~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/sound/ppc/pmac.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * PMac DBDMA lowlevel functions
  4  *
  5  * Copyright (c) by Takashi Iwai <tiwai@suse.de>
  6  * code based on dmasound.c.
  7  */
  8 
  9 
 10 #include <linux/io.h>
 11 #include <asm/irq.h>
 12 #include <linux/init.h>
 13 #include <linux/delay.h>
 14 #include <linux/slab.h>
 15 #include <linux/interrupt.h>
 16 #include <linux/pci.h>
 17 #include <linux/dma-mapping.h>
 18 #include <linux/of_address.h>
 19 #include <linux/of_irq.h>
 20 #include <sound/core.h>
 21 #include "pmac.h"
 22 #include <sound/pcm_params.h>
 23 #include <asm/pmac_feature.h>
 24 
 25 
 26 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
 27 static const int awacs_freqs[8] = {
 28         44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
 29 };
 30 /* fixed frequency table for tumbler */
 31 static const int tumbler_freqs[1] = {
 32         44100
 33 };
 34 
 35 
 36 /*
 37  * we will allocate a single 'emergency' dbdma cmd block to use if the
 38  * tx status comes up "DEAD".  This happens on some PowerComputing Pmac
 39  * clones, either owing to a bug in dbdma or some interaction between
 40  * IDE and sound.  However, this measure would deal with DEAD status if
 41  * it appeared elsewhere.
 42  */
 43 static struct pmac_dbdma emergency_dbdma;
 44 static int emergency_in_use;
 45 
 46 
 47 /*
 48  * allocate DBDMA command arrays
 49  */
 50 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
 51 {
 52         unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
 53 
 54         rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
 55                                         &rec->dma_base, GFP_KERNEL);
 56         if (rec->space == NULL)
 57                 return -ENOMEM;
 58         rec->size = size;
 59         memset(rec->space, 0, rsize);
 60         rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
 61         rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
 62 
 63         return 0;
 64 }
 65 
 66 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
 67 {
 68         if (rec->space) {
 69                 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
 70 
 71                 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
 72         }
 73 }
 74 
 75 
 76 /*
 77  * pcm stuff
 78  */
 79 
 80 /*
 81  * look up frequency table
 82  */
 83 
 84 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
 85 {
 86         int i, ok, found;
 87 
 88         ok = rec->cur_freqs;
 89         if (rate > chip->freq_table[0])
 90                 return 0;
 91         found = 0;
 92         for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
 93                 if (! (ok & 1)) continue;
 94                 found = i;
 95                 if (rate >= chip->freq_table[i])
 96                         break;
 97         }
 98         return found;
 99 }
100 
101 /*
102  * check whether another stream is active
103  */
104 static inline int another_stream(int stream)
105 {
106         return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
107                 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
108 }
109 
110 /*
111  * get a stream of the opposite direction
112  */
113 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
114 {
115         switch (stream) {
116         case SNDRV_PCM_STREAM_PLAYBACK:
117                 return &chip->playback;
118         case SNDRV_PCM_STREAM_CAPTURE:
119                 return &chip->capture;
120         default:
121                 snd_BUG();
122                 return NULL;
123         }
124 }
125 
126 /*
127  * wait while run status is on
128  */
129 static inline void
130 snd_pmac_wait_ack(struct pmac_stream *rec)
131 {
132         int timeout = 50000;
133         while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
134                 udelay(1);
135 }
136 
137 /*
138  * set the format and rate to the chip.
139  * call the lowlevel function if defined (e.g. for AWACS).
140  */
141 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
142 {
143         /* set up frequency and format */
144         out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
145         out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
146         if (chip->set_format)
147                 chip->set_format(chip);
148 }
149 
150 /*
151  * stop the DMA transfer
152  */
153 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
154 {
155         out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
156         snd_pmac_wait_ack(rec);
157 }
158 
159 /*
160  * set the command pointer address
161  */
162 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
163 {
164         out_le32(&rec->dma->cmdptr, cmd->addr);
165 }
166 
167 /*
168  * start the DMA
169  */
170 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
171 {
172         out_le32(&rec->dma->control, status | (status << 16));
173 }
174 
175 
176 /*
177  * prepare playback/capture stream
178  */
179 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
180 {
181         int i;
182         volatile struct dbdma_cmd __iomem *cp;
183         struct snd_pcm_runtime *runtime = subs->runtime;
184         int rate_index;
185         long offset;
186         struct pmac_stream *astr;
187 
188         rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
189         rec->period_size = snd_pcm_lib_period_bytes(subs);
190         rec->nperiods = rec->dma_size / rec->period_size;
191         rec->cur_period = 0;
192         rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
193 
194         /* set up constraints */
195         astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
196         if (! astr)
197                 return -EINVAL;
198         astr->cur_freqs = 1 << rate_index;
199         astr->cur_formats = 1 << runtime->format;
200         chip->rate_index = rate_index;
201         chip->format = runtime->format;
202 
203         /* We really want to execute a DMA stop command, after the AWACS
204          * is initialized.
205          * For reasons I don't understand, it stops the hissing noise
206          * common to many PowerBook G3 systems and random noise otherwise
207          * captured on iBook2's about every third time. -ReneR
208          */
209         spin_lock_irq(&chip->reg_lock);
210         snd_pmac_dma_stop(rec);
211         chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
212         snd_pmac_dma_set_command(rec, &chip->extra_dma);
213         snd_pmac_dma_run(rec, RUN);
214         spin_unlock_irq(&chip->reg_lock);
215         mdelay(5);
216         spin_lock_irq(&chip->reg_lock);
217         /* continuous DMA memory type doesn't provide the physical address,
218          * so we need to resolve the address here...
