1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * STM32 ALSA SoC Digital Audio Interface (SAI) driver. 4 * 5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved 6 * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics. 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/of_irq.h> 14 #include <linux/of_platform.h> 15 #include <linux/pm_runtime.h> 16 #include <linux/regmap.h> 17 18 #include <sound/asoundef.h> 19 #include <sound/core.h> 20 #include <sound/dmaengine_pcm.h> 21 #include <sound/pcm_params.h> 22 23 #include "stm32_sai.h" 24 25 #define SAI_FREE_PROTOCOL 0x0 26 #define SAI_SPDIF_PROTOCOL 0x1 27 28 #define SAI_SLOT_SIZE_AUTO 0x0 29 #define SAI_SLOT_SIZE_16 0x1 30 #define SAI_SLOT_SIZE_32 0x2 31 32 #define SAI_DATASIZE_8 0x2 33 #define SAI_DATASIZE_10 0x3 34 #define SAI_DATASIZE_16 0x4 35 #define SAI_DATASIZE_20 0x5 36 #define SAI_DATASIZE_24 0x6 37 #define SAI_DATASIZE_32 0x7 38 39 #define STM_SAI_DAI_NAME_SIZE 15 40 41 #define STM_SAI_IS_PLAYBACK(ip) ((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK) 42 #define STM_SAI_IS_CAPTURE(ip) ((ip)->dir == SNDRV_PCM_STREAM_CAPTURE) 43 44 #define STM_SAI_A_ID 0x0 45 #define STM_SAI_B_ID 0x1 46 47 #define STM_SAI_IS_SUB_A(x) ((x)->id == STM_SAI_A_ID) 48 49 #define SAI_SYNC_NONE 0x0 50 #define SAI_SYNC_INTERNAL 0x1 51 #define SAI_SYNC_EXTERNAL 0x2 52 53 #define STM_SAI_PROTOCOL_IS_SPDIF(ip) ((ip)->spdif) 54 #define STM_SAI_HAS_SPDIF(x) ((x)->pdata->conf.has_spdif_pdm) 55 #define STM_SAI_HAS_PDM(x) ((x)->pdata->conf.has_spdif_pdm) 56 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata)) 57 58 #define SAI_IEC60958_BLOCK_FRAMES 192 59 #define SAI_IEC60958_STATUS_BYTES 24 60 61 #define SAI_MCLK_NAME_LEN 32 62 #define SAI_RATE_11K 11025 63 64 /** 65 * struct stm32_sai_sub_data - private data of SAI sub block (block A or B) 66 * @pdev: device data pointer 67 * @regmap: SAI register map pointer 68 * @regmap_config: SAI sub block register map configuration pointer 69 * @dma_params: dma configuration data for rx or tx channel 70 * @cpu_dai_drv: DAI driver data pointer 71 * @cpu_dai: DAI runtime data pointer 72 * @substream: PCM substream data pointer 73 * @pdata: SAI block parent data pointer 74 * @np_sync_provider: synchronization provider node 75 * @sai_ck: kernel clock feeding the SAI clock generator 76 * @sai_mclk: master clock from SAI mclk provider 77 * @phys_addr: SAI registers physical base address 78 * @mclk_rate: SAI block master clock frequency (Hz). set at init 79 * @id: SAI sub block id corresponding to sub-block A or B 80 * @dir: SAI block direction (playback or capture). set at init 81 * @master: SAI block mode flag. (true=master, false=slave) set at init 82 * @spdif: SAI S/PDIF iec60958 mode flag. set at init 83 * @fmt: SAI block format. relevant only for custom protocols. set at init 84 * @sync: SAI block synchronization mode. (none, internal or external) 85 * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B) 86 * @synci: SAI block ext sync source (client setting). (SAI sync provider index) 87 * @fs_length: frame synchronization length. depends on protocol settings 88 * @slots: rx or tx slot number 89 * @slot_width: rx or tx slot width in bits 90 * @slot_mask: rx or tx active slots mask. set at init or at runtime 91 * @data_size: PCM data width. corresponds to PCM substream width. 