1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 // 3 // This file is provided under a dual BSD/GPLv2 license. When using or 4 // redistributing this file, you may do so under either license. 5 // 6 // Copyright(c) 2018 Intel Corporation 7 // 8 // Authors: Liam Girdwood <liam.r.girdwood@linux.intel.com> 9 // Ranjani Sridharan <ranjani.sridharan@linux.intel.com> 10 // Rander Wang <rander.wang@intel.com> 11 // Keyon Jie <yang.jie@linux.intel.com> 12 // 13 14 /* 15 * Hardware interface for audio DSP on Cannonlake. 16 */ 17 18 #include <sound/sof/ext_manifest4.h> 19 #include <sound/sof/ipc4/header.h> 20 #include <trace/events/sof_intel.h> 21 #include "../ipc4-priv.h" 22 #include "../ops.h" 23 #include "hda.h" 24 #include "hda-ipc.h" 25 #include "../sof-audio.h" 26 27 static const struct snd_sof_debugfs_map cnl_dsp_debugfs[] = { 28 {"hda", HDA_DSP_HDA_BAR, 0, 0x4000, SOF_DEBUGFS_ACCESS_ALWAYS}, 29 {"pp", HDA_DSP_PP_BAR, 0, 0x1000, SOF_DEBUGFS_ACCESS_ALWAYS}, 30 {"dsp", HDA_DSP_BAR, 0, 0x10000, SOF_DEBUGFS_ACCESS_ALWAYS}, 31 }; 32 33 static void cnl_ipc_host_done(struct snd_sof_dev *sdev); 34 static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev); 35 36 irqreturn_t cnl_ipc4_irq_thread(int irq, void *context) 37 { 38 struct sof_ipc4_msg notification_data = {{ 0 }}; 39 struct snd_sof_dev *sdev = context; 40 bool ack_received = false; 41 bool ipc_irq = false; 42 u32 hipcida, hipctdr; 43 44 hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA); 45 hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR); 46 if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) { 47 /* DSP received the message */ 48 snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, 49 CNL_DSP_REG_HIPCCTL, 50 CNL_DSP_REG_HIPCCTL_DONE, 0); 51 cnl_ipc_dsp_done(sdev); 52 53 ipc_irq = true; 54 ack_received = true; 55 } 56 57 if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) { 58 /* Message from DSP (reply or notification) */ 59 u32 hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, 60 CNL_DSP_REG_HIPCTDD); 61 u32 primary = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK; 62 u32 extension = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK; 63 64 if (primary & SOF_IPC4_MSG_DIR_MASK) { 65 /* Reply received */ 66 if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) { 67 struct sof_ipc4_msg *data = sdev->ipc->msg.reply_data; 68 69 data->primary = primary; 70 data->extension = extension; 71 72 spin_lock_irq(&sdev->ipc_lock); 73 74 snd_sof_ipc_get_reply(sdev); 75 cnl_ipc_host_done(sdev); 76 snd_sof_ipc_reply(sdev, data->primary); 77 78 spin_unlock_irq(&sdev->ipc_lock); 79 } else { 80 dev_dbg_ratelimited(sdev->dev, 81 "IPC reply before FW_READY: %#x|%#x\n", 82 primary, extension); 83 } 84 } else { 85 /* Notification received */ 86 notification_data.primary = primary; 87 notification_data.extension = extension; 88 89 sdev->ipc->msg.rx_data = ¬ification_data; 90 snd_sof_ipc_msgs_rx(sdev); 91 sdev->ipc->msg.rx_data = NULL; 92 93 /* Let DSP know that we have finished processing the message */ 94 cnl_ipc_host_done(sdev); 95 } 96 97 ipc_irq = true; 98 } 99 100 if (!ipc_irq) 101 /* This interrupt is not shared so no need to return IRQ_NONE. */ 102 dev_dbg_ratelimited(sdev->dev, "nothing to do in IPC IRQ thread\n"); 103 104 if (ack_received) { 105 struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata; 