219          */
220         offset = runtime->dma_addr;
221         for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
222                 cp->phy_addr = cpu_to_le32(offset);
223                 cp->req_count = cpu_to_le16(rec->period_size);
224                 /*cp->res_count = cpu_to_le16(0);*/
225                 cp->xfer_status = cpu_to_le16(0);
226                 offset += rec->period_size;
227         }
228         /* make loop */
229         cp->command = cpu_to_le16(DBDMA_NOP | BR_ALWAYS);
230         cp->cmd_dep = cpu_to_le32(rec->cmd.addr);
231 
232         snd_pmac_dma_stop(rec);
233         snd_pmac_dma_set_command(rec, &rec->cmd);
234         spin_unlock_irq(&chip->reg_lock);
235 
236         return 0;
237 }
238 
239 
240 /*
241  * PCM trigger/stop
242  */
243 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
244                                 struct snd_pcm_substream *subs, int cmd)
245 {
246         volatile struct dbdma_cmd __iomem *cp;
247         int i, command;
248 
249         switch (cmd) {
250         case SNDRV_PCM_TRIGGER_START:
251         case SNDRV_PCM_TRIGGER_RESUME:
252                 if (rec->running)
253                         return -EBUSY;
254                 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
255                            OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
256                 spin_lock(&chip->reg_lock);
257                 snd_pmac_beep_stop(chip);
258                 snd_pmac_pcm_set_format(chip);
259                 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
260                         out_le16(&cp->command, command);
261                 snd_pmac_dma_set_command(rec, &rec->cmd);
262                 (void)in_le32(&rec->dma->status);
263                 snd_pmac_dma_run(rec, RUN|WAKE);
264                 rec->running = 1;
265                 spin_unlock(&chip->reg_lock);
266                 break;
267 
268         case SNDRV_PCM_TRIGGER_STOP:
269         case SNDRV_PCM_TRIGGER_SUSPEND:
270                 spin_lock(&chip->reg_lock);
271                 rec->running = 0;
272                 /*printk(KERN_DEBUG "stopped!!\n");*/
273                 snd_pmac_dma_stop(rec);
274                 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
275                         out_le16(&cp->command, DBDMA_STOP);
276                 spin_unlock(&chip->reg_lock);
277                 break;
278 
279         default:
280                 return -EINVAL;
281         }
282 
283         return 0;
284 }
285 
286 /*
287  * return the current pointer
288  */
289 inline
290 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
291                                               struct pmac_stream *rec,
292                                               struct snd_pcm_substream *subs)
293 {
294         int count = 0;
295 
296 #if 1 /* hmm.. how can we get the current dma pointer?? */
297         int stat;
298         volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
299         stat = le16_to_cpu(cp->xfer_status);
300         if (stat & (ACTIVE|DEAD)) {
301                 count = in_le16(&cp->res_count);
302                 if (count)
303                         count = rec->period_size - count;
304         }
305 #endif
306         count += rec->cur_period * rec->period_size;
307         /*printk(KERN_DEBUG "pointer=%d\n", count);*/
308         return bytes_to_frames(subs->runtime, count);
309 }
310 
311 /*
312  * playback
313  */
314 
315 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
316 {
317         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
318         return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
319 }
320 
321 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
322                                      int cmd)
323 {
324         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
325         return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
326 }
327 
328 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
329 {
330         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
331         return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
332 }
333 
334 
335 /*
336  * capture
337  */
338 
339 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
340 {
341         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
342         return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
343 }
344 
345 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
346                                     int cmd)
347 {
348         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
349         return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
350 }
351 
352 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
353 {
354         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
355         return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
356 }
357 
358 
359 /*
360  * Handle DEAD DMA transfers:
361  * if the TX status comes up "DEAD" - reported on some Power Computing machines
362  * we need to re-start the dbdma - but from a different physical start address
363  * and with a different transfer length.  It would get very messy to do this
364  * with the normal dbdma_cmd blocks - we would have to re-write the buffer start
365  * addresses each time.  So, we will keep a single dbdma_cmd block which can be
366  * fiddled with.
367  * When DEAD status is first reported the content of the faulted dbdma block is
368  * copied into the emergency buffer and we note that the buffer is in use.
369  * we then bump the start physical address by the amount that was successfully
370  * output before it died.
371  * On any subsequent DEAD result we just do the bump-ups (we know that we are
372  * already using the emergency dbdma_cmd).
373  * CHECK: this just tries to "do it".  It is possible that we should abandon
374  * xfers when the number of residual bytes gets below a certain value - I can
375  * see that this might cause a loop-forever if a too small transfer causes
376  * DEAD status.  However this is a TODO for now - we'll see what gets reported.
377  * When we get a successful transfer result with the emergency buffer we just
378  * pretend that it completed using the original dmdma_cmd and carry on.  The
379  * 'next_cmd' field will already point back to the original loop of blocks.
