1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PMac DBDMA lowlevel functions 4 * 5 * Copyright (c) by Takashi Iwai <tiwai@suse.de> 6 * code based on dmasound.c. 7 */ 8 9 10 #include <linux/io.h> 11 #include <asm/irq.h> 12 #include <linux/init.h> 13 #include <linux/delay.h> 14 #include <linux/slab.h> 15 #include <linux/interrupt.h> 16 #include <linux/pci.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/of_address.h> 19 #include <linux/of_irq.h> 20 #include <sound/core.h> 21 #include "pmac.h" 22 #include <sound/pcm_params.h> 23 #include <asm/pmac_feature.h> 24 25 26 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */ 27 static const int awacs_freqs[8] = { 28 44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350 29 }; 30 /* fixed frequency table for tumbler */ 31 static const int tumbler_freqs[1] = { 32 44100 33 }; 34 35 36 /* 37 * we will allocate a single 'emergency' dbdma cmd block to use if the 38 * tx status comes up "DEAD". This happens on some PowerComputing Pmac 39 * clones, either owing to a bug in dbdma or some interaction between 40 * IDE and sound. However, this measure would deal with DEAD status if 41 * it appeared elsewhere. 42 */ 43 static struct pmac_dbdma emergency_dbdma; 44 static int emergency_in_use; 45 46 47 /* 48 * allocate DBDMA command arrays 49 */ 50 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size) 51 { 52 unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1); 53 54 rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize, 55 &rec->dma_base, GFP_KERNEL); 56 if (rec->space == NULL) 57 return -ENOMEM; 58 rec->size = size; 59 memset(rec->space, 0, rsize); 60 rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space); 61 rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space); 62 63 return 0; 64 } 65 66 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec) 67 { 68 if (rec->space) { 69 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1); 70 71 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base); 72 } 73 } 74 75 76 /* 77 * pcm stuff 78 */ 79 80 /* 81 * look up frequency table 82 */ 83 84 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate) 85 { 86 int i, ok, found; 87 88 ok = rec->cur_freqs; 89 if (rate > chip->freq_table[0]) 90 return 0; 91 found = 0; 92 for (i = 0; i < chip->num_freqs; i++, ok >>= 1) { 93 if (! (ok & 1)) continue; 94 found = i; 95 if (rate >= chip->freq_table[i]) 96 break; 97 } 98 return found; 99 } 100 101 /* 102 * check whether another stream is active 103 */ 104 static inline int another_stream(int stream) 105 { 106 return (stream == SNDRV_PCM_STREAM_PLAYBACK) ? 107 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; 108 } 109 110 /* 111 * get a stream of the opposite direction 112 */ 113 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream) 114 { 115 switch (stream) { 116 case SNDRV_PCM_STREAM_PLAYBACK: 117 return &chip->playback; 118 case SNDRV_PCM_STREAM_CAPTURE: 119 return &chip->capture; 120 default: 121 snd_BUG(); 122 return NULL; 123 } 124 } 125 126 /* 127 * wait while run status is on 128 */ 129 static inline void 130 snd_pmac_wait_ack(struct pmac_stream *rec) 131 { 132 int timeout = 50000; 133 while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0) 134 udelay(1); 135 } 136 137 /* 138 * set the format and rate to the chip. 139 * call the lowlevel function if defined (e.g. for AWACS). 140 */ 141 static void snd_pmac_pcm_set_format(struct snd_pmac *chip) 142 { 143 /* set up frequency and format */ 144 out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8)); 145 out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0); 146 if (chip->set_format) 147 chip->set_format(chip); 148 } 149 150 /* 151 * stop the DMA transfer 152 */ 153 static inline void snd_pmac_dma_stop(struct pmac_stream *rec) 154 { 155 out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16); 156 snd_pmac_wait_ack(rec); 157 } 158 159 /* 160 * set the command pointer address 161 */ 162 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd) 163 { 164 out_le32(&rec->dma->cmdptr, cmd->addr); 165 } 166 167 /* 168 * start the DMA 169 */ 170 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status) 171 { 172 out_le32(&rec->dma->control, status | (status << 16)); 173 } 174 175 176 /* 177 * prepare playback/capture stream 178 */ 179 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) 180 { 181 int i; 182 volatile struct dbdma_cmd __iomem *cp; 183 struct snd_pcm_runtime *runtime = subs->runtime; 184 int rate_index; 185 long offset; 186 struct pmac_stream *astr; 187 188 rec->dma_size = snd_pcm_lib_buffer_bytes(subs); 189 rec->period_size = snd_pcm_lib_period_bytes(subs); 190 rec->nperiods = rec->dma_size / rec->period_size; 191 rec->cur_period = 0; 192 rate_index = snd_pmac_rate_index(chip, rec, runtime->rate); 193 194 /* set up constraints */ 195 astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); 196 if (! astr) 197 return -EINVAL; 198 astr->cur_freqs = 1 << rate_index; 199 astr->cur_formats = 1 << runtime->format; 200 chip->rate_index = rate_index; 201 chip->format = runtime->format; 202 203 /* We really want to execute a DMA stop command, after the AWACS 204 * is initialized. 