92 * @spdif_frm_cnt: S/PDIF playback frame counter 93 * @iec958: iec958 data 94 * @ctrl_lock: control lock 95 * @irq_lock: prevent race condition with IRQ 96 */ 97 struct stm32_sai_sub_data { 98 struct platform_device *pdev; 99 struct regmap *regmap; 100 const struct regmap_config *regmap_config; 101 struct snd_dmaengine_dai_dma_data dma_params; 102 struct snd_soc_dai_driver cpu_dai_drv; 103 struct snd_soc_dai *cpu_dai; 104 struct snd_pcm_substream *substream; 105 struct stm32_sai_data *pdata; 106 struct device_node *np_sync_provider; 107 struct clk *sai_ck; 108 struct clk *sai_mclk; 109 dma_addr_t phys_addr; 110 unsigned int mclk_rate; 111 unsigned int id; 112 int dir; 113 bool master; 114 bool spdif; 115 int fmt; 116 int sync; 117 int synco; 118 int synci; 119 int fs_length; 120 int slots; 121 int slot_width; 122 int slot_mask; 123 int data_size; 124 unsigned int spdif_frm_cnt; 125 struct snd_aes_iec958 iec958; 126 struct mutex ctrl_lock; /* protect resources accessed by controls */ 127 spinlock_t irq_lock; /* used to prevent race condition with IRQ */ 128 }; 129 130 enum stm32_sai_fifo_th { 131 STM_SAI_FIFO_TH_EMPTY, 132 STM_SAI_FIFO_TH_QUARTER, 133 STM_SAI_FIFO_TH_HALF, 134 STM_SAI_FIFO_TH_3_QUARTER, 135 STM_SAI_FIFO_TH_FULL, 136 }; 137 138 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg) 139 { 140 switch (reg) { 141 case STM_SAI_CR1_REGX: 142 case STM_SAI_CR2_REGX: 143 case STM_SAI_FRCR_REGX: 144 case STM_SAI_SLOTR_REGX: 145 case STM_SAI_IMR_REGX: 146 case STM_SAI_SR_REGX: 147 case STM_SAI_CLRFR_REGX: 148 case STM_SAI_DR_REGX: 149 case STM_SAI_PDMCR_REGX: 150 case STM_SAI_PDMLY_REGX: 151 return true; 152 default: 153 return false; 154 } 155 } 156 157 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg) 158 { 159 switch (reg) { 160 case STM_SAI_DR_REGX: 161 case STM_SAI_SR_REGX: 162 return true; 163 default: 164 return false; 165 } 166 } 167 168 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg) 169 { 170 switch (reg) { 171 case STM_SAI_CR1_REGX: 172 case STM_SAI_CR2_REGX: 173 case STM_SAI_FRCR_REGX: 174 case STM_SAI_SLOTR_REGX: 175 case STM_SAI_IMR_REGX: 176 case STM_SAI_CLRFR_REGX: 177 case STM_SAI_DR_REGX: 178 case STM_SAI_PDMCR_REGX: 179 case STM_SAI_PDMLY_REGX: 180 return true; 181 default: 182 return false; 183 } 184 } 185 186 static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai, 187 unsigned int reg, unsigned int mask, 188 unsigned int val) 189 { 190 int ret; 191 192 ret = clk_enable(sai->pdata->pclk); 193 if (ret < 0) 194 return ret; 195 196 ret = regmap_update_bits(sai->regmap, reg, mask, val); 197 198 clk_disable(sai->pdata->pclk); 199 200 return ret; 201 } 202 203 static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai, 204 unsigned int reg, unsigned int mask, 205 unsigned int val) 206 { 207 int ret; 208 209 ret = clk_enable(sai->pdata->pclk); 210 if (ret < 0) 211 return ret; 212 213 ret = regmap_write_bits(sai->regmap, reg, mask, val); 214 215 clk_disable(sai->pdata->pclk); 216 217 return ret; 218 } 219 220 static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai, 221 unsigned int reg, unsigned int *val) 222 { 223 int ret; 224 225 ret = clk_enable(sai->pdata->pclk); 226 if (ret < 0) 227 return ret; 228 229 ret = regmap_read(sai->regmap, reg, val); 230 231 clk_disable(sai->pdata->pclk); 232 233 return ret; 234 } 235 236 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = { 237 .reg_bits = 32, 238 .reg_stride = 4, 239 .val_bits = 32, 240 .max_register = STM_SAI_DR_REGX, 241 .readable_reg = stm32_sai_sub_readable_reg, 242 .volatile_reg = stm32_sai_sub_volatile_reg, 243 .writeable_reg = stm32_sai_sub_writeable_reg, 244 .fast_io = true, 245 .cache_type = REGCACHE_FLAT, 246 }; 247 248 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = { 249 .reg_bits = 32, 250 .reg_stride = 4, 251 .val_bits = 32, 252 .max_register = STM_SAI_PDMLY_REGX, 253 .readable_reg = stm32_sai_sub_readable_reg, 254 .volatile_reg = stm32_sai_sub_volatile_reg, 255 .writeable_reg = stm32_sai_sub_writeable_reg, 256 .fast_io = true, 257 .cache_type = REGCACHE_FLAT, 258 }; 259 260 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol, 261 struct snd_ctl_elem_info *uinfo) 262 { 263 