380  */
381 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
382                                           volatile struct dbdma_cmd __iomem *cp)
383 {
384         unsigned short req, res ;
385         unsigned int phy ;
386 
387         /* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */
388 
389         /* to clear DEAD status we must first clear RUN
390            set it to quiescent to be on the safe side */
391         (void)in_le32(&rec->dma->status);
392         out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
393 
394         if (!emergency_in_use) { /* new problem */
395                 memcpy((void *)emergency_dbdma.cmds, (void *)cp,
396                        sizeof(struct dbdma_cmd));
397                 emergency_in_use = 1;
398                 cp->xfer_status = cpu_to_le16(0);
399                 cp->req_count = cpu_to_le16(rec->period_size);
400                 cp = emergency_dbdma.cmds;
401         }
402 
403         /* now bump the values to reflect the amount
404            we haven't yet shifted */
405         req = le16_to_cpu(cp->req_count);
406         res = le16_to_cpu(cp->res_count);
407         phy = le32_to_cpu(cp->phy_addr);
408         phy += (req - res);
409         cp->req_count = cpu_to_le16(res);
410         cp->res_count = cpu_to_le16(0);
411         cp->xfer_status = cpu_to_le16(0);
412         cp->phy_addr = cpu_to_le32(phy);
413 
414         cp->cmd_dep = cpu_to_le32(rec->cmd.addr
415                 + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
416 
417         cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
418 
419         /* point at our patched up command block */
420         out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
421 
422         /* we must re-start the controller */
423         (void)in_le32(&rec->dma->status);
424         /* should complete clearing the DEAD status */
425         out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
426 }
427 
428 /*
429  * update playback/capture pointer from interrupts
430  */
431 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
432 {
433         volatile struct dbdma_cmd __iomem *cp;
434         int c;
435         int stat;
436 
437         spin_lock(&chip->reg_lock);
438         if (rec->running) {
439                 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
440 
441                         if (emergency_in_use)   /* already using DEAD xfer? */
442                                 cp = emergency_dbdma.cmds;
443                         else
444                                 cp = &rec->cmd.cmds[rec->cur_period];
445 
446                         stat = le16_to_cpu(cp->xfer_status);
447 
448                         if (stat & DEAD) {
449                                 snd_pmac_pcm_dead_xfer(rec, cp);
450                                 break; /* this block is still going */
451                         }
452 
453                         if (emergency_in_use)
454                                 emergency_in_use = 0 ; /* done that */
455 
456                         if (! (stat & ACTIVE))
457                                 break;
458 
459                         /*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/
460                         cp->xfer_status = cpu_to_le16(0);
461                         cp->req_count = cpu_to_le16(rec->period_size);
462                         /*cp->res_count = cpu_to_le16(0);*/
463                         rec->cur_period++;
464                         if (rec->cur_period >= rec->nperiods) {
465                                 rec->cur_period = 0;
466                         }
467 
468                         spin_unlock(&chip->reg_lock);
469                         snd_pcm_period_elapsed(rec->substream);
470                         spin_lock(&chip->reg_lock);
471                 }
472         }
473         spin_unlock(&chip->reg_lock);
474 }
475 
476 
477 /*
478  * hw info
479  */
480 
481 static const struct snd_pcm_hardware snd_pmac_playback =
482 {
483         .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
484                                  SNDRV_PCM_INFO_MMAP |
485                                  SNDRV_PCM_INFO_MMAP_VALID |
486                                  SNDRV_PCM_INFO_RESUME),
487         .formats =              SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
488         .rates =                SNDRV_PCM_RATE_8000_44100,
489         .rate_min =             7350,
490         .rate_max =             44100,
491         .channels_min =         2,
492         .channels_max =         2,
493         .buffer_bytes_max =     131072,
494         .period_bytes_min =     256,
495         .period_bytes_max =     16384,
496         .periods_min =          3,
497         .periods_max =          PMAC_MAX_FRAGS,
498 };
499 
500 static const struct snd_pcm_hardware snd_pmac_capture =
501 {
502         .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
503                                  SNDRV_PCM_INFO_MMAP |
504                                  SNDRV_PCM_INFO_MMAP_VALID |
505                                  SNDRV_PCM_INFO_RESUME),
506         .formats =              SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
507         .rates =                SNDRV_PCM_RATE_8000_44100,
508         .rate_min =             7350,
509         .rate_max =             44100,
510         .channels_min =         2,
511         .channels_max =         2,
512         .buffer_bytes_max =     131072,
513         .period_bytes_min =     256,
514         .period_bytes_max =     16384,
515         .periods_min =          3,
516         .periods_max =          PMAC_MAX_FRAGS,
517 };
518 
519 
520 #if 0 // NYI
521 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
522                                  struct snd_pcm_hw_rule *rule)
523 {
524         struct snd_pmac *chip = rule->private;
525         struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
526         int i, freq_table[8], num_freqs;
527 
528         if (! rec)
529                 return -EINVAL;
530         num_freqs = 0;
531         for (i = chip->num_freqs - 1; i >= 0; i--) {
532                 if (rec->cur_freqs & (1 << i))
533                         freq_table[num_freqs++] = chip->freq_table[i];
534         }
535 
536         return snd_interval_list(hw_param_interval(params, rule->var),
537                                  num_freqs, freq_table, 0);
538 }
539 
540 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
541                                    struct snd_pcm_hw_rule *rule)
542 {
543         struct snd_pmac *chip = rule->private;
544         struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
545 
