349 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 350 if (pos < ypcm->last_pos) 351 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 352 else 353 delta = pos - ypcm->last_pos; 354 ypcm->period_pos += delta; 355 ypcm->last_pos = pos; 356 if (ypcm->period_pos >= ypcm->period_size) { 357 ypcm->period_pos %= ypcm->period_size; 358 /* 359 dev_dbg(chip->card->dev, 360 "done - active_bank = 0x%x, start = 0x%x\n", 361 chip->active_bank, 362 voice->bank[chip->active_bank].start); 363 */ 364 spin_unlock(&chip->reg_lock); 365 snd_pcm_period_elapsed(substream); 366 spin_lock(&chip->reg_lock); 367 } 368 } 369 spin_unlock(&chip->reg_lock); 370 } 371 372 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream, 373 int cmd) 374 { 375 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 376 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 377 struct snd_kcontrol *kctl = NULL; 378 int result = 0; 379 380 spin_lock(&chip->reg_lock); 381 if (ypcm->voices[0] == NULL) { 382 result = -EINVAL; 383 goto __unlock; 384 } 385 switch (cmd) { 386 case SNDRV_PCM_TRIGGER_START: 387 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 388 case SNDRV_PCM_TRIGGER_RESUME: 389 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr); 390 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 391 chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr); 392 ypcm->running = 1; 393 break; 394 case SNDRV_PCM_TRIGGER_STOP: 395 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 396 kctl = chip->pcm_mixer[substream->number].ctl; 397 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 398 } 399 fallthrough; 400 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 401 case SNDRV_PCM_TRIGGER_SUSPEND: 402 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0; 403 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 404 chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0; 405 ypcm->running = 0; 406 break; 407 default: 408 result = -EINVAL; 409 break; 410 } 411 __unlock: 412 spin_unlock(&chip->reg_lock); 413 if (kctl) 414 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 415 return result; 416 } 417 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream, 418 int cmd) 419 { 420 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 421 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 422 int result = 0; 423 u32 tmp; 424 425 spin_lock(&chip->reg_lock); 426 switch (cmd) { 427 case SNDRV_PCM_TRIGGER_START: 428 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 429 case SNDRV_PCM_TRIGGER_RESUME: 430 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number); 431 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 432 ypcm->running = 1; 433 break; 434 case SNDRV_PCM_TRIGGER_STOP: 435 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 436 case SNDRV_PCM_TRIGGER_SUSPEND: 437 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number); 438 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 439 ypcm->running = 0; 440 break; 441 default: 442 result = -EINVAL; 443 break; 444 } 445 spin_unlock(&chip->reg_lock); 446 return result; 447 } 448 449 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices) 450 { 451 int err; 452 453 if (ypcm->voices[1] != NULL && voices < 2) { 454 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]); 455 ypcm->voices[1] = NULL; 456 } 457 if (voices == 1 && ypcm->voices[0] != NULL) 458 return 0; /* already allocated */ 459 if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL) 460 return 0; /* already allocated */ 461 if (voices > 1) { 462 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) { 463 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]); 464 ypcm->voices[0] = NULL; 465 } 466 } 467 err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]); 468 if (err < 0) 469 return err; 470 ypcm->voices[0]->ypcm = ypcm; 471 ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt; 472 if (voices > 1) { 473 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1]; 474 ypcm->voices[1]->ypcm = ypcm; 475 } 476 return 0; 477 } 478 479 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx, 480 struct snd_pcm_runtime *runtime, 481 int has_pcm_volume) 482 { 483 struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx]; 484 u32 format; 485 u32 delta = snd_ymfpci_calc_delta(runtime->rate); 486 u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate); 487 u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate); 488 struct snd_ymfpci_playback_bank *bank; 489 unsigned int nbank; 490 __le32 vol_left, vol_right; 491 u8 use_left, use_right; 492 unsigned long flags; 493 494 if (snd_BUG_ON(!voice)) 495 return; 496 if (runtime->channels == 1) { 497 use_left = 1; 498 use_right = 1; 499 } else { 500 use_left = (voiceidx & 1) == 0; 501 use_right = !use_left; 502 } 503 if (has_pcm_volume) { 504 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer 505 [ypcm->substream->number].left << 15); 506 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer 507 [ypcm->substream->number].right << 15); 508 } else { 509 vol_left = cpu_to_le32(0x40000000); 510 vol_right = cpu_to_le32(0x40000000); 511 } 512 spin_lock_irqsave(&ypcm->chip->voice_lock, flags); 513 format = runtime->channels == 2 ? 0x00010000 : 0; 514 if (snd_pcm_format_width(runtime->format) == 8) 515 format |= 0x80000000; 516 else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 517 runtime->rate == 44100 && runtime->channels == 2 && 518 voiceidx == 0 && (ypcm->chip->src441_used == -1 || 519 ypcm->chip->src441_used == voice->number)) { 520 ypcm->chip->src441_used = voice->number; 521 ypcm->use_441_slot = 1; 522 format |= 0x10000000; 523 } 524 if (ypcm->chip->src441_used == voice->number && 525 (format & 0x10000000) == 0) { 526 ypcm->chip->src441_used = -1; 527 ypcm->use_441_slot = 0; 528 } 529 if (runtime->channels == 2 && (voiceidx & 1) != 0) 530 format |= 1; 531 spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags); 532 for (nbank = 0; nbank < 2; nbank++) { 533 bank = &voice->bank[nbank]; 534 memset(bank, 0, sizeof(*bank)); 535 bank->format = cpu_to_le32(format); 536 bank->base = cpu_to_le32(runtime->dma_addr); 537 bank->loop_end = cpu_to_le32(ypcm->buffer_size); 538 bank->lpfQ = cpu_to_le32(lpfQ); 539 bank->delta = 540 bank->delta_end = cpu_to_le32(delta); 541 bank->lpfK = 542 bank->lpfK_end = cpu_to_le32(lpfK); 543 bank->eg_gain = 544 bank->eg_gain_end = cpu_to_le32(0x40000000); 545 546 if (ypcm->output_front) { 547 if (use_left) { 548 bank->left_gain = 549 bank->left_gain_end = vol_left; 550 } 551 if (use_right) { 552 bank->right_gain = 553 bank->right_gain_end = vol_right; 554 } 555 } 556 if (ypcm->output_rear) { 557 if (!ypcm->swap_rear) { 558 if (use_left) { 559 bank->eff2_gain = 560 bank->eff2_gain_end = vol_left; 561 } 562 if (use_right) { 563 bank->eff3_gain = 564 bank->eff3_gain_end = vol_right; 565 } 566 } else { 567 /* The SPDIF out channels seem to be swapped, so we have 568 * to swap them here, too. The rear analog out channels 569 * will be wrong, but otherwise AC3 would not work. 570 */ 571 if (use_left) { 572 bank->eff3_gain = 573 bank->eff3_gain_end = vol_left; 574 } 575 if (use_right) { 576 bank->eff2_gain = 577 bank->eff2_gain_end = vol_right; 578 } 579 } 580 } 581 } 582 } 583 584 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip) 585 { 586 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev, 587 4096, &chip->ac3_tmp_base) < 0) 588 return -ENOMEM; 589 590 chip->bank_effect[3][0]->base = 591 chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr); 592 chip->bank_effect[3][0]->loop_end = 593 chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024); 594 chip->bank_effect[4][0]->base = 595 chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048); 596 chip->bank_effect[4][0]->loop_end = 597 chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024); 598 599 spin_lock_irq(&chip->reg_lock); 600 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 601 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3); 602 spin_unlock_irq(&chip->reg_lock); 603 return 0; 604 } 605 606 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip) 607 { 608 spin_lock_irq(&chip->reg_lock); 609 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 