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 264 uinfo->count = 1; 265 266 return 0; 267 } 268 269 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol, 270 struct snd_ctl_elem_value *uctl) 271 { 272 struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol); 273 274 mutex_lock(&sai->ctrl_lock); 275 memcpy(uctl->value.iec958.status, sai->iec958.status, 4); 276 mutex_unlock(&sai->ctrl_lock); 277 278 return 0; 279 } 280 281 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol, 282 struct snd_ctl_elem_value *uctl) 283 { 284 struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol); 285 286 mutex_lock(&sai->ctrl_lock); 287 memcpy(sai->iec958.status, uctl->value.iec958.status, 4); 288 mutex_unlock(&sai->ctrl_lock); 289 290 return 0; 291 } 292 293 static const struct snd_kcontrol_new iec958_ctls = { 294 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | 295 SNDRV_CTL_ELEM_ACCESS_VOLATILE), 296 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 297 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), 298 .info = snd_pcm_iec958_info, 299 .get = snd_pcm_iec958_get, 300 .put = snd_pcm_iec958_put, 301 }; 302 303 struct stm32_sai_mclk_data { 304 struct clk_hw hw; 305 unsigned long freq; 306 struct stm32_sai_sub_data *sai_data; 307 }; 308 309 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw) 310 #define STM32_SAI_MAX_CLKS 1 311 312 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai, 313 unsigned long input_rate, 314 unsigned long output_rate) 315 { 316 int version = sai->pdata->conf.version; 317 int div; 318 319 div = DIV_ROUND_CLOSEST(input_rate, output_rate); 320 if (div > SAI_XCR1_MCKDIV_MAX(version)) { 321 dev_err(&sai->pdev->dev, "Divider %d out of range\n", div); 322 return -EINVAL; 323 } 324 dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div); 325 326 if (input_rate % div) 327 dev_dbg(&sai->pdev->dev, 328 "Rate not accurate. requested (%ld), actual (%ld)\n", 329 output_rate, input_rate / div); 330 331 return div; 332 } 333 334 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai, 335 unsigned int div) 336 { 337 int version = sai->pdata->conf.version; 338 int ret, cr1, mask; 339 340 if (div > SAI_XCR1_MCKDIV_MAX(version)) { 341 dev_err(&sai->pdev->dev, "Divider %d out of range\n", div); 342 return -EINVAL; 343 } 344 345 mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version)); 346 cr1 = SAI_XCR1_MCKDIV_SET(div); 347 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1); 348 if (ret < 0) 349 dev_err(&sai->pdev->dev, "Failed to update CR1 register\n"); 350 351 return ret; 352 } 353 354 static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai, 355 unsigned int rate) 356 { 357 struct platform_device *pdev = sai->pdev; 358 struct clk *parent_clk = sai->pdata->clk_x8k; 359 int ret; 360 361 if (!(rate % SAI_RATE_11K)) 362 parent_clk = sai->pdata->clk_x11k; 363 364 ret = clk_set_parent(sai->sai_ck, parent_clk); 365 if (ret) 366 dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s", 367 ret, ret == -EBUSY ? 368 "Active stream rates conflict\n" : "\n"); 369 370 return ret; 371 } 372 373 static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate, 374 unsigned long *prate) 375 { 376 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw); 377 struct stm32_sai_sub_data *sai = mclk->sai_data; 378 int div; 379 380 div = stm32_sai_get_clk_div(sai, *prate, rate); 381 if (div < 0) 382 return div; 383 384 mclk->freq = *prate / div; 385 386 return mclk->freq; 387 } 388 389 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw, 390 unsigned long parent_rate) 391 { 392 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw); 393 394 return mclk->freq; 395 } 396 397 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate, 398 unsigned long parent_rate) 399 { 400 