546         if (! rec)
547                 return -EINVAL;
548         return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
549                                    rec->cur_formats);
550 }
551 #endif // NYI
552 
553 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
554                              struct snd_pcm_substream *subs)
555 {
556         struct snd_pcm_runtime *runtime = subs->runtime;
557         int i;
558 
559         /* look up frequency table and fill bit mask */
560         runtime->hw.rates = 0;
561         for (i = 0; i < chip->num_freqs; i++)
562                 if (chip->freqs_ok & (1 << i))
563                         runtime->hw.rates |=
564                                 snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
565 
566         /* check for minimum and maximum rates */
567         for (i = 0; i < chip->num_freqs; i++) {
568                 if (chip->freqs_ok & (1 << i)) {
569                         runtime->hw.rate_max = chip->freq_table[i];
570                         break;
571                 }
572         }
573         for (i = chip->num_freqs - 1; i >= 0; i--) {
574                 if (chip->freqs_ok & (1 << i)) {
575                         runtime->hw.rate_min = chip->freq_table[i];
576                         break;
577                 }
578         }
579         runtime->hw.formats = chip->formats_ok;
580         if (chip->can_capture) {
581                 if (! chip->can_duplex)
582                         runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
583                 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
584         }
585         runtime->private_data = rec;
586         rec->substream = subs;
587 
588 #if 0 /* FIXME: still under development.. */
589         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
590                             snd_pmac_hw_rule_rate, chip, rec->stream, -1);
591         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
592                             snd_pmac_hw_rule_format, chip, rec->stream, -1);
593 #endif
594 
595         runtime->hw.periods_max = rec->cmd.size - 1;
596 
597         /* constraints to fix choppy sound */
598         snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
599         return 0;
600 }
601 
602 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
603                               struct snd_pcm_substream *subs)
604 {
605         struct pmac_stream *astr;
606 
607         snd_pmac_dma_stop(rec);
608 
609         astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
610         if (! astr)
611                 return -EINVAL;
612 
613         /* reset constraints */
614         astr->cur_freqs = chip->freqs_ok;
615         astr->cur_formats = chip->formats_ok;
616 
617         return 0;
618 }
619 
620 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
621 {
622         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
623 
624         subs->runtime->hw = snd_pmac_playback;
625         return snd_pmac_pcm_open(chip, &chip->playback, subs);
626 }
627 
628 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
629 {
630         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
631 
632         subs->runtime->hw = snd_pmac_capture;
633         return snd_pmac_pcm_open(chip, &chip->capture, subs);
634 }
635 
636 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
637 {
638         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
639 
640         return snd_pmac_pcm_close(chip, &chip->playback, subs);
641 }
642 
643 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
644 {
645         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
646 
647         return snd_pmac_pcm_close(chip, &chip->capture, subs);
648 }
649 
650 /*
651  */
652 
653 static const struct snd_pcm_ops snd_pmac_playback_ops = {
654         .open =         snd_pmac_playback_open,
655         .close =        snd_pmac_playback_close,
656         .prepare =      snd_pmac_playback_prepare,
657         .trigger =      snd_pmac_playback_trigger,
658         .pointer =      snd_pmac_playback_pointer,
659 };
660 
661 static const struct snd_pcm_ops snd_pmac_capture_ops = {
662         .open =         snd_pmac_capture_open,
663         .close =        snd_pmac_capture_close,
664         .prepare =      snd_pmac_capture_prepare,
665         .trigger =      snd_pmac_capture_trigger,
666         .pointer =      snd_pmac_capture_pointer,
667 };
668 
669 int snd_pmac_pcm_new(struct snd_pmac *chip)
670 {
671         struct snd_pcm *pcm;
672         int err;
673         int num_captures = 1;
674 
675         if (! chip->can_capture)
676                 num_captures = 0;
677         err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
678         if (err < 0)
679                 return err;
680 
681         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
682         if (chip->can_capture)
683                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
684 
685         pcm->private_data = chip;
686         pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
687         strcpy(pcm->name, chip->card->shortname);
688         chip->pcm = pcm;
689 
690         chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
691         if (chip->can_byte_swap)
692                 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
693 
694         chip->playback.cur_formats = chip->formats_ok;
695         chip->capture.cur_formats = chip->formats_ok;
696         chip->playback.cur_freqs = chip->freqs_ok;
697         chip->capture.cur_freqs = chip->freqs_ok;
698 
699         /* preallocate 64k buffer */
700         snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
701                                        &chip->pdev->dev,
702                                        64 * 1024, 64 * 1024);
703 
704         return 0;
705 }
706 
707 
708 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
709 {
710         out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
711         snd_pmac_wait_ack(&chip->playback);
712         out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
713         snd_pmac_wait_ack(&chip->capture);
714 }
715 
716 
717 /*
718  * handling beep
719  */
720 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
721 {
722         struct pmac_stream *rec = &chip->playback;
723 
724         snd_pmac_dma_stop(rec);
725         chip->extra_dma.cmds->req_count = cpu_to_le16(bytes);
726         chip->extra_dma.cmds->xfer_status = cpu_to_le16(0);
727         chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr);
728         chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr);
729         chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS);