205 * For reasons I don't understand, it stops the hissing noise 206 * common to many PowerBook G3 systems and random noise otherwise 207 * captured on iBook2's about every third time. -ReneR 208 */ 209 spin_lock_irq(&chip->reg_lock); 210 snd_pmac_dma_stop(rec); 211 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); 212 snd_pmac_dma_set_command(rec, &chip->extra_dma); 213 snd_pmac_dma_run(rec, RUN); 214 spin_unlock_irq(&chip->reg_lock); 215 mdelay(5); 216 spin_lock_irq(&chip->reg_lock); 217 /* continuous DMA memory type doesn't provide the physical address, 218 * so we need to resolve the address here... 219 */ 220 offset = runtime->dma_addr; 221 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) { 222 cp->phy_addr = cpu_to_le32(offset); 223 cp->req_count = cpu_to_le16(rec->period_size); 224 /*cp->res_count = cpu_to_le16(0);*/ 225 cp->xfer_status = cpu_to_le16(0); 226 offset += rec->period_size; 227 } 228 /* make loop */ 229 cp->command = cpu_to_le16(DBDMA_NOP | BR_ALWAYS); 230 cp->cmd_dep = cpu_to_le32(rec->cmd.addr); 231 232 snd_pmac_dma_stop(rec); 233 snd_pmac_dma_set_command(rec, &rec->cmd); 234 spin_unlock_irq(&chip->reg_lock); 235 236 return 0; 237 } 238 239 240 /* 241 * PCM trigger/stop 242 */ 243 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec, 244 struct snd_pcm_substream *subs, int cmd) 245 { 246 volatile struct dbdma_cmd __iomem *cp; 247 int i, command; 248 249 switch (cmd) { 250 case SNDRV_PCM_TRIGGER_START: 251 case SNDRV_PCM_TRIGGER_RESUME: 252 if (rec->running) 253 return -EBUSY; 254 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ? 255 OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS; 256 spin_lock(&chip->reg_lock); 257 snd_pmac_beep_stop(chip); 258 snd_pmac_pcm_set_format(chip); 259 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) 260 out_le16(&cp->command, command); 261 snd_pmac_dma_set_command(rec, &rec->cmd); 262 (void)in_le32(&rec->dma->status); 263 snd_pmac_dma_run(rec, RUN|WAKE); 264 rec->running = 1; 265 spin_unlock(&chip->reg_lock); 266 break; 267 268 case SNDRV_PCM_TRIGGER_STOP: 269 case SNDRV_PCM_TRIGGER_SUSPEND: 270 spin_lock(&chip->reg_lock); 271 rec->running = 0; 272 /*printk(KERN_DEBUG "stopped!!\n");*/ 273 snd_pmac_dma_stop(rec); 274 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) 275 out_le16(&cp->command, DBDMA_STOP); 276 spin_unlock(&chip->reg_lock); 277 break; 278 279 default: 280 return -EINVAL; 281 } 282 283 return 0; 284 } 285 286 /* 287 * return the current pointer 288 */ 289 inline 290 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip, 291 struct pmac_stream *rec, 292 struct snd_pcm_substream *subs) 293 { 294 int count = 0; 295 296 #if 1 /* hmm.. how can we get the current dma pointer?? */ 297 int stat; 298 volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period]; 299 stat = le16_to_cpu(cp->xfer_status); 300 if (stat & (ACTIVE|DEAD)) { 301 count = in_le16(&cp->res_count); 302 if (count) 303 count = rec->period_size - count; 304 } 305 #endif 306 count += rec->cur_period * rec->period_size; 307 /*printk(KERN_DEBUG "pointer=%d\n", count);*/ 308 return bytes_to_frames(subs->runtime, count); 309 } 310 311 /* 312 * playback 313 */ 314 315 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs) 316 { 317 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 318 return snd_pmac_pcm_prepare(chip, &chip->playback, subs); 319 } 320 321 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs, 322 int cmd) 323 { 324 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 325 return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd); 326 } 327 328 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs) 329 { 330 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 331 return snd_pmac_pcm_pointer(chip, &chip->playback, subs); 332 } 333 334 335 /* 336 * capture 337 */ 338 339 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs) 340 { 341 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 342 return snd_pmac_pcm_prepare(chip, &chip->capture, subs); 343 } 344 345 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs, 346 int cmd) 347 { 348 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 349 return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd); 350 } 351 352 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs) 353 { 354 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 355 return snd_pmac_pcm_pointer(chip, &chip->capture, subs); 356 } 357 358 359 /* 360 * Handle DEAD DMA transfers: 361 * if the TX status comes up "DEAD" - reported on some Power Computing machines 362 * we need to re-start the dbdma - but from a different physical start address 363 * and with a different transfer length. It would get very messy to do this 364 * with the normal dbdma_cmd blocks - we would have to re-write the buffer start 365 * addresses each time. So, we will keep a single dbdma_cmd block which can be 366 * fiddled with. 367 * When DEAD status is first reported the content of the faulted dbdma block is 368 * copied into the emergency buffer and we note that the buffer is in use. 369 * we then bump the start physical address by the amount that was successfully 370 * output before it died. 371 * On any subsequent DEAD result we just do the bump-ups (we know that we are 372 * already using the emergency dbdma_cmd). 