1 // SPDX-License-Identifier: GPL-2.0+ 2 // 3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver. 4 // 5 // Copyright 2012-2015 Freescale Semiconductor, Inc. 6 7 #include <linux/clk.h> 8 #include <linux/delay.h> 9 #include <linux/dmaengine.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/pinctrl/consumer.h> 13 #include <linux/pm_qos.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/regmap.h> 16 #include <linux/slab.h> 17 #include <linux/time.h> 18 #include <sound/core.h> 19 #include <sound/dmaengine_pcm.h> 20 #include <sound/pcm_params.h> 21 #include <linux/mfd/syscon.h> 22 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h> 23 24 #include "fsl_sai.h" 25 #include "fsl_utils.h" 26 #include "imx-pcm.h" 27 28 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\ 29 FSL_SAI_CSR_FEIE) 30 31 static const unsigned int fsl_sai_rates[] = { 32 8000, 11025, 12000, 16000, 22050, 33 24000, 32000, 44100, 48000, 64000, 34 88200, 96000, 176400, 192000, 352800, 35 384000, 705600, 768000, 1411200, 2822400, 36 }; 37 38 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = { 39 .count = ARRAY_SIZE(fsl_sai_rates), 40 .list = fsl_sai_rates, 41 }; 42 43 /** 44 * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream 45 * 46 * SAI supports synchronous mode using bit/frame clocks of either Transmitter's 47 * or Receiver's for both streams. This function is used to check if clocks of 48 * the stream's are synced by the opposite stream. 49 * 50 * @sai: SAI context 51 * @dir: stream direction 52 */ 53 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir) 54 { 55 int adir = (dir == TX) ? RX : TX; 56 57 /* current dir in async mode while opposite dir in sync mode */ 58 return !sai->synchronous[dir] && sai->synchronous[adir]; 59 } 60 61 static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk) 62 { 63 struct pinctrl_state *state = NULL; 64 65 if (sai->is_pdm_mode) { 66 /* DSD512@44.1kHz, DSD512@48kHz */ 67 if (bclk >= 22579200) 68 state = pinctrl_lookup_state(sai->pinctrl, "dsd512"); 69 70 /* Get default DSD state */ 71 if (IS_ERR_OR_NULL(state)) 72 state = pinctrl_lookup_state(sai->pinctrl, "dsd"); 73 } else { 74 /* 706k32b2c, 768k32b2c, etc */ 75 if (bclk >= 45158400) 76 state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m"); 77 } 78 79 /* Get default state */ 80 if (IS_ERR_OR_NULL(state)) 81 state = pinctrl_lookup_state(sai->pinctrl, "default"); 82 83 return state; 84 } 85 86 static irqreturn_t fsl_sai_isr(int irq, void *devid) 87 { 88 struct fsl_sai *sai = (struct fsl_sai *)devid; 89 unsigned int ofs = sai->soc_data->reg_offset; 90 struct device *dev = &sai->pdev->dev; 91 u32 flags, xcsr, mask; 92 irqreturn_t iret = IRQ_NONE; 93 94 /* 95 * Both IRQ status bits and IRQ mask bits are in the xCSR but 96 * different shifts. And we here create a mask only for those 97 * IRQs that we activated. 98 */ 99 mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT; 100 101 /* Tx IRQ */ 102 regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr); 103 flags = xcsr & mask; 104 105 if (flags) 106 iret = IRQ_HANDLED; 107 else 108 goto irq_rx; 109 110 if (flags & FSL_SAI_CSR_WSF) 111 dev_dbg(dev, "isr: Start of Tx word detected\n"); 112 113 if (flags & FSL_SAI_CSR_SEF) 114 dev_dbg(dev, "isr: Tx Frame sync error detected\n"); 115 116 if (flags & FSL_SAI_CSR_FEF) 117 dev_dbg(dev, "isr: Transmit underrun detected\n"); 118 119 if (flags & FSL_SAI_CSR_FWF) 120 dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n"); 121 122 if (flags & FSL_SAI_CSR_FRF) 123 dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n"); 124 125 flags &= FSL_SAI_CSR_xF_W_MASK; 126 xcsr &= ~FSL_SAI_CSR_xF_MASK; 127 128 if (flags) 129 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr); 130 131 irq_rx: 132 /* Rx IRQ */ 133 regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr); 134 flags = xcsr & mask; 135 136 if (flags) 137 iret = IRQ_HANDLED; 138 else 139 goto out; 140 141 if (flags & FSL_SAI_CSR_WSF) 142 dev_dbg(dev, "isr: Start of Rx word detected\n"); 143 144 if (flags & FSL_SAI_CSR_SEF) 145 dev_dbg(dev, "isr: Rx Frame sync error detected\n"); 146 147 if (flags & FSL_SAI_CSR_FEF) 148 dev_dbg(dev, "isr: Receive overflow detected\n"); 149 150 if (flags & FSL_SAI_CSR_FWF) 151 dev_dbg(dev, "isr: Enabled receive FIFO is full\n"); 152 153 if (flags & FSL_SAI_CSR_FRF) 154 dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n"); 155 156 flags &= FSL_SAI_CSR_xF_W_MASK; 157 xcsr &= ~FSL_SAI_CSR_xF_MASK; 158 159 if (flags) 160 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr); 161 162 out: 163 return iret; 164 } 165 166 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask, 167 u32 rx_mask, int slots, int slot_width) 168 { 169 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); 170 171 sai->slots = slots; 172 sai->slot_width = slot_width; 173 174 return 0; 175 } 176 177 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai, 178 unsigned int ratio) 179 { 180 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai); 181 182 sai->bclk_ratio = ratio; 183 184 return 0; 185 } 186 187 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai, 188 int clk_id, unsigned int freq, bool tx) 189 { 190 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); 191 unsigned int ofs = sai->soc_data->reg_offset; 192 u32 val_cr2 = 0; 193 194 switch (clk_id) { 195 case FSL_SAI_CLK_BUS: 196 val_cr2 |= FSL_SAI_CR2_MSEL_BUS; 197 break; 198 case FSL_SAI_CLK_MAST1: 199 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1; 200 break; 201 case FSL_SAI_CLK_MAST2: 202 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2; 203 break; 204 case FSL_SAI_CLK_MAST3: 205 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3; 206 break; 207 default: 208 return -EINVAL; 209 } 210 211 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs), 212 FSL_SAI_CR2_MSEL_MASK, val_cr2); 213 214 return 0; 215 } 216 217 static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq) 218 { 219 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai); 220 int ret; 221 222 fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id], 223 sai->pll8k_clk, sai->pll11k_clk, freq); 224 225 ret = clk_set_rate(sai->mclk_clk[clk_id], freq); 226 if (ret < 0) 227 dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret); 228 229 return ret; 230 } 231 232 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai, 233 int clk_id, unsigned int freq, int dir) 234 { 235 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); 236 int ret; 237 238 if (dir == SND_SOC_CLOCK_IN) 239 return 0; 240 241 if (freq > 0 && clk_id != FSL_SAI_CLK_BUS) { 242 if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) { 243 dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id); 244 return -EINVAL; 245 } 246 247 if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) { 248 dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id); 249 return -EINVAL; 250 } 