1 // SPDX-License-Identifier: GPL-2.0 2 // TLV320ADCX140 Sound driver 3 // Copyright (C) 2020 Texas Instruments Incorporated - https://www.ti.com/ 4 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/init.h> 8 #include <linux/delay.h> 9 #include <linux/pm.h> 10 #include <linux/i2c.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/regulator/consumer.h> 13 #include <linux/acpi.h> 14 #include <linux/of.h> 15 #include <linux/slab.h> 16 #include <sound/core.h> 17 #include <sound/pcm.h> 18 #include <sound/pcm_params.h> 19 #include <sound/soc.h> 20 #include <sound/initval.h> 21 #include <sound/tlv.h> 22 23 #include "tlv320adcx140.h" 24 25 struct adcx140_priv { 26 struct snd_soc_component *component; 27 struct regulator *supply_areg; 28 struct gpio_desc *gpio_reset; 29 struct regmap *regmap; 30 struct device *dev; 31 32 bool micbias_vg; 33 bool phase_calib_on; 34 35 unsigned int dai_fmt; 36 unsigned int slot_width; 37 }; 38 39 static const char * const gpo_config_names[] = { 40 "ti,gpo-config-1", 41 "ti,gpo-config-2", 42 "ti,gpo-config-3", 43 "ti,gpo-config-4", 44 }; 45 46 static const struct reg_default adcx140_reg_defaults[] = { 47 { ADCX140_PAGE_SELECT, 0x00 }, 48 { ADCX140_SW_RESET, 0x00 }, 49 { ADCX140_SLEEP_CFG, 0x00 }, 50 { ADCX140_SHDN_CFG, 0x05 }, 51 { ADCX140_ASI_CFG0, 0x30 }, 52 { ADCX140_ASI_CFG1, 0x00 }, 53 { ADCX140_ASI_CFG2, 0x00 }, 54 { ADCX140_ASI_CH1, 0x00 }, 55 { ADCX140_ASI_CH2, 0x01 }, 56 { ADCX140_ASI_CH3, 0x02 }, 57 { ADCX140_ASI_CH4, 0x03 }, 58 { ADCX140_ASI_CH5, 0x04 }, 59 { ADCX140_ASI_CH6, 0x05 }, 60 { ADCX140_ASI_CH7, 0x06 }, 61 { ADCX140_ASI_CH8, 0x07 }, 62 { ADCX140_MST_CFG0, 0x02 }, 63 { ADCX140_MST_CFG1, 0x48 }, 64 { ADCX140_ASI_STS, 0xff }, 65 { ADCX140_CLK_SRC, 0x10 }, 66 { ADCX140_PDMCLK_CFG, 0x40 }, 67 { ADCX140_PDM_CFG, 0x00 }, 68 { ADCX140_GPIO_CFG0, 0x22 }, 69 { ADCX140_GPO_CFG0, 0x00 }, 70 { ADCX140_GPO_CFG1, 0x00 }, 71 { ADCX140_GPO_CFG2, 0x00 }, 72 { ADCX140_GPO_CFG3, 0x00 }, 73 { ADCX140_GPO_VAL, 0x00 }, 74 { ADCX140_GPIO_MON, 0x00 }, 75 { ADCX140_GPI_CFG0, 0x00 }, 76 { ADCX140_GPI_CFG1, 0x00 }, 77 { ADCX140_GPI_MON, 0x00 }, 78 { ADCX140_INT_CFG, 0x00 }, 79 { ADCX140_INT_MASK0, 0xff }, 80 { ADCX140_INT_LTCH0, 0x00 }, 81 { ADCX140_BIAS_CFG, 0x00 }, 82 { ADCX140_CH1_CFG0, 0x00 }, 83 { ADCX140_CH1_CFG1, 0x00 }, 84 { ADCX140_CH1_CFG2, 0xc9 }, 85 { ADCX140_CH1_CFG3, 0x80 }, 86 { ADCX140_CH1_CFG4, 0x00 }, 87 { ADCX140_CH2_CFG0, 0x00 }, 88 { ADCX140_CH2_CFG1, 0x00 }, 89 { ADCX140_CH2_CFG2, 0xc9 }, 90 { ADCX140_CH2_CFG3, 0x80 }, 91 { ADCX140_CH2_CFG4, 0x00 }, 92 { ADCX140_CH3_CFG0, 0x00 }, 93 { ADCX140_CH3_CFG1, 0x00 }, 94 { ADCX140_CH3_CFG2, 0xc9 }, 95 { ADCX140_CH3_CFG3, 0x80 }, 96 { ADCX140_CH3_CFG4, 0x00 }, 97 { ADCX140_CH4_CFG0, 0x00 }, 98 { ADCX140_CH4_CFG1, 0x00 }, 99 { ADCX140_CH4_CFG2, 0xc9 }, 100 { ADCX140_CH4_CFG3, 0x80 }, 101 { ADCX140_CH4_CFG4, 0x00 }, 102 { ADCX140_CH5_CFG2, 0xc9 }, 103 { ADCX140_CH5_CFG3, 0x80 }, 104 { ADCX140_CH5_CFG4, 0x00 }, 105 { ADCX140_CH6_CFG2, 0xc9 }, 106 { ADCX140_CH6_CFG3, 0x80 }, 107 { ADCX140_CH6_CFG4, 0x00 }, 108 { ADCX140_CH7_CFG2, 0xc9 }, 109 { ADCX140_CH7_CFG3, 0x80 }, 110 { ADCX140_CH7_CFG4, 0x00 }, 111 { ADCX140_CH8_CFG2, 0xc9 }, 112 { ADCX140_CH8_CFG3, 0x80 }, 113 { ADCX140_CH8_CFG4, 0x00 }, 114 { ADCX140_DSP_CFG0, 0x01 }, 115 { ADCX140_DSP_CFG1, 0x40 }, 116 { ADCX140_DRE_CFG0, 0x7b }, 117 { ADCX140_AGC_CFG0, 0xe7 }, 118 { ADCX140_IN_CH_EN, 0xf0 }, 119 { ADCX140_ASI_OUT_CH_EN, 0x00 }, 120 { ADCX140_PWR_CFG, 0x00 }, 121 { ADCX140_DEV_STS0, 0x00 }, 122 { ADCX140_DEV_STS1, 0x80 }, 123 }; 124 125 static const struct regmap_range_cfg adcx140_ranges[] = { 126 { 127 .range_min = 0, 128 .range_max = 12 * 128, 129 .selector_reg = ADCX140_PAGE_SELECT, 130 .selector_mask = 0xff, 131 .selector_shift = 0, 132 .window_start = 0, 133 .window_len = 128, 134 }, 135 }; 136 137 static bool adcx140_volatile(struct device *dev, unsigned int reg) 138 { 139 switch (reg) { 140 case ADCX140_SW_RESET: 141 case ADCX140_DEV_STS0: 142 case ADCX140_DEV_STS1: 143 case ADCX140_ASI_STS: 144 return true; 145 default: 146 return false; 147 } 148 } 149 150 static const struct regmap_config adcx140_i2c_regmap = { 151 .reg_bits = 8, 152 .val_bits = 8, 153 .reg_defaults = adcx140_reg_defaults, 154 .num_reg_defaults = ARRAY_SIZE(adcx140_reg_defaults), 155 .cache_type = REGCACHE_FLAT, 156 .ranges = adcx140_ranges, 157 .num_ranges = ARRAY_SIZE(adcx140_ranges), 158 .max_register = 12 * 128, 159 .volatile_reg = adcx140_volatile, 160 }; 161 162 /* Digital Volume control. From -100 to 27 dB in 0.5 dB steps */ 163 static DECLARE_TLV_DB_SCALE(dig_vol_tlv, -10050, 50, 0); 164 165 /* ADC gain. From 0 to 42 dB in 1 dB steps */ 166 static DECLARE_TLV_DB_SCALE(adc_tlv, 0, 100, 0); 167 168 /* DRE Level. From -12 dB to -66 dB in 1 dB steps */ 169 static DECLARE_TLV_DB_SCALE(dre_thresh_tlv, -6600, 100, 0); 170 /* DRE Max Gain. From 2 dB to 26 dB in 2 dB steps */ 171 static DECLARE_TLV_DB_SCALE(dre_gain_tlv, 200, 200, 0); 172 173 /* AGC Level. From -6 dB to -36 dB in 2 dB steps */ 174 static DECLARE_TLV_DB_SCALE(agc_thresh_tlv, -3600, 