373 * CHECK: this just tries to "do it". It is possible that we should abandon 374 * xfers when the number of residual bytes gets below a certain value - I can 375 * see that this might cause a loop-forever if a too small transfer causes 376 * DEAD status. However this is a TODO for now - we'll see what gets reported. 377 * When we get a successful transfer result with the emergency buffer we just 378 * pretend that it completed using the original dmdma_cmd and carry on. The 379 * 'next_cmd' field will already point back to the original loop of blocks. 380 */ 381 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec, 382 volatile struct dbdma_cmd __iomem *cp) 383 { 384 unsigned short req, res ; 385 unsigned int phy ; 386 387 /* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */ 388 389 /* to clear DEAD status we must first clear RUN 390 set it to quiescent to be on the safe side */ 391 (void)in_le32(&rec->dma->status); 392 out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16); 393 394 if (!emergency_in_use) { /* new problem */ 395 memcpy((void *)emergency_dbdma.cmds, (void *)cp, 396 sizeof(struct dbdma_cmd)); 397 emergency_in_use = 1; 398 cp->xfer_status = cpu_to_le16(0); 399 cp->req_count = cpu_to_le16(rec->period_size); 400 cp = emergency_dbdma.cmds; 401 } 402 403 /* now bump the values to reflect the amount 404 we haven't yet shifted */ 405 req = le16_to_cpu(cp->req_count); 406 res = le16_to_cpu(cp->res_count); 407 phy = le32_to_cpu(cp->phy_addr); 408 phy += (req - res); 409 cp->req_count = cpu_to_le16(res); 410 cp->res_count = cpu_to_le16(0); 411 cp->xfer_status = cpu_to_le16(0); 412 cp->phy_addr = cpu_to_le32(phy); 413 414 cp->cmd_dep = cpu_to_le32(rec->cmd.addr 415 + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods)); 416 417 cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS); 418 419 /* point at our patched up command block */ 420 out_le32(&rec->dma->cmdptr, emergency_dbdma.addr); 421 422 /* we must re-start the controller */ 423 (void)in_le32(&rec->dma->status); 424 /* should complete clearing the DEAD status */ 425 out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); 426 } 427 428 /* 429 * update playback/capture pointer from interrupts 430 */ 431 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec) 432 { 433 volatile struct dbdma_cmd __iomem *cp; 434 int c; 435 int stat; 436 437 spin_lock(&chip->reg_lock); 438 if (rec->running) { 439 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */ 440 441 if (emergency_in_use) /* already using DEAD xfer? */ 442 cp = emergency_dbdma.cmds; 443 else 444 cp = &rec->cmd.cmds[rec->cur_period]; 445 446 stat = le16_to_cpu(cp->xfer_status); 447 448 if (stat & DEAD) { 449 snd_pmac_pcm_dead_xfer(rec, cp); 450 break; /* this block is still going */ 451 } 452 453 if (emergency_in_use) 454 emergency_in_use = 0 ; /* done that */ 455 456 if (! (stat & ACTIVE)) 457 break; 458 459 /*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/ 460 cp->xfer_status = cpu_to_le16(0); 461 cp->req_count = cpu_to_le16(rec->period_size); 462 /*cp->res_count = cpu_to_le16(0);*/ 463 rec->cur_period++; 464 if (rec->cur_period >= rec->nperiods) { 465 rec->cur_period = 0; 466 } 467 468 spin_unlock(&chip->reg_lock); 469 snd_pcm_period_elapsed(rec->substream); 470 spin_lock(&chip->reg_lock); 471 } 472 } 473 spin_unlock(&chip->reg_lock); 474 } 475 476 477 /* 478 * hw info 479 */ 480 481 static const struct snd_pcm_hardware snd_pmac_playback = 482 { 483 .info = (SNDRV_PCM_INFO_INTERLEAVED | 484 SNDRV_PCM_INFO_MMAP | 485 SNDRV_PCM_INFO_MMAP_VALID | 486 SNDRV_PCM_INFO_RESUME), 487 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, 488 .rates = SNDRV_PCM_RATE_8000_44100, 489 .rate_min = 7350, 490 .rate_max = 44100, 491 .channels_min = 2, 492 .channels_max = 2, 493 .buffer_bytes_max = 131072, 494 .period_bytes_min = 256, 495 .period_bytes_max = 16384, 496 .periods_min = 3, 497 .periods_max = PMAC_MAX_FRAGS, 498 }; 499 500 static const struct snd_pcm_hardware snd_pmac_capture = 501 { 502 .info = (SNDRV_PCM_INFO_INTERLEAVED | 503 SNDRV_PCM_INFO_MMAP | 504 SNDRV_PCM_INFO_MMAP_VALID | 505 SNDRV_PCM_INFO_RESUME), 506 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, 507 .rates = SNDRV_PCM_RATE_8000_44100, 508 .rate_min = 7350, 509 .rate_max = 44100, 510 .channels_min = 2, 511 .channels_max = 2, 512 .buffer_bytes_max = 131072, 513 .period_bytes_min = 256, 514 .period_bytes_max = 16384, 515 .periods_min = 3, 516 .periods_max = PMAC_MAX_FRAGS, 517 }; 518 519 520 #if 0 // NYI 521 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params, 522 struct snd_pcm_hw_rule *rule) 523 { 524 struct snd_pmac *chip = rule->private; 525 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); 526 int i, freq_table[8], num_freqs; 527 528 if (! rec) 529 return -EINVAL; 530 num_freqs = 0; 531 for (i = chip->num_freqs - 1; i >= 0; i--) { 532 if (rec->cur_freqs & (1 << i)) 533 freq_table[num_freqs++] = chip->freq_table[i]; 534 } 535 536 return snd_interval_list(hw_param_interval(params, rule->var), 537 num_freqs, freq_table, 0); 538 } 539 540 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params, 541 struct snd_pcm_hw_rule *rule) 542 { 543 struct snd_pmac *chip = rule->private; 544 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); 545 546 if (! rec) 547 return -EINVAL; 548 return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT), 549 rec->cur_formats); 550 } 551 #endif // NYI 552 553 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec, 554 struct snd_pcm_substream *subs) 555 { 556 struct snd_pcm_runtime *runtime = subs->runtime; 557 int i; 558 559 /* look up frequency table and fill bit mask */ 560 runtime->hw.rates = 0; 561 for (i = 0; i < chip->num_freqs; i++) 562 if (chip->freqs_ok & (1 << i)) 563 runtime->hw.rates |= 564 snd_pcm_rate_to_rate_bit(chip->freq_table[i]); 565 566 /* check for minimum and maximum rates */ 567 for (i = 0; i < chip->num_freqs; i++) { 568 if (chip->freqs_ok & (1 << i)) { 569 runtime->hw.rate_max = chip->freq_table[i]; 570 break; 571 } 572 } 573 for (i = chip->num_freqs - 1; i >= 0; i--) { 574 if (chip->freqs_ok & (1 << i)) { 575 runtime->hw.rate_min = chip->freq_table[i]; 576 break; 577 } 578 } 579 runtime->hw.formats = chip->formats_ok; 580 if (chip->can_capture) { 581 if (! chip->can_duplex) 582 runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX; 583 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX; 584 } 585 runtime->private_data = rec; 586 rec->substream = subs; 587 588 #if 0 /* FIXME: still under development.. */ 589 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 590 snd_pmac_hw_rule_rate, chip, rec->stream, -1); 591 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, 592 snd_pmac_hw_rule_format, chip, rec->stream, -1); 593 #endif 594 595 runtime->hw.periods_max = rec->cmd.size - 1; 596 597 /* constraints to fix choppy sound */ 598 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 599 return 0; 600 } 601 602 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec, 603 struct snd_pcm_substream *subs) 604 { 605 struct pmac_stream *astr; 606 607 snd_pmac_dma_stop(rec); 608 609 astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); 610 if (! astr) 611 return -EINVAL; 612 613 /* reset constraints */ 614 astr->cur_freqs = chip->freqs_ok; 615 astr->cur_formats = chip->formats_ok; 616 617 return 0; 618 } 619 620 static int snd_pmac_playback_open(struct snd_pcm_substream *subs) 621 { 622 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 623 624 subs->runtime->hw = snd_pmac_playback; 625 return snd_pmac_pcm_open(chip, &chip->playback, subs); 626 } 627 628 static int snd_pmac_capture_open(struct snd_pcm_substream *subs) 629 { 630 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 631 632 subs->runtime->hw = snd_pmac_capture; 633 return snd_pmac_pcm_open(chip, &chip->capture, subs); 634 } 635 636 static int snd_pmac_playback_close(struct snd_pcm_substream *subs) 637 { 638 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 639 640 return snd_pmac_pcm_close(chip, &chip->playback, subs); 641 } 642 643 static int snd_pmac_capture_close(struct snd_pcm_substream *subs) 644 { 645 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 646 647 return snd_pmac_pcm_close(chip, &chip->capture, subs); 648 } 649 650 /* 651 */ 652 653 static const struct snd_pcm_ops snd_pmac_playback_ops = { 654 .open = snd_pmac_playback_open, 655 .close = snd_pmac_playback_close, 656 .prepare = snd_pmac_playback_prepare, 657 .trigger = snd_pmac_playback_trigger, 658 .pointer = snd_pmac_playback_pointer, 659 }; 660 661 static const struct snd_pcm_ops snd_pmac_capture_ops = { 662 .open = snd_pmac_capture_open, 663 .close = snd_pmac_capture_close, 664 .prepare = snd_pmac_capture_prepare, 665 .trigger = snd_pmac_capture_trigger, 666 .pointer = snd_pmac_capture_pointer, 667 }; 668 669 int snd_pmac_pcm_new(struct snd_pmac *chip) 670 { 671 struct snd_pcm *pcm; 672 int err; 673 int num_captures = 1; 674 675 if (! chip->can_capture) 676 num_captures = 0; 677 err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm); 678 if (err < 0) 679 return err; 680 681 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops); 682 if (chip->can_capture) 683 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops); 684 685 pcm->private_data = chip; 686 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 687 strcpy(pcm->name, chip->card->shortname); 688 chip->pcm = pcm; 689 