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw); 401 struct stm32_sai_sub_data *sai = mclk->sai_data; 402 int div, ret; 403 404 div = stm32_sai_get_clk_div(sai, parent_rate, rate); 405 if (div < 0) 406 return div; 407 408 ret = stm32_sai_set_clk_div(sai, div); 409 if (ret) 410 return ret; 411 412 mclk->freq = rate; 413 414 return 0; 415 } 416 417 static int stm32_sai_mclk_enable(struct clk_hw *hw) 418 { 419 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw); 420 struct stm32_sai_sub_data *sai = mclk->sai_data; 421 422 dev_dbg(&sai->pdev->dev, "Enable master clock\n"); 423 424 return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, 425 SAI_XCR1_MCKEN, SAI_XCR1_MCKEN); 426 } 427 428 static void stm32_sai_mclk_disable(struct clk_hw *hw) 429 { 430 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw); 431 struct stm32_sai_sub_data *sai = mclk->sai_data; 432 433 dev_dbg(&sai->pdev->dev, "Disable master clock\n"); 434 435 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0); 436 } 437 438 static const struct clk_ops mclk_ops = { 439 .enable = stm32_sai_mclk_enable, 440 .disable = stm32_sai_mclk_disable, 441 .recalc_rate = stm32_sai_mclk_recalc_rate, 442 .round_rate = stm32_sai_mclk_round_rate, 443 .set_rate = stm32_sai_mclk_set_rate, 444 }; 445 446 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai) 447 { 448 struct clk_hw *hw; 449 struct stm32_sai_mclk_data *mclk; 450 struct device *dev = &sai->pdev->dev; 451 const char *pname = __clk_get_name(sai->sai_ck); 452 char *mclk_name, *p, *s = (char *)pname; 453 int ret, i = 0; 454 455 mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL); 456 if (!mclk) 457 return -ENOMEM; 458 459 mclk_name = devm_kcalloc(dev, sizeof(char), 460 SAI_MCLK_NAME_LEN, GFP_KERNEL); 461 if (!mclk_name) 462 return -ENOMEM; 463 464 /* 465 * Forge mclk clock name from parent clock name and suffix. 466 * String after "_" char is stripped in parent name. 467 */ 468 p = mclk_name; 469 while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) { 470 *p++ = *s++; 471 i++; 472 } 473 STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk"); 474 475 mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0); 476 mclk->sai_data = sai; 477 hw = &mclk->hw; 478 479 dev_dbg(dev, "Register master clock %s\n", mclk_name); 480 ret = devm_clk_hw_register(&sai->pdev->dev, hw); 481 if (ret) { 482 dev_err(dev, "mclk register returned %d\n", ret); 483 return ret; 484 } 485 sai->sai_mclk = hw->clk; 486 487 /* register mclk provider */ 488 return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw); 489 } 490 491 static irqreturn_t stm32_sai_isr(int irq, void *devid) 492 { 493 struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid; 494 struct platform_device *pdev = sai->pdev; 495 unsigned int sr, imr, flags; 496 snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING; 497 498 stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr); 499 stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr); 500 501 flags = sr & imr; 502 if (!flags) 503 return IRQ_NONE; 504 505 stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK, 506 SAI_XCLRFR_MASK); 507 508 if (!sai->substream) { 509 dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr); 510 return IRQ_NONE; 511 } 512 513 if (flags & SAI_XIMR_OVRUDRIE) { 514 dev_err(&pdev->dev, "IRQ %s\n", 515 STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun"); 516 status = SNDRV_PCM_STATE_XRUN; 517 } 518 519 if (flags & SAI_XIMR_MUTEDETIE) 520 dev_dbg(&pdev->dev, "IRQ mute detected\n"); 521 522 if (flags & SAI_XIMR_WCKCFGIE) { 523 dev_err(&pdev->dev, "IRQ wrong clock configuration\n"); 524 status = SNDRV_PCM_STATE_DISCONNECTED; 525 } 526 527 if (flags & SAI_XIMR_CNRDYIE) 528 dev_err(&pdev->dev, "IRQ Codec not ready\n"); 