610 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3)); 611 spin_unlock_irq(&chip->reg_lock); 612 // snd_ymfpci_irq_wait(chip); 613 if (chip->ac3_tmp_base.area) { 614 snd_dma_free_pages(&chip->ac3_tmp_base); 615 chip->ac3_tmp_base.area = NULL; 616 } 617 return 0; 618 } 619 620 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream, 621 struct snd_pcm_hw_params *hw_params) 622 { 623 struct snd_pcm_runtime *runtime = substream->runtime; 624 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 625 int err; 626 627 err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params)); 628 if (err < 0) 629 return err; 630 return 0; 631 } 632 633 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream) 634 { 635 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 636 struct snd_pcm_runtime *runtime = substream->runtime; 637 struct snd_ymfpci_pcm *ypcm; 638 639 if (runtime->private_data == NULL) 640 return 0; 641 ypcm = runtime->private_data; 642 643 /* wait, until the PCI operations are not finished */ 644 snd_ymfpci_irq_wait(chip); 645 if (ypcm->voices[1]) { 646 snd_ymfpci_voice_free(chip, ypcm->voices[1]); 647 ypcm->voices[1] = NULL; 648 } 649 if (ypcm->voices[0]) { 650 snd_ymfpci_voice_free(chip, ypcm->voices[0]); 651 ypcm->voices[0] = NULL; 652 } 653 return 0; 654 } 655 656 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream) 657 { 658 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 659 struct snd_pcm_runtime *runtime = substream->runtime; 660 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 661 struct snd_kcontrol *kctl; 662 unsigned int nvoice; 663 664 ypcm->period_size = runtime->period_size; 665 ypcm->buffer_size = runtime->buffer_size; 666 ypcm->period_pos = 0; 667 ypcm->last_pos = 0; 668 for (nvoice = 0; nvoice < runtime->channels; nvoice++) 669 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime, 670 substream->pcm == chip->pcm); 671 672 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 673 kctl = chip->pcm_mixer[substream->number].ctl; 674 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 675 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 676 } 677 return 0; 678 } 679 680 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream) 681 { 682 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 683 684 /* wait, until the PCI operations are not finished */ 685 snd_ymfpci_irq_wait(chip); 686 return 0; 687 } 688 689 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream) 690 { 691 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 692 struct snd_pcm_runtime *runtime = substream->runtime; 693 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 694 struct snd_ymfpci_capture_bank * bank; 695 int nbank; 696 u32 rate, format; 697 698 ypcm->period_size = runtime->period_size; 699 ypcm->buffer_size = runtime->buffer_size; 700 ypcm->period_pos = 0; 701 ypcm->last_pos = 0; 702 ypcm->shift = 0; 703 rate = ((48000 * 4096) / runtime->rate) - 1; 704 format = 0; 705 if (runtime->channels == 2) { 706 format |= 2; 707 ypcm->shift++; 708 } 709 if (snd_pcm_format_width(runtime->format) == 8) 710 format |= 1; 711 else 712 ypcm->shift++; 713 switch (ypcm->capture_bank_number) { 714 case 0: 715 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format); 716 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate); 717 break; 718 case 1: 719 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format); 720 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate); 721 break; 722 } 723 for (nbank = 0; nbank < 2; nbank++) { 724 bank = chip->bank_capture[ypcm->capture_bank_number][nbank]; 725 bank->base = cpu_to_le32(runtime->dma_addr); 726 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift); 727 bank->start = 0; 728 bank->num_of_loops = 0; 729 } 730 return 0; 731 } 732 733 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream) 734 { 735 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 736 struct snd_pcm_runtime *runtime = substream->runtime; 737 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 738 struct snd_ymfpci_voice *voice = ypcm->voices[0]; 739 740 if (!(ypcm->running && voice)) 741 return 0; 742 return le32_to_cpu(voice->bank[chip->active_bank].start); 743 } 744 745 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream) 746 { 747 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 748 struct snd_pcm_runtime *runtime = substream->runtime; 749 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 750 751 if (!ypcm->running) 752 return 0; 753 return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 754 } 755 756 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip) 757 { 758 wait_queue_entry_t wait; 759 int loops = 4; 760 761 while (loops-- > 0) { 762 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0) 763 continue; 764 init_waitqueue_entry(&wait, current); 765 add_wait_queue(&chip->interrupt_sleep, &wait); 766 atomic_inc(&chip->interrupt_sleep_count); 767 schedule_timeout_uninterruptible(msecs_to_jiffies(50)); 768 remove_wait_queue(&chip->interrupt_sleep, &wait); 769 } 770 } 771 772 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id) 773 { 774 struct snd_ymfpci *chip = dev_id; 775 u32 status, nvoice, mode; 776 struct snd_ymfpci_voice *voice; 777 778 status = snd_ymfpci_readl(chip, YDSXGR_STATUS); 779 if (status & 0x80000000) { 780 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 781 spin_lock(&chip->voice_lock); 782 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) { 783 voice = &chip->voices[nvoice]; 784 if (voice->interrupt) 785 voice->interrupt(chip, voice); 786 } 787 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) { 788 if (chip->capture_substream[nvoice]) 789 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]); 790 } 791 #if 0 792 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) { 793 if (chip->effect_substream[nvoice]) 794 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]); 795 } 796 #endif 797 spin_unlock(&chip->voice_lock); 798 spin_lock(&chip->reg_lock); 799 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000); 800 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2; 801 snd_ymfpci_writel(chip, YDSXGR_MODE, mode); 802 spin_unlock(&chip->reg_lock); 803 804 if (atomic_read(&chip->interrupt_sleep_count)) { 805 atomic_set(&chip->interrupt_sleep_count, 0); 806 wake_up(&chip->interrupt_sleep); 807 } 808 } 809 810 status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG); 811 if (status & 1) { 812 if (chip->timer) 813 snd_timer_interrupt(chip->timer, chip->timer_ticks); 814 } 815 snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status); 816 817 if (chip->rawmidi) 818 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data); 819 return IRQ_HANDLED; 820 } 821 822 static const struct snd_pcm_hardware snd_ymfpci_playback = 823 { 824 .info = (SNDRV_PCM_INFO_MMAP | 825 SNDRV_PCM_INFO_MMAP_VALID | 826 SNDRV_PCM_INFO_INTERLEAVED | 827 SNDRV_PCM_INFO_BLOCK_TRANSFER | 828 SNDRV_PCM_INFO_PAUSE | 829 SNDRV_PCM_INFO_RESUME), 830 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 831 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 832 .rate_min = 8000, 833 .rate_max = 48000, 834 .channels_min = 1, 835 .channels_max = 2, 836 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 837 .period_bytes_min = 64, 838 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 839 .periods_min = 3, 840 .periods_max = 1024, 841 .fifo_size = 0, 842 }; 843 844 static const struct snd_pcm_hardware snd_ymfpci_capture = 845 { 846 .info = (SNDRV_PCM_INFO_MMAP | 847 SNDRV_PCM_INFO_MMAP_VALID | 848 SNDRV_PCM_INFO_INTERLEAVED | 849 SNDRV_PCM_INFO_BLOCK_TRANSFER | 850 SNDRV_PCM_INFO_PAUSE | 851 SNDRV_PCM_INFO_RESUME), 852 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 853 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 854 .rate_min = 8000, 855 .rate_max = 48000, 856 .channels_min = 1, 857 .channels_max = 2, 858 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 859 .period_bytes_min = 64, 860 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 861 .periods_min = 3, 862 .periods_max = 1024, 863 .fifo_size = 0, 864 }; 865 866 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime) 867 { 868 