690 chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE; 691 if (chip->can_byte_swap) 692 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE; 693 694 chip->playback.cur_formats = chip->formats_ok; 695 chip->capture.cur_formats = chip->formats_ok; 696 chip->playback.cur_freqs = chip->freqs_ok; 697 chip->capture.cur_freqs = chip->freqs_ok; 698 699 /* preallocate 64k buffer */ 700 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 701 &chip->pdev->dev, 702 64 * 1024, 64 * 1024); 703 704 return 0; 705 } 706 707 708 static void snd_pmac_dbdma_reset(struct snd_pmac *chip) 709 { 710 out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); 711 snd_pmac_wait_ack(&chip->playback); 712 out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); 713 snd_pmac_wait_ack(&chip->capture); 714 } 715 716 717 /* 718 * handling beep 719 */ 720 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed) 721 { 722 struct pmac_stream *rec = &chip->playback; 723 724 snd_pmac_dma_stop(rec); 725 chip->extra_dma.cmds->req_count = cpu_to_le16(bytes); 726 chip->extra_dma.cmds->xfer_status = cpu_to_le16(0); 727 chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr); 728 chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr); 729 chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS); 730 out_le32(&chip->awacs->control, 731 (in_le32(&chip->awacs->control) & ~0x1f00) 732 | (speed << 8)); 733 out_le32(&chip->awacs->byteswap, 0); 734 snd_pmac_dma_set_command(rec, &chip->extra_dma); 735 snd_pmac_dma_run(rec, RUN); 736 } 737 738 void snd_pmac_beep_dma_stop(struct snd_pmac *chip) 739 { 740 snd_pmac_dma_stop(&chip->playback); 741 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); 742 snd_pmac_pcm_set_format(chip); /* reset format */ 743 } 744 745 746 /* 747 * interrupt handlers 748 */ 749 static irqreturn_t 750 snd_pmac_tx_intr(int irq, void *devid) 751 { 752 struct snd_pmac *chip = devid; 753 snd_pmac_pcm_update(chip, &chip->playback); 754 return IRQ_HANDLED; 755 } 756 757 758 static irqreturn_t 759 snd_pmac_rx_intr(int irq, void *devid) 760 { 761 struct snd_pmac *chip = devid; 762 snd_pmac_pcm_update(chip, &chip->capture); 763 return IRQ_HANDLED; 764 } 765 766 767 static irqreturn_t 768 snd_pmac_ctrl_intr(int irq, void *devid) 769 { 770 struct snd_pmac *chip = devid; 771 int ctrl = in_le32(&chip->awacs->control); 772 773 /*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/ 774 if (ctrl & MASK_PORTCHG) { 775 /* do something when headphone is plugged/unplugged? */ 776 if (chip->update_automute) 777 chip->update_automute(chip, 1); 778 } 779 if (ctrl & MASK_CNTLERR) { 780 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16; 781 if (err && chip->model <= PMAC_SCREAMER) 782 snd_printk(KERN_DEBUG "error %x\n", err); 783 } 784 /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */ 785 out_le32(&chip->awacs->control, ctrl); 786 return IRQ_HANDLED; 787 } 788 789 790 /* 791 * a wrapper to feature call for compatibility 792 */ 793 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable) 794 { 795 if (ppc_md.feature_call) 796 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable); 797 } 798 799 /* 800 * release resources 801 */ 802 803 static int snd_pmac_free(struct snd_pmac *chip) 804 { 805 /* stop sounds */ 806 if (chip->initialized) { 807 snd_pmac_dbdma_reset(chip); 808 /* disable interrupts from awacs interface */ 809 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff); 810 } 811 812 if (chip->node) 813 snd_pmac_sound_feature(chip, 0); 814 815 /* clean up mixer if any */ 816 if (chip->mixer_free) 817 chip->mixer_free(chip); 818 819 snd_pmac_detach_beep(chip); 820 821 /* release resources */ 822 if (chip->irq >= 0) 823 free_irq(chip->irq, (void*)chip); 824 if (chip->tx_irq >= 0) 825 free_irq(chip->tx_irq, (void*)chip); 826 if (chip->rx_irq >= 0) 827 free_irq(chip->rx_irq, (void*)chip); 828 snd_pmac_dbdma_free(chip, &chip->playback.cmd); 829 snd_pmac_dbdma_free(chip, &chip->capture.cmd); 830 snd_pmac_dbdma_free(chip, &chip->extra_dma); 831 snd_pmac_dbdma_free(chip, &emergency_dbdma); 832 iounmap(chip->macio_base); 833 iounmap(chip->latch_base); 834 iounmap(chip->awacs); 835 iounmap(chip->playback.dma); 836 iounmap(chip->capture.dma); 837 838 if (chip->node) { 839 int i; 840 for (i = 0; i < 3; i++) { 841 if (chip->requested & (1 << i)) 842 release_mem_region(chip->rsrc[i].start, 843 resource_size(&chip->rsrc[i])); 844 } 845 } 846 847 pci_dev_put(chip->pdev); 848 of_node_put(chip->node); 849 kfree(chip); 850 return 0; 851 } 852 853 854 /* 855 * free the device 856 */ 857 static int snd_pmac_dev_free(struct snd_device *device) 858 { 859 struct snd_pmac *chip = device->device_data; 860 return snd_pmac_free(chip); 861 } 862 863 864 /* 865 * check the machine support byteswap (little-endian) 866 */ 867 868 static void detect_byte_swap(struct snd_pmac *chip) 869 { 870 struct device_node *mio; 871 872 /* if seems that Keylargo can't byte-swap */ 873 for (mio = chip->node->parent; mio; mio = mio->parent) { 874 if (of_node_name_eq(mio, "mac-io")) { 875 if (of_device_is_compatible(mio, "Keylargo")) 876 chip->can_byte_swap = 0; 877 break; 878 } 879 } 880 881 /* it seems the Pismo & iBook can't byte-swap in hardware. */ 882 if (of_machine_is_compatible("PowerBook3,1") || 883 of_machine_is_compatible("PowerBook2,1")) 884 chip->can_byte_swap = 0 ; 885 886 if (of_machine_is_compatible("PowerBook2,1")) 887 chip->can_duplex = 0; 888 } 889 890 891 /* 892 * detect a sound chip 893 */ 894 static int snd_pmac_detect(struct snd_pmac *chip) 895 { 896 struct device_node *sound; 897 struct device_node *dn; 898 const unsigned int *prop; 899 unsigned int l; 900 struct macio_chip* macio; 901 902 if (!machine_is(powermac)) 903 return -ENODEV; 904 905 chip->subframe = 0; 906 chip->revision = 0; 907 chip->freqs_ok = 0xff; /* all ok */ 908 chip->model = PMAC_AWACS; 909 chip->can_byte_swap = 1; 910 chip->can_duplex = 1; 911 chip->can_capture = 1; 912 chip->num_freqs = ARRAY_SIZE(awacs_freqs); 913 chip->freq_table = awacs_freqs; 914 chip->pdev = NULL; 915 916 chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */ 917 918 /* check machine type */ 919 if (of_machine_is_compatible("AAPL,3400/2400") 920 || of_machine_is_compatible("AAPL,3500")) 921 chip->is_pbook_3400 = 1; 922 else if (of_machine_is_compatible("PowerBook1,1") 923 || of_machine_is_compatible("AAPL,PowerBook1998")) 924 chip->is_pbook_G3 = 1; 925 chip->node = of_find_node_by_name(NULL, "awacs"); 926 sound = of_node_get(chip->node); 927 928 /* 929 * powermac G3 models have a node called "davbus" 930 * with a child called "sound". 931 */ 932 if (!chip->node) 933 chip->node = of_find_node_by_name(NULL, "davbus"); 934 /* 935 * if we didn't find a davbus device, try 'i2s-a' since 936 * this seems to be what iBooks have 937 */ 938 if (! chip->node) { 939 chip->node = of_find_node_by_name(NULL, "i2s-a"); 940 if (chip->node && chip->node->parent && 941 chip->node->parent->parent) { 942 if (of_device_is_compatible(chip->node->parent->parent, 943 "K2-Keylargo")) 944 chip->is_k2 = 1; 945 } 946 } 947 if (! chip->node) 948 return -ENODEV; 949 950 if (!sound) { 951 for_each_node_by_name(sound, "sound") 952 if (sound->parent == chip->node) 953 break; 954 } 955 if (! sound) { 956 of_node_put(chip->node); 957 chip->node = NULL; 958 return -ENODEV; 959 } 960 prop = of_get_property(sound, "sub-frame", NULL); 961 if (prop && *prop < 16) 962 chip->subframe = *prop; 963 prop = of_get_property(sound, "layout-id", NULL); 964 if (prop) { 965 /* partly deprecate snd-powermac, for those machines 966 * that have a layout-id property for now */ 967 printk(KERN_INFO "snd-powermac no longer handles any " 968 "machines with a layout-id property " 969 "in the device-tree, use snd-aoa.\n"); 970 of_node_put(sound); 971 of_node_put(chip->node); 972 chip->node = NULL; 973 return -ENODEV; 974 } 975 /* This should be verified on older screamers */ 976 if (of_device_is_compatible(sound, "screamer")) { 977 chip->model = PMAC_SCREAMER; 978 // chip->can_byte_swap = 0; /* FIXME: check this */ 979 } 980 if (of_device_is_compatible(sound, "burgundy")) { 981 chip->model = PMAC_BURGUNDY; 982 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 983 } 984 if (of_device_is_compatible(sound, "daca")) { 985 chip->model = PMAC_DACA; 986 chip->can_capture = 0; /* no capture */ 987 chip->can_duplex = 0; 988 // chip->can_byte_swap = 0; /* FIXME: check this */ 989 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 990 } 991 if (of_device_is_compatible(sound, "tumbler")) { 992 chip->model = PMAC_TUMBLER; 993 chip->can_capture = of_machine_is_compatible("PowerMac4,2") 994 || of_machine_is_compatible("PowerBook3,2") 995 || of_machine_is_compatible("PowerBook3,3") 996 || of_machine_is_compatible("PowerBook4,1") 997 || of_machine_is_compatible("PowerBook4,2") 998 || of_machine_is_compatible("PowerBook4,3"); 999 chip->can_duplex = 0; 1000 // chip->can_byte_swap = 0; /* FIXME: check this */ 1001 chip->num_freqs = ARRAY_SIZE(tumbler_freqs); 1002 chip->freq_table = tumbler_freqs; 1003 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1004 } 1005 if (of_device_is_compatible(sound, "snapper")) { 1006 chip->model = PMAC_SNAPPER; 1007 // chip->can_byte_swap = 0; /* FIXME: check this */ 1008 chip->num_freqs = ARRAY_SIZE(tumbler_freqs); 1009 chip->freq_table = tumbler_freqs; 1010 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1011 } 1012 prop = of_get_property(sound, "device-id", NULL); 1013 if (prop) 1014 chip->device_id = *prop; 1015 dn = of_find_node_by_name(NULL, "perch"); 1016 chip->has_iic = (dn != NULL); 1017 of_node_put(dn); 1018 1019 /* We need the PCI device for DMA allocations, let's use a crude method 1020 * for now ... 1021 */ 1022 macio = macio_find(chip->node, macio_unknown); 1023 if (macio == NULL) 1024 printk(KERN_WARNING "snd-powermac: can't locate macio !