730         out_le32(&chip->awacs->control,
731                  (in_le32(&chip->awacs->control) & ~0x1f00)
732                  | (speed << 8));
733         out_le32(&chip->awacs->byteswap, 0);
734         snd_pmac_dma_set_command(rec, &chip->extra_dma);
735         snd_pmac_dma_run(rec, RUN);
736 }
737 
738 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
739 {
740         snd_pmac_dma_stop(&chip->playback);
741         chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
742         snd_pmac_pcm_set_format(chip); /* reset format */
743 }
744 
745 
746 /*
747  * interrupt handlers
748  */
749 static irqreturn_t
750 snd_pmac_tx_intr(int irq, void *devid)
751 {
752         struct snd_pmac *chip = devid;
753         snd_pmac_pcm_update(chip, &chip->playback);
754         return IRQ_HANDLED;
755 }
756 
757 
758 static irqreturn_t
759 snd_pmac_rx_intr(int irq, void *devid)
760 {
761         struct snd_pmac *chip = devid;
762         snd_pmac_pcm_update(chip, &chip->capture);
763         return IRQ_HANDLED;
764 }
765 
766 
767 static irqreturn_t
768 snd_pmac_ctrl_intr(int irq, void *devid)
769 {
770         struct snd_pmac *chip = devid;
771         int ctrl = in_le32(&chip->awacs->control);
772 
773         /*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/
774         if (ctrl & MASK_PORTCHG) {
775                 /* do something when headphone is plugged/unplugged? */
776                 if (chip->update_automute)
777                         chip->update_automute(chip, 1);
778         }
779         if (ctrl & MASK_CNTLERR) {
780                 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
781                 if (err && chip->model <= PMAC_SCREAMER)
782                         snd_printk(KERN_DEBUG "error %x\n", err);
783         }
784         /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
785         out_le32(&chip->awacs->control, ctrl);
786         return IRQ_HANDLED;
787 }
788 
789 
790 /*
791  * a wrapper to feature call for compatibility
792  */
793 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
794 {
795         if (ppc_md.feature_call)
796                 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
797 }
798 
799 /*
800  * release resources
801  */
802 
803 static int snd_pmac_free(struct snd_pmac *chip)
804 {
805         /* stop sounds */
806         if (chip->initialized) {
807                 snd_pmac_dbdma_reset(chip);
808                 /* disable interrupts from awacs interface */
809                 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
810         }
811 
812         if (chip->node)
813                 snd_pmac_sound_feature(chip, 0);
814 
815         /* clean up mixer if any */
816         if (chip->mixer_free)
817                 chip->mixer_free(chip);
818 
819         snd_pmac_detach_beep(chip);
820 
821         /* release resources */
822         if (chip->irq >= 0)
823                 free_irq(chip->irq, (void*)chip);
824         if (chip->tx_irq >= 0)
825                 free_irq(chip->tx_irq, (void*)chip);
826         if (chip->rx_irq >= 0)
827                 free_irq(chip->rx_irq, (void*)chip);
828         snd_pmac_dbdma_free(chip, &chip->playback.cmd);
829         snd_pmac_dbdma_free(chip, &chip->capture.cmd);
830         snd_pmac_dbdma_free(chip, &chip->extra_dma);
831         snd_pmac_dbdma_free(chip, &emergency_dbdma);
832         iounmap(chip->macio_base);
833         iounmap(chip->latch_base);
834         iounmap(chip->awacs);
835         iounmap(chip->playback.dma);
836         iounmap(chip->capture.dma);
837 
838         if (chip->node) {
839                 int i;
840                 for (i = 0; i < 3; i++) {
841                         if (chip->requested & (1 << i))
842                                 release_mem_region(chip->rsrc[i].start,
843                                                    resource_size(&chip->rsrc[i]));
844                 }
845         }
846 
847         pci_dev_put(chip->pdev);
848         of_node_put(chip->node);
849         kfree(chip);
850         return 0;
851 }
852 
853 
854 /*
855  * free the device
856  */
857 static int snd_pmac_dev_free(struct snd_device *device)
858 {
859         struct snd_pmac *chip = device->device_data;
860         return snd_pmac_free(chip);
861 }
862 
863 
864 /*
865  * check the machine support byteswap (little-endian)
866  */
867 
868 static void detect_byte_swap(struct snd_pmac *chip)
869 {
870         struct device_node *mio;
871 
872         /* if seems that Keylargo can't byte-swap  */
873         for (mio = chip->node->parent; mio; mio = mio->parent) {
874                 if (of_node_name_eq(mio, "mac-io")) {
875                         if (of_device_is_compatible(mio, "Keylargo"))
876                                 chip->can_byte_swap = 0;
877                         break;
878                 }
879         }
880 
881         /* it seems the Pismo & iBook can't byte-swap in hardware. */
882         if (of_machine_is_compatible("PowerBook3,1") ||
883             of_machine_is_compatible("PowerBook2,1"))
884                 chip->can_byte_swap = 0 ;
885 
886         if (of_machine_is_compatible("PowerBook2,1"))
887                 chip->can_duplex = 0;
888 }
889 
890 
891 /*
892  * detect a sound chip
893  */
894 static int snd_pmac_detect(struct snd_pmac *chip)
895 {
896         struct device_node *sound;
897         struct device_node *dn;
898         const unsigned int *prop;
899         unsigned int l;
900         struct macio_chip* macio;
901 
902         if (!machine_is(powermac))
903                 return -ENODEV;
904 
905         chip->subframe = 0;
906         chip->revision = 0;
907         chip->freqs_ok = 0xff; /* all ok */
908         chip->model = PMAC_AWACS;
909         chip->can_byte_swap = 1;
910         chip->can_duplex = 1;
911         chip->can_capture = 1;
912         chip->num_freqs = ARRAY_SIZE(awacs_freqs);
913         chip->freq_table = awacs_freqs;
914         chip->pdev = NULL;
915 
916         chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
917 
918         /* check machine type */
919         if (of_machine_is_compatible("AAPL,3400/2400")
920             || of_machine_is_compatible("AAPL,3500"))
921                 chip->is_pbook_3400 = 1;
922         else if (of_machine_is_compatible("PowerBook1,1")
923                  || of_machine_is_compatible("AAPL,PowerBook1998"))
924                 chip->is_pbook_G3 = 1;
925         chip->node = of_find_node_by_name(NULL, "awacs");
926         sound = of_node_get(chip->node);
927 
928         /*
929          * powermac G3 models have a node called "davbus"
930          * with a child called "sound".