251 252 if (sai->mclk_streams == 0) { 253 ret = fsl_sai_set_mclk_rate(cpu_dai, clk_id, freq); 254 if (ret < 0) 255 return ret; 256 } 257 } 258 259 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true); 260 if (ret) { 261 dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret); 262 return ret; 263 } 264 265 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false); 266 if (ret) 267 dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret); 268 269 return ret; 270 } 271 272 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai, 273 unsigned int fmt, bool tx) 274 { 275 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); 276 unsigned int ofs = sai->soc_data->reg_offset; 277 u32 val_cr2 = 0, val_cr4 = 0; 278 279 if (!sai->is_lsb_first) 280 val_cr4 |= FSL_SAI_CR4_MF; 281 282 sai->is_pdm_mode = false; 283 sai->is_dsp_mode = false; 284 /* DAI mode */ 285 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 286 case SND_SOC_DAIFMT_I2S: 287 /* 288 * Frame low, 1clk before data, one word length for frame sync, 289 * frame sync starts one serial clock cycle earlier, 290 * that is, together with the last bit of the previous 291 * data word. 292 */ 293 val_cr2 |= FSL_SAI_CR2_BCP; 294 val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP; 295 break; 296 case SND_SOC_DAIFMT_LEFT_J: 297 /* 298 * Frame high, one word length for frame sync, 299 * frame sync asserts with the first bit of the frame. 300 */ 301 val_cr2 |= FSL_SAI_CR2_BCP; 302 break; 303 case SND_SOC_DAIFMT_DSP_A: 304 /* 305 * Frame high, 1clk before data, one bit for frame sync, 306 * frame sync starts one serial clock cycle earlier, 307 * that is, together with the last bit of the previous 308 * data word. 309 */ 310 val_cr2 |= FSL_SAI_CR2_BCP; 311 val_cr4 |= FSL_SAI_CR4_FSE; 312 sai->is_dsp_mode = true; 313 break; 314 case SND_SOC_DAIFMT_DSP_B: 315 /* 316 * Frame high, one bit for frame sync, 317 * frame sync asserts with the first bit of the frame. 318 */ 319 val_cr2 |= FSL_SAI_CR2_BCP; 320 sai->is_dsp_mode = true; 321 break; 322 case SND_SOC_DAIFMT_PDM: 323 val_cr2 |= FSL_SAI_CR2_BCP; 324 val_cr4 &= ~FSL_SAI_CR4_MF; 325 sai->is_pdm_mode = true; 326 break; 327 case SND_SOC_DAIFMT_RIGHT_J: 328 /* To be done */ 329 default: 330 return -EINVAL; 331 } 332 333 /* DAI clock inversion */ 334 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 335 case SND_SOC_DAIFMT_IB_IF: 336 /* Invert both clocks */ 337 val_cr2 ^= FSL_SAI_CR2_BCP; 338 val_cr4 ^= FSL_SAI_CR4_FSP; 339 break; 340 case SND_SOC_DAIFMT_IB_NF: 341 /* Invert bit clock */ 342 val_cr2 ^= FSL_SAI_CR2_BCP; 343 break; 344 case SND_SOC_DAIFMT_NB_IF: 345 /* Invert frame clock */ 346 val_cr4 ^= FSL_SAI_CR4_FSP; 347 break; 348 case SND_SOC_DAIFMT_NB_NF: 349 /* Nothing to do for both normal cases */ 350 break; 351 default: 352 return -EINVAL; 353 } 354 355 /* DAI clock provider masks */ 356 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { 357 case SND_SOC_DAIFMT_BP_FP: 358 val_cr2 |= FSL_SAI_CR2_BCD_MSTR; 359 val_cr4 |= FSL_SAI_CR4_FSD_MSTR; 360 sai->is_consumer_mode[tx] = false; 361 break; 362 case SND_SOC_DAIFMT_BC_FC: 363 sai->is_consumer_mode[tx] = true; 364 break; 365 case SND_SOC_DAIFMT_BP_FC: 366 val_cr2 |= FSL_SAI_CR2_BCD_MSTR; 367 sai->is_consumer_mode[tx] = false; 368 break; 369 case SND_SOC_DAIFMT_BC_FP: 370 val_cr4 |= FSL_SAI_CR4_FSD_MSTR; 371 sai->is_consumer_mode[tx] = true; 372 break; 373 default: 374 return -EINVAL; 375 } 376 377 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs), 378 FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2); 379 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs), 380 FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE | 381 FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4); 382 383 return 0; 384 } 385 386 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) 387 { 388 int ret; 389 390 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true); 391 if (ret) { 392 dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret); 393 return ret; 394 } 395 396 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false); 397 if (ret) 398 dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret); 399 400 return ret; 401 } 402 403 static int fsl_sai_set_dai_fmt_tx(struct snd_soc_dai *cpu_dai, unsigned int fmt) 404 { 405 return fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true); 406 } 407 408 static int fsl_sai_set_dai_fmt_rx(struct snd_soc_dai *cpu_dai, unsigned int fmt) 409 { 410 return fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false); 411 } 412 413 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq) 414 { 415 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai); 416 unsigned int reg, ofs = sai->soc_data->reg_offset; 417 unsigned long clk_rate; 418 u32 savediv = 0, ratio, bestdiff = freq; 419 int adir = tx ? RX : TX; 420 int dir = tx ? TX : RX; 421 u32 id; 422 bool support_1_1_ratio = sai->verid.version >= 0x0301; 423 424 /* Don't apply to consumer mode */ 425 if (sai->is_consumer_mode[tx]) 426 return 0; 427 428 /* 429 * There is no point in polling MCLK0 if it is identical to MCLK1. 430 * And given that MQS use case has to use MCLK1 though two clocks 431 * are the same, we simply skip MCLK0 and start to find from MCLK1. 432 */ 433 id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0; 434 435 for (; id < FSL_SAI_MCLK_MAX; id++) { 436 int diff; 437 438 clk_rate = clk_get_rate(sai->mclk_clk[id]); 439 if (!clk_rate) 440 continue; 441 442 ratio = DIV_ROUND_CLOSEST(clk_rate, freq); 443 if (!ratio || ratio > 512) 444 continue; 445 if (ratio == 1 && !support_1_1_ratio) 446 continue; 447 if ((ratio & 1) && ratio > 1) 448 continue; 449 450 diff = abs((long)clk_rate - ratio * freq); 451 452 /* 453 * Drop the source that can not be 454 * divided into the required rate. 455 */ 456 if (diff != 0 && clk_rate / diff < 1000) 457 continue; 458 459 dev_dbg(dai->dev, 460 "ratio %d for freq %dHz based on clock %ldHz\n", 461 ratio, freq, clk_rate); 462 463 464 if (diff < bestdiff) { 465 savediv = ratio; 466 sai->mclk_id[tx] = id; 467 bestdiff = diff; 468 } 469 470 if (diff == 0) 471 break; 472 } 473 474 if (savediv == 0) { 475 dev_err(dai->dev, "failed to derive required %cx rate: %d\n", 476 tx ? 'T' : 'R', freq); 477 return -EINVAL; 478 } 479 480 dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n", 481 sai->mclk_id[tx], savediv, bestdiff); 482 483 /* 484 * 1) For Asynchronous mode, we must set RCR2 register for capture, and 485 * set TCR2 register for playback. 486 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback 487 * and capture. 488 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback 489 * and capture. 