\n"); 1025 else { 1026 struct pci_dev *pdev = NULL; 1027 1028 for_each_pci_dev(pdev) { 1029 struct device_node *np = pci_device_to_OF_node(pdev); 1030 if (np && np == macio->of_node) { 1031 chip->pdev = pdev; 1032 break; 1033 } 1034 } 1035 } 1036 if (chip->pdev == NULL) 1037 printk(KERN_WARNING "snd-powermac: can't locate macio PCI" 1038 " device !\n"); 1039 1040 detect_byte_swap(chip); 1041 1042 /* look for a property saying what sample rates 1043 are available */ 1044 prop = of_get_property(sound, "sample-rates", &l); 1045 if (! prop) 1046 prop = of_get_property(sound, "output-frame-rates", &l); 1047 if (prop) { 1048 int i; 1049 chip->freqs_ok = 0; 1050 for (l /= sizeof(int); l > 0; --l) { 1051 unsigned int r = *prop++; 1052 /* Apple 'Fixed' format */ 1053 if (r >= 0x10000) 1054 r >>= 16; 1055 for (i = 0; i < chip->num_freqs; ++i) { 1056 if (r == chip->freq_table[i]) { 1057 chip->freqs_ok |= (1 << i); 1058 break; 1059 } 1060 } 1061 } 1062 } else { 1063 /* assume only 44.1khz */ 1064 chip->freqs_ok = 1; 1065 } 1066 1067 of_node_put(sound); 1068 return 0; 1069 } 1070 1071 #ifdef PMAC_SUPPORT_AUTOMUTE 1072 /* 1073 * auto-mute 1074 */ 1075 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol, 1076 struct snd_ctl_elem_value *ucontrol) 1077 { 1078 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1079 ucontrol->value.integer.value[0] = chip->auto_mute; 1080 return 0; 1081 } 1082 1083 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol, 1084 struct snd_ctl_elem_value *ucontrol) 1085 { 1086 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1087 if (ucontrol->value.integer.value[0] != chip->auto_mute) { 1088 chip->auto_mute = !!ucontrol->value.integer.value[0]; 1089 if (chip->update_automute) 1090 chip->update_automute(chip, 1); 1091 return 1; 1092 } 1093 return 0; 1094 } 1095 1096 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol, 1097 struct snd_ctl_elem_value *ucontrol) 1098 { 1099 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1100 if (chip->detect_headphone) 1101 ucontrol->value.integer.value[0] = chip->detect_headphone(chip); 1102 else 1103 ucontrol->value.integer.value[0] = 0; 1104 return 0; 1105 } 1106 1107 static const struct snd_kcontrol_new auto_mute_controls[] = { 1108 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1109 .name = "Auto Mute Switch", 1110 .info = snd_pmac_boolean_mono_info, 1111 .get = pmac_auto_mute_get, 1112 .put = pmac_auto_mute_put, 1113 }, 1114 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1115 .name = "Headphone Detection", 1116 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1117 .info = snd_pmac_boolean_mono_info, 1118 .get = pmac_hp_detect_get, 1119 }, 1120 }; 1121 1122 int snd_pmac_add_automute(struct snd_pmac *chip) 1123 { 1124 int err; 1125 chip->auto_mute = 1; 1126 err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip)); 1127 if (err < 0) { 1128 printk(KERN_ERR "snd-powermac: Failed to add automute control\n"); 1129 return err; 1130 } 1131 chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip); 1132 return snd_ctl_add(chip->card, chip->hp_detect_ctl); 1133 } 1134 #endif /* PMAC_SUPPORT_AUTOMUTE */ 1135 1136 /* 1137 * create and detect a pmac chip record 1138 */ 1139 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return) 1140 { 1141 struct snd_pmac *chip; 1142 struct device_node *np; 1143 int i, err; 1144 unsigned int irq; 1145 unsigned long ctrl_addr, txdma_addr, rxdma_addr; 1146 static const struct snd_device_ops ops = { 1147 .dev_free = snd_pmac_dev_free, 1148 }; 1149 1150 *chip_return = NULL; 1151 1152 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 1153 if (chip == NULL) 1154 return -ENOMEM; 1155 chip->card = card; 1156 1157 spin_lock_init(&chip->reg_lock); 1158 chip->irq = chip->tx_irq = chip->rx_irq = -1; 1159 1160 chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK; 1161 chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE; 1162 1163 err = snd_pmac_detect(chip); 1164 if (err < 0) 1165 goto __error; 1166 1167 if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 || 1168 snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 || 1169 snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 || 1170 snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) { 1171 err = -ENOMEM; 1172 goto __error; 1173 } 1174 1175 np = chip->node; 1176 chip->requested = 0; 1177 if (chip->is_k2) { 1178 static const char * const rnames[] = { 1179 "Sound Control", "Sound DMA" }; 1180 for (i = 0; i < 2; i ++) { 1181 if (of_address_to_resource(np->parent, i, 1182 &chip->rsrc[i])) { 1183 printk(KERN_ERR "snd: can't translate rsrc " 1184 " %d (%s)\n", i, rnames[i]); 1185 err = -ENODEV; 1186 goto __error; 1187 } 1188 if (request_mem_region(chip->rsrc[i].start, 1189 resource_size(&chip->rsrc[i]), 1190 rnames[i]) == NULL) { 1191 printk(KERN_ERR "snd: can't request rsrc " 1192 " %d (%s: %pR)\n", 1193 i, rnames[i], &chip->rsrc[i]); 1194 err = -ENODEV; 1195 goto __error; 1196 } 1197 chip->requested |= (1 << i); 1198 } 1199 ctrl_addr = chip->rsrc[0].start; 1200 txdma_addr = chip->rsrc[1].start; 1201 rxdma_addr = txdma_addr + 0x100; 1202 } else { 1203 static const char * const rnames[] = { 1204 "Sound Control", "Sound Tx DMA", "Sound Rx DMA" }; 1205 for (i = 0; i < 3; i ++) { 1206 if (of_address_to_resource(np, i, 1207 &chip->rsrc[i])) { 1208 printk(KERN_ERR "snd: can't translate rsrc " 1209 " %d (%s)\n", i, rnames[i]); 1210 err = -ENODEV; 1211 goto __error; 1212 } 1213 if (request_mem_region(chip->rsrc[i].start, 1214 resource_size(&chip->rsrc[i]), 1215 rnames[i]) == NULL) { 1216 printk(KERN_ERR "snd: can't request rsrc " 1217 " %d (%s: %pR)\n", 1218 i, rnames[i], &chip->rsrc[i]); 1219 err = -ENODEV; 1220 goto __error; 1221 } 1222 chip->requested |= (1 << i); 1223 } 1224 ctrl_addr = chip->rsrc[0].start; 1225 txdma_addr = chip->rsrc[1].start; 1226 rxdma_addr = chip->rsrc[2].start; 1227 } 1228 1229 chip->awacs = ioremap(ctrl_addr, 0x1000); 1230 chip->playback.dma = ioremap(txdma_addr, 0x100); 1231 chip->capture.dma = ioremap(rxdma_addr, 0x100); 1232 if (chip->model <= PMAC_BURGUNDY) { 1233 irq = irq_of_parse_and_map(np, 0); 1234 if (request_irq(irq, snd_pmac_ctrl_intr, 0, 1235 "PMac", (void*)chip)) { 1236 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", 1237 irq); 1238 err = -EBUSY; 1239 goto __error; 1240 } 1241 chip->irq = irq; 1242 } 1243 irq = irq_of_parse_and_map(np, 1); 1244 if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){ 1245 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); 1246 err = -EBUSY; 1247 goto __error; 1248 } 1249 chip->tx_irq = irq; 1250 irq = irq_of_parse_and_map(np, 2); 1251 if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) { 1252 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); 1253 err = -EBUSY; 1254 goto __error; 1255 } 1256 chip->rx_irq = irq; 1257 1258 snd_pmac_sound_feature(chip, 1); 1259 1260 /* reset & enable interrupts */ 1261 if (chip->model <= PMAC_BURGUNDY) 1262 out_le32(&chip->awacs->control, chip->control_mask); 1263 1264 /* Powerbooks have odd ways of enabling inputs such as 1265 an expansion-bay CD or sound from an internal modem 1266 or a PC-card modem. */ 1267 if (chip->is_pbook_3400) { 1268 /* Enable CD and PC-card sound inputs. */ 1269 /* This is done by reading from address 1270 * f301a000, + 0x10 to enable the expansion-bay 1271 * CD sound input, + 0x80 to enable the PC-card 1272 * sound input. The 0x100 enables the SCSI bus 1273 * terminator power. 1274 */ 1275 chip->latch_base = ioremap (0xf301a000, 0x1000); 1276 in_8(chip->latch_base + 0x190); 1277 } else if (chip->is_pbook_G3) { 1278 struct device_node* mio; 1279 for (mio = chip->node->parent; mio; mio = mio->parent) { 1280 if (of_node_name_eq(mio, "mac-io")) { 1281 struct resource r; 1282 if (of_address_to_resource(mio, 0, &r) == 0) 1283 chip->macio_base = 1284 ioremap(r.start, 0x40); 1285 break; 1286 } 1287 } 1288 /* Enable CD sound input. */ 1289 /* The relevant bits for writing to this byte are 0x8f. 1290 * I haven't found out what the 0x80 bit does. 1291 * For the 0xf bits, writing 3 or 7 enables the CD 1292 * input, any other value disables it. Values 1293 * 1, 3, 5, 7 enable the microphone. Values 0, 2, 1294 * 4, 6, 8 - f enable the input from the modem. 1295 */ 1296 if (chip->macio_base) 1297 out_8(chip->macio_base + 0x37, 3); 1298 } 1299 1300 /* Reset dbdma channels */ 1301 snd_pmac_dbdma_reset(chip); 1302 1303 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); 1304 if (err < 0) 1305 goto __error; 1306 1307 *chip_return = chip; 1308 return 0; 1309 1310 __error: 1311 snd_pmac_free(chip); 1312 return err; 1313 } 1314 1315 1316 /* 1317 * sleep notify for powerbook 1318 */ 1319 1320 #ifdef CONFIG_PM 1321 1322 /* 1323 * Save state when going to sleep, restore it afterwards. 1324 */ 1325 1326 void snd_pmac_suspend(struct snd_pmac *chip) 1327 { 1328 unsigned long flags; 1329 1330 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot); 1331 if (chip->suspend) 1332 chip->suspend(chip); 1333 spin_lock_irqsave(&chip->reg_lock, flags); 1334 snd_pmac_beep_stop(chip); 1335 spin_unlock_irqrestore(&chip->reg_lock, flags); 1336 if (chip->irq >= 0) 1337 disable_irq(chip->irq); 1338 if (chip->tx_irq >= 0) 1339 disable_irq(chip->tx_irq); 1340 if (chip->rx_irq >= 0) 1341 disable_irq(chip->rx_irq); 1342 snd_pmac_sound_feature(chip, 0); 1343 } 1344 1345 void snd_pmac_resume(struct snd_pmac *chip) 1346 { 1347 snd_pmac_sound_feature(chip, 1); 1348 if (chip->resume) 1349 chip->resume(chip); 1350 /* enable CD sound input */ 1351 if (chip->macio_base && chip->is_pbook_G3) 1352 out_8(chip->macio_base + 0x37, 3); 1353 else if (chip->is_pbook_3400) 1354 in_8(chip->latch_base + 0x190); 1355 1356 snd_pmac_pcm_set_format(chip); 1357 1358 if (chip->irq >= 0) 1359 enable_irq(chip->irq); 1360 if (chip->tx_irq >= 0) 1361 enable_irq(chip->tx_irq); 1362 if (chip->rx_irq >= 0) 1363 enable_irq(chip->rx_irq); 1364 1365 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0); 1366 } 1367 1368 #endif /* CONFIG_PM */ 1369 1370
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.