106 107 if (hdev->delayed_ipc_tx_msg) 108 cnl_ipc4_send_msg(sdev, hdev->delayed_ipc_tx_msg); 109 } 110 111 return IRQ_HANDLED; 112 } 113 EXPORT_SYMBOL_NS(cnl_ipc4_irq_thread, SND_SOC_SOF_INTEL_CNL); 114 115 irqreturn_t cnl_ipc_irq_thread(int irq, void *context) 116 { 117 struct snd_sof_dev *sdev = context; 118 u32 hipci; 119 u32 hipcida; 120 u32 hipctdr; 121 u32 hipctdd; 122 u32 msg; 123 u32 msg_ext; 124 bool ipc_irq = false; 125 126 hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA); 127 hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR); 128 hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD); 129 hipci = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR); 130 131 /* reply message from DSP */ 132 if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) { 133 msg_ext = hipci & CNL_DSP_REG_HIPCIDR_MSG_MASK; 134 msg = hipcida & CNL_DSP_REG_HIPCIDA_MSG_MASK; 135 136 trace_sof_intel_ipc_firmware_response(sdev, msg, msg_ext); 137 138 /* mask Done interrupt */ 139 snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, 140 CNL_DSP_REG_HIPCCTL, 141 CNL_DSP_REG_HIPCCTL_DONE, 0); 142 143 if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) { 144 spin_lock_irq(&sdev->ipc_lock); 145 146 /* handle immediate reply from DSP core */ 147 hda_dsp_ipc_get_reply(sdev); 148 snd_sof_ipc_reply(sdev, msg); 149 150 cnl_ipc_dsp_done(sdev); 151 152 spin_unlock_irq(&sdev->ipc_lock); 153 } else { 154 dev_dbg_ratelimited(sdev->dev, "IPC reply before FW_READY: %#x\n", 155 msg); 156 } 157 158 ipc_irq = true; 159 } 160 161 /* new message from DSP */ 162 if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) { 163 msg = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK; 164 msg_ext = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK; 165 166 trace_sof_intel_ipc_firmware_initiated(sdev, msg, msg_ext); 167 168 /* handle messages from DSP */ 169 if ((hipctdr & SOF_IPC_PANIC_MAGIC_MASK) == SOF_IPC_PANIC_MAGIC) { 170 struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; 171 bool non_recoverable = true; 172 173 /* 174 * This is a PANIC message! 175 * 176 * If it is arriving during firmware boot and it is not 177 * the last boot attempt then change the non_recoverable 178 * to false as the DSP might be able to boot in the next 179 * iteration(s) 180 */ 181 if (sdev->fw_state == SOF_FW_BOOT_IN_PROGRESS && 182 hda->boot_iteration < HDA_FW_BOOT_ATTEMPTS) 183 non_recoverable = false; 184 185 snd_sof_dsp_panic(sdev, HDA_DSP_PANIC_OFFSET(msg_ext), 186 non_recoverable); 187 } else { 188 snd_sof_ipc_msgs_rx(sdev); 189 } 190 191 cnl_ipc_host_done(sdev); 192 193 ipc_irq = true; 194 } 195 196 if (!ipc_irq) { 197 /* 198 * This interrupt is not shared so no need to return IRQ_NONE. 199 */ 200 dev_dbg_ratelimited(sdev->dev, 201 "nothing to do in IPC IRQ thread\n"); 202 } 203 204 return IRQ_HANDLED; 205 } 206 EXPORT_SYMBOL_NS(cnl_ipc_irq_thread, SND_SOC_SOF_INTEL_CNL); 207 208 static void cnl_ipc_host_done(struct snd_sof_dev *sdev) 209 { 210 /* 211 * clear busy interrupt to tell dsp controller this 212 * interrupt has been accepted, not trigger it again 213 */ 214 snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR, 215 CNL_DSP_REG_HIPCTDR, 216 CNL_DSP_REG_HIPCTDR_BUSY, 217 CNL_DSP_REG_HIPCTDR_BUSY); 218 /* 219 * set done bit to ack dsp the msg has been 220 * processed and send reply msg to dsp 221 */ 