490 * 4) For Tx and Rx are both Synchronous with another SAI, we just 491 * ignore it. 492 */ 493 if (fsl_sai_dir_is_synced(sai, adir)) 494 reg = FSL_SAI_xCR2(!tx, ofs); 495 else if (!sai->synchronous[dir]) 496 reg = FSL_SAI_xCR2(tx, ofs); 497 else 498 return 0; 499 500 regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK, 501 FSL_SAI_CR2_MSEL(sai->mclk_id[tx])); 502 503 if (savediv == 1) { 504 regmap_update_bits(sai->regmap, reg, 505 FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP, 506 FSL_SAI_CR2_BYP); 507 if (fsl_sai_dir_is_synced(sai, adir)) 508 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs), 509 FSL_SAI_CR2_BCI, FSL_SAI_CR2_BCI); 510 else 511 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs), 512 FSL_SAI_CR2_BCI, 0); 513 } else { 514 regmap_update_bits(sai->regmap, reg, 515 FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP, 516 savediv / 2 - 1); 517 } 518 519 return 0; 520 } 521 522 static int fsl_sai_hw_params(struct snd_pcm_substream *substream, 523 struct snd_pcm_hw_params *params, 524 struct snd_soc_dai *cpu_dai) 525 { 526 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); 527 unsigned int ofs = sai->soc_data->reg_offset; 528 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 529 unsigned int channels = params_channels(params); 530 struct snd_dmaengine_dai_dma_data *dma_params; 531 struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg; 532 u32 word_width = params_width(params); 533 int trce_mask = 0, dl_cfg_idx = 0; 534 int dl_cfg_cnt = sai->dl_cfg_cnt; 535 u32 dl_type = FSL_SAI_DL_I2S; 536 u32 val_cr4 = 0, val_cr5 = 0; 537 u32 slots = (channels == 1) ? 2 : channels; 538 u32 slot_width = word_width; 539 int adir = tx ? RX : TX; 540 u32 pins, bclk; 541 u32 watermark; 542 int ret, i; 543 544 if (sai->slot_width) 545 slot_width = sai->slot_width; 546 547 if (sai->slots) 548 slots = sai->slots; 549 else if (sai->bclk_ratio) 550 slots = sai->bclk_ratio / slot_width; 551 552 pins = DIV_ROUND_UP(channels, slots); 553 554 /* 555 * PDM mode, channels are independent 556 * each channels are on one dataline/FIFO. 557 */ 558 if (sai->is_pdm_mode) { 559 pins = channels; 560 dl_type = FSL_SAI_DL_PDM; 561 } 562 563 for (i = 0; i < dl_cfg_cnt; i++) { 564 if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) { 565 dl_cfg_idx = i; 566 break; 567 } 568 } 569 570 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) { 571 dev_err(cpu_dai->dev, "channel not supported\n"); 572 return -EINVAL; 573 } 574 575 bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width); 576 577 if (!IS_ERR_OR_NULL(sai->pinctrl)) { 578 sai->pins_state = fsl_sai_get_pins_state(sai, bclk); 579 if (!IS_ERR_OR_NULL(sai->pins_state)) { 580 ret = pinctrl_select_state(sai->pinctrl, sai->pins_state); 581 if (ret) { 582 dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret); 583 return ret; 584 } 585 } 586 } 587 588 if (!sai->is_consumer_mode[tx]) { 589 ret = fsl_sai_set_bclk(cpu_dai, tx, bclk); 590 if (ret) 591 return ret; 592 593 /* Do not enable the clock if it is already enabled */ 594 if (!(sai->mclk_streams & BIT(substream->stream))) { 595 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]); 596 if (ret) 597 return ret; 598 599 sai->mclk_streams |= BIT(substream->stream); 600 } 601 } 602 603 if (!sai->is_dsp_mode && !sai->is_pdm_mode) 604 val_cr4 |= FSL_SAI_CR4_SYWD(slot_width); 605 606 val_cr5 |= FSL_SAI_CR5_WNW(slot_width); 607 val_cr5 |= FSL_SAI_CR5_W0W(slot_width); 608 609 if (sai->is_lsb_first || sai->is_pdm_mode) 610 val_cr5 |= FSL_SAI_CR5_FBT(0); 611 else 612 val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1); 613 614 val_cr4 |= FSL_SAI_CR4_FRSZ(slots); 615 616 /* Set to output mode to avoid tri-stated data pins */ 617 if (tx) 618 val_cr4 |= FSL_SAI_CR4_CHMOD; 619 620 /* 621 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will 622 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4), 623 * RCR5(TCR5) for playback(capture), or there will be sync error. 624 */ 625 626 if (!sai->is_consumer_mode[tx] && fsl_sai_dir_is_synced(sai, adir)) { 627 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs), 628 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK | 629 FSL_SAI_CR4_CHMOD_MASK, 630 val_cr4); 631 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs), 632 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK | 633 FSL_SAI_CR5_FBT_MASK, val_cr5); 634 } 635 636 /* 637 * Combine mode has limation: 638 * - Can't used for singel dataline/FIFO case except the FIFO0 639 * - Can't used for multi dataline/FIFO case except the enabled FIFOs 640 * are successive and start from FIFO0 641 * 642 * So for common usage, all multi fifo case disable the combine mode. 643 */ 644 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma) 645 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs), 646 FSL_SAI_CR4_FCOMB_MASK, 0); 647 else 648 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs), 649 FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT); 650 651 dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx; 652 dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) + 653 dl_cfg[dl_cfg_idx].start_off[tx] * 0x4; 654 655 if (sai->is_multi_fifo_dma) { 656 sai->audio_config[tx].words_per_fifo = min(slots, channels); 657 if (tx) { 658 sai->audio_config[tx].n_fifos_dst = pins; 659 sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx]; 660 } else { 661 sai->audio_config[tx].n_fifos_src = pins; 662 sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx]; 663 } 664 dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins; 665 dma_params->peripheral_config = &sai->audio_config[tx]; 666 dma_params->peripheral_size = sizeof(sai->audio_config[tx]); 667 668 watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) : 669 (dma_params->maxburst - 1); 670 regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs), 671 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth), 672 watermark); 673 } 674 675 /* Find a proper tcre setting */ 676 for (i = 0; i < sai->soc_data->pins; i++) { 677 trce_mask = (1 << (i + 1)) - 1; 678 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins) 679 break; 680 } 681 682 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs), 683 FSL_SAI_CR3_TRCE_MASK, 684 FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask))); 685 686 /* 687 * When the TERE and FSD_MSTR enabled before configuring the word width 688 * There will be no frame sync clock issue, because word width impact 689 * the generation of frame sync clock. 