kfree(runtime->private_data); 869 } 870 871 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream) 872 { 873 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 874 struct snd_pcm_runtime *runtime = substream->runtime; 875 struct snd_ymfpci_pcm *ypcm; 876 int err; 877 878 runtime->hw = snd_ymfpci_playback; 879 /* FIXME? True value is 256/48 = 5.33333 ms */ 880 err = snd_pcm_hw_constraint_minmax(runtime, 881 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 882 5334, UINT_MAX); 883 if (err < 0) 884 return err; 885 err = snd_pcm_hw_rule_noresample(runtime, 48000); 886 if (err < 0) 887 return err; 888 889 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 890 if (ypcm == NULL) 891 return -ENOMEM; 892 ypcm->chip = chip; 893 ypcm->type = PLAYBACK_VOICE; 894 ypcm->substream = substream; 895 runtime->private_data = ypcm; 896 runtime->private_free = snd_ymfpci_pcm_free_substream; 897 return 0; 898 } 899 900 /* call with spinlock held */ 901 static void ymfpci_open_extension(struct snd_ymfpci *chip) 902 { 903 if (! chip->rear_opened) { 904 if (! chip->spdif_opened) /* set AC3 */ 905 snd_ymfpci_writel(chip, YDSXGR_MODE, 906 snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30)); 907 /* enable second codec (4CHEN) */ 908 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 909 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010); 910 } 911 } 912 913 /* call with spinlock held */ 914 static void ymfpci_close_extension(struct snd_ymfpci *chip) 915 { 916 if (! chip->rear_opened) { 917 if (! chip->spdif_opened) 918 snd_ymfpci_writel(chip, YDSXGR_MODE, 919 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30)); 920 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 921 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010); 922 } 923 } 924 925 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream) 926 { 927 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 928 struct snd_pcm_runtime *runtime = substream->runtime; 929 struct snd_ymfpci_pcm *ypcm; 930 int err; 931 932 err = snd_ymfpci_playback_open_1(substream); 933 if (err < 0) 934 return err; 935 ypcm = runtime->private_data; 936 ypcm->output_front = 1; 937 ypcm->output_rear = chip->mode_dup4ch ? 1 : 0; 938 ypcm->swap_rear = 0; 939 spin_lock_irq(&chip->reg_lock); 940 if (ypcm->output_rear) { 941 ymfpci_open_extension(chip); 942 chip->rear_opened++; 943 } 944 spin_unlock_irq(&chip->reg_lock); 945 return 0; 946 } 947 948 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream) 949 { 950 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 951 struct snd_pcm_runtime *runtime = substream->runtime; 952 struct snd_ymfpci_pcm *ypcm; 953 int err; 954 955 err = snd_ymfpci_playback_open_1(substream); 956 if (err < 0) 957 return err; 958 ypcm = runtime->private_data; 959 ypcm->output_front = 0; 960 ypcm->output_rear = 1; 961 ypcm->swap_rear = 1; 962 spin_lock_irq(&chip->reg_lock); 963 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 964 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2); 965 ymfpci_open_extension(chip); 966 chip->spdif_pcm_bits = chip->spdif_bits; 967 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 968 chip->spdif_opened++; 969 spin_unlock_irq(&chip->reg_lock); 970 971 chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 972 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 973 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 974 return 0; 975 } 976 977 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream) 978 { 979 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 980 struct snd_pcm_runtime *runtime = substream->runtime; 981 struct snd_ymfpci_pcm *ypcm; 982 int err; 983 984 err = snd_ymfpci_playback_open_1(substream); 985 if (err < 0) 986 return err; 987 ypcm = runtime->private_data; 988 ypcm->output_front = 0; 989 ypcm->output_rear = 1; 990 ypcm->swap_rear = 0; 991 spin_lock_irq(&chip->reg_lock); 992 ymfpci_open_extension(chip); 993 chip->rear_opened++; 994 spin_unlock_irq(&chip->reg_lock); 995 return 0; 996 } 997 998 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream, 999 u32 capture_bank_number) 1000 { 1001 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1002 struct snd_pcm_runtime *runtime = substream->runtime; 1003 struct snd_ymfpci_pcm *ypcm; 1004 int err; 1005 1006 runtime->hw = snd_ymfpci_capture; 1007 /* FIXME? True value is 256/48 = 5.33333 ms */ 1008 err = snd_pcm_hw_constraint_minmax(runtime, 1009 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1010 5334, UINT_MAX); 1011 if (err < 0) 1012 return err; 1013 err = snd_pcm_hw_rule_noresample(runtime, 48000); 1014 if (err < 0) 1015 return err; 1016 1017 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 1018 if (ypcm == NULL) 1019 return -ENOMEM; 1020 ypcm->chip = chip; 1021 ypcm->type = capture_bank_number + CAPTURE_REC; 1022 ypcm->substream = substream; 1023 ypcm->capture_bank_number = capture_bank_number; 1024 chip->capture_substream[capture_bank_number] = substream; 1025 runtime->private_data = ypcm; 1026 runtime->private_free = snd_ymfpci_pcm_free_substream; 1027 snd_ymfpci_hw_start(chip); 1028 return 0; 1029 } 1030 1031 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream) 1032 { 1033 return snd_ymfpci_capture_open(substream, 0); 1034 } 1035 1036 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream) 1037 { 1038 return snd_ymfpci_capture_open(substream, 1); 1039 } 1040 1041 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream) 1042 { 1043 return 0; 1044 } 1045 1046 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream) 1047 { 1048 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1049 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1050 1051 spin_lock_irq(&chip->reg_lock); 1052 if (ypcm->output_rear && chip->rear_opened > 0) { 1053 chip->rear_opened--; 1054 ymfpci_close_extension(chip); 1055 } 1056 spin_unlock_irq(&chip->reg_lock); 1057 return snd_ymfpci_playback_close_1(substream); 1058 } 1059 1060 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream) 1061 { 1062 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1063 1064 spin_lock_irq(&chip->reg_lock); 1065 chip->spdif_opened = 0; 1066 ymfpci_close_extension(chip); 1067 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 1068 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2); 1069 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1070 spin_unlock_irq(&chip->reg_lock); 1071 chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1072 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 1073 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 1074 return snd_ymfpci_playback_close_1(substream); 1075 } 1076 1077 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream) 1078 { 1079 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1080 1081 spin_lock_irq(&chip->reg_lock); 1082 if (chip->rear_opened > 0) { 1083 chip->rear_opened--; 1084 ymfpci_close_extension(chip); 1085 } 1086 spin_unlock_irq(&chip->reg_lock); 1087 return snd_ymfpci_playback_close_1(substream); 1088 } 1089 1090 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream) 1091 { 1092 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1093 struct snd_pcm_runtime *runtime = substream->runtime; 1094 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 1095 1096 if (ypcm != NULL) { 1097 chip->capture_substream[ypcm->capture_bank_number] = NULL; 1098 snd_ymfpci_hw_stop(chip); 1099 } 1100 return 0; 1101 } 1102 1103 static const struct snd_pcm_ops snd_ymfpci_playback_ops = { 1104 .open = snd_ymfpci_playback_open, 1105 .close = snd_ymfpci_playback_close, 1106 .hw_params = snd_ymfpci_playback_hw_params, 1107 .hw_free = snd_ymfpci_playback_hw_free, 1108 .prepare = snd_ymfpci_playback_prepare, 1109 .trigger = snd_ymfpci_playback_trigger, 1110 .pointer = snd_ymfpci_playback_pointer, 1111 }; 1112 1113 static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = { 1114 .open = snd_ymfpci_capture_rec_open, 1115 .close = snd_ymfpci_capture_close, 1116 .hw_free = snd_ymfpci_capture_hw_free, 1117 .prepare = snd_ymfpci_capture_prepare, 1118 .trigger = snd_ymfpci_capture_trigger, 1119 .pointer = snd_ymfpci_capture_pointer, 1120 }; 1121 1122 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device) 