529 530 if (flags & SAI_XIMR_AFSDETIE) { 531 dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n"); 532 status = SNDRV_PCM_STATE_XRUN; 533 } 534 535 if (flags & SAI_XIMR_LFSDETIE) { 536 dev_err(&pdev->dev, "IRQ Late frame synchro\n"); 537 status = SNDRV_PCM_STATE_XRUN; 538 } 539 540 spin_lock(&sai->irq_lock); 541 if (status != SNDRV_PCM_STATE_RUNNING && sai->substream) 542 snd_pcm_stop_xrun(sai->substream); 543 spin_unlock(&sai->irq_lock); 544 545 return IRQ_HANDLED; 546 } 547 548 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai, 549 int clk_id, unsigned int freq, int dir) 550 { 551 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); 552 int ret; 553 554 if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) { 555 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, 556 SAI_XCR1_NODIV, 557 freq ? 0 : SAI_XCR1_NODIV); 558 if (ret < 0) 559 return ret; 560 561 /* Assume shutdown if requested frequency is 0Hz */ 562 if (!freq) { 563 /* Release mclk rate only if rate was actually set */ 564 if (sai->mclk_rate) { 565 clk_rate_exclusive_put(sai->sai_mclk); 566 sai->mclk_rate = 0; 567 } 568 return 0; 569 } 570 571 /* If master clock is used, set parent clock now */ 572 ret = stm32_sai_set_parent_clock(sai, freq); 573 if (ret) 574 return ret; 575 576 ret = clk_set_rate_exclusive(sai->sai_mclk, freq); 577 if (ret) { 578 dev_err(cpu_dai->dev, 579 ret == -EBUSY ? 580 "Active streams have incompatible rates" : 581 "Could not set mclk rate\n"); 582 return ret; 583 } 584 585 dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq); 586 sai->mclk_rate = freq; 587 } 588 589 return 0; 590 } 591 592 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask, 593 u32 rx_mask, int slots, int slot_width) 594 { 595 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); 596 int slotr, slotr_mask, slot_size; 597 598 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { 599 dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n"); 600 return 0; 601 } 602 603 dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n", 604 tx_mask, rx_mask, slots, slot_width); 605 606 switch (slot_width) { 607 case 16: 608 slot_size = SAI_SLOT_SIZE_16; 609 break; 610 case 32: 611 slot_size = SAI_SLOT_SIZE_32; 612 break; 613 default: 614 slot_size = SAI_SLOT_SIZE_AUTO; 615 break; 616 } 617 618 slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) | 619 SAI_XSLOTR_NBSLOT_SET(slots - 1); 620 slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK; 621 622 /* tx/rx mask set in machine init, if slot number defined in DT */ 623 if (STM_SAI_IS_PLAYBACK(sai)) { 624 sai->slot_mask = tx_mask; 625 slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask); 626 } 627 628 if (STM_SAI_IS_CAPTURE(sai)) { 629 sai->slot_mask = rx_mask; 630 slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask); 631 } 632 633 slotr_mask |= SAI_XSLOTR_SLOTEN_MASK; 634 635 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr); 636 637 sai->slot_width = slot_width; 638 sai->slots = slots; 639 640 return 0; 641 } 642 643 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) 644 { 645 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); 646 int cr1, frcr = 0; 647 int cr1_mask, frcr_mask = 0; 648 int ret; 649 650 dev_dbg(cpu_dai->dev, "fmt %x\n", fmt); 651 652 /* Do not generate master by default */ 653 cr1 = SAI_XCR1_NODIV; 654 cr1_mask = SAI_XCR1_NODIV; 655 656 cr1_mask |= SAI_XCR1_PRTCFG_MASK; 657 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { 658 cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL); 659 goto conf_update; 660 } 661 662 cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL); 663 664 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 665 /* SCK active high for all protocols */ 666 case SND_SOC_DAIFMT_I2S: 