690 * 691 * TERE enabled earlier only for i.MX8MP case for the hardware limitation, 692 * We need to disable FSD_MSTR before configuring word width, then enable 693 * FSD_MSTR bit for this specific case. 694 */ 695 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output && 696 !sai->is_consumer_mode[tx]) 697 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs), 698 FSL_SAI_CR4_FSD_MSTR, 0); 699 700 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs), 701 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK | 702 FSL_SAI_CR4_CHMOD_MASK, 703 val_cr4); 704 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs), 705 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK | 706 FSL_SAI_CR5_FBT_MASK, val_cr5); 707 708 /* Enable FSD_MSTR after configuring word width */ 709 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output && 710 !sai->is_consumer_mode[tx]) 711 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs), 712 FSL_SAI_CR4_FSD_MSTR, FSL_SAI_CR4_FSD_MSTR); 713 714 regmap_write(sai->regmap, FSL_SAI_xMR(tx), 715 ~0UL - ((1 << min(channels, slots)) - 1)); 716 717 return 0; 718 } 719 720 static int fsl_sai_hw_free(struct snd_pcm_substream *substream, 721 struct snd_soc_dai *cpu_dai) 722 { 723 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); 724 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 725 unsigned int ofs = sai->soc_data->reg_offset; 726 727 /* Clear xMR to avoid channel swap with mclk_with_tere enabled case */ 728 regmap_write(sai->regmap, FSL_SAI_xMR(tx), 0); 729 730 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs), 731 FSL_SAI_CR3_TRCE_MASK, 0); 732 733 if (!sai->is_consumer_mode[tx] && 734 sai->mclk_streams & BIT(substream->stream)) { 735 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]); 736 sai->mclk_streams &= ~BIT(substream->stream); 737 } 738 739 return 0; 740 } 741 742 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir) 743 { 744 unsigned int ofs = sai->soc_data->reg_offset; 745 bool tx = dir == TX; 746 u32 xcsr, count = 100, mask; 747 748 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output) 749 mask = FSL_SAI_CSR_TERE; 750 else 751 mask = FSL_SAI_CSR_TERE | FSL_SAI_CSR_BCE; 752 753 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), 754 mask, 0); 755 756 /* TERE will remain set till the end of current frame */ 757 do { 758 udelay(10); 759 regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr); 760 } while (--count && xcsr & FSL_SAI_CSR_TERE); 761 762 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), 763 FSL_SAI_CSR_FR, FSL_SAI_CSR_FR); 764 765 /* 766 * For sai master mode, after several open/close sai, 767 * there will be no frame clock, and can't recover 768 * anymore. Add software reset to fix this issue. 769 * This is a hardware bug, and will be fix in the 770 * next sai version. 771 */ 772 if (!sai->is_consumer_mode[tx]) { 773 /* Software Reset */ 774 regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR); 775 /* Clear SR bit to finish the reset */ 776 regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0); 777 } 778 } 779 780 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd, 781 struct snd_soc_dai *cpu_dai) 782 { 783 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); 784 unsigned int ofs = sai->soc_data->reg_offset; 785 786 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 787 int adir = tx ? RX : TX; 788 int dir = tx ? TX : RX; 789 u32 xcsr; 790 791 /* 792 * Asynchronous mode: Clear SYNC for both Tx and Rx. 793 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx. 794 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx. 795 */ 796 regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC, 797 sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0); 798 regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC, 799 sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0); 800 801 /* 802 * It is recommended that the transmitter is the last enabled 803 * and the first disabled. 804 */ 805 switch (cmd) { 806 case SNDRV_PCM_TRIGGER_START: 807 case SNDRV_PCM_TRIGGER_RESUME: 808 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 809 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), 810 FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE); 811 812 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), 813 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE); 814 /* 815 * Enable the opposite direction for synchronous mode 816 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx 817 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx 818 * 819 * RM recommends to enable RE after TE for case 1 and to enable 820 * TE after RE for case 2, but we here may not always guarantee 821 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables 822 * TE after RE, which is against what RM recommends but should 823 * be safe to do, judging by years of testing results. 824 */ 825 if (fsl_sai_dir_is_synced(sai, adir)) 826 regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs), 827 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE); 828 829 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), 830 FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS); 831 break; 832 case SNDRV_PCM_TRIGGER_STOP: 833 case SNDRV_PCM_TRIGGER_SUSPEND: 834 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 835 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), 836 FSL_SAI_CSR_FRDE, 0); 837 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), 838 FSL_SAI_CSR_xIE_MASK, 0); 839 840 /* Check if the opposite FRDE is also disabled */ 841 regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr); 842 843 /* 844 * If opposite stream provides clocks for synchronous mode and 845 * it is inactive, disable it before disabling the current one 846 */ 847 if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE)) 848 fsl_sai_config_disable(sai, adir); 849 850 /* 851 * Disable current stream if either of: 852 * 1. current stream doesn't provide clocks for synchronous mode 853 * 2. current stream provides clocks for synchronous mode but no 854 * more stream is active. 855 */ 856 if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE)) 857 fsl_sai_config_disable(sai, dir); 858 859 break; 860 default: 861 return -EINVAL; 862 } 863 864 return 0; 865 } 866 867 static int fsl_sai_startup(struct snd_pcm_substream *substream, 868 struct snd_soc_dai *cpu_dai) 869 { 870 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); 871 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 872 int ret; 873 874 /* 875 * EDMA controller needs period size to be a multiple of 876 * tx/rx maxburst 877 */ 878 if (sai->soc_data->use_edma) 879 snd_pcm_hw_constraint_step(substream->runtime, 0, 880 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 881 tx ? sai->dma_params_tx.maxburst : 882 sai->dma_params_rx.maxburst); 883 884 ret = snd_pcm_hw_constraint_list(substream->runtime, 0, 885 SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints); 886 887 return ret; 888 } 889 890 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai) 891 { 892 struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev); 893 unsigned int ofs = sai->soc_data->reg_offset; 894 895 /* Software Reset for both Tx and Rx */ 896 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR); 897 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR); 898 /* Clear SR bit to finish the reset */ 899 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0); 900 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0); 901 902 regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs), 903 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth), 904 sai->soc_data->fifo_depth - sai->dma_params_tx.maxburst); 905 regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs), 906 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth), 907 sai->dma_params_rx.maxburst - 1); 908 909 snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx, 910 &sai->dma_params_rx); 911 912 return 0; 913 } 914 915 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = { 916 .probe = fsl_sai_dai_probe, 917 .