222 snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR, 223 CNL_DSP_REG_HIPCTDA, 224 CNL_DSP_REG_HIPCTDA_DONE, 225 CNL_DSP_REG_HIPCTDA_DONE); 226 } 227 228 static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev) 229 { 230 /* 231 * set DONE bit - tell DSP we have received the reply msg 232 * from DSP, and processed it, don't send more reply to host 233 */ 234 snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR, 235 CNL_DSP_REG_HIPCIDA, 236 CNL_DSP_REG_HIPCIDA_DONE, 237 CNL_DSP_REG_HIPCIDA_DONE); 238 239 /* unmask Done interrupt */ 240 snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, 241 CNL_DSP_REG_HIPCCTL, 242 CNL_DSP_REG_HIPCCTL_DONE, 243 CNL_DSP_REG_HIPCCTL_DONE); 244 } 245 246 static bool cnl_compact_ipc_compress(struct snd_sof_ipc_msg *msg, 247 u32 *dr, u32 *dd) 248 { 249 struct sof_ipc_pm_gate *pm_gate = msg->msg_data; 250 251 if (pm_gate->hdr.cmd == (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_GATE)) { 252 /* send the compact message via the primary register */ 253 *dr = HDA_IPC_MSG_COMPACT | HDA_IPC_PM_GATE; 254 255 /* send payload via the extended data register */ 256 *dd = pm_gate->flags; 257 258 return true; 259 } 260 261 return false; 262 } 263 264 int cnl_ipc4_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg) 265 { 266 struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata; 267 struct sof_ipc4_msg *msg_data = msg->msg_data; 268 269 if (hda_ipc4_tx_is_busy(sdev)) { 270 hdev->delayed_ipc_tx_msg = msg; 271 return 0; 272 } 273 274 hdev->delayed_ipc_tx_msg = NULL; 275 276 /* send the message via mailbox */ 277 if (msg_data->data_size) 278 sof_mailbox_write(sdev, sdev->host_box.offset, msg_data->data_ptr, 279 msg_data->data_size); 280 281 snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD, msg_data->extension); 282 snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR, 283 msg_data->primary | CNL_DSP_REG_HIPCIDR_BUSY); 284 285 hda_dsp_ipc4_schedule_d0i3_work(hdev, msg); 286 287 return 0; 288 } 289 EXPORT_SYMBOL_NS(cnl_ipc4_send_msg, SND_SOC_SOF_INTEL_CNL); 290 291 int cnl_ipc_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg) 292 { 293 struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata; 294 struct sof_ipc_cmd_hdr *hdr; 295 u32 dr = 0; 296 u32 dd = 0; 297 298 /* 299 * Currently the only compact IPC supported is the PM_GATE 300 * IPC which is used for transitioning the DSP between the 301 * D0I0 and D0I3 states. And these are sent only during the 302 * set_power_state() op. Therefore, there will never be a case 303 * that a compact IPC results in the DSP exiting D0I3 without 304 * the host and FW being in sync. 305 */ 306 if (cnl_compact_ipc_compress(msg, &dr, &dd)) { 307 /* send the message via IPC registers */ 308 snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD, 309 dd); 310 snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR, 311 CNL_DSP_REG_HIPCIDR_BUSY | dr); 312 return 0; 313 } 314 315 /* send the message via mailbox */ 316 sof_mailbox_write(sdev, sdev->host_box.offset, msg->msg_data, 317 msg->msg_size); 318 snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR, 319 CNL_DSP_REG_HIPCIDR_BUSY); 320 321 hdr = msg->msg_data; 322 323 /* 324 * Use mod_delayed_work() to schedule the delayed work 325 * to avoid scheduling multiple workqueue items when 326 * IPCs are sent at a high-rate. mod_delayed_work() 327 * modifies the timer if the work is pending. 