200, 0); 175 /* AGC Max Gain. From 3 dB to 42 dB in 3 dB steps */ 176 static DECLARE_TLV_DB_SCALE(agc_gain_tlv, 300, 300, 0); 177 178 static const char * const decimation_filter_text[] = { 179 "Linear Phase", "Low Latency", "Ultra-low Latency" 180 }; 181 182 static SOC_ENUM_SINGLE_DECL(decimation_filter_enum, ADCX140_DSP_CFG0, 4, 183 decimation_filter_text); 184 185 static const struct snd_kcontrol_new decimation_filter_controls[] = { 186 SOC_DAPM_ENUM("Decimation Filter", decimation_filter_enum), 187 }; 188 189 static const char * const pdmclk_text[] = { 190 "2.8224 MHz", "1.4112 MHz", "705.6 kHz", "5.6448 MHz" 191 }; 192 193 static SOC_ENUM_SINGLE_DECL(pdmclk_select_enum, ADCX140_PDMCLK_CFG, 0, 194 pdmclk_text); 195 196 static const struct snd_kcontrol_new pdmclk_div_controls[] = { 197 SOC_DAPM_ENUM("PDM Clk Divider Select", pdmclk_select_enum), 198 }; 199 200 static const char * const resistor_text[] = { 201 "2.5 kOhm", "10 kOhm", "20 kOhm" 202 }; 203 204 static SOC_ENUM_SINGLE_DECL(in1_resistor_enum, ADCX140_CH1_CFG0, 2, 205 resistor_text); 206 static SOC_ENUM_SINGLE_DECL(in2_resistor_enum, ADCX140_CH2_CFG0, 2, 207 resistor_text); 208 static SOC_ENUM_SINGLE_DECL(in3_resistor_enum, ADCX140_CH3_CFG0, 2, 209 resistor_text); 210 static SOC_ENUM_SINGLE_DECL(in4_resistor_enum, ADCX140_CH4_CFG0, 2, 211 resistor_text); 212 213 static const struct snd_kcontrol_new in1_resistor_controls[] = { 214 SOC_DAPM_ENUM("CH1 Resistor Select", in1_resistor_enum), 215 }; 216 static const struct snd_kcontrol_new in2_resistor_controls[] = { 217 SOC_DAPM_ENUM("CH2 Resistor Select", in2_resistor_enum), 218 }; 219 static const struct snd_kcontrol_new in3_resistor_controls[] = { 220 SOC_DAPM_ENUM("CH3 Resistor Select", in3_resistor_enum), 221 }; 222 static const struct snd_kcontrol_new in4_resistor_controls[] = { 223 SOC_DAPM_ENUM("CH4 Resistor Select", in4_resistor_enum), 224 }; 225 226 /* Analog/Digital Selection */ 227 static const char * const adcx140_mic_sel_text[] = {"Analog", "Line In", "Digital"}; 228 static const char * const adcx140_analog_sel_text[] = {"Analog", "Line In"}; 229 230 static SOC_ENUM_SINGLE_DECL(adcx140_mic1p_enum, 231 ADCX140_CH1_CFG0, 5, 232 adcx140_mic_sel_text); 233 234 static const struct snd_kcontrol_new adcx140_dapm_mic1p_control = 235 SOC_DAPM_ENUM("MIC1P MUX", adcx140_mic1p_enum); 236 237 static SOC_ENUM_SINGLE_DECL(adcx140_mic1_analog_enum, 238 ADCX140_CH1_CFG0, 7, 239 adcx140_analog_sel_text); 240 241 static const struct snd_kcontrol_new adcx140_dapm_mic1_analog_control = 242 SOC_DAPM_ENUM("MIC1 Analog MUX", adcx140_mic1_analog_enum); 243 244 static SOC_ENUM_SINGLE_DECL(adcx140_mic1m_enum, 245 ADCX140_CH1_CFG0, 5, 246 adcx140_mic_sel_text); 247 248 static const struct snd_kcontrol_new adcx140_dapm_mic1m_control = 249 SOC_DAPM_ENUM("MIC1M MUX", adcx140_mic1m_enum); 250 251 static SOC_ENUM_SINGLE_DECL(adcx140_mic2p_enum, 252 ADCX140_CH2_CFG0, 5, 253 adcx140_mic_sel_text); 254 255 static const struct snd_kcontrol_new adcx140_dapm_mic2p_control = 256 SOC_DAPM_ENUM("MIC2P MUX", adcx140_mic2p_enum); 257 258 static SOC_ENUM_SINGLE_DECL(adcx140_mic2_analog_enum, 259 ADCX140_CH2_CFG0, 7, 260 adcx140_analog_sel_text); 261 262 static const struct snd_kcontrol_new adcx140_dapm_mic2_analog_control = 263 SOC_DAPM_ENUM("MIC2 Analog MUX", adcx140_mic2_analog_enum); 264 265 static SOC_ENUM_SINGLE_DECL(adcx140_mic2m_enum, 266 ADCX140_CH2_CFG0, 5, 267 adcx140_mic_sel_text); 268 269 static const struct snd_kcontrol_new adcx140_dapm_mic2m_control = 270 SOC_DAPM_ENUM("MIC2M MUX", adcx140_mic2m_enum); 271 272 static SOC_ENUM_SINGLE_DECL(adcx140_mic3p_enum, 273 ADCX140_CH3_CFG0, 5, 274 adcx140_mic_sel_text); 275 276 static const struct snd_kcontrol_new adcx140_dapm_mic3p_control = 277 SOC_DAPM_ENUM("MIC3P MUX", adcx140_mic3p_enum); 278 279 static SOC_ENUM_SINGLE_DECL(adcx140_mic3_analog_enum, 280 ADCX140_CH3_CFG0, 7, 281 adcx140_analog_sel_text); 282 283 static const struct snd_kcontrol_new adcx140_dapm_mic3_analog_control = 284 SOC_DAPM_ENUM("MIC3 Analog MUX", adcx140_mic3_analog_enum); 285 286 static SOC_ENUM_SINGLE_DECL(adcx140_mic3m_enum, 287 ADCX140_CH3_CFG0, 5, 288 adcx140_mic_sel_text); 289 290 static const struct snd_kcontrol_new adcx140_dapm_mic3m_control = 291 SOC_DAPM_ENUM("MIC3M MUX", adcx140_mic3m_enum); 292 293 static SOC_ENUM_SINGLE_DECL(adcx140_mic4p_enum, 294 ADCX140_CH4_CFG0, 5, 295 adcx140_mic_sel_text); 296 297 static const struct snd_kcontrol_new adcx140_dapm_mic4p_control = 298 SOC_DAPM_ENUM("MIC4P MUX", adcx140_mic4p_enum); 299 300 static SOC_ENUM_SINGLE_DECL(adcx140_mic4_analog_enum, 301 ADCX140_CH4_CFG0, 7, 302 adcx140_analog_sel_text); 303 304 static const struct snd_kcontrol_new adcx140_dapm_mic4_analog_control = 305 SOC_DAPM_ENUM("MIC4 Analog MUX", adcx140_mic4_analog_enum); 306 307 static SOC_ENUM_SINGLE_DECL(adcx140_mic4m_enum, 308 ADCX140_CH4_CFG0, 5, 309 adcx140_mic_sel_text); 310 311 static const struct snd_kcontrol_new adcx140_dapm_mic4m_control = 312 SOC_DAPM_ENUM("MIC4M MUX", adcx140_mic4m_enum); 313 314 static