931          */
932         if (!chip->node)
933                 chip->node = of_find_node_by_name(NULL, "davbus");
934         /*
935          * if we didn't find a davbus device, try 'i2s-a' since
936          * this seems to be what iBooks have
937          */
938         if (! chip->node) {
939                 chip->node = of_find_node_by_name(NULL, "i2s-a");
940                 if (chip->node && chip->node->parent &&
941                     chip->node->parent->parent) {
942                         if (of_device_is_compatible(chip->node->parent->parent,
943                                                  "K2-Keylargo"))
944                                 chip->is_k2 = 1;
945                 }
946         }
947         if (! chip->node)
948                 return -ENODEV;
949 
950         if (!sound) {
951                 for_each_node_by_name(sound, "sound")
952                         if (sound->parent == chip->node)
953                                 break;
954         }
955         if (! sound) {
956                 of_node_put(chip->node);
957                 chip->node = NULL;
958                 return -ENODEV;
959         }
960         prop = of_get_property(sound, "sub-frame", NULL);
961         if (prop && *prop < 16)
962                 chip->subframe = *prop;
963         prop = of_get_property(sound, "layout-id", NULL);
964         if (prop) {
965                 /* partly deprecate snd-powermac, for those machines
966                  * that have a layout-id property for now */
967                 printk(KERN_INFO "snd-powermac no longer handles any "
968                                  "machines with a layout-id property "
969                                  "in the device-tree, use snd-aoa.\n");
970                 of_node_put(sound);
971                 of_node_put(chip->node);
972                 chip->node = NULL;
973                 return -ENODEV;
974         }
975         /* This should be verified on older screamers */
976         if (of_device_is_compatible(sound, "screamer")) {
977                 chip->model = PMAC_SCREAMER;
978                 // chip->can_byte_swap = 0; /* FIXME: check this */
979         }
980         if (of_device_is_compatible(sound, "burgundy")) {
981                 chip->model = PMAC_BURGUNDY;
982                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
983         }
984         if (of_device_is_compatible(sound, "daca")) {
985                 chip->model = PMAC_DACA;
986                 chip->can_capture = 0;  /* no capture */
987                 chip->can_duplex = 0;
988                 // chip->can_byte_swap = 0; /* FIXME: check this */
989                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
990         }
991         if (of_device_is_compatible(sound, "tumbler")) {
992                 chip->model = PMAC_TUMBLER;
993                 chip->can_capture = of_machine_is_compatible("PowerMac4,2")
994                                 || of_machine_is_compatible("PowerBook3,2")
995                                 || of_machine_is_compatible("PowerBook3,3")
996                                 || of_machine_is_compatible("PowerBook4,1")
997                                 || of_machine_is_compatible("PowerBook4,2")
998                                 || of_machine_is_compatible("PowerBook4,3");
999                 chip->can_duplex = 0;
1000                 // chip->can_byte_swap = 0; /* FIXME: check this */
1001                 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1002                 chip->freq_table = tumbler_freqs;
1003                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1004         }
1005         if (of_device_is_compatible(sound, "snapper")) {
1006                 chip->model = PMAC_SNAPPER;
1007                 // chip->can_byte_swap = 0; /* FIXME: check this */
1008                 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1009                 chip->freq_table = tumbler_freqs;
1010                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1011         }
1012         prop = of_get_property(sound, "device-id", NULL);
1013         if (prop)
1014                 chip->device_id = *prop;
1015         dn = of_find_node_by_name(NULL, "perch");
1016         chip->has_iic = (dn != NULL);
1017         of_node_put(dn);
1018 
1019         /* We need the PCI device for DMA allocations, let's use a crude method
1020          * for now ...