1123 { 1124 struct snd_pcm *pcm; 1125 int err; 1126 1127 err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm); 1128 if (err < 0) 1129 return err; 1130 pcm->private_data = chip; 1131 1132 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops); 1133 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops); 1134 1135 /* global setup */ 1136 pcm->info_flags = 0; 1137 strcpy(pcm->name, "YMFPCI"); 1138 chip->pcm = pcm; 1139 1140 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1141 &chip->pci->dev, 64*1024, 256*1024); 1142 1143 return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1144 snd_pcm_std_chmaps, 2, 0, NULL); 1145 } 1146 1147 static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = { 1148 .open = snd_ymfpci_capture_ac97_open, 1149 .close = snd_ymfpci_capture_close, 1150 .hw_free = snd_ymfpci_capture_hw_free, 1151 .prepare = snd_ymfpci_capture_prepare, 1152 .trigger = snd_ymfpci_capture_trigger, 1153 .pointer = snd_ymfpci_capture_pointer, 1154 }; 1155 1156 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device) 1157 { 1158 struct snd_pcm *pcm; 1159 int err; 1160 1161 err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm); 1162 if (err < 0) 1163 return err; 1164 pcm->private_data = chip; 1165 1166 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops); 1167 1168 /* global setup */ 1169 pcm->info_flags = 0; 1170 sprintf(pcm->name, "YMFPCI - %s", 1171 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97"); 1172 chip->pcm2 = pcm; 1173 1174 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1175 &chip->pci->dev, 64*1024, 256*1024); 1176 1177 return 0; 1178 } 1179 1180 static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = { 1181 .open = snd_ymfpci_playback_spdif_open, 1182 .close = snd_ymfpci_playback_spdif_close, 1183 .hw_params = snd_ymfpci_playback_hw_params, 1184 .hw_free = snd_ymfpci_playback_hw_free, 1185 .prepare = snd_ymfpci_playback_prepare, 1186 .trigger = snd_ymfpci_playback_trigger, 1187 .pointer = snd_ymfpci_playback_pointer, 1188 }; 1189 1190 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device) 1191 { 1192 struct snd_pcm *pcm; 1193 int err; 1194 1195 err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm); 1196 if (err < 0) 1197 return err; 1198 pcm->private_data = chip; 1199 1200 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops); 1201 1202 /* global setup */ 1203 pcm->info_flags = 0; 1204 strcpy(pcm->name, "YMFPCI - IEC958"); 1205 chip->pcm_spdif = pcm; 1206 1207 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1208 &chip->pci->dev, 64*1024, 256*1024); 1209 1210 return 0; 1211 } 1212 1213 static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = { 1214 .open = snd_ymfpci_playback_4ch_open, 1215 .close = snd_ymfpci_playback_4ch_close, 1216 .hw_params = snd_ymfpci_playback_hw_params, 1217 .hw_free = snd_ymfpci_playback_hw_free, 1218 .prepare = snd_ymfpci_playback_prepare, 1219 .trigger = snd_ymfpci_playback_trigger, 1220 .pointer = snd_ymfpci_playback_pointer, 1221 }; 1222 1223 static const struct snd_pcm_chmap_elem surround_map[] = { 1224 { .channels = 1, 1225 .map = { SNDRV_CHMAP_MONO } }, 1226 { .channels = 2, 1227 .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 1228 { } 1229 }; 1230 1231 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device) 1232 { 1233 struct snd_pcm *pcm; 1234 int err; 1235 1236 err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm); 1237 if (err < 0) 1238 return err; 1239 pcm->private_data = chip; 1240 1241 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops); 1242 1243 /* global setup */ 1244 pcm->info_flags = 0; 1245 strcpy(pcm->name, "YMFPCI - Rear PCM"); 1246 chip->pcm_4ch = pcm; 1247 1248 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1249 &chip->pci->dev, 64*1024, 256*1024); 1250 1251 return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1252 surround_map, 2, 0, NULL); 1253 } 1254 1255 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1256 { 1257 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1258 uinfo->count = 1; 1259 return 0; 1260 } 1261 1262 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol, 1263 struct snd_ctl_elem_value *ucontrol) 1264 { 1265 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1266 1267 spin_lock_irq(&chip->reg_lock); 1268 ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff; 1269 ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff; 1270 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1271 spin_unlock_irq(&chip->reg_lock); 1272 return 0; 1273 } 1274 1275 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol, 1276 struct snd_ctl_elem_value *ucontrol) 1277 { 1278 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1279 unsigned int val; 1280 int change; 1281 1282 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1283 (ucontrol->value.iec958.status[1] << 8); 1284 spin_lock_irq(&chip->reg_lock); 1285 change = chip->spdif_bits != val; 1286 chip->spdif_bits = val; 1287 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL) 1288 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1289 spin_unlock_irq(&chip->reg_lock); 1290 return change; 1291 } 1292 1293 static const struct snd_kcontrol_new snd_ymfpci_spdif_default = 1294 { 1295 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1296 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1297 .info = snd_ymfpci_spdif_default_info, 1298 .get = snd_ymfpci_spdif_default_get, 1299 .put = snd_ymfpci_spdif_default_put 1300 }; 1301 1302 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1303 { 1304 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1305 uinfo->count = 1; 1306 return 0; 1307 } 1308 1309 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1310 struct snd_ctl_elem_value *ucontrol) 1311 { 1312 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1313 1314 spin_lock_irq(&chip->reg_lock); 1315 ucontrol->value.iec958.status[0] = 0x3e; 1316 ucontrol->value.iec958.status[1] = 0xff; 1317 spin_unlock_irq(&chip->reg_lock); 1318 return 0; 1319 } 1320 1321 static const struct snd_kcontrol_new snd_ymfpci_spdif_mask = 1322 { 1323 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1324 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1325 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1326 .info = snd_ymfpci_spdif_mask_info, 1327 .get = snd_ymfpci_spdif_mask_get, 1328 }; 1329 1330 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1331 { 1332 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1333 uinfo->count = 1; 1334 return 0; 1335 } 1336 1337 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1338 struct snd_ctl_elem_value *ucontrol) 1339 { 1340 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1341 1342 spin_lock_irq(&chip->reg_lock); 1343 ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff; 1344 ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff; 1345 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1346 spin_unlock_irq(&chip->reg_lock); 1347 return 0; 1348 } 1349 1350 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1351 struct snd_ctl_elem_value *ucontrol) 1352 { 1353 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1354 unsigned int val; 1355 int change; 1356 1357 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1358 (ucontrol->value.iec958.status[1] << 8); 1359 spin_lock_irq(&chip->reg_lock); 1360 change = chip->spdif_pcm_bits != val; 1361 chip->spdif_pcm_bits = val; 1362 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2)) 1363 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 1364 spin_unlock_irq(&chip->reg_lock); 1365 return change; 1366 } 1367 1368 static const struct snd_kcontrol_new snd_ymfpci_spdif_stream = 1369 { 1370 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1371 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1372 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1373 .info = snd_ymfpci_spdif_stream_info, 1374 .get = snd_ymfpci_spdif_stream_get, 1375 .put = snd_ymfpci_spdif_stream_put 1376 }; 1377 1378 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) 1379 { 1380 static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"}; 1381 1382 return snd_ctl_enum_info(info, 1, 3, texts); 1383 } 1384 1385 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1386 { 1387 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1388 u16 reg; 1389 1390 spin_lock_irq(&chip->reg_lock); 1391 reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1392 spin_unlock_irq(&chip->reg_lock); 1393 if (!