const struct snd_kcontrol_new adcx140_dapm_ch1_en_switch = 315 SOC_DAPM_SINGLE("Switch", ADCX140_ASI_OUT_CH_EN, 7, 1, 0); 316 static const struct snd_kcontrol_new adcx140_dapm_ch2_en_switch = 317 SOC_DAPM_SINGLE("Switch", ADCX140_ASI_OUT_CH_EN, 6, 1, 0); 318 static const struct snd_kcontrol_new adcx140_dapm_ch3_en_switch = 319 SOC_DAPM_SINGLE("Switch", ADCX140_ASI_OUT_CH_EN, 5, 1, 0); 320 static const struct snd_kcontrol_new adcx140_dapm_ch4_en_switch = 321 SOC_DAPM_SINGLE("Switch", ADCX140_ASI_OUT_CH_EN, 4, 1, 0); 322 static const struct snd_kcontrol_new adcx140_dapm_ch5_en_switch = 323 SOC_DAPM_SINGLE("Switch", ADCX140_ASI_OUT_CH_EN, 3, 1, 0); 324 static const struct snd_kcontrol_new adcx140_dapm_ch6_en_switch = 325 SOC_DAPM_SINGLE("Switch", ADCX140_ASI_OUT_CH_EN, 2, 1, 0); 326 static const struct snd_kcontrol_new adcx140_dapm_ch7_en_switch = 327 SOC_DAPM_SINGLE("Switch", ADCX140_ASI_OUT_CH_EN, 1, 1, 0); 328 static const struct snd_kcontrol_new adcx140_dapm_ch8_en_switch = 329 SOC_DAPM_SINGLE("Switch", ADCX140_ASI_OUT_CH_EN, 0, 1, 0); 330 331 static const struct snd_kcontrol_new adcx140_dapm_ch1_dre_en_switch = 332 SOC_DAPM_SINGLE("Switch", ADCX140_CH1_CFG0, 0, 1, 0); 333 static const struct snd_kcontrol_new adcx140_dapm_ch2_dre_en_switch = 334 SOC_DAPM_SINGLE("Switch", ADCX140_CH2_CFG0, 0, 1, 0); 335 static const struct snd_kcontrol_new adcx140_dapm_ch3_dre_en_switch = 336 SOC_DAPM_SINGLE("Switch", ADCX140_CH3_CFG0, 0, 1, 0); 337 static const struct snd_kcontrol_new adcx140_dapm_ch4_dre_en_switch = 338 SOC_DAPM_SINGLE("Switch", ADCX140_CH4_CFG0, 0, 1, 0); 339 340 static const struct snd_kcontrol_new adcx140_dapm_dre_en_switch = 341 SOC_DAPM_SINGLE("Switch", ADCX140_DSP_CFG1, 3, 1, 0); 342 343 /* Output Mixer */ 344 static const struct snd_kcontrol_new adcx140_output_mixer_controls[] = { 345 SOC_DAPM_SINGLE("Digital CH1 Switch", 0, 0, 0, 0), 346 SOC_DAPM_SINGLE("Digital CH2 Switch", 0, 0, 0, 0), 347 SOC_DAPM_SINGLE("Digital CH3 Switch", 0, 0, 0, 0), 348 SOC_DAPM_SINGLE("Digital CH4 Switch", 0, 0, 0, 0), 349 }; 350 351 static const struct snd_soc_dapm_widget adcx140_dapm_widgets[] = { 352 /* Analog Differential Inputs */ 353 SND_SOC_DAPM_INPUT("MIC1P"), 354 SND_SOC_DAPM_INPUT("MIC1M"), 355 SND_SOC_DAPM_INPUT("MIC2P"), 356 SND_SOC_DAPM_INPUT("MIC2M"), 357 SND_SOC_DAPM_INPUT("MIC3P"), 358 SND_SOC_DAPM_INPUT("MIC3M"), 359 SND_SOC_DAPM_INPUT("MIC4P"), 360 SND_SOC_DAPM_INPUT("MIC4M"), 361 362 SND_SOC_DAPM_OUTPUT("CH1_OUT"), 363 SND_SOC_DAPM_OUTPUT("CH2_OUT"), 364 SND_SOC_DAPM_OUTPUT("CH3_OUT"), 365 SND_SOC_DAPM_OUTPUT("CH4_OUT"), 366 SND_SOC_DAPM_OUTPUT("CH5_OUT"), 367 SND_SOC_DAPM_OUTPUT("CH6_OUT"), 368 SND_SOC_DAPM_OUTPUT("CH7_OUT"), 369 SND_SOC_DAPM_OUTPUT("CH8_OUT"), 370 371 SND_SOC_DAPM_MIXER("Output Mixer", SND_SOC_NOPM, 0, 0, 372 &adcx140_output_mixer_controls[0], 373 ARRAY_SIZE(adcx140_output_mixer_controls)), 374 375 /* Input Selection to MIC_PGA */ 376 SND_SOC_DAPM_MUX("MIC1P Input Mux", SND_SOC_NOPM, 0, 0, 377 &adcx140_dapm_mic1p_control), 378 SND_SOC_DAPM_MUX("MIC2P Input Mux", SND_SOC_NOPM, 0, 0, 379 &adcx140_dapm_mic2p_control), 380 SND_SOC_DAPM_MUX("MIC3P Input Mux", SND_SOC_NOPM, 0, 0, 381 &adcx140_dapm_mic3p_control), 382 SND_SOC_DAPM_MUX("MIC4P Input Mux", SND_SOC_NOPM, 0, 0, 383 &adcx140_dapm_mic4p_control), 384 385 /* Input Selection to MIC_PGA */ 386 SND_SOC_DAPM_MUX("MIC1 Analog Mux", SND_SOC_NOPM, 0, 0, 387 &adcx140_dapm_mic1_analog_control), 388 SND_SOC_DAPM_MUX("MIC2 Analog Mux", SND_SOC_NOPM, 0, 0, 389 &adcx140_dapm_mic2_analog_control), 390 SND_SOC_DAPM_MUX("MIC3 Analog Mux", SND_SOC_NOPM, 0, 0, 391 &adcx140_dapm_mic3_analog_control), 392 SND_SOC_DAPM_MUX("MIC4 Analog Mux", SND_SOC_NOPM, 0, 0, 393 &adcx140_dapm_mic4_analog_control), 394 395 SND_SOC_DAPM_MUX("MIC1M Input Mux", SND_SOC_NOPM, 0, 0, 396 &adcx140_dapm_mic1m_control), 397 SND_SOC_DAPM_MUX("MIC2M Input Mux", SND_SOC_NOPM, 0, 0, 398 &adcx140_dapm_mic2m_control), 399 SND_SOC_DAPM_MUX("MIC3M Input Mux", SND_SOC_NOPM, 0, 0, 400 &adcx140_dapm_mic3m_control), 401 SND_SOC_DAPM_MUX("MIC4M Input Mux", SND_SOC_NOPM, 0, 0, 402 &adcx140_dapm_mic4m_control), 403 404 SND_SOC_DAPM_PGA("MIC_GAIN_CTL_CH1", SND_SOC_NOPM, 0, 0, NULL, 0), 405 SND_SOC_DAPM_PGA("MIC_GAIN_CTL_CH2", SND_SOC_NOPM, 0, 0, NULL, 0), 406 SND_SOC_DAPM_PGA("MIC_GAIN_CTL_CH3", SND_SOC_NOPM, 0, 0, NULL, 0), 407 SND_SOC_DAPM_PGA("MIC_GAIN_CTL_CH4", SND_SOC_NOPM, 0, 0, NULL, 0), 408 409 SND_SOC_DAPM_ADC("CH1_ADC", "CH1 Capture", ADCX140_IN_CH_EN, 7, 0), 410 SND_SOC_DAPM_ADC("CH2_ADC", "CH2 Capture", ADCX140_IN_CH_EN, 6, 0), 411 SND_SOC_DAPM_ADC("CH3_ADC", "CH3 Capture", ADCX140_IN_CH_EN, 5, 0), 412 SND_SOC_DAPM_ADC("CH4_ADC", "CH4 Capture", ADCX140_IN_CH_EN, 4, 0), 413 414 SND_SOC_DAPM_ADC("CH1_DIG", "CH1 Capture", ADCX140_IN_CH_EN, 7, 0), 415 SND_SOC_DAPM_ADC("CH2_DIG", "CH2 Capture", ADCX140_IN_CH_EN, 6, 0), 416 SND_SOC_DAPM_ADC("CH3_DIG", "CH3 Capture", ADCX140_IN_CH_EN, 5, 0), 417 SND_SOC_DAPM_ADC("CH4_DIG", "CH4 Capture", ADCX140_IN_CH_EN, 4, 0), 418 SND_SOC_DAPM_ADC("CH5_DIG", "CH5 Capture", ADCX140_IN_CH_EN, 