328 * Also, a new delayed work should not be queued after the 329 * CTX_SAVE IPC, which is sent before the DSP enters D3. 330 */ 331 if (hdr->cmd != (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_CTX_SAVE)) 332 mod_delayed_work(system_wq, &hdev->d0i3_work, 333 msecs_to_jiffies(SOF_HDA_D0I3_WORK_DELAY_MS)); 334 335 return 0; 336 } 337 EXPORT_SYMBOL_NS(cnl_ipc_send_msg, SND_SOC_SOF_INTEL_CNL); 338 339 void cnl_ipc_dump(struct snd_sof_dev *sdev) 340 { 341 u32 hipcctl; 342 u32 hipcida; 343 u32 hipctdr; 344 345 hda_ipc_irq_dump(sdev); 346 347 /* read IPC status */ 348 hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA); 349 hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL); 350 hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR); 351 352 /* dump the IPC regs */ 353 /* TODO: parse the raw msg */ 354 dev_err(sdev->dev, 355 "error: host status 0x%8.8x dsp status 0x%8.8x mask 0x%8.8x\n", 356 hipcida, hipctdr, hipcctl); 357 } 358 EXPORT_SYMBOL_NS(cnl_ipc_dump, SND_SOC_SOF_INTEL_CNL); 359 360 void cnl_ipc4_dump(struct snd_sof_dev *sdev) 361 { 362 u32 hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl; 363 364 hda_ipc_irq_dump(sdev); 365 366 hipcidr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR); 367 hipcidd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD); 368 hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA); 369 hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR); 370 hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD); 371 hipctda = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDA); 372 hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL); 373 374 /* dump the IPC regs */ 375 /* TODO: parse the raw msg */ 376 dev_err(sdev->dev, 377 "Host IPC initiator: %#x|%#x|%#x, target: %#x|%#x|%#x, ctl: %#x\n", 378 hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl); 379 } 380 EXPORT_SYMBOL_NS(cnl_ipc4_dump, SND_SOC_SOF_INTEL_CNL); 381 382 /* cannonlake ops */ 383 struct snd_sof_dsp_ops sof_cnl_ops; 384 EXPORT_SYMBOL_NS(sof_cnl_ops, SND_SOC_SOF_INTEL_CNL); 385 386 int sof_cnl_ops_init(struct snd_sof_dev *sdev) 387 { 388 /* common defaults */ 389 memcpy(&sof_cnl_ops, &sof_hda_common_ops, sizeof(struct snd_sof_dsp_ops)); 390 391 /* probe/remove/shutdown */ 392 sof_cnl_ops.shutdown = hda_dsp_shutdown; 393 394 /* ipc */ 395 if (sdev->pdata->ipc_type == SOF_IPC_TYPE_3) { 396 /* doorbell */ 397 sof_cnl_ops.irq_thread = cnl_ipc_irq_thread; 398 399 /* ipc */ 400 sof_cnl_ops.send_msg = cnl_ipc_send_msg; 401 402 /* debug */ 403 sof_cnl_ops.ipc_dump = cnl_ipc_dump; 404 405 sof_cnl_ops.set_power_state = hda_dsp_set_power_state_ipc3; 406 } 407 408 if (sdev->pdata->ipc_type == SOF_IPC_TYPE_4) { 409 struct sof_ipc4_fw_data *ipc4_data; 410 411 sdev->private = kzalloc(sizeof(*ipc4_data), GFP_KERNEL); 412 if (!sdev->private) 413 return -ENOMEM; 414 415 ipc4_data = sdev->private; 416 ipc4_data->manifest_fw_hdr_offset = SOF_MAN4_FW_HDR_OFFSET; 417 418 ipc4_data->mtrace_type = SOF_IPC4_MTRACE_INTEL_CAVS_1_8; 419 420 /* External library loading support */ 421 ipc4_data->load_library = hda_dsp_ipc4_load_library; 422 423 /* doorbell */ 424 sof_cnl_ops.irq_thread = cnl_ipc4_irq_thread; 425 426 /* ipc */ 427 sof_cnl_ops.send_msg = cnl_ipc4_send_msg; 428 429 /* debug */ 430 sof_cnl_ops.ipc_dump = cnl_ipc4_dump; 431 432 