1021          */
1022         macio = macio_find(chip->node, macio_unknown);
1023         if (macio == NULL)
1024                 printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1025         else {
1026                 struct pci_dev *pdev = NULL;
1027 
1028                 for_each_pci_dev(pdev) {
1029                         struct device_node *np = pci_device_to_OF_node(pdev);
1030                         if (np && np == macio->of_node) {
1031                                 chip->pdev = pdev;
1032                                 break;
1033                         }
1034                 }
1035         }
1036         if (chip->pdev == NULL)
1037                 printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1038                        " device !\n");
1039 
1040         detect_byte_swap(chip);
1041 
1042         /* look for a property saying what sample rates
1043            are available */
1044         prop = of_get_property(sound, "sample-rates", &l);
1045         if (! prop)
1046                 prop = of_get_property(sound, "output-frame-rates", &l);
1047         if (prop) {
1048                 int i;
1049                 chip->freqs_ok = 0;
1050                 for (l /= sizeof(int); l > 0; --l) {
1051                         unsigned int r = *prop++;
1052                         /* Apple 'Fixed' format */
1053                         if (r >= 0x10000)
1054                                 r >>= 16;
1055                         for (i = 0; i < chip->num_freqs; ++i) {
1056                                 if (r == chip->freq_table[i]) {
1057                                         chip->freqs_ok |= (1 << i);
1058                                         break;
1059                                 }
1060                         }
1061                 }
1062         } else {
1063                 /* assume only 44.1khz */
1064                 chip->freqs_ok = 1;
1065         }
1066 
1067         of_node_put(sound);
1068         return 0;
1069 }
1070 
1071 #ifdef PMAC_SUPPORT_AUTOMUTE
1072 /*
1073  * auto-mute
1074  */
1075 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1076                               struct snd_ctl_elem_value *ucontrol)
1077 {
1078         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1079         ucontrol->value.integer.value[0] = chip->auto_mute;
1080         return 0;
1081 }
1082 
1083 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1084                               struct snd_ctl_elem_value *ucontrol)
1085 {
1086         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1087         if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1088                 chip->auto_mute = !!ucontrol->value.integer.value[0];
1089                 if (chip->update_automute)
1090                         chip->update_automute(chip, 1);
1091                 return 1;
1092         }
1093         return 0;
1094 }
1095 
1096 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1097                               struct snd_ctl_elem_value *ucontrol)
1098 {
1099         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1100         if (chip->detect_headphone)
1101                 ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1102         else
1103                 ucontrol->value.integer.value[0] = 0;
1104         return 0;
1105 }
1106 
1107 static const struct snd_kcontrol_new auto_mute_controls[] = {
1108         { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1109           .name = "Auto Mute Switch",
1110           .info = snd_pmac_boolean_mono_info,
1111           .get = pmac_auto_mute_get,
1112           .put = pmac_auto_mute_put,
1113         },
1114         { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1115           .name = "Headphone Detection",
1116           .access = SNDRV_CTL_ELEM_ACCESS_READ,
1117           .info = snd_pmac_boolean_mono_info,
1118           .get = pmac_hp_detect_get,
1119         },
1120 };
1121 
1122 int snd_pmac_add_automute(struct snd_pmac *chip)
1123 {
1124         int err;
1125         chip->auto_mute = 1;
1126         err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1127         if (err < 0) {
1128                 printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1129                 return err;
1130         }
1131         chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1132         return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1133 }
1134 #endif /* PMAC_SUPPORT_AUTOMUTE */
1135 
1136 /*
1137  * create and detect a pmac chip record
1138  */
1139 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1140 {
1141         struct snd_pmac *chip;
1142         struct device_node *np;
1143         int i, err;
1144         unsigned int irq;
1145         unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1146         static const struct snd_device_ops ops = {
1147                 .dev_free =     snd_pmac_dev_free,
1148         };
1149 
1150         *chip_return = NULL;
1151 
1152         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1153         if (chip == NULL)
1154                 return -ENOMEM;
1155         chip->card = card;
1156 
1157         spin_lock_init(&chip->reg_lock);
1158         chip->irq = chip->tx_irq = chip->rx_irq = -1;
1159 
1160         chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1161         chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1162 
1163         err = snd_pmac_detect(chip);
1164         if (err < 0)
1165                 goto __error;
1166 
1167         if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1168             snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1169             snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1170             snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1171                 err = -ENOMEM;
1172                 goto __error;
1173         }
1174 
1175         np = chip->node;
1176         chip->requested = 0;
1177         if (chip->is_k2) {
1178                 static const char * const rnames[] = {
1179                         "Sound Control", "Sound DMA" };
1180                 for (i = 0; i < 2; i ++) {
1181                         if (of_address_to_resource(np->parent, i,
1182                                                    &chip->rsrc[i])) {
1183                                 printk(KERN_ERR "snd: can't translate rsrc "
1184                                        " %d (%s)\n", i, rnames[i]);
1185                                 err = -ENODEV;
1186                                 goto __error;
1187                         }
1188                         if (request_mem_region(chip->rsrc[i].start,
1189                                                resource_size(&chip->rsrc[i]),
1190                                                rnames[i]) == NULL) {
1191                                 printk(KERN_ERR "snd: can't request rsrc "
1192                                        " %d (%s: %pR)\n",
1193                                        i, rnames[i], &chip->rsrc[i]);
1194                                 err = -ENODEV;
1195                                 goto __error;
1196                         }
1197                         chip->requested |= (1 << i);
1198                 }
1199                 ctrl_addr = chip->rsrc[0].start;