3, 0), 419 SND_SOC_DAPM_ADC("CH6_DIG", "CH6 Capture", ADCX140_IN_CH_EN, 2, 0), 420 SND_SOC_DAPM_ADC("CH7_DIG", "CH7 Capture", ADCX140_IN_CH_EN, 1, 0), 421 SND_SOC_DAPM_ADC("CH8_DIG", "CH8 Capture", ADCX140_IN_CH_EN, 0, 0), 422 423 424 SND_SOC_DAPM_SWITCH("CH1_ASI_EN", SND_SOC_NOPM, 0, 0, 425 &adcx140_dapm_ch1_en_switch), 426 SND_SOC_DAPM_SWITCH("CH2_ASI_EN", SND_SOC_NOPM, 0, 0, 427 &adcx140_dapm_ch2_en_switch), 428 SND_SOC_DAPM_SWITCH("CH3_ASI_EN", SND_SOC_NOPM, 0, 0, 429 &adcx140_dapm_ch3_en_switch), 430 SND_SOC_DAPM_SWITCH("CH4_ASI_EN", SND_SOC_NOPM, 0, 0, 431 &adcx140_dapm_ch4_en_switch), 432 433 SND_SOC_DAPM_SWITCH("CH5_ASI_EN", SND_SOC_NOPM, 0, 0, 434 &adcx140_dapm_ch5_en_switch), 435 SND_SOC_DAPM_SWITCH("CH6_ASI_EN", SND_SOC_NOPM, 0, 0, 436 &adcx140_dapm_ch6_en_switch), 437 SND_SOC_DAPM_SWITCH("CH7_ASI_EN", SND_SOC_NOPM, 0, 0, 438 &adcx140_dapm_ch7_en_switch), 439 SND_SOC_DAPM_SWITCH("CH8_ASI_EN", SND_SOC_NOPM, 0, 0, 440 &adcx140_dapm_ch8_en_switch), 441 442 SND_SOC_DAPM_SWITCH("DRE_ENABLE", SND_SOC_NOPM, 0, 0, 443 &adcx140_dapm_dre_en_switch), 444 445 SND_SOC_DAPM_SWITCH("CH1_DRE_EN", SND_SOC_NOPM, 0, 0, 446 &adcx140_dapm_ch1_dre_en_switch), 447 SND_SOC_DAPM_SWITCH("CH2_DRE_EN", SND_SOC_NOPM, 0, 0, 448 &adcx140_dapm_ch2_dre_en_switch), 449 SND_SOC_DAPM_SWITCH("CH3_DRE_EN", SND_SOC_NOPM, 0, 0, 450 &adcx140_dapm_ch3_dre_en_switch), 451 SND_SOC_DAPM_SWITCH("CH4_DRE_EN", SND_SOC_NOPM, 0, 0, 452 &adcx140_dapm_ch4_dre_en_switch), 453 454 SND_SOC_DAPM_MUX("IN1 Analog Mic Resistor", SND_SOC_NOPM, 0, 0, 455 in1_resistor_controls), 456 SND_SOC_DAPM_MUX("IN2 Analog Mic Resistor", SND_SOC_NOPM, 0, 0, 457 in2_resistor_controls), 458 SND_SOC_DAPM_MUX("IN3 Analog Mic Resistor", SND_SOC_NOPM, 0, 0, 459 in3_resistor_controls), 460 SND_SOC_DAPM_MUX("IN4 Analog Mic Resistor", SND_SOC_NOPM, 0, 0, 461 in4_resistor_controls), 462 463 SND_SOC_DAPM_MUX("PDM Clk Div Select", SND_SOC_NOPM, 0, 0, 464 pdmclk_div_controls), 465 466 SND_SOC_DAPM_MUX("Decimation Filter", SND_SOC_NOPM, 0, 0, 467 decimation_filter_controls), 468 }; 469 470 static const struct snd_soc_dapm_route adcx140_audio_map[] = { 471 /* Outputs */ 472 {"CH1_OUT", NULL, "Output Mixer"}, 473 {"CH2_OUT", NULL, "Output Mixer"}, 474 {"CH3_OUT", NULL, "Output Mixer"}, 475 {"CH4_OUT", NULL, "Output Mixer"}, 476 477 {"CH1_ASI_EN", "Switch", "CH1_ADC"}, 478 {"CH2_ASI_EN", "Switch", "CH2_ADC"}, 479 {"CH3_ASI_EN", "Switch", "CH3_ADC"}, 480 {"CH4_ASI_EN", "Switch", "CH4_ADC"}, 481 482 {"CH1_ASI_EN", "Switch", "CH1_DIG"}, 483 {"CH2_ASI_EN", "Switch", "CH2_DIG"}, 484 {"CH3_ASI_EN", "Switch", "CH3_DIG"}, 485 {"CH4_ASI_EN", "Switch", "CH4_DIG"}, 486 {"CH5_ASI_EN", "Switch", "CH5_DIG"}, 487 {"CH6_ASI_EN", "Switch", "CH6_DIG"}, 488 {"CH7_ASI_EN", "Switch", "CH7_DIG"}, 489 {"CH8_ASI_EN", "Switch", "CH8_DIG"}, 490 491 {"CH5_ASI_EN", "Switch", "CH5_OUT"}, 492 {"CH6_ASI_EN", "Switch", "CH6_OUT"}, 493 {"CH7_ASI_EN", "Switch", "CH7_OUT"}, 494 {"CH8_ASI_EN", "Switch", "CH8_OUT"}, 495 496 {"Decimation Filter", "Linear Phase", "DRE_ENABLE"}, 497 {"Decimation Filter", "Low Latency", "DRE_ENABLE"}, 498 {"Decimation Filter", "Ultra-low Latency", "DRE_ENABLE"}, 499 500 {"DRE_ENABLE", "Switch", "CH1_DRE_EN"}, 501 {"DRE_ENABLE", "Switch", "CH2_DRE_EN"}, 502 {"DRE_ENABLE", "Switch", "CH3_DRE_EN"}, 503 {"DRE_ENABLE", "Switch", "CH4_DRE_EN"}, 504 505 {"CH1_DRE_EN", "Switch", "CH1_ADC"}, 506 {"CH2_DRE_EN", "Switch", "CH2_ADC"}, 507 {"CH3_DRE_EN", "Switch", "CH3_ADC"}, 508 {"CH4_DRE_EN", "Switch", "CH4_ADC"}, 509 510 /* Mic input */ 511 {"CH1_ADC", NULL, "MIC_GAIN_CTL_CH1"}, 512 {"CH2_ADC", NULL, "MIC_GAIN_CTL_CH2"}, 513 {"CH3_ADC", NULL, "MIC_GAIN_CTL_CH3"}, 514 {"CH4_ADC", NULL, "MIC_GAIN_CTL_CH4"}, 515 516 {"MIC_GAIN_CTL_CH1", NULL, "IN1 Analog Mic Resistor"}, 517 {"MIC_GAIN_CTL_CH1", NULL, "IN1 Analog Mic Resistor"}, 518 {"MIC_GAIN_CTL_CH2", NULL, "IN2 Analog Mic Resistor"}, 519 {"MIC_GAIN_CTL_CH2", NULL, "IN2 Analog Mic Resistor"}, 520 {"MIC_GAIN_CTL_CH3", NULL, "IN3 Analog Mic Resistor"}, 521 {"MIC_GAIN_CTL_CH3", NULL, "IN3 Analog Mic Resistor"}, 522 {"MIC_GAIN_CTL_CH4", NULL, "IN4 Analog Mic Resistor"}, 523 {"MIC_GAIN_CTL_CH4", NULL, "IN4 Analog Mic Resistor"}, 524 525 {"IN1 Analog Mic Resistor", "2.5 kOhm", "MIC1P Input Mux"}, 526 {"IN1 Analog Mic Resistor", "10 kOhm", "MIC1P Input Mux"}, 527 {"IN1 Analog Mic Resistor", "20 kOhm", "MIC1P Input Mux"}, 528 529 {"IN1 Analog Mic Resistor", "2.5 kOhm", "MIC1M Input Mux"}, 530 {"IN1 Analog Mic Resistor", "10 kOhm", "MIC1M Input Mux"}, 531 {"IN1 Analog Mic Resistor", "20 kOhm", "MIC1M Input Mux"}, 532 533 {"IN2 Analog Mic Resistor", "2.5 kOhm", "MIC2P Input Mux"}, 534 {"IN2 Analog Mic Resistor", "10 kOhm", "MIC2P Input Mux"}, 535 {"IN2 Analog Mic Resistor", "20 kOhm", "MIC2P Input Mux"}, 536 537 {"IN2 Analog Mic Resistor", "2.5 kOhm", "MIC2M Input Mux"}, 538 {"IN2 Analog Mic Resistor", "10 kOhm", "MIC2M Input Mux"}, 539 {"IN2 Analog Mic Resistor", "20 kOhm", "MIC2M Input Mux"}, 540 541 {"IN3 Analog Mic Resistor", "2.5 kOhm", "MIC3P Input Mux"}, 542 {"IN3 Analog Mic Resistor", "10 