sof_cnl_ops.set_power_state = hda_dsp_set_power_state_ipc4; 433 } 434 435 /* set DAI driver ops */ 436 hda_set_dai_drv_ops(sdev, &sof_cnl_ops); 437 438 /* debug */ 439 sof_cnl_ops.debug_map = cnl_dsp_debugfs; 440 sof_cnl_ops.debug_map_count = ARRAY_SIZE(cnl_dsp_debugfs); 441 442 /* pre/post fw run */ 443 sof_cnl_ops.post_fw_run = hda_dsp_post_fw_run; 444 445 /* firmware run */ 446 sof_cnl_ops.run = hda_dsp_cl_boot_firmware; 447 448 /* dsp core get/put */ 449 sof_cnl_ops.core_get = hda_dsp_core_get; 450 451 return 0; 452 }; 453 EXPORT_SYMBOL_NS(sof_cnl_ops_init, SND_SOC_SOF_INTEL_CNL); 454 455 const struct sof_intel_dsp_desc cnl_chip_info = { 456 /* Cannonlake */ 457 .cores_num = 4, 458 .init_core_mask = 1, 459 .host_managed_cores_mask = GENMASK(3, 0), 460 .ipc_req = CNL_DSP_REG_HIPCIDR, 461 .ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY, 462 .ipc_ack = CNL_DSP_REG_HIPCIDA, 463 .ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE, 464 .ipc_ctl = CNL_DSP_REG_HIPCCTL, 465 .rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS, 466 .rom_init_timeout = 300, 467 .ssp_count = CNL_SSP_COUNT, 468 .ssp_base_offset = CNL_SSP_BASE_OFFSET, 469 .sdw_shim_base = SDW_SHIM_BASE, 470 .sdw_alh_base = SDW_ALH_BASE, 471 .d0i3_offset = SOF_HDA_VS_D0I3C, 472 .read_sdw_lcount = hda_sdw_check_lcount_common, 473 .enable_sdw_irq = hda_common_enable_sdw_irq, 474 .check_sdw_irq = hda_common_check_sdw_irq, 475 .check_sdw_wakeen_irq = hda_sdw_check_wakeen_irq_common, 476 .sdw_process_wakeen = hda_sdw_process_wakeen_common, 477 .check_ipc_irq = hda_dsp_check_ipc_irq, 478 .cl_init = cl_dsp_init, 479 .power_down_dsp = hda_power_down_dsp, 480 .disable_interrupts = hda_dsp_disable_interrupts, 481 .hw_ip_version = SOF_INTEL_CAVS_1_8, 482 }; 483 484 /* 485 * JasperLake is technically derived from IceLake, and should be in 486 * described in icl.c. However since JasperLake was designed with 487 * two cores, it cannot support the IceLake-specific power-up sequences 488 * which rely on core3. To simplify, JasperLake uses the CannonLake ops and 489 * is described in cnl.c 490 */ 491 const struct sof_intel_dsp_desc jsl_chip_info = { 492 /* Jasperlake */ 493 .cores_num = 2, 494 .init_core_mask = 1, 495 .host_managed_cores_mask = GENMASK(1, 0), 496 .ipc_req = CNL_DSP_REG_HIPCIDR, 497 .ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY, 498 .ipc_ack = CNL_DSP_REG_HIPCIDA, 499 .ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE, 500 .ipc_ctl = CNL_DSP_REG_HIPCCTL, 501 .rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS, 502 .rom_init_timeout = 300, 503 .ssp_count = ICL_SSP_COUNT, 504 .ssp_base_offset = CNL_SSP_BASE_OFFSET, 505 .sdw_shim_base = SDW_SHIM_BASE, 506 .sdw_alh_base = SDW_ALH_BASE, 507 .d0i3_offset = SOF_HDA_VS_D0I3C, 508 .read_sdw_lcount = hda_sdw_check_lcount_common, 509 .enable_sdw_irq = hda_common_enable_sdw_irq, 510 .check_sdw_irq = hda_common_check_sdw_irq, 511 .check_sdw_wakeen_irq = hda_sdw_check_wakeen_irq_common, 512 .sdw_process_wakeen = hda_sdw_process_wakeen_common, 513 .check_ipc_irq = hda_dsp_check_ipc_irq, 514 .cl_init = cl_dsp_init, 515 .power_down_dsp = hda_power_down_dsp, 516 .disable_interrupts = hda_dsp_disable_interrupts, 517 .hw_ip_version = SOF_INTEL_CAVS_2_0, 518 }; 519 EXPORT_SYMBOL_NS(jsl_chip_info, SND_SOC_SOF_INTEL_CNL); 520
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.