667 cr1 |= SAI_XCR1_CKSTR; 668 frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF; 669 break; 670 /* Left justified */ 671 case SND_SOC_DAIFMT_MSB: 672 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF; 673 break; 674 /* Right justified */ 675 case SND_SOC_DAIFMT_LSB: 676 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF; 677 break; 678 case SND_SOC_DAIFMT_DSP_A: 679 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF; 680 break; 681 case SND_SOC_DAIFMT_DSP_B: 682 frcr |= SAI_XFRCR_FSPOL; 683 break; 684 default: 685 dev_err(cpu_dai->dev, "Unsupported protocol %#x\n", 686 fmt & SND_SOC_DAIFMT_FORMAT_MASK); 687 return -EINVAL; 688 } 689 690 cr1_mask |= SAI_XCR1_CKSTR; 691 frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF | 692 SAI_XFRCR_FSDEF; 693 694 /* DAI clock strobing. Invert setting previously set */ 695 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 696 case SND_SOC_DAIFMT_NB_NF: 697 break; 698 case SND_SOC_DAIFMT_IB_NF: 699 cr1 ^= SAI_XCR1_CKSTR; 700 break; 701 case SND_SOC_DAIFMT_NB_IF: 702 frcr ^= SAI_XFRCR_FSPOL; 703 break; 704 case SND_SOC_DAIFMT_IB_IF: 705 /* Invert fs & sck */ 706 cr1 ^= SAI_XCR1_CKSTR; 707 frcr ^= SAI_XFRCR_FSPOL; 708 break; 709 default: 710 dev_err(cpu_dai->dev, "Unsupported strobing %#x\n", 711 fmt & SND_SOC_DAIFMT_INV_MASK); 712 return -EINVAL; 713 } 714 cr1_mask |= SAI_XCR1_CKSTR; 715 frcr_mask |= SAI_XFRCR_FSPOL; 716 717 stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr); 718 719 /* DAI clock master masks */ 720 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { 721 case SND_SOC_DAIFMT_BC_FC: 722 /* codec is master */ 723 cr1 |= SAI_XCR1_SLAVE; 724 sai->master = false; 725 break; 726 case SND_SOC_DAIFMT_BP_FP: 727 sai->master = true; 728 break; 729 default: 730 dev_err(cpu_dai->dev, "Unsupported mode %#x\n", 731 fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK); 732 return -EINVAL; 733 } 734 735 /* Set slave mode if sub-block is synchronized with another SAI */ 736 if (sai->sync) { 737 dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n"); 738 cr1 |= SAI_XCR1_SLAVE; 739 sai->master = false; 740 } 741 742 cr1_mask |= SAI_XCR1_SLAVE; 743 744 conf_update: 745 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1); 746 if (ret < 0) { 747 dev_err(cpu_dai->dev, "Failed to update CR1 register\n"); 748 return ret; 749 } 750 751 sai->fmt = fmt; 752 753 return 0; 754 } 755 756 static int stm32_sai_startup(struct snd_pcm_substream *substream, 757 struct snd_soc_dai *cpu_dai) 758 { 759 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); 760 int imr, cr2, ret; 761 unsigned long flags; 762 763 spin_lock_irqsave(&sai->irq_lock, flags); 764 sai->substream = substream; 765 spin_unlock_irqrestore(&sai->irq_lock, flags); 766 767 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { 768 snd_pcm_hw_constraint_mask64(substream->runtime, 769 SNDRV_PCM_HW_PARAM_FORMAT, 770 SNDRV_PCM_FMTBIT_S32_LE); 771 snd_pcm_hw_constraint_single(substream->runtime, 772 SNDRV_PCM_HW_PARAM_CHANNELS, 2); 773 } 774 775 ret = clk_prepare_enable(sai->sai_ck); 776 if (ret < 0) { 777 dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret); 778 return ret; 779 } 780 781 /* Enable ITs */ 782 stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, 783 SAI_XCLRFR_MASK, SAI_XCLRFR_MASK); 784 785 imr = SAI_XIMR_OVRUDRIE; 786 if (STM_SAI_IS_CAPTURE(sai)) { 787 stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2); 788 if (cr2 & SAI_XCR2_MUTECNT_MASK) 789 imr |= SAI_XIMR_MUTEDETIE; 790 } 791 792 if (sai->master) 793 imr |= SAI_XIMR_WCKCFGIE; 794 else 795 imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE; 796 797 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, 798 SAI_XIMR_MASK, imr); 799 800 return 0; 801 } 802 803 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai, 804 struct snd_pcm_substream *substream, 805 struct snd_pcm_hw_params *params) 806 { 807 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); 808 int cr1, cr1_mask, ret; 809 810 /* 811 * DMA bursts increment is set to 4 words. 