kOhm", "MIC3P Input Mux"}, 543 {"IN3 Analog Mic Resistor", "20 kOhm", "MIC3P Input Mux"}, 544 545 {"IN3 Analog Mic Resistor", "2.5 kOhm", "MIC3M Input Mux"}, 546 {"IN3 Analog Mic Resistor", "10 kOhm", "MIC3M Input Mux"}, 547 {"IN3 Analog Mic Resistor", "20 kOhm", "MIC3M Input Mux"}, 548 549 {"IN4 Analog Mic Resistor", "2.5 kOhm", "MIC4P Input Mux"}, 550 {"IN4 Analog Mic Resistor", "10 kOhm", "MIC4P Input Mux"}, 551 {"IN4 Analog Mic Resistor", "20 kOhm", "MIC4P Input Mux"}, 552 553 {"IN4 Analog Mic Resistor", "2.5 kOhm", "MIC4M Input Mux"}, 554 {"IN4 Analog Mic Resistor", "10 kOhm", "MIC4M Input Mux"}, 555 {"IN4 Analog Mic Resistor", "20 kOhm", "MIC4M Input Mux"}, 556 557 {"PDM Clk Div Select", "2.8224 MHz", "MIC1P Input Mux"}, 558 {"PDM Clk Div Select", "1.4112 MHz", "MIC1P Input Mux"}, 559 {"PDM Clk Div Select", "705.6 kHz", "MIC1P Input Mux"}, 560 {"PDM Clk Div Select", "5.6448 MHz", "MIC1P Input Mux"}, 561 562 {"MIC1P Input Mux", NULL, "CH1_DIG"}, 563 {"MIC1M Input Mux", NULL, "CH2_DIG"}, 564 {"MIC2P Input Mux", NULL, "CH3_DIG"}, 565 {"MIC2M Input Mux", NULL, "CH4_DIG"}, 566 {"MIC3P Input Mux", NULL, "CH5_DIG"}, 567 {"MIC3M Input Mux", NULL, "CH6_DIG"}, 568 {"MIC4P Input Mux", NULL, "CH7_DIG"}, 569 {"MIC4M Input Mux", NULL, "CH8_DIG"}, 570 571 {"MIC1 Analog Mux", "Line In", "MIC1P"}, 572 {"MIC2 Analog Mux", "Line In", "MIC2P"}, 573 {"MIC3 Analog Mux", "Line In", "MIC3P"}, 574 {"MIC4 Analog Mux", "Line In", "MIC4P"}, 575 576 {"MIC1P Input Mux", "Analog", "MIC1P"}, 577 {"MIC1M Input Mux", "Analog", "MIC1M"}, 578 {"MIC2P Input Mux", "Analog", "MIC2P"}, 579 {"MIC2M Input Mux", "Analog", "MIC2M"}, 580 {"MIC3P Input Mux", "Analog", "MIC3P"}, 581 {"MIC3M Input Mux", "Analog", "MIC3M"}, 582 {"MIC4P Input Mux", "Analog", "MIC4P"}, 583 {"MIC4M Input Mux", "Analog", "MIC4M"}, 584 585 {"MIC1P Input Mux", "Digital", "MIC1P"}, 586 {"MIC1M Input Mux", "Digital", "MIC1M"}, 587 {"MIC2P Input Mux", "Digital", "MIC2P"}, 588 {"MIC2M Input Mux", "Digital", "MIC2M"}, 589 {"MIC3P Input Mux", "Digital", "MIC3P"}, 590 {"MIC3M Input Mux", "Digital", "MIC3M"}, 591 {"MIC4P Input Mux", "Digital", "MIC4P"}, 592 {"MIC4M Input Mux", "Digital", "MIC4M"}, 593 }; 594 595 #define ADCX140_PHASE_CALIB_SWITCH(xname) {\ 596 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 597 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 598 .info = adcx140_phase_calib_info, \ 599 .get = adcx140_phase_calib_get, \ 600 .put = adcx140_phase_calib_put} 601 602 static int adcx140_phase_calib_info(struct snd_kcontrol *kcontrol, 603 struct snd_ctl_elem_info *uinfo) 604 { 605 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 606 uinfo->count = 1; 607 uinfo->value.integer.min = 0; 608 uinfo->value.integer.max = 1; 609 return 0; 610 } 611 612 static int adcx140_phase_calib_get(struct snd_kcontrol *kcontrol, 613 struct snd_ctl_elem_value *value) 614 { 615 struct snd_soc_component *codec = 616 snd_soc_kcontrol_component(kcontrol); 617 struct adcx140_priv *adcx140 = snd_soc_component_get_drvdata(codec); 618 619 value->value.integer.value[0] = adcx140->phase_calib_on ? 1 : 0; 620 621 622 return 0; 623 } 624 625 static int adcx140_phase_calib_put(struct snd_kcontrol *kcontrol, 626 struct snd_ctl_elem_value *value) 627 { 628 struct snd_soc_component *codec 629 = snd_soc_kcontrol_component(kcontrol); 630 struct adcx140_priv *adcx140 = snd_soc_component_get_drvdata(codec); 631 632 bool v = value->value.integer.value[0] ? true : false; 633 634 if (adcx140->phase_calib_on != v) { 635 adcx140->phase_calib_on = v; 636 return 1; 637 } 638 return 0; 639 } 640 641 static const struct snd_kcontrol_new adcx140_snd_controls[] = { 642 SOC_SINGLE_TLV("Analog CH1 Mic Gain Volume", ADCX140_CH1_CFG1, 2, 42, 0, 643 adc_tlv), 644 SOC_SINGLE_TLV("Analog CH2 Mic Gain Volume", ADCX140_CH2_CFG1, 2, 42, 0, 645 adc_tlv), 646 SOC_SINGLE_TLV("Analog CH3 Mic Gain Volume", ADCX140_CH3_CFG1, 2, 42, 0, 647 adc_tlv), 648 SOC_SINGLE_TLV("Analog CH4 Mic Gain Volume", ADCX140_CH4_CFG1, 2, 42, 0, 649 adc_tlv), 650 651 SOC_SINGLE_TLV("DRE Threshold", ADCX140_DRE_CFG0, 4, 9, 0, 652 dre_thresh_tlv), 653 SOC_SINGLE_TLV("DRE Max Gain", ADCX140_DRE_CFG0, 0, 12, 0, 654 dre_gain_tlv), 655 656 SOC_SINGLE_TLV("AGC Threshold", ADCX140_AGC_CFG0, 4, 15, 0, 657 agc_thresh_tlv), 658 SOC_SINGLE_TLV("AGC Max Gain", ADCX140_AGC_CFG0, 0, 13, 0, 659 agc_gain_tlv), 660 661 SOC_SINGLE_TLV("Digital CH1 Out Volume", ADCX140_CH1_CFG2, 662 0, 0xff, 0, dig_vol_tlv), 663 SOC_SINGLE_TLV("Digital CH2 Out Volume", ADCX140_CH2_CFG2, 664 0, 0xff, 0, dig_vol_tlv), 665 SOC_SINGLE_TLV("Digital CH3 Out Volume", ADCX140_CH3_CFG2, 666 0, 0xff, 0, dig_vol_tlv), 667 SOC_SINGLE_TLV("Digital CH4 Out Volume", ADCX140_CH4_CFG2, 668 0, 0xff, 0, dig_vol_tlv), 669 SOC_SINGLE_TLV("Digital CH5 Out Volume", ADCX140_CH5_CFG2, 670 0, 0xff, 0, dig_vol_tlv), 671 SOC_SINGLE_TLV("Digital CH6 Out Volume", ADCX140_CH6_CFG2, 672 0, 0xff, 0, dig_vol_tlv), 673 SOC_SINGLE_TLV("Digital CH7 Out Volume", ADCX140_CH7_CFG2, 674 0, 0xff, 0, dig_vol_tlv), 675 SOC_SINGLE_TLV("Digital CH8 Out Volume", ADCX140_CH8_CFG2, 