(reg & 0x100)) 1394 value->value.enumerated.item[0] = 0; 1395 else 1396 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0); 1397 return 0; 1398 } 1399 1400 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1401 { 1402 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1403 u16 reg, old_reg; 1404 1405 spin_lock_irq(&chip->reg_lock); 1406 old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1407 if (value->value.enumerated.item[0] == 0) 1408 reg = old_reg & ~0x100; 1409 else 1410 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9); 1411 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg); 1412 spin_unlock_irq(&chip->reg_lock); 1413 return reg != old_reg; 1414 } 1415 1416 static const struct snd_kcontrol_new snd_ymfpci_drec_source = { 1417 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1418 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1419 .name = "Direct Recording Source", 1420 .info = snd_ymfpci_drec_source_info, 1421 .get = snd_ymfpci_drec_source_get, 1422 .put = snd_ymfpci_drec_source_put 1423 }; 1424 1425 /* 1426 * Mixer controls 1427 */ 1428 1429 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \ 1430 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1431 .info = snd_ymfpci_info_single, \ 1432 .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \ 1433 .private_value = ((reg) | ((shift) << 16)) } 1434 1435 #define snd_ymfpci_info_single snd_ctl_boolean_mono_info 1436 1437 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol, 1438 struct snd_ctl_elem_value *ucontrol) 1439 { 1440 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1441 int reg = kcontrol->private_value & 0xffff; 1442 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1443 unsigned int mask = 1; 1444 1445 switch (reg) { 1446 case YDSXGR_SPDIFOUTCTRL: break; 1447 case YDSXGR_SPDIFINCTRL: break; 1448 default: return -EINVAL; 1449 } 1450 ucontrol->value.integer.value[0] = 1451 (snd_ymfpci_readl(chip, reg) >> shift) & mask; 1452 return 0; 1453 } 1454 1455 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol, 1456 struct snd_ctl_elem_value *ucontrol) 1457 { 1458 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1459 int reg = kcontrol->private_value & 0xffff; 1460 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1461 unsigned int mask = 1; 1462 int change; 1463 unsigned int val, oval; 1464 1465 switch (reg) { 1466 case YDSXGR_SPDIFOUTCTRL: break; 1467 case YDSXGR_SPDIFINCTRL: break; 1468 default: return -EINVAL; 1469 } 1470 val = (ucontrol->value.integer.value[0] & mask); 1471 val <<= shift; 1472 spin_lock_irq(&chip->reg_lock); 1473 oval = snd_ymfpci_readl(chip, reg); 1474 val = (oval & ~(mask << shift)) | val; 1475 change = val != oval; 1476 snd_ymfpci_writel(chip, reg, val); 1477 spin_unlock_irq(&chip->reg_lock); 1478 return change; 1479 } 1480 1481 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0); 1482 1483 #define YMFPCI_DOUBLE(xname, xindex, reg) \ 1484 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1485 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 1486 .info = snd_ymfpci_info_double, \ 1487 .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \ 1488 .private_value = reg, \ 1489 .tlv = { .p = db_scale_native } } 1490 1491 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1492 { 1493 unsigned int reg = kcontrol->private_value; 1494 1495 if (reg < 0x80 || reg >= 0xc0) 1496 return -EINVAL; 1497 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1498 uinfo->count = 2; 1499 uinfo->value.integer.min = 0; 1500 uinfo->value.integer.max = 16383; 1501 return 0; 1502 } 1503 1504 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1505 { 1506 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1507 unsigned int reg = kcontrol->private_value; 1508 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1509 unsigned int val; 1510 1511 if (reg < 0x80 || reg >= 0xc0) 1512 return -EINVAL; 1513 spin_lock_irq(&chip->reg_lock); 1514 val = snd_ymfpci_readl(chip, reg); 1515 spin_unlock_irq(&chip->reg_lock); 1516 ucontrol->value.integer.value[0] = (val >> shift_left) & mask; 1517 ucontrol->value.integer.value[1] = (val >> shift_right) & mask; 1518 return 0; 1519 } 1520 1521 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1522 { 1523 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1524 unsigned int reg = kcontrol->private_value; 1525 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1526 int change; 1527 unsigned int val1, val2, oval; 1528 1529 if (reg < 0x80 || reg >= 0xc0) 1530 return -EINVAL; 1531 val1 = ucontrol->value.integer.value[0] & mask; 1532 val2 = ucontrol->value.integer.value[1] & mask; 1533 val1 <<= shift_left; 1534 val2 <<= shift_right; 1535 spin_lock_irq(&chip->reg_lock); 1536 oval = snd_ymfpci_readl(chip, reg); 1537 val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2; 1538 change = val1 != oval; 1539 snd_ymfpci_writel(chip, reg, val1); 1540 spin_unlock_irq(&chip->reg_lock); 1541 return change; 1542 } 1543 1544 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol, 1545 struct snd_ctl_elem_value *ucontrol) 1546 { 1547 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1548 unsigned int reg = YDSXGR_NATIVEDACOUTVOL; 1549 unsigned int reg2 = YDSXGR_BUF441OUTVOL; 1550 int change; 1551 unsigned int value, oval; 1552 1553 value = ucontrol->value.integer.value[0] & 0x3fff; 1554 value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16; 1555 spin_lock_irq(&chip->reg_lock); 1556 oval = snd_ymfpci_readl(chip, reg); 1557 change = value != oval; 1558 snd_ymfpci_writel(chip, reg, value); 1559 snd_ymfpci_writel(chip, reg2, value); 1560 spin_unlock_irq(&chip->reg_lock); 1561 return change; 1562 } 1563 1564 /* 1565 * 4ch duplication 1566 */ 1567 #define snd_ymfpci_info_dup4ch snd_ctl_boolean_mono_info 1568 1569 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1570 { 1571 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1572 ucontrol->value.integer.value[0] = chip->mode_dup4ch; 1573 return 0; 1574 } 1575 1576 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1577 { 1578 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1579 int change; 1580 change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch); 1581 if (change) 1582 chip->mode_dup4ch = !!ucontrol->value.integer.value[0]; 1583 return change; 1584 } 1585 1586 static const struct snd_kcontrol_new snd_ymfpci_dup4ch = { 1587 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1588 .name = "4ch Duplication", 1589 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1590 .info = snd_ymfpci_info_dup4ch, 1591 .get = snd_ymfpci_get_dup4ch, 1592 .put = snd_ymfpci_put_dup4ch, 1593 }; 1594 1595 static const struct snd_kcontrol_new snd_ymfpci_controls[] = { 1596 { 1597 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1598 .name = "Wave Playback Volume", 1599 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1600 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 1601 .info = snd_ymfpci_info_double, 1602 .get = snd_ymfpci_get_double, 1603 .put = snd_ymfpci_put_nativedacvol, 1604 .private_value = YDSXGR_NATIVEDACOUTVOL, 1605 .tlv = { .p = db_scale_native }, 1606 }, 1607 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL), 1608 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL), 1609 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL), 1610 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL), 1611 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL), 1612 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL), 1613 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL), 1614 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL), 1615 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL), 1616 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL), 1617 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL), 1618 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL), 1619 