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio, 918 .set_sysclk = fsl_sai_set_dai_sysclk, 919 .set_fmt = fsl_sai_set_dai_fmt, 920 .set_tdm_slot = fsl_sai_set_dai_tdm_slot, 921 .hw_params = fsl_sai_hw_params, 922 .hw_free = fsl_sai_hw_free, 923 .trigger = fsl_sai_trigger, 924 .startup = fsl_sai_startup, 925 }; 926 927 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_tx_ops = { 928 .probe = fsl_sai_dai_probe, 929 .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio, 930 .set_sysclk = fsl_sai_set_dai_sysclk, 931 .set_fmt = fsl_sai_set_dai_fmt_tx, 932 .set_tdm_slot = fsl_sai_set_dai_tdm_slot, 933 .hw_params = fsl_sai_hw_params, 934 .hw_free = fsl_sai_hw_free, 935 .trigger = fsl_sai_trigger, 936 .startup = fsl_sai_startup, 937 }; 938 939 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_rx_ops = { 940 .probe = fsl_sai_dai_probe, 941 .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio, 942 .set_sysclk = fsl_sai_set_dai_sysclk, 943 .set_fmt = fsl_sai_set_dai_fmt_rx, 944 .set_tdm_slot = fsl_sai_set_dai_tdm_slot, 945 .hw_params = fsl_sai_hw_params, 946 .hw_free = fsl_sai_hw_free, 947 .trigger = fsl_sai_trigger, 948 .startup = fsl_sai_startup, 949 }; 950 951 static int fsl_sai_dai_resume(struct snd_soc_component *component) 952 { 953 struct fsl_sai *sai = snd_soc_component_get_drvdata(component); 954 struct device *dev = &sai->pdev->dev; 955 int ret; 956 957 if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) { 958 ret = pinctrl_select_state(sai->pinctrl, sai->pins_state); 959 if (ret) { 960 dev_err(dev, "failed to set proper pins state: %d\n", ret); 961 return ret; 962 } 963 } 964 965 return 0; 966 } 967 968 static struct snd_soc_dai_driver fsl_sai_dai_template[] = { 969 { 970 .name = "sai-tx-rx", 971 .playback = { 972 .stream_name = "CPU-Playback", 973 .channels_min = 1, 974 .channels_max = 32, 975 .rate_min = 8000, 976 .rate_max = 2822400, 977 .rates = SNDRV_PCM_RATE_KNOT, 978 .formats = FSL_SAI_FORMATS, 979 }, 980 .capture = { 981 .stream_name = "CPU-Capture", 982 .channels_min = 1, 983 .channels_max = 32, 984 .rate_min = 8000, 985 .rate_max = 2822400, 986 .rates = SNDRV_PCM_RATE_KNOT, 987 .formats = FSL_SAI_FORMATS, 988 }, 989 .ops = &fsl_sai_pcm_dai_ops, 990 }, 991 { 992 .name = "sai-tx", 993 .playback = { 994 .stream_name = "CPU-Playback", 995 .channels_min = 1, 996 .channels_max = 32, 997 .rate_min = 8000, 998 .rate_max = 2822400, 999 .rates = SNDRV_PCM_RATE_KNOT, 1000 .formats = FSL_SAI_FORMATS, 1001 }, 1002 .ops = &fsl_sai_pcm_dai_tx_ops, 1003 }, 1004 { 1005 .name = "sai-rx", 1006 .capture = { 1007 .stream_name = "CPU-Capture", 1008 .channels_min = 1, 1009 .channels_max = 32, 1010 .rate_min = 8000, 1011 .rate_max = 2822400, 1012 .rates = SNDRV_PCM_RATE_KNOT, 1013 .formats = FSL_SAI_FORMATS, 1014 }, 1015 .ops = &fsl_sai_pcm_dai_rx_ops, 1016 }, 1017 }; 1018 1019 static const struct snd_soc_component_driver fsl_component = { 1020 .name = "fsl-sai", 1021 .resume = fsl_sai_dai_resume, 1022 .legacy_dai_naming = 1, 1023 }; 1024 1025 static struct reg_default fsl_sai_reg_defaults_ofs0[] = { 1026 {FSL_SAI_TCR1(0), 0}, 1027 {FSL_SAI_TCR2(0), 0}, 1028 {FSL_SAI_TCR3(0), 0}, 1029 {FSL_SAI_TCR4(0), 0}, 1030 {FSL_SAI_TCR5(0), 0}, 1031 {FSL_SAI_TDR0, 0}, 1032 {FSL_SAI_TDR1, 0}, 1033 {FSL_SAI_TDR2, 0}, 1034 {FSL_SAI_TDR3, 0}, 1035 {FSL_SAI_TDR4, 0}, 1036 {FSL_SAI_TDR5, 0}, 1037 {FSL_SAI_TDR6, 0}, 1038 {FSL_SAI_TDR7, 0}, 1039 {FSL_SAI_TMR, 0}, 1040 {FSL_SAI_RCR1(0), 0}, 1041 {FSL_SAI_RCR2(0), 0}, 1042 {FSL_SAI_RCR3(0), 0}, 1043 {FSL_SAI_RCR4(0), 0}, 1044 {FSL_SAI_RCR5(0), 0}, 1045 {FSL_SAI_RMR, 0}, 1046 }; 1047 1048 static struct reg_default fsl_sai_reg_defaults_ofs8[] = { 1049 {FSL_SAI_TCR1(8), 0}, 1050 {FSL_SAI_TCR2(8), 0}, 1051 {FSL_SAI_TCR3(8), 0}, 1052 {FSL_SAI_TCR4(8), 0}, 1053 {FSL_SAI_TCR5(8), 0}, 1054 {FSL_SAI_TDR0, 0}, 1055 {FSL_SAI_TDR1, 0}, 1056 {FSL_SAI_TDR2, 0}, 1057 {FSL_SAI_TDR3, 0}, 1058 {FSL_SAI_TDR4, 0}, 1059 {FSL_SAI_TDR5, 0}, 1060 {FSL_SAI_TDR6, 0}, 1061 {FSL_SAI_TDR7, 0}, 1062 {FSL_SAI_TMR, 0}, 1063 {FSL_SAI_RCR1(8), 0}, 1064 {FSL_SAI_RCR2(8), 0}, 1065 {FSL_SAI_RCR3(8), 0}, 1066 {FSL_SAI_RCR4(8), 0}, 1067 {FSL_SAI_RCR5(8), 0}, 1068 {FSL_SAI_RMR, 0}, 1069 {FSL_SAI_MCTL, 0}, 1070 {FSL_SAI_MDIV, 0}, 1071 }; 1072 1073 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg) 1074 { 1075 struct fsl_sai *sai = dev_get_drvdata(dev); 1076 unsigned int ofs = sai->soc_data->reg_offset; 1077 1078 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs)) 1079 return true; 1080 1081 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs)) 1082 return true; 1083 1084 switch (reg) { 1085 case FSL_SAI_TFR0: 1086 case FSL_SAI_TFR1: 1087 case FSL_SAI_TFR2: 1088 case FSL_SAI_TFR3: 1089 case FSL_SAI_TFR4: 1090 case FSL_SAI_TFR5: 1091 case FSL_SAI_TFR6: 1092 case FSL_SAI_TFR7: 1093 case FSL_SAI_TMR: 1094 case FSL_SAI_RDR0: 1095 case FSL_SAI_RDR1: 1096 case FSL_SAI_RDR2: 1097 case FSL_SAI_RDR3: 1098 case FSL_SAI_RDR4: 1099 case FSL_SAI_RDR5: 1100 case FSL_SAI_RDR6: 1101 case FSL_SAI_RDR7: 1102 case FSL_SAI_RFR0: 1103 case FSL_SAI_RFR1: 1104 case FSL_SAI_RFR2: 1105 case FSL_SAI_RFR3: 1106 case FSL_SAI_RFR4: 1107 case FSL_SAI_RFR5: 1108 case FSL_SAI_RFR6: 1109 case FSL_SAI_RFR7: 1110 case FSL_SAI_RMR: 1111 case FSL_SAI_MCTL: 1112 case FSL_SAI_MDIV: 1113 case FSL_SAI_VERID: 1114 case FSL_SAI_PARAM: 1115 case FSL_SAI_TTCTN: 1116 case FSL_SAI_RTCTN: 1117 case FSL_SAI_TTCTL: 1118 case FSL_SAI_TBCTN: 1119 case FSL_SAI_TTCAP: 1120 case FSL_SAI_RTCTL: 1121 case FSL_SAI_RBCTN: 1122 case FSL_SAI_RTCAP: 1123 return true; 1124 default: 1125 return false; 1126 } 1127 } 1128 1129 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg) 1130 { 1131 struct fsl_sai *sai = dev_get_drvdata(dev); 1132 unsigned int ofs = sai->soc_data->reg_offset; 1133 1134 if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs)) 1135 return true; 1136 1137 /* Set VERID and PARAM be volatile for reading value in probe */ 1138 if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM)) 1139 return true; 1140 1141 switch (reg) { 1142 case FSL_SAI_TFR0: 1143 case FSL_SAI_TFR1: 1144 case FSL_SAI_TFR2: 1145 case FSL_SAI_TFR3: 1146 case FSL_SAI_TFR4: 1147 case FSL_SAI_TFR5: 1148 case FSL_SAI_TFR6: 1149 case FSL_SAI_TFR7: 1150 case FSL_SAI_RFR0: 1151 case FSL_SAI_RFR1: 1152 case FSL_SAI_RFR2: 1153 case FSL_SAI_RFR3: 1154 