676 0, 0xff, 0, dig_vol_tlv), 677 ADCX140_PHASE_CALIB_SWITCH("Phase Calibration Switch"), 678 }; 679 680 static int adcx140_reset(struct adcx140_priv *adcx140) 681 { 682 int ret = 0; 683 684 if (adcx140->gpio_reset) { 685 gpiod_direction_output(adcx140->gpio_reset, 0); 686 /* 8.4.1: wait for hw shutdown (25ms) + >= 1ms */ 687 usleep_range(30000, 100000); 688 gpiod_direction_output(adcx140->gpio_reset, 1); 689 } else { 690 ret = regmap_write(adcx140->regmap, ADCX140_SW_RESET, 691 ADCX140_RESET); 692 } 693 694 /* 8.4.2: wait >= 10 ms after entering sleep mode. */ 695 usleep_range(10000, 100000); 696 697 return ret; 698 } 699 700 static void adcx140_pwr_ctrl(struct adcx140_priv *adcx140, bool power_state) 701 { 702 int pwr_ctrl = 0; 703 int ret = 0; 704 struct snd_soc_component *component = adcx140->component; 705 706 if (power_state) 707 pwr_ctrl = ADCX140_PWR_CFG_ADC_PDZ | ADCX140_PWR_CFG_PLL_PDZ; 708 709 if (adcx140->micbias_vg && power_state) 710 pwr_ctrl |= ADCX140_PWR_CFG_BIAS_PDZ; 711 712 if (pwr_ctrl) { 713 ret = regmap_write(adcx140->regmap, ADCX140_PHASE_CALIB, 714 adcx140->phase_calib_on ? 0x00 : 0x40); 715 if (ret) 716 dev_err(component->dev, "%s: register write error %d\n", 717 __func__, ret); 718 } 719 720 regmap_update_bits(adcx140->regmap, ADCX140_PWR_CFG, 721 ADCX140_PWR_CTRL_MSK, pwr_ctrl); 722 } 723 724 static int adcx140_hw_params(struct snd_pcm_substream *substream, 725 struct snd_pcm_hw_params *params, 726 struct snd_soc_dai *dai) 727 { 728 struct snd_soc_component *component = dai->component; 729 struct adcx140_priv *adcx140 = snd_soc_component_get_drvdata(component); 730 u8 data = 0; 731 732 switch (params_width(params)) { 733 case 16: 734 data = ADCX140_16_BIT_WORD; 735 break; 736 case 20: 737 data = ADCX140_20_BIT_WORD; 738 break; 739 case 24: 740 data = ADCX140_24_BIT_WORD; 741 break; 742 case 32: 743 data = ADCX140_32_BIT_WORD; 744 break; 745 default: 746 dev_err(component->dev, "%s: Unsupported width %d\n", 747 __func__, params_width(params)); 748 return -EINVAL; 749 } 750 751 adcx140_pwr_ctrl(adcx140, false); 752 753 snd_soc_component_update_bits(component, ADCX140_ASI_CFG0, 754 ADCX140_WORD_LEN_MSK, data); 755 756 adcx140_pwr_ctrl(adcx140, true); 757 758 return 0; 759 } 760 761 static int adcx140_set_dai_fmt(struct snd_soc_dai *codec_dai, 762 unsigned int fmt) 763 { 764 struct snd_soc_component *component = codec_dai->component; 765 struct adcx140_priv *adcx140 = snd_soc_component_get_drvdata(component); 766 u8 iface_reg1 = 0; 767 u8 iface_reg2 = 0; 768 int offset = 0; 769 bool inverted_bclk = false; 770 771 /* set master/slave audio interface */ 772 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { 773 case SND_SOC_DAIFMT_CBP_CFP: 774 iface_reg2 |= ADCX140_BCLK_FSYNC_MASTER; 775 break; 776 case SND_SOC_DAIFMT_CBC_CFC: 777 break; 778 default: 779 dev_err(component->dev, "Invalid DAI clock provider\n"); 780 return -EINVAL; 781 } 782 783 /* interface format */ 784 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 785 case SND_SOC_DAIFMT_I2S: 786 iface_reg1 |= ADCX140_I2S_MODE_BIT; 787 break; 788 case SND_SOC_DAIFMT_LEFT_J: 789 iface_reg1 |= ADCX140_LEFT_JUST_BIT; 790 break; 791 case SND_SOC_DAIFMT_DSP_A: 792 offset = 1; 793 inverted_bclk = true; 794 break; 795 case SND_SOC_DAIFMT_DSP_B: 796 inverted_bclk = true; 797 break; 798 default: 799 dev_err(component->dev, "Invalid DAI interface format\n"); 800 return -EINVAL; 801 } 802 803 /* signal polarity */ 804 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 805 case SND_SOC_DAIFMT_IB_NF: 806 case SND_SOC_DAIFMT_IB_IF: 807 inverted_bclk = !inverted_bclk; 808 break; 809 case SND_SOC_DAIFMT_NB_IF: 810 iface_reg1 |= ADCX140_FSYNCINV_BIT; 811 break; 812 case SND_SOC_DAIFMT_NB_NF: 813 break; 814 default: 815 dev_err(component->dev, "Invalid DAI clock signal polarity\n"); 816 return -EINVAL; 817 } 818 819 if (inverted_bclk) 820 iface_reg1 |= ADCX140_BCLKINV_BIT; 821 822 adcx140->dai_fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK; 823 824 adcx140_pwr_ctrl(adcx140, false); 825 826 snd_soc_component_update_bits(component, ADCX140_ASI_CFG0, 827 ADCX140_FSYNCINV_BIT | 828 ADCX140_BCLKINV_BIT | 829 ADCX140_ASI_FORMAT_MSK, 830 iface_reg1); 831 snd_soc_component_update_bits(component, ADCX140_MST_CFG0, 832 ADCX140_BCLK_FSYNC_MASTER, iface_reg2); 833 834 /* Configure data offset */ 835 snd_soc_component_update_bits(component, ADCX140_ASI_CFG1, 836 ADCX140_TX_OFFSET_MASK, offset); 837 838 adcx140_pwr_ctrl(adcx140, true); 839 840 return 0; 841 } 842 843 static int adcx140_set_dai_tdm_slot(struct snd_soc_dai *codec_dai, 844 unsigned int tx_mask, unsigned int rx_mask, 845 int slots, int slot_width) 846 { 847 struct snd_soc_component *component = codec_dai->component; 848 struct adcx140_priv *adcx140 = snd_soc_component_get_drvdata(component); 849 850 /* 851 * The chip itself supports arbitrary masks, but the driver currently 852 * only supports adjacent slots beginning at the first slot. 853 */ 854 if (tx_mask != GENMASK(__fls(tx_mask), 0)) { 855 