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0), 1620 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0), 1621 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4), 1622 }; 1623 1624 1625 /* 1626 * GPIO 1627 */ 1628 1629 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin) 1630 { 1631 u16 reg, mode; 1632 unsigned long flags; 1633 1634 spin_lock_irqsave(&chip->reg_lock, flags); 1635 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1636 reg &= ~(1 << (pin + 8)); 1637 reg |= (1 << pin); 1638 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1639 /* set the level mode for input line */ 1640 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG); 1641 mode &= ~(3 << (pin * 2)); 1642 snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode); 1643 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1644 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS); 1645 spin_unlock_irqrestore(&chip->reg_lock, flags); 1646 return (mode >> pin) & 1; 1647 } 1648 1649 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable) 1650 { 1651 u16 reg; 1652 unsigned long flags; 1653 1654 spin_lock_irqsave(&chip->reg_lock, flags); 1655 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1656 reg &= ~(1 << pin); 1657 reg &= ~(1 << (pin + 8)); 1658 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1659 snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin); 1660 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1661 spin_unlock_irqrestore(&chip->reg_lock, flags); 1662 1663 return 0; 1664 } 1665 1666 #define snd_ymfpci_gpio_sw_info snd_ctl_boolean_mono_info 1667 1668 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1669 { 1670 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1671 int pin = (int)kcontrol->private_value; 1672 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1673 return 0; 1674 } 1675 1676 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1677 { 1678 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1679 int pin = (int)kcontrol->private_value; 1680 1681 if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) { 1682 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]); 1683 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1684 return 1; 1685 } 1686 return 0; 1687 } 1688 1689 static const struct snd_kcontrol_new snd_ymfpci_rear_shared = { 1690 .name = "Shared Rear/Line-In Switch", 1691 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1692 .info = snd_ymfpci_gpio_sw_info, 1693 .get = snd_ymfpci_gpio_sw_get, 1694 .put = snd_ymfpci_gpio_sw_put, 1695 .private_value = 2, 1696 }; 1697 1698 /* 1699 * PCM voice volume 1700 */ 1701 1702 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol, 1703 struct snd_ctl_elem_info *uinfo) 1704 { 1705 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1706 uinfo->count = 2; 1707 uinfo->value.integer.min = 0; 1708 uinfo->value.integer.max = 0x8000; 1709 return 0; 1710 } 1711 1712 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol, 1713 struct snd_ctl_elem_value *ucontrol) 1714 { 1715 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1716 unsigned int subs = kcontrol->id.subdevice; 1717 1718 ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left; 1719 ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right; 1720 return 0; 1721 } 1722 1723 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol, 1724 struct snd_ctl_elem_value *ucontrol) 1725 { 1726 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1727 unsigned int subs = kcontrol->id.subdevice; 1728 struct snd_pcm_substream *substream; 1729 unsigned long flags; 1730 1731 if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left || 1732 ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) { 1733 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0]; 1734 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1]; 1735 if (chip->pcm_mixer[subs].left > 0x8000) 1736 chip->pcm_mixer[subs].left = 0x8000; 1737 if (chip->pcm_mixer[subs].right > 0x8000) 1738 chip->pcm_mixer[subs].right = 0x8000; 1739 1740 substream = (struct snd_pcm_substream *)kcontrol->private_value; 1741 spin_lock_irqsave(&chip->voice_lock, flags); 1742 if (substream->runtime && substream->runtime->private_data) { 1743 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1744 if (!ypcm->use_441_slot) 1745 ypcm->update_pcm_vol = 2; 1746 } 1747 spin_unlock_irqrestore(&chip->voice_lock, flags); 1748 return 1; 1749 } 1750 return 0; 1751 } 1752 1753 static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = { 1754 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1755 .name = "PCM Playback Volume", 1756 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1757 SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1758 .info = snd_ymfpci_pcm_vol_info, 1759 .get = snd_ymfpci_pcm_vol_get, 1760 .put = snd_ymfpci_pcm_vol_put, 1761 }; 1762 1763 1764 /* 1765 * Mixer routines 1766 */ 1767 1768 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus) 1769 { 1770 struct snd_ymfpci *chip = bus->private_data; 1771 chip->ac97_bus = NULL; 1772 } 1773 1774 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97) 1775 { 1776 struct snd_ymfpci *chip = ac97->private_data; 1777 chip->ac97 = NULL; 1778 } 1779 1780 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch) 1781 { 1782 struct snd_ac97_template ac97; 1783 struct snd_kcontrol *kctl; 1784 struct snd_pcm_substream *substream; 1785 unsigned int idx; 1786 int err; 1787 static const struct snd_ac97_bus_ops ops = { 1788 .write = snd_ymfpci_codec_write, 1789 .read = snd_ymfpci_codec_read, 1790 }; 1791 1792 err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus); 1793 if (err < 0) 1794 return err; 1795 chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus; 1796 chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */ 1797 1798 memset(&ac97, 0, sizeof(ac97)); 1799 ac97.private_data = chip; 1800 ac97.private_free = snd_ymfpci_mixer_free_ac97; 1801 err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97); 1802 if (err < 0) 1803 return err; 1804 1805 /* to be sure */ 1806 snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS, 1807 AC97_EA_VRA|AC97_EA_VRM, 0); 1808 1809 for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) { 1810 err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip)); 1811 if (err < 0) 1812 return err; 1813 } 1814 if (chip->ac97->ext_id & AC97_EI_SDAC) { 1815 kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip); 1816 err = snd_ctl_add(chip->card, kctl); 1817 if (err < 0) 1818 return err; 1819 } 1820 1821 /* add S/PDIF control */ 1822 if (snd_BUG_ON(!chip->pcm_spdif)) 1823 return -ENXIO; 1824 kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip); 1825 kctl->id.device = chip->pcm_spdif->device; 1826 err = snd_ctl_add(chip->card, kctl); 1827 if (err < 0) 1828 return err; 1829 kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip); 1830 kctl->id.device = chip->pcm_spdif->device; 1831 err = snd_ctl_add(chip->card, kctl); 1832 if (err < 0) 1833 return err; 1834 kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip); 1835 kctl->id.device = chip->pcm_spdif->device; 1836 err = snd_ctl_add(chip->card, kctl); 1837 if (err < 0) 1838 return err; 1839 chip->spdif_pcm_ctl = kctl; 1840 1841 /* direct recording source */ 1842 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754) { 1843 kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip); 1844 err = snd_ctl_add(chip->card, kctl); 1845 if (err < 0) 1846 return err; 1847 } 1848 1849 /* 1850 * shared rear/line-in 1851 */ 1852 if (rear_switch) { 1853 err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip)); 1854 if (err < 0) 1855 return err; 1856 } 1857 1858 /* per-voice volume */ 1859 substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; 1860 for (idx = 0; idx < 32; ++idx) { 1861 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip); 1862 if (!kctl) 1863 return -ENOMEM; 1864 kctl->id.device = chip->pcm->device; 1865 kctl->id.subdevice = idx; 1866 kctl->private_value = (unsigned long)substream; 1867 err = snd_ctl_add(chip->card, kctl); 1868 if (err < 0) 1869 return err; 1870 chip->pcm_mixer[idx].left = 0x8000; 1871 chip->pcm_mixer[idx].right = 0x8000; 1872 chip->pcm_mixer[idx].ctl = kctl; 1873 substream = substream->next; 1874 } 1875 1876 return 0; 1877 } 1878 1879 1880 /* 1881 * timer 1882 */ 1883 1884 static int snd_ymfpci_timer_start(struct snd_timer *timer) 1885 { 1886 struct snd_ymfpci *chip; 1887 unsigned long flags; 1888 unsigned int count; 1889 1890 chip = snd_timer_chip(timer); 1891 spin_lock_irqsave(&chip->reg_lock, flags); 1892 if (timer->sticks > 1) { 1893 chip->timer_ticks = timer->sticks; 1894 count = timer->sticks - 1; 1895 } else { 1896 /* 1897 * Divisor 1 is not allowed; fake it by using divisor 2 and 1898 * counting two ticks for each interrupt. 