812 * SAI fifo threshold is set to half fifo, to keep enough space 813 * for DMA incoming bursts. 814 */ 815 stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX, 816 SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK, 817 SAI_XCR2_FFLUSH | 818 SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF)); 819 820 /* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/ 821 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { 822 sai->spdif_frm_cnt = 0; 823 return 0; 824 } 825 826 /* Mode, data format and channel config */ 827 cr1_mask = SAI_XCR1_DS_MASK; 828 switch (params_format(params)) { 829 case SNDRV_PCM_FORMAT_S8: 830 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8); 831 break; 832 case SNDRV_PCM_FORMAT_S16_LE: 833 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16); 834 break; 835 case SNDRV_PCM_FORMAT_S32_LE: 836 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32); 837 break; 838 default: 839 dev_err(cpu_dai->dev, "Data format not supported\n"); 840 return -EINVAL; 841 } 842 843 cr1_mask |= SAI_XCR1_MONO; 844 if ((sai->slots == 2) && (params_channels(params) == 1)) 845 cr1 |= SAI_XCR1_MONO; 846 847 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1); 848 if (ret < 0) { 849 dev_err(cpu_dai->dev, "Failed to update CR1 register\n"); 850 return ret; 851 } 852 853 return 0; 854 } 855 856 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai) 857 { 858 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); 859 int slotr, slot_sz; 860 861 stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr); 862 863 /* 864 * If SLOTSZ is set to auto in SLOTR, align slot width on data size 865 * By default slot width = data size, if not forced from DT 866 */ 867 slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK; 868 if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO)) 869 sai->slot_width = sai->data_size; 870 871 if (sai->slot_width < sai->data_size) { 872 dev_err(cpu_dai->dev, 873 "Data size %d larger than slot width\n", 874 sai->data_size); 875 return -EINVAL; 876 } 877 878 /* Slot number is set to 2, if not specified in DT */ 879 if (!sai->slots) 880 sai->slots = 2; 881 882 /* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/ 883 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, 884 SAI_XSLOTR_NBSLOT_MASK, 885 SAI_XSLOTR_NBSLOT_SET((sai->slots - 1))); 886 887 /* Set default slots mask if not already set from DT */ 888 if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) { 889 sai->slot_mask = (1 << sai->slots) - 1; 890 stm32_sai_sub_reg_up(sai, 891 STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK, 892 SAI_XSLOTR_SLOTEN_SET(sai->slot_mask)); 893 } 894 895 dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n", 896 sai->slots, sai->slot_width); 897 898 return 0; 899 } 900 901 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai) 902 { 903 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); 904 int fs_active, offset, format; 905 int frcr, frcr_mask; 906 907 format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK; 908 sai->fs_length = sai->slot_width * sai->slots; 909 910 fs_active = sai->fs_length / 2; 911 if ((format == SND_SOC_DAIFMT_DSP_A) || 912 (format == SND_SOC_DAIFMT_DSP_B)) 913 fs_active = 1; 914 915 frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1)); 916 frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1)); 917 frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK; 918 919 dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n", 