1200                 txdma_addr = chip->rsrc[1].start;
1201                 rxdma_addr = txdma_addr + 0x100;
1202         } else {
1203                 static const char * const rnames[] = {
1204                         "Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1205                 for (i = 0; i < 3; i ++) {
1206                         if (of_address_to_resource(np, i,
1207                                                    &chip->rsrc[i])) {
1208                                 printk(KERN_ERR "snd: can't translate rsrc "
1209                                        " %d (%s)\n", i, rnames[i]);
1210                                 err = -ENODEV;
1211                                 goto __error;
1212                         }
1213                         if (request_mem_region(chip->rsrc[i].start,
1214                                                resource_size(&chip->rsrc[i]),
1215                                                rnames[i]) == NULL) {
1216                                 printk(KERN_ERR "snd: can't request rsrc "
1217                                        " %d (%s: %pR)\n",
1218                                        i, rnames[i], &chip->rsrc[i]);
1219                                 err = -ENODEV;
1220                                 goto __error;
1221                         }
1222                         chip->requested |= (1 << i);
1223                 }
1224                 ctrl_addr = chip->rsrc[0].start;
1225                 txdma_addr = chip->rsrc[1].start;
1226                 rxdma_addr = chip->rsrc[2].start;
1227         }
1228 
1229         chip->awacs = ioremap(ctrl_addr, 0x1000);
1230         chip->playback.dma = ioremap(txdma_addr, 0x100);
1231         chip->capture.dma = ioremap(rxdma_addr, 0x100);
1232         if (chip->model <= PMAC_BURGUNDY) {
1233                 irq = irq_of_parse_and_map(np, 0);
1234                 if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1235                                 "PMac", (void*)chip)) {
1236                         snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n",
1237                                    irq);
1238                         err = -EBUSY;
1239                         goto __error;
1240                 }
1241                 chip->irq = irq;
1242         }
1243         irq = irq_of_parse_and_map(np, 1);
1244         if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1245                 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1246                 err = -EBUSY;
1247                 goto __error;
1248         }
1249         chip->tx_irq = irq;
1250         irq = irq_of_parse_and_map(np, 2);
1251         if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1252                 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1253                 err = -EBUSY;
1254                 goto __error;
1255         }
1256         chip->rx_irq = irq;
1257 
1258         snd_pmac_sound_feature(chip, 1);
1259 
1260         /* reset & enable interrupts */
1261         if (chip->model <= PMAC_BURGUNDY)
1262                 out_le32(&chip->awacs->control, chip->control_mask);
1263 
1264         /* Powerbooks have odd ways of enabling inputs such as
1265            an expansion-bay CD or sound from an internal modem
1266            or a PC-card modem. */
1267         if (chip->is_pbook_3400) {
1268                 /* Enable CD and PC-card sound inputs. */
1269                 /* This is done by reading from address
1270                  * f301a000, + 0x10 to enable the expansion-bay
1271                  * CD sound input, + 0x80 to enable the PC-card
1272                  * sound input.  The 0x100 enables the SCSI bus
1273                  * terminator power.
1274                  */
1275                 chip->latch_base = ioremap (0xf301a000, 0x1000);
1276                 in_8(chip->latch_base + 0x190);
1277         } else if (chip->is_pbook_G3) {
1278                 struct device_node* mio;
1279                 for (mio = chip->node->parent; mio; mio = mio->parent) {
1280                         if (of_node_name_eq(mio, "mac-io")) {
1281                                 struct resource r;
1282                                 if (of_address_to_resource(mio, 0, &r) == 0)
1283                                         chip->macio_base =
1284                                                 ioremap(r.start, 0x40);
1285                                 break;
1286                         }
1287                 }
1288                 /* Enable CD sound input. */
1289                 /* The relevant bits for writing to this byte are 0x8f.
1290                  * I haven't found out what the 0x80 bit does.
1291                  * For the 0xf bits, writing 3 or 7 enables the CD
1292                  * input, any other value disables it.  Values
1293                  * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
1294                  * 4, 6, 8 - f enable the input from the modem.
1295                  */
1296                 if (chip->macio_base)
1297                         out_8(chip->macio_base + 0x37, 3);
1298         }
1299 
1300         /* Reset dbdma channels */
1301         snd_pmac_dbdma_reset(chip);
1302 
1303         err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1304         if (err < 0)
1305                 goto __error;
1306 
1307         *chip_return = chip;
1308         return 0;
1309 
1310  __error:
1311         snd_pmac_free(chip);
1312         return err;
1313 }
1314 
1315 
1316 /*
1317  * sleep notify for powerbook
1318  */
1319 
1320 #ifdef CONFIG_PM
1321 
1322 /*
1323  * Save state when going to sleep, restore it afterwards.
1324  */
1325 
1326 void snd_pmac_suspend(struct snd_pmac *chip)
1327 {
1328         unsigned long flags;
1329 
1330         snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1331         if (chip->suspend)
1332                 chip->suspend(chip);
1333         spin_lock_irqsave(&chip->reg_lock, flags);
1334         snd_pmac_beep_stop(chip);
1335         spin_unlock_irqrestore(&chip->reg_lock, flags);
1336         if (chip->irq >= 0)
1337                 disable_irq(chip->irq);
1338         if (chip->tx_irq >= 0)
1339                 disable_irq(chip->tx_irq);
1340         if (chip->rx_irq >= 0)
1341                 disable_irq(chip->rx_irq);
1342         snd_pmac_sound_feature(chip, 0);
1343 }
1344 
1345 void snd_pmac_resume(struct snd_pmac *chip)
1346 {
1347         snd_pmac_sound_feature(chip, 1);
1348         if (chip->resume)
1349                 chip->resume(chip);
1350         /* enable CD sound input */
1351         if (chip->macio_base && chip->is_pbook_G3)
1352                 out_8(chip->macio_base + 0x37, 3);
1353         else if (chip->is_pbook_3400)
1354                 in_8(chip->latch_base + 0x190);
1355 
1356         snd_pmac_pcm_set_format(chip);
1357 
1358         if (chip->irq >= 0)
1359                 enable_irq(chip->irq);
1360         if (chip->tx_irq >= 0)
1361                 enable_irq(chip->tx_irq);
1362         if (chip->rx_irq >= 0)
1363                 enable_irq(chip->rx_irq);
1364 
1365         snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1366 }
1367 
1368 #endif /* CONFIG_PM */
1369 
1370 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php