case FSL_SAI_RFR4: 1155 case FSL_SAI_RFR5: 1156 case FSL_SAI_RFR6: 1157 case FSL_SAI_RFR7: 1158 case FSL_SAI_RDR0: 1159 case FSL_SAI_RDR1: 1160 case FSL_SAI_RDR2: 1161 case FSL_SAI_RDR3: 1162 case FSL_SAI_RDR4: 1163 case FSL_SAI_RDR5: 1164 case FSL_SAI_RDR6: 1165 case FSL_SAI_RDR7: 1166 return true; 1167 default: 1168 return false; 1169 } 1170 } 1171 1172 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg) 1173 { 1174 struct fsl_sai *sai = dev_get_drvdata(dev); 1175 unsigned int ofs = sai->soc_data->reg_offset; 1176 1177 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs)) 1178 return true; 1179 1180 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs)) 1181 return true; 1182 1183 switch (reg) { 1184 case FSL_SAI_TDR0: 1185 case FSL_SAI_TDR1: 1186 case FSL_SAI_TDR2: 1187 case FSL_SAI_TDR3: 1188 case FSL_SAI_TDR4: 1189 case FSL_SAI_TDR5: 1190 case FSL_SAI_TDR6: 1191 case FSL_SAI_TDR7: 1192 case FSL_SAI_TMR: 1193 case FSL_SAI_RMR: 1194 case FSL_SAI_MCTL: 1195 case FSL_SAI_MDIV: 1196 case FSL_SAI_TTCTL: 1197 case FSL_SAI_RTCTL: 1198 return true; 1199 default: 1200 return false; 1201 } 1202 } 1203 1204 static struct regmap_config fsl_sai_regmap_config = { 1205 .reg_bits = 32, 1206 .reg_stride = 4, 1207 .val_bits = 32, 1208 .fast_io = true, 1209 1210 .max_register = FSL_SAI_RMR, 1211 .reg_defaults = fsl_sai_reg_defaults_ofs0, 1212 .num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0), 1213 .readable_reg = fsl_sai_readable_reg, 1214 .volatile_reg = fsl_sai_volatile_reg, 1215 .writeable_reg = fsl_sai_writeable_reg, 1216 .cache_type = REGCACHE_FLAT, 1217 }; 1218 1219 static int fsl_sai_check_version(struct device *dev) 1220 { 1221 struct fsl_sai *sai = dev_get_drvdata(dev); 1222 unsigned char ofs = sai->soc_data->reg_offset; 1223 unsigned int val; 1224 int ret; 1225 1226 if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID) 1227 return 0; 1228 1229 ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val); 1230 if (ret < 0) 1231 return ret; 1232 1233 dev_dbg(dev, "VERID: 0x%016X\n", val); 1234 1235 sai->verid.version = val & 1236 (FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK); 1237 sai->verid.version >>= FSL_SAI_VERID_MINOR_SHIFT; 1238 sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK; 1239 1240 ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val); 1241 if (ret < 0) 1242 return ret; 1243 1244 dev_dbg(dev, "PARAM: 0x%016X\n", val); 1245 1246 /* Max slots per frame, power of 2 */ 1247 sai->param.slot_num = 1 << 1248 ((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT); 1249 1250 /* Words per fifo, power of 2 */ 1251 sai->param.fifo_depth = 1 << 1252 ((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT); 1253 1254 /* Number of datalines implemented */ 1255 sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK; 1256 1257 return 0; 1258 } 1259 1260 /* 1261 * Calculate the offset between first two datalines, don't 1262 * different offset in one case. 1263 */ 1264 static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask) 1265 { 1266 int fbidx, nbidx, offset; 1267 1268 fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM); 1269 nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1); 1270 offset = nbidx - fbidx - 1; 1271 1272 return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset); 1273 } 1274 1275 /* 1276 * read the fsl,dataline property from dts file. 1277 * It has 3 value for each configuration, first one means the type: 1278 * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is 1279 * dataline mask for 'tx'. for example 1280 * 1281 * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>, 1282 * 1283 * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type 1284 * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled). 1285 * 1286 */ 1287 static int fsl_sai_read_dlcfg(struct fsl_sai *sai) 1288 { 1289 struct platform_device *pdev = sai->pdev; 1290 struct device_node *np = pdev->dev.of_node; 1291 struct device *dev = &pdev->dev; 1292 int ret, elems, i, index, num_cfg; 1293 char *propname = "fsl,dataline"; 1294 struct fsl_sai_dl_cfg *cfg; 1295 unsigned long dl_mask; 1296 unsigned int soc_dl; 1297 u32 rx, tx, type; 1298 1299 elems = of_property_count_u32_elems(np, propname); 1300 1301 if (elems <= 0) { 1302 elems = 0; 1303 } else if (elems % 3) { 1304 dev_err(dev, "Number of elements must be divisible to 3.\n"); 1305 return -EINVAL; 1306 } 1307 1308 num_cfg = elems / 3; 1309 /* Add one more for default value */ 1310 cfg = devm_kzalloc(&pdev->dev, (num_cfg + 1) * sizeof(*cfg), GFP_KERNEL); 1311 if (!cfg) 1312 return -ENOMEM; 1313 1314 /* Consider default value "0 0xFF 0xFF" if property is missing */ 1315 soc_dl = BIT(sai->soc_data->pins) - 1; 1316 cfg[0].type = FSL_SAI_DL_DEFAULT; 1317 cfg[0].pins[0] = sai->soc_data->pins; 1318 cfg[0].mask[0] = soc_dl; 1319 cfg[0].start_off[0] = 0; 1320 cfg[0].next_off[0] = 0; 1321 1322 cfg[0].pins[1] = sai->soc_data->pins; 1323 cfg[0].mask[1] = soc_dl; 1324 cfg[0].start_off[1] = 0; 1325 cfg[0].next_off[1] = 0; 1326 for (i = 1, index = 0; i < num_cfg + 1; i++) { 1327 /* 1328 * type of dataline 1329 * 0 means default mode 1330 * 1 means I2S mode 1331 * 2 means PDM mode 1332 */ 1333 ret = of_property_read_u32_index(np, propname, index++, &type); 1334 if (ret) 1335 return -EINVAL; 1336 1337 ret = of_property_read_u32_index(np, propname, index++, &rx); 1338 if (ret) 1339 return -EINVAL; 1340 1341 ret = of_property_read_u32_index(np, propname, index++, &tx); 1342 if (ret) 1343 return -EINVAL; 1344 1345 if ((rx & ~soc_dl) || (tx & ~soc_dl)) { 1346 dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl); 1347 return -EINVAL; 1348 } 1349 1350 rx = rx & soc_dl; 1351 tx = tx & soc_dl; 1352 1353 cfg[i].type = type; 1354 cfg[i].pins[0] = hweight8(rx); 1355 cfg[i].mask[0] = rx; 1356 dl_mask = rx; 1357 cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM); 1358 cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx); 1359 1360 cfg[i].pins[1] = hweight8(tx); 1361 cfg[i].mask[1] = tx; 1362 dl_mask = tx; 1363 cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM); 1364 cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx); 1365 } 1366 1367 sai->dl_cfg = cfg; 1368 sai->dl_cfg_cnt = num_cfg + 1; 1369 return 0; 1370 } 1371 1372 static int fsl_sai_runtime_suspend(struct device *dev); 1373 static int fsl_sai_runtime_resume(struct device *dev); 1374 1375 static int fsl_sai_probe(struct platform_device *pdev) 1376 { 1377 struct device_node *np = pdev->dev.of_node; 1378 struct device *dev = &pdev->dev; 1379 struct fsl_sai *sai; 1380 struct regmap *gpr; 1381 void __iomem *base; 1382 char tmp[8]; 1383 int irq, ret, i; 1384 int index; 1385 u32 dmas[4]; 1386 1387 sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL); 1388 if (!sai) 1389 return -ENOMEM; 1390 1391 sai->pdev = pdev; 1392 sai->soc_data = of_device_get_match_data(dev); 1393 1394 sai->is_lsb_first = of_property_read_bool(np, "lsb-first"); 1395 1396 base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res); 1397 if (IS_ERR(base)) 1398 return PTR_ERR(base); 1399 1400 if (sai->soc_data->reg_offset == 8) { 1401 fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8; 1402 fsl_sai_regmap_config.max_register = FSL_SAI_MDIV; 1403 fsl_sai_regmap_config.num_reg_defaults = 1404 ARRAY_SIZE(fsl_sai_reg_defaults_ofs8); 1405 } 1406 1407 sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config); 1408 if (IS_ERR(sai->regmap)) { 1409 dev_err(dev, "regmap init failed\n"); 1410 return PTR_ERR(sai->regmap); 1411 } 1412 1413 sai->bus_clk = devm_clk_get(dev, "bus"); 1414 /* Compatible with old DTB cases */ 1415 if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER) 1416 sai->bus_clk = devm_clk_get(dev, "sai"); 1417 if (IS_ERR(sai->bus_clk)) { 1418 dev_err(dev, "failed to get bus clock: %ld\n", 1419 PTR_ERR(sai->bus_clk)); 1420 /* -EPROBE_DEFER */ 1421 return PTR_ERR(sai->bus_clk); 1422 } 1423 1424 for (i = 1; i < FSL_SAI_MCLK_MAX; i++) { 1425 sprintf(tmp, "mclk%d", i); 1426 sai->mclk_clk[i] = devm_clk_get(dev, tmp); 1427 if (IS_ERR(sai->mclk_clk[i])) { 1428 dev_err(dev, "failed to get mclk%d clock: %ld\n", 1429 i, PTR_ERR(sai->mclk_clk[i])); 1430 sai->mclk_clk[i] = NULL; 1431 } 1432 } 1433 1434 if (sai->soc_data->mclk0_is_mclk1) 1435 sai->mclk_clk[0] = sai->mclk_clk[1]; 1436 else 1437 sai->mclk_clk[0] = sai->bus_clk; 1438 1439 fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk, 1440 &sai->pll11k_clk); 1441 1442 /* Use Multi FIFO mode depending on the support from SDMA script */ 1443 ret = of_property_read_u32_array(np, "dmas", dmas, 4); 1444 if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI) 1445 sai->is_multi_fifo_dma = true; 1446 1447 /* read dataline mask for rx and tx*/ 1448 ret = fsl_sai_read_dlcfg(sai); 1449 if (ret < 0) { 1450 dev_err(dev, "failed to read dlcfg %d\n", ret); 1451 return ret; 1452 } 1453 1454 irq = platform_get_irq(pdev, 0); 1455 if (irq < 0) 1456 return irq; 1457 1458 ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED, 1459 np->name, sai); 1460 if (ret) { 1461 dev_err(dev, "failed to claim irq %u\n", irq); 1462 return ret; 1463 } 1464 1465 memcpy(&sai->cpu_dai_drv, fsl_sai_dai_template, 1466 sizeof(*fsl_sai_dai_template) * ARRAY_SIZE(fsl_sai_dai_template)); 1467 1468 /* Sync Tx with Rx as default by following old DT binding */ 1469 sai->synchronous[RX] = true; 1470 sai->synchronous[TX] = false; 1471 sai->cpu_dai_drv[0].symmetric_rate = 1; 1472 sai->cpu_dai_drv[0].symmetric_channels = 1; 1473 sai->cpu_dai_drv[0].symmetric_sample_bits = 1; 1474 1475 if (of_property_read_bool(np, "fsl,sai-synchronous-rx") && 1476 of_property_read_bool(np, "fsl,sai-asynchronous")) { 1477 /* error out if both synchronous and asynchronous are present */ 1478 dev_err(dev, "invalid binding for synchronous mode\n"); 1479 return -EINVAL; 1480 } 1481 1482 if (of_property_read_bool(np, "fsl,sai-synchronous-rx")) { 1483 /* Sync Rx with Tx */ 1484 sai->synchronous[RX] = false; 1485 sai->synchronous[TX] = true; 1486 } else if (of_property_read_bool(np, "fsl,sai-asynchronous")) { 1487 /* Discard all settings for asynchronous mode */ 1488 sai->synchronous[RX] = false; 1489 sai->synchronous[TX] = false; 1490 sai->cpu_dai_drv[0].symmetric_rate = 0; 1491 sai->cpu_dai_drv[0].symmetric_channels = 0; 1492 sai->cpu_dai_drv[0].symmetric_sample_bits = 0; 1493 } 1494 1495 sai->mclk_direction_output = of_property_read_bool(np, "fsl,sai-mclk-direction-output"); 1496 1497 if (sai->mclk_direction_output && 1498 of_device_is_compatible(np, "fsl,imx6ul-sai")) { 1499 gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr"); 1500 if (IS_ERR(gpr)) { 1501 dev_err(dev, "cannot find iomuxc registers\n"); 1502 return PTR_ERR(gpr); 1503 } 1504 1505 index = of_alias_get_id(np, "sai"); 1506 if (index < 0) 1507 return index; 1508 1509 regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index), 1510 MCLK_DIR(index)); 1511 } 1512 1513 sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0; 1514 sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0; 1515 sai->dma_params_rx.maxburst = 1516 sai->soc_data->max_burst[RX] ? sai->soc_data->max_burst[RX] : FSL_SAI_MAXBURST_RX; 1517 sai->dma_params_tx.maxburst = 1518 sai->soc_data->max_burst[TX] ? sai->soc_data->max_burst[TX] : FSL_SAI_MAXBURST_TX; 1519 1520 sai->pinctrl = devm_pinctrl_get(&pdev->dev); 1521 1522 platform_set_drvdata(pdev, sai); 1523 pm_runtime_enable(dev); 1524 if (!pm_runtime_enabled(dev)) { 1525 ret = fsl_sai_runtime_resume(dev); 1526 if (ret) 1527 goto err_pm_disable; 1528 } 1529 1530 ret = pm_runtime_resume_and_get(dev); 1531 if (ret < 0) 1532 goto err_pm_get_sync; 1533 1534 /* Get sai version */ 1535 ret = fsl_sai_check_version(dev); 1536 if (ret < 0) 1537 dev_warn(dev, "Error reading SAI version: %d\n", ret); 1538 1539 /* Select MCLK direction */ 1540 if (sai->mclk_direction_output && 1541 sai->soc_data->max_register >= FSL_SAI_MCTL) { 1542 regmap_update_bits(sai->regmap, FSL_SAI_MCTL, 1543 FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN); 1544 } 1545 1546 ret = pm_runtime_put_sync(dev); 1547 if (ret < 0 && ret != -ENOSYS) 1548 goto err_pm_get_sync; 1549 1550 /* 1551 * Register platform component before registering cpu dai for there 1552 * is not defer probe for platform component in snd_soc_add_pcm_runtime(). 1553 */ 1554 if (sai->soc_data->use_imx_pcm) { 1555 ret = imx_pcm_dma_init(pdev); 1556 if (ret) { 1557 dev_err_probe(dev, ret, "PCM DMA init failed\n"); 1558 if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA)) 1559 dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n"); 1560 goto err_pm_get_sync; 1561 } 1562 } else { 1563 ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0); 1564 if (ret) { 1565 dev_err_probe(dev, ret, "Registering PCM dmaengine failed\n"); 1566 goto err_pm_get_sync; 1567 } 1568 } 1569 1570 ret = devm_snd_soc_register_component(dev, &fsl_component, 1571 sai->cpu_dai_drv, ARRAY_SIZE(fsl_sai_dai_template)); 1572 if (ret) 1573 goto err_pm_get_sync; 1574 1575 return ret; 1576 1577 err_pm_get_sync: 1578 if (!pm_runtime_status_suspended(dev)) 1579 fsl_sai_runtime_suspend(dev); 1580 err_pm_disable: 1581 pm_runtime_disable(dev); 1582 1583 return ret; 1584 } 1585 1586 static void fsl_sai_remove(struct platform_device *pdev) 1587 { 1588 pm_runtime_disable(&pdev->dev); 1589 if (!pm_runtime_status_suspended(&pdev->dev)) 1590 fsl_sai_runtime_suspend(&pdev->dev); 1591 } 1592 1593 static const struct fsl_sai_soc_data fsl_sai_vf610_data = { 1594 .use_imx_pcm = false, 1595 .use_edma = false, 1596 .fifo_depth = 32, 1597 .pins = 1, 1598 .reg_offset = 0, 1599 .mclk0_is_mclk1 = false, 1600 .flags = 0, 1601 .max_register = FSL_SAI_RMR, 1602 }; 1603 1604 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = { 1605 .use_imx_pcm = true, 1606 .use_edma = false, 1607 .fifo_depth = 32, 1608 .pins = 1, 1609 .reg_offset = 0, 1610 .mclk0_is_mclk1 = true, 1611 .flags = 0, 1612 .max_register = FSL_SAI_RMR, 1613 }; 1614 1615 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = { 1616 .use_imx_pcm = true, 1617 .use_edma = false, 1618 .fifo_depth = 16, 1619 .pins = 2, 1620 .reg_offset = 8, 1621 .mclk0_is_mclk1 = false, 1622 .flags = PMQOS_CPU_LATENCY, 1623 .max_register = FSL_SAI_RMR, 1624 }; 1625 1626 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = { 1627 .use_imx_pcm = true, 1628 .use_edma = false, 1629 .fifo_depth = 128, 1630 .pins = 8, 1631 .reg_offset = 8, 1632 .mclk0_is_mclk1 = false, 1633 .flags = 0, 1634 .max_register = FSL_SAI_RMR, 1635 }; 1636 1637 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = { 1638 .use_imx_pcm = true, 1639 .use_edma = true, 1640 .fifo_depth = 64, 1641 .pins = 4, 1642 .reg_offset = 0, 1643 .mclk0_is_mclk1 = false, 1644 .flags = 0, 1645 .max_register = FSL_SAI_RMR, 1646 }; 1647 1648 static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = { 1649 .use_imx_pcm = true, 1650 .use_edma = false, 1651 .fifo_depth = 128, 1652 .reg_offset = 8, 1653 .mclk0_is_mclk1 = false, 1654 .pins = 8, 1655 .flags = 0, 1656 .max_register = FSL_SAI_MCTL, 1657 }; 1658 1659 static const struct fsl_sai_soc_data fsl_sai_imx8mn_data = { 1660 .use_imx_pcm = true, 1661 .use_edma = false, 1662 .fifo_depth = 128, 1663 .reg_offset = 8, 1664 .mclk0_is_mclk1 = false, 1665 .pins = 8, 1666 .flags = 0, 1667 .max_register = FSL_SAI_MDIV, 1668 }; 1669 1670 static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = { 1671 .use_imx_pcm = true, 1672 .use_edma = false, 1673 .fifo_depth = 128, 1674 .reg_offset = 8, 1675 .mclk0_is_mclk1 = false, 1676 .pins = 8, 1677 .flags = 0, 1678 .max_register = FSL_SAI_MDIV, 1679 .mclk_with_tere = true, 1680 }; 1681 1682 static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = { 1683 .use_imx_pcm = true, 1684 .use_edma = true, 1685 .fifo_depth = 16, 1686 .reg_offset = 8, 1687 .mclk0_is_mclk1 = false, 1688 .pins = 4, 1689 .flags = PMQOS_CPU_LATENCY, 1690 .max_register = FSL_SAI_RTCAP, 1691 }; 1692 1693 static const struct fsl_sai_soc_data fsl_sai_imx93_data = { 1694 .use_imx_pcm = true, 1695 .use_edma = true, 1696 .fifo_depth = 128, 1697 .reg_offset = 8, 1698 .mclk0_is_mclk1 = false, 1699 .pins = 4, 1700 .flags = 0, 1701 .max_register = FSL_SAI_MCTL, 1702 .max_burst = {8, 8}, 1703 }; 1704 1705 static const struct fsl_sai_soc_data fsl_sai_imx95_data = { 1706 .use_imx_pcm = true, 1707 .use_edma = true, 1708 .fifo_depth = 128, 1709 .reg_offset = 8, 1710 .mclk0_is_mclk1 = false, 1711 .pins = 8, 1712 .flags = 0, 1713 .max_register = FSL_SAI_MCTL, 1714 .max_burst = {8, 8}, 1715 }; 1716 1717 static const struct of_device_id fsl_sai_ids[] = { 1718 { .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data }, 1719 { .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data }, 1720 { .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data }, 1721 { .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data }, 1722 { .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data }, 1723 { .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data }, 1724 { .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data }, 1725 { .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data }, 1726 { .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data }, 1727 { .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mn_data }, 1728 { .compatible = "fsl,imx93-sai", .data = &fsl_sai_imx93_data }, 1729 { .compatible = "fsl,imx95-sai", .data = &fsl_sai_imx95_data }, 1730 { /* sentinel */ } 1731 }; 1732 MODULE_DEVICE_TABLE(of, fsl_sai_ids); 1733 1734 static int fsl_sai_runtime_suspend(struct device *dev) 1735 { 1736 struct fsl_sai *sai = dev_get_drvdata(dev); 1737 1738 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) 1739 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]); 1740 1741 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) 1742 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]); 1743 1744 clk_disable_unprepare(sai->bus_clk); 1745 1746 if (sai->soc_data->flags & PMQOS_CPU_LATENCY) 1747 cpu_latency_qos_remove_request(&sai->pm_qos_req); 1748 1749 regcache_cache_only(sai->regmap, true); 1750 1751 return 0; 1752 } 1753 1754 static int fsl_sai_runtime_resume(struct device *dev) 1755 { 1756 struct fsl_sai *sai = dev_get_drvdata(dev); 1757 unsigned int ofs = sai->soc_data->reg_offset; 1758 int ret; 1759 1760 ret = clk_prepare_enable(sai->bus_clk); 1761 if (ret) { 1762 dev_err(dev, "failed to enable bus clock: %d\n", ret); 1763 return ret; 1764 } 1765 1766 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) { 1767 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]); 1768 if (ret) 1769 goto disable_bus_clk; 1770 } 1771 1772 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) { 1773 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]); 1774 if (ret) 1775 goto disable_tx_clk; 1776 } 1777 1778 if (sai->soc_data->flags & PMQOS_CPU_LATENCY) 1779 cpu_latency_qos_add_request(&sai->pm_qos_req, 0); 1780 1781 regcache_cache_only(sai->regmap, false); 1782 regcache_mark_dirty(sai->regmap); 1783 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR); 1784 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR); 1785 usleep_range(1000, 2000); 1786 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0); 1787 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0); 1788 1789 ret = regcache_sync(sai->regmap); 1790 if (ret) 1791 goto disable_rx_clk; 1792 1793 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output) 1794 regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), 1795 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE); 1796 1797 return 0; 1798 1799 disable_rx_clk: 1800 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) 1801 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]); 1802 disable_tx_clk: 1803 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) 1804 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]); 1805 disable_bus_clk: 1806 clk_disable_unprepare(sai->bus_clk); 1807 1808 return ret; 1809 } 1810 1811 static const struct dev_pm_ops fsl_sai_pm_ops = { 1812 SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend, 1813 fsl_sai_runtime_resume, NULL) 1814 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1815 pm_runtime_force_resume) 1816 }; 1817 1818 static struct platform_driver fsl_sai_driver = { 1819 .probe = fsl_sai_probe, 1820 .remove_new = fsl_sai_remove, 1821 .driver = { 1822 .name = "fsl-sai", 1823 .pm = &fsl_sai_pm_ops, 1824 .of_match_table = fsl_sai_ids, 1825 }, 1826 }; 1827 module_platform_driver(fsl_sai_driver); 1828 1829 MODULE_DESCRIPTION("Freescale Soc SAI Interface"); 1830 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>"); 1831 MODULE_ALIAS("platform:fsl-sai"); 1832 MODULE_LICENSE("GPL"); 1833
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.