1899 */ 1900 chip->timer_ticks = 2; 1901 count = 2 - 1; 1902 } 1903 snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count); 1904 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03); 1905 spin_unlock_irqrestore(&chip->reg_lock, flags); 1906 return 0; 1907 } 1908 1909 static int snd_ymfpci_timer_stop(struct snd_timer *timer) 1910 { 1911 struct snd_ymfpci *chip; 1912 unsigned long flags; 1913 1914 chip = snd_timer_chip(timer); 1915 spin_lock_irqsave(&chip->reg_lock, flags); 1916 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00); 1917 spin_unlock_irqrestore(&chip->reg_lock, flags); 1918 return 0; 1919 } 1920 1921 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer, 1922 unsigned long *num, unsigned long *den) 1923 { 1924 *num = 1; 1925 *den = 96000; 1926 return 0; 1927 } 1928 1929 static const struct snd_timer_hardware snd_ymfpci_timer_hw = { 1930 .flags = SNDRV_TIMER_HW_AUTO, 1931 .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */ 1932 .ticks = 0x10000, 1933 .start = snd_ymfpci_timer_start, 1934 .stop = snd_ymfpci_timer_stop, 1935 .precise_resolution = snd_ymfpci_timer_precise_resolution, 1936 }; 1937 1938 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device) 1939 { 1940 struct snd_timer *timer = NULL; 1941 struct snd_timer_id tid; 1942 int err; 1943 1944 tid.dev_class = SNDRV_TIMER_CLASS_CARD; 1945 tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE; 1946 tid.card = chip->card->number; 1947 tid.device = device; 1948 tid.subdevice = 0; 1949 err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer); 1950 if (err >= 0) { 1951 strcpy(timer->name, "YMFPCI timer"); 1952 timer->private_data = chip; 1953 timer->hw = snd_ymfpci_timer_hw; 1954 } 1955 chip->timer = timer; 1956 return err; 1957 } 1958 1959 1960 /* 1961 * proc interface 1962 */ 1963 1964 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 1965 struct snd_info_buffer *buffer) 1966 { 1967 struct snd_ymfpci *chip = entry->private_data; 1968 int i; 1969 1970 snd_iprintf(buffer, "YMFPCI\n\n"); 1971 for (i = 0; i <= YDSXGR_WORKBASE; i += 4) 1972 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i)); 1973 } 1974 1975 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip) 1976 { 1977 return snd_card_ro_proc_new(card, "ymfpci", chip, snd_ymfpci_proc_read); 1978 } 1979 1980 /* 1981 * initialization routines 1982 */ 1983 1984 static void snd_ymfpci_aclink_reset(struct pci_dev * pci) 1985 { 1986 u8 cmd; 1987 1988 pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd); 1989 #if 0 // force to reset 1990 if (cmd & 0x03) { 1991 #endif 1992 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1993 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03); 1994 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1995 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0); 1996 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0); 1997 #if 0 1998 } 1999 #endif 2000 } 2001 2002 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip) 2003 { 2004 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001); 2005 } 2006 2007 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip) 2008 { 2009 u32 val; 2010 int timeout = 1000; 2011 2012 val = snd_ymfpci_readl(chip, YDSXGR_CONFIG); 2013 if (val) 2014 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000); 2015 while (timeout-- > 0) { 2016 val = snd_ymfpci_readl(chip, YDSXGR_STATUS); 2017 if ((val & 0x00000002) == 0) 2018 break; 2019 } 2020 } 2021 2022 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip) 2023 { 2024 int err, is_1e; 2025 const char *name; 2026 2027 err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw", 2028 &chip->pci->dev); 2029 if (err >= 0) { 2030 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) { 2031 dev_err(chip->card->dev, 2032 "DSP microcode has wrong size\n"); 2033 err = -EINVAL; 2034 } 2035 } 2036 if (err < 0) 2037 return err; 2038 is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F || 2039 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C || 2040 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 || 2041 chip->device_id == PCI_DEVICE_ID_YAMAHA_754; 2042 name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw"; 2043 err = request_firmware(&chip->controller_microcode, name, 2044 &chip->pci->dev); 2045 if (err >= 0) { 2046 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) { 2047 dev_err(chip->card->dev, 2048 "controller microcode has wrong size\n"); 2049 err = -EINVAL; 2050 } 2051 } 2052 if (err < 0) 2053 return err; 2054 return 0; 2055 } 2056 2057 MODULE_FIRMWARE("yamaha/ds1_dsp.fw"); 2058 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw"); 2059 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw"); 2060 2061 static void snd_ymfpci_download_image(struct snd_ymfpci *chip) 2062 { 2063 int i; 2064 u16 ctrl; 2065 const __le32 *inst; 2066 2067 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000); 2068 snd_ymfpci_disable_dsp(chip); 2069 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000); 2070 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000); 2071 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000); 2072 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000); 2073 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000); 2074 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000); 2075 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000); 2076 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2077 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2078 2079 /* setup DSP instruction code */ 2080 inst = (const __le32 *)chip->dsp_microcode->data; 2081 for (i = 0; i < YDSXG_DSPLENGTH / 4; i++) 2082 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), 2083 le32_to_cpu(inst[i])); 2084 2085 /* setup control instruction code */ 2086 inst = (const __le32 *)chip->controller_microcode->data; 2087 for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++) 2088 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), 2089 le32_to_cpu(inst[i])); 2090 2091 snd_ymfpci_enable_dsp(chip); 2092 } 2093 2094 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip) 2095 { 2096 long size, playback_ctrl_size; 2097 int voice, bank, reg; 2098 u8 *ptr; 2099 dma_addr_t ptr_addr; 2100 2101 playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES; 2102 chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2; 2103 chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2; 2104 chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2; 2105 chip->work_size = YDSXG_DEFAULT_WORK_SIZE; 2106 2107 size = ALIGN(playback_ctrl_size, 0x100) + 2108 ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) + 2109 ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) + 2110 ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) + 2111 chip->work_size; 2112 /* work_ptr must be aligned to 256 bytes, but it's already 2113 covered with the kernel page allocation mechanism */ 2114 chip->work_ptr = snd_devm_alloc_pages(&chip->pci->dev, 2115 SNDRV_DMA_TYPE_DEV, size); 2116 if (!chip->work_ptr) 2117 return -ENOMEM; 2118 ptr = chip->work_ptr->area; 2119 ptr_addr = chip->work_ptr->addr; 2120 memset(ptr, 0, size); /* for sure */ 2121 2122 chip->bank_base_playback = ptr; 2123 chip->bank_base_playback_addr = ptr_addr; 2124 chip->ctrl_playback = (__le32 *)ptr; 2125 chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES); 2126 ptr += ALIGN(playback_ctrl_size, 0x100); 2127 ptr_addr += ALIGN(playback_ctrl_size, 0x100); 2128 for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) { 2129 chip->voices[voice].number = voice; 2130 