dev_err(component->dev, "Only lower adjacent slots are supported\n"); 856 return -EINVAL; 857 } 858 859 switch (slot_width) { 860 case 16: 861 case 20: 862 case 24: 863 case 32: 864 break; 865 default: 866 dev_err(component->dev, "Unsupported slot width %d\n", slot_width); 867 return -EINVAL; 868 } 869 870 adcx140->slot_width = slot_width; 871 872 return 0; 873 } 874 875 static const struct snd_soc_dai_ops adcx140_dai_ops = { 876 .hw_params = adcx140_hw_params, 877 .set_fmt = adcx140_set_dai_fmt, 878 .set_tdm_slot = adcx140_set_dai_tdm_slot, 879 }; 880 881 static int adcx140_configure_gpo(struct adcx140_priv *adcx140) 882 { 883 u32 gpo_outputs[ADCX140_NUM_GPOS]; 884 u32 gpo_output_val = 0; 885 int ret; 886 int i; 887 888 for (i = 0; i < ADCX140_NUM_GPOS; i++) { 889 ret = device_property_read_u32_array(adcx140->dev, 890 gpo_config_names[i], 891 gpo_outputs, 892 ADCX140_NUM_GPO_CFGS); 893 if (ret) 894 continue; 895 896 if (gpo_outputs[0] > ADCX140_GPO_CFG_MAX) { 897 dev_err(adcx140->dev, "GPO%d config out of range\n", i + 1); 898 return -EINVAL; 899 } 900 901 if (gpo_outputs[1] > ADCX140_GPO_DRV_MAX) { 902 dev_err(adcx140->dev, "GPO%d drive out of range\n", i + 1); 903 return -EINVAL; 904 } 905 906 gpo_output_val = gpo_outputs[0] << ADCX140_GPO_SHIFT | 907 gpo_outputs[1]; 908 ret = regmap_write(adcx140->regmap, ADCX140_GPO_CFG0 + i, 909 gpo_output_val); 910 if (ret) 911 return ret; 912 } 913 914 return 0; 915 916 } 917 918 static int adcx140_configure_gpio(struct adcx140_priv *adcx140) 919 { 920 int gpio_count = 0; 921 u32 gpio_outputs[ADCX140_NUM_GPIO_CFGS]; 922 u32 gpio_output_val = 0; 923 int ret; 924 925 gpio_count = device_property_count_u32(adcx140->dev, 926 "ti,gpio-config"); 927 if (gpio_count <= 0) 928 return 0; 929 930 if (gpio_count != ADCX140_NUM_GPIO_CFGS) 931 return -EINVAL; 932 933 ret = device_property_read_u32_array(adcx140->dev, "ti,gpio-config", 934 gpio_outputs, gpio_count); 935 if (ret) 936 return ret; 937 938 if (gpio_outputs[0] > ADCX140_GPIO_CFG_MAX) { 939 dev_err(adcx140->dev, "GPIO config out of range\n"); 940 return -EINVAL; 941 } 942 943 if (gpio_outputs[1] > ADCX140_GPIO_DRV_MAX) { 944 dev_err(adcx140->dev, "GPIO drive out of range\n"); 945 return -EINVAL; 946 } 947 948 gpio_output_val = gpio_outputs[0] << ADCX140_GPIO_SHIFT 949 | gpio_outputs[1]; 950 951 return regmap_write(adcx140->regmap, ADCX140_GPIO_CFG0, gpio_output_val); 952 } 953 954 static int adcx140_codec_probe(struct snd_soc_component *component) 955 { 956 struct adcx140_priv *adcx140 = snd_soc_component_get_drvdata(component); 957 int sleep_cfg_val = ADCX140_WAKE_DEV; 958 u32 bias_source; 959 u32 vref_source; 960 u8 bias_cfg; 961 int pdm_count; 962 u32 pdm_edges[ADCX140_NUM_PDM_EDGES]; 963 u32 pdm_edge_val = 0; 964 int gpi_count; 965 u32 gpi_inputs[ADCX140_NUM_GPI_PINS]; 966 u32 gpi_input_val = 0; 967 int i; 968 int ret; 969 bool tx_high_z; 970 971 ret = device_property_read_u32(adcx140->dev, "ti,mic-bias-source", 972 &bias_source); 973 if (ret || bias_source > ADCX140_MIC_BIAS_VAL_AVDD) { 974 bias_source = ADCX140_MIC_BIAS_VAL_VREF; 975 adcx140->micbias_vg = false; 976 } else { 977 adcx140->micbias_vg = true; 978 } 979 980 ret = device_property_read_u32(adcx140->dev, "ti,vref-source", 981 &vref_source); 982 if (ret) 983 vref_source = ADCX140_MIC_BIAS_VREF_275V; 984 985 if (vref_source > ADCX140_MIC_BIAS_VREF_1375V) { 986 dev_err(adcx140->dev, "Mic Bias source value is invalid\n"); 987 return -EINVAL; 988 } 989 990 bias_cfg = bias_source << ADCX140_MIC_BIAS_SHIFT | vref_source; 991 992 ret = adcx140_reset(adcx140); 993 if (ret) 994 goto out; 995 996 if (adcx140->supply_areg == NULL) 997 sleep_cfg_val |= ADCX140_AREG_INTERNAL; 998 999 ret = regmap_write(adcx140->regmap, ADCX140_SLEEP_CFG, sleep_cfg_val); 1000 if (ret) { 1001 dev_err(adcx140->dev, "setting sleep config failed %d\n", ret); 1002 goto out; 1003 } 1004 1005 /* 8.4.3: Wait >= 1ms after entering active mode. */ 1006 usleep_range(1000, 100000); 1007 1008 pdm_count = device_property_count_u32(adcx140->dev, 1009 "ti,pdm-edge-select"); 1010 if (pdm_count <= ADCX140_NUM_PDM_EDGES && pdm_count > 0) { 1011 ret = device_property_read_u32_array(adcx140->dev, 1012 "ti,pdm-edge-select", 1013 pdm_edges, pdm_count); 1014 if (ret) 1015 return ret; 1016 1017 for (i = 0; i < pdm_count; i++) 1018 pdm_edge_val |= pdm_edges[i] << (ADCX140_PDM_EDGE_SHIFT - i); 1019 1020 ret = regmap_write(adcx140->regmap, ADCX140_PDM_CFG, 1021 pdm_edge_val); 1022 if (ret) 1023 return ret; 1024 } 1025 1026 gpi_count = device_property_count_u32(adcx140->dev, "ti,gpi-config"); 1027 if (gpi_count <= ADCX140_NUM_GPI_PINS && gpi_count > 0) { 1028 ret = device_property_read_u32_array(adcx140->dev, 1029 "ti,gpi-config", 1030 gpi_inputs, gpi_count); 1031 if (ret) 1032 return ret; 1033 1034 gpi_input_val = gpi_inputs[ADCX140_GPI1_INDEX] << ADCX140_GPI_SHIFT | 1035 gpi_inputs[ADCX140_GPI2_INDEX]; 1036 1037 ret = regmap_write(adcx140->regmap, ADCX140_GPI_CFG0, 1038 gpi_input_val); 1039 if (ret) 1040 return ret; 1041 1042 gpi_input_val = gpi_inputs[ADCX140_GPI3_INDEX] << ADCX140_GPI_SHIFT | 1043 gpi_inputs[ADCX140_GPI4_INDEX]; 1044 1045 ret = regmap_write(adcx140->regmap, ADCX140_GPI_CFG1, 1046 gpi_input_val); 1047 if (ret) 1048 return ret; 1049 } 1050 1051 ret = adcx140_configure_gpio(adcx140); 1052 if (ret) 1053 return ret; 1054 1055 ret = adcx140_configure_gpo(adcx140); 1056 if (ret) 1057 goto out; 1058 1059 ret = regmap_update_bits(adcx140->regmap, ADCX140_BIAS_CFG, 1060 ADCX140_MIC_BIAS_VAL_MSK | 1061 ADCX140_MIC_BIAS_VREF_MSK, bias_cfg); 1062 if (ret) 1063 dev_err(adcx140->dev, "setting MIC bias failed %d\n", ret); 1064 1065 tx_high_z = device_property_read_bool(adcx140->dev, "ti,asi-tx-drive"); 1066 if (tx_high_z) { 1067 ret = regmap_update_bits(adcx140->regmap, ADCX140_ASI_CFG0, 1068 ADCX140_TX_FILL, ADCX140_TX_FILL); 1069 if (ret) { 1070 dev_err(adcx140->dev, "Setting Tx drive failed %d\n", ret); 1071 goto out; 1072 } 1073 } 1074 1075 adcx140_pwr_ctrl(adcx140, true); 1076 out: 1077 return ret; 1078 } 1079 1080 static int adcx140_set_bias_level(struct snd_soc_component *component, 1081 enum snd_soc_bias_level level) 1082 { 1083 struct adcx140_priv *adcx140 = snd_soc_component_get_drvdata(component); 1084 1085 switch (level) { 1086 case SND_SOC_BIAS_ON: 1087 case SND_SOC_BIAS_PREPARE: 1088 case SND_SOC_BIAS_STANDBY: 1089 adcx140_pwr_ctrl(adcx140, true); 1090 break; 1091 case SND_SOC_BIAS_OFF: 1092 adcx140_pwr_ctrl(adcx140, false); 1093 break; 1094 } 1095 1096 return 0; 1097 } 1098 1099 static const struct snd_soc_component_driver soc_codec_driver_adcx140 = { 1100 .probe = adcx140_codec_probe, 1101 .set_bias_level = adcx140_set_bias_level, 1102 .controls = adcx140_snd_controls, 1103 .num_controls = ARRAY_SIZE(adcx140_snd_controls), 1104 .dapm_widgets = adcx140_dapm_widgets, 1105 .num_dapm_widgets = ARRAY_SIZE(adcx140_dapm_widgets), 1106 .dapm_routes = adcx140_audio_map, 1107 .num_dapm_routes = ARRAY_SIZE(adcx140_audio_map), 1108 .suspend_bias_off = 1, 1109 .idle_bias_on = 0, 1110 .use_pmdown_time = 1, 1111 .endianness = 1, 1112 }; 1113 1114 static struct snd_soc_dai_driver adcx140_dai_driver[] = { 1115 { 1116 .name = "tlv320adcx140-codec", 1117 .capture = { 1118 .stream_name = "Capture", 1119 .channels_min = 2, 1120 .channels_max = ADCX140_MAX_CHANNELS, 1121 .rates = ADCX140_RATES, 1122 .formats = ADCX140_FORMATS, 1123 }, 1124 .ops = &adcx140_dai_ops, 1125 .symmetric_rate = 1, 1126 } 1127 }; 1128 1129 #ifdef CONFIG_OF 1130 static const struct of_device_id tlv320adcx140_of_match[] = { 1131 { .compatible = "ti,tlv320adc3140" }, 1132 { .compatible = "ti,tlv320adc5140" }, 1133 { .compatible = "ti,tlv320adc6140" }, 1134 {}, 1135 }; 1136 MODULE_DEVICE_TABLE(of, tlv320adcx140_of_match); 1137 #endif 1138 1139 static void adcx140_disable_regulator(void *arg) 1140 { 1141 struct adcx140_priv *adcx140 = arg; 1142 1143 regulator_disable(adcx140->supply_areg); 1144 } 1145 1146 static int adcx140_i2c_probe(struct i2c_client *i2c) 1147 { 1148 struct adcx140_priv *adcx140; 1149 int ret; 1150 1151 adcx140 = devm_kzalloc(&i2c->dev, sizeof(*adcx140), GFP_KERNEL); 1152 if (!adcx140) 1153 return -ENOMEM; 1154 1155 adcx140->phase_calib_on = false; 1156 adcx140->dev = &i2c->dev; 1157 1158 adcx140->gpio_reset = devm_gpiod_get_optional(adcx140->dev, 1159 "reset", GPIOD_OUT_LOW); 1160 if (IS_ERR(adcx140->gpio_reset)) 1161 dev_info(&i2c->dev, "Reset GPIO not defined\n"); 1162 1163 adcx140->supply_areg = devm_regulator_get_optional(adcx140->dev, 1164 "areg"); 1165 if (IS_ERR(adcx140->supply_areg)) { 1166 if (PTR_ERR(adcx140->supply_areg) == -EPROBE_DEFER) 1167 return -EPROBE_DEFER; 1168 1169 adcx140->supply_areg = NULL; 1170 } else { 1171 ret = regulator_enable(adcx140->supply_areg); 1172 if (ret) { 1173 dev_err(adcx140->dev, "Failed to enable areg\n"); 1174 return ret; 1175 } 1176 1177 ret = devm_add_action_or_reset(&i2c->dev, adcx140_disable_regulator, adcx140); 1178 if (ret) 1179 return ret; 1180 } 1181 1182 adcx140->regmap = devm_regmap_init_i2c(i2c, &adcx140_i2c_regmap); 1183 if (IS_ERR(adcx140->regmap)) { 1184 ret = PTR_ERR(adcx140->regmap); 1185 dev_err(&i2c->dev, "Failed to allocate register map: %d\n", 1186 ret); 1187 return ret; 1188 } 1189 1190 i2c_set_clientdata(i2c, adcx140); 1191 1192 return devm_snd_soc_register_component(&i2c->dev, 1193 &soc_codec_driver_adcx140, 1194 adcx140_dai_driver, 1); 1195 } 1196 1197 static const struct i2c_device_id adcx140_i2c_id[] = { 1198 { "tlv320adc3140", 0 }, 1199 { "tlv320adc5140", 1 }, 1200 { "tlv320adc6140", 2 }, 1201 {} 1202 }; 1203 MODULE_DEVICE_TABLE(i2c, adcx140_i2c_id); 1204 1205 static struct i2c_driver adcx140_i2c_driver = { 1206 .driver = { 1207 .name = "tlv320adcx140-codec", 1208 .of_match_table = of_match_ptr(tlv320adcx140_of_match), 1209 }, 1210 .probe = adcx140_i2c_probe, 1211 .id_table = adcx140_i2c_id, 1212 }; 1213 module_i2c_driver(adcx140_i2c_driver); 1214 1215 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 1216 MODULE_DESCRIPTION("ASoC TLV320ADCX140 CODEC Driver"); 1217 MODULE_LICENSE("GPL v2"); 1218
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.