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr; 2131 chip->voices[voice].bank_addr = ptr_addr; 2132 for (bank = 0; bank < 2; bank++) { 2133 chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr; 2134 ptr += chip->bank_size_playback; 2135 ptr_addr += chip->bank_size_playback; 2136 } 2137 } 2138 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2139 ptr_addr = ALIGN(ptr_addr, 0x100); 2140 chip->bank_base_capture = ptr; 2141 chip->bank_base_capture_addr = ptr_addr; 2142 for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++) 2143 for (bank = 0; bank < 2; bank++) { 2144 chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr; 2145 ptr += chip->bank_size_capture; 2146 ptr_addr += chip->bank_size_capture; 2147 } 2148 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2149 ptr_addr = ALIGN(ptr_addr, 0x100); 2150 chip->bank_base_effect = ptr; 2151 chip->bank_base_effect_addr = ptr_addr; 2152 for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++) 2153 for (bank = 0; bank < 2; bank++) { 2154 chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr; 2155 ptr += chip->bank_size_effect; 2156 ptr_addr += chip->bank_size_effect; 2157 } 2158 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2159 ptr_addr = ALIGN(ptr_addr, 0x100); 2160 chip->work_base = ptr; 2161 chip->work_base_addr = ptr_addr; 2162 2163 snd_BUG_ON(ptr + PAGE_ALIGN(chip->work_size) != 2164 chip->work_ptr->area + chip->work_ptr->bytes); 2165 2166 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr); 2167 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr); 2168 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr); 2169 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr); 2170 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2); 2171 2172 /* S/PDIF output initialization */ 2173 chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff; 2174 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0); 2175 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 2176 2177 /* S/PDIF input initialization */ 2178 snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0); 2179 2180 /* digital mixer setup */ 2181 for (reg = 0x80; reg < 0xc0; reg += 4) 2182 snd_ymfpci_writel(chip, reg, 0); 2183 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff); 2184 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff); 2185 snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff); 2186 snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff); 2187 snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff); 2188 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff); 2189 snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff); 2190 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff); 2191 2192 return 0; 2193 } 2194 2195 static void snd_ymfpci_free(struct snd_card *card) 2196 { 2197 struct snd_ymfpci *chip = card->private_data; 2198 u16 ctrl; 2199 2200 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2201 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2202 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0); 2203 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0); 2204 snd_ymfpci_disable_dsp(chip); 2205 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0); 2206 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0); 2207 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0); 2208 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0); 2209 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0); 2210 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2211 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2212 2213 snd_ymfpci_ac3_done(chip); 2214 2215 snd_ymfpci_free_gameport(chip); 2216 2217 pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY, chip->old_legacy_ctrl); 2218 2219 release_firmware(chip->dsp_microcode); 2220 release_firmware(chip->controller_microcode); 2221 } 2222 2223 static int snd_ymfpci_suspend(struct device *dev) 2224 { 2225 struct snd_card *card = dev_get_drvdata(dev); 2226 struct snd_ymfpci *chip = card->private_data; 2227 unsigned int i, legacy_reg_count = DSXG_PCI_NUM_SAVED_LEGACY_REGS; 2228 2229 if (chip->pci->device >= 0x0010) /* YMF 744/754 */ 2230 legacy_reg_count = DSXG_PCI_NUM_SAVED_REGS; 2231 2232 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 2233 snd_ac97_suspend(chip->ac97); 2234 2235 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2236 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]); 2237 2238 chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE); 2239 2240 for (i = 0; i < legacy_reg_count; i++) 2241 pci_read_config_word(chip->pci, pci_saved_regs_index[i], 2242 chip->saved_dsxg_pci_regs + i); 2243 2244 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2245 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2246 snd_ymfpci_disable_dsp(chip); 2247 return 0; 2248 } 2249 2250 static int snd_ymfpci_resume(struct device *dev) 2251 { 2252 struct pci_dev *pci = to_pci_dev(dev); 2253 struct snd_card *card = dev_get_drvdata(dev); 2254 struct snd_ymfpci *chip = card->private_data; 2255 unsigned int i, legacy_reg_count = DSXG_PCI_NUM_SAVED_LEGACY_REGS; 2256 2257 if (chip->pci->device >= 0x0010) /* YMF 744/754 */ 2258 legacy_reg_count = DSXG_PCI_NUM_SAVED_REGS; 2259 2260 snd_ymfpci_aclink_reset(pci); 2261 snd_ymfpci_codec_ready(chip, 0); 2262 snd_ymfpci_download_image(chip); 2263 udelay(100); 2264 2265 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2266 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]); 2267 2268 snd_ac97_resume(chip->ac97); 2269 2270 for (i = 0; i < legacy_reg_count; i++) 2271 pci_write_config_word(chip->pci, pci_saved_regs_index[i], 2272 chip->saved_dsxg_pci_regs[i]); 2273 2274 /* start hw again */ 2275 if (chip->start_count > 0) { 2276 spin_lock_irq(&chip->reg_lock); 2277 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode); 2278 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT); 2279 spin_unlock_irq(&chip->reg_lock); 2280 } 2281 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 2282 return 0; 2283 } 2284 2285 DEFINE_SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume); 2286 2287 int snd_ymfpci_create(struct snd_card *card, 2288 struct pci_dev *pci, 2289 u16 old_legacy_ctrl) 2290 { 2291 struct snd_ymfpci *chip = card->private_data; 2292 int err; 2293 2294 /* enable PCI device */ 2295 err = pcim_enable_device(pci); 2296 if (err < 0) 2297 return err; 2298 2299 chip->old_legacy_ctrl = old_legacy_ctrl; 2300 spin_lock_init(&chip->reg_lock); 2301 spin_lock_init(&chip->voice_lock); 2302 init_waitqueue_head(&chip->interrupt_sleep); 2303 atomic_set(&chip->interrupt_sleep_count, 0); 2304 chip->card = card; 2305 chip->pci = pci; 2306 chip->irq = -1; 2307 chip->device_id = pci->device; 2308 chip->rev = pci->revision; 2309 2310 err = pci_request_regions(pci, "YMFPCI"); 2311 if (err < 0) 2312 return err; 2313 2314 chip->reg_area_phys = pci_resource_start(pci, 0); 2315 chip->reg_area_virt = devm_ioremap(&pci->dev, chip->reg_area_phys, 0x8000); 2316 if (!chip->reg_area_virt) { 2317 dev_err(chip->card->dev, 2318 "unable to grab memory region 0x%lx-0x%lx\n", 2319 chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1); 2320 return -EBUSY; 2321 } 2322 pci_set_master(pci); 2323 chip->src441_used = -1; 2324 2325 if (devm_request_irq(&pci->dev, pci->irq, snd_ymfpci_interrupt, IRQF_SHARED, 2326 KBUILD_MODNAME, chip)) { 2327 dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq); 2328 return -EBUSY; 2329 } 2330 chip->irq = pci->irq; 2331 card->sync_irq = chip->irq; 2332 card->private_free = snd_ymfpci_free; 2333 2334 snd_ymfpci_aclink_reset(pci); 2335 if (snd_ymfpci_codec_ready(chip, 0) < 0) 2336 return -EIO; 2337 2338 err = snd_ymfpci_request_firmware(chip); 2339 if (err < 0) { 2340 dev_err(chip->card->dev, "firmware request failed: %d\n", err); 2341 return err; 2342 } 2343 snd_ymfpci_download_image(chip); 2344 2345 udelay(100); /* seems we need a delay after downloading image.. */ 2346 2347 if (snd_ymfpci_memalloc(chip) < 0) 2348 return -EIO; 2349 2350 err = snd_ymfpci_ac3_init(chip); 2351 if (err < 0) 2352 return err; 2353 2354 snd_ymfpci_proc_init(card, chip); 2355 2356 return 0; 2357 } 2358
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.