920 sai->fs_length, fs_active); 921 922 stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr); 923 924 if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) { 925 offset = sai->slot_width - sai->data_size; 926 927 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, 928 SAI_XSLOTR_FBOFF_MASK, 929 SAI_XSLOTR_FBOFF_SET(offset)); 930 } 931 } 932 933 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai) 934 { 935 unsigned char *cs = sai->iec958.status; 936 937 cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE; 938 cs[1] = IEC958_AES1_CON_GENERAL; 939 cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC; 940 cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID; 941 } 942 943 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai, 944 struct snd_pcm_runtime *runtime) 945 { 946 if (!runtime) 947 return; 948 949 /* Force the sample rate according to runtime rate */ 950 mutex_lock(&sai->ctrl_lock); 951 switch (runtime->rate) { 952 case 22050: 953 sai->iec958.status[3] = IEC958_AES3_CON_FS_22050; 954 break; 955 case 44100: 956 sai->iec958.status[3] = IEC958_AES3_CON_FS_44100; 957 break; 958 case 88200: 959 sai->iec958.status[3] = IEC958_AES3_CON_FS_88200; 960 break; 961 case 176400: 962 sai->iec958.status[3] = IEC958_AES3_CON_FS_176400; 963 break; 964 case 24000: 965 sai->iec958.status[3] = IEC958_AES3_CON_FS_24000; 966 break; 967 case 48000: 968 sai->iec958.status[3] = IEC958_AES3_CON_FS_48000; 969 break; 970 case 96000: 971 sai->iec958.status[3] = IEC958_AES3_CON_FS_96000; 972 break; 973 case 192000: 974 sai->iec958.status[3] = IEC958_AES3_CON_FS_192000; 975 break; 976 case 32000: 977 sai->iec958.status[3] = IEC958_AES3_CON_FS_32000; 978 break; 979 default: 980 sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID; 981 break; 982 } 983 mutex_unlock(&sai->ctrl_lock); 984 } 985 986 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai, 987 struct snd_pcm_hw_params *params) 988 { 989 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); 990 int div = 0, cr1 = 0; 991 int sai_clk_rate, mclk_ratio, den; 992 unsigned int rate = params_rate(params); 993 int ret; 994 995 if (!sai->sai_mclk) { 996 ret = stm32_sai_set_parent_clock(sai, rate); 997 if (ret) 998 return ret; 999 } 1000 sai_clk_rate = clk_get_rate(sai->sai_ck); 1001 1002 if (STM_SAI_IS_F4(sai->pdata)) { 1003 /* mclk on (NODIV=0) 1004 * mclk_rate = 256 * fs 1005 * MCKDIV = 0 if sai_ck < 3/2 * mclk_rate 1006 * MCKDIV = sai_ck / (2 * mclk_rate) otherwise 1007 * mclk off (NODIV=1) 1008 * MCKDIV ignored. sck = sai_ck 1009 */ 1010 if (!sai->mclk_rate) 1011 return 0; 1012 1013 if (2 * sai_clk_rate >= 3 * sai->mclk_rate) { 1014 div = stm32_sai_get_clk_div(sai, sai_clk_rate, 1015 2 * sai->mclk_rate); 1016 if (div < 0) 1017 return div; 1018 } 1019 } else { 1020 /* 1021 * TDM mode : 1022 * mclk on 1023 * MCKDIV = sai_ck / (ws x 256) (NOMCK=0. OSR=0) 1024 * MCKDIV = sai_ck / (ws x 512) (NOMCK=0. OSR=1) 1025 * mclk off 1026 * MCKDIV = sai_ck / (frl x ws) (NOMCK=1) 1027 * Note: NOMCK/NODIV correspond to same bit. 1028 */ 1029 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { 1030 div = stm32_sai_get_clk_div(sai, sai_clk_rate, 1031 rate * 128); 1032 if (div < 0) 1033 return div; 1034 } else { 1035 if (sai->mclk_rate) { 1036 mclk_ratio = sai->mclk_rate / rate; 1037 if (mclk_ratio == 512) { 1038 cr1 = SAI_XCR1_OSR; 1039 } else if (mclk_ratio != 256) { 1040 dev_err(cpu_dai->dev, 1041 "Wrong mclk ratio %d\n", 1042 mclk_ratio); 1043 return -EINVAL; 1044 } 1045 1046 stm32_sai_sub_reg_up(sai, 1047 STM_SAI_CR1_REGX, 1048 SAI_XCR1_OSR, cr1); 1049 1050 div = stm32_sai_get_clk_div(sai, sai_clk_rate, 1051 sai->mclk_rate); 1052 if (div < 0) 1053 return div; 1054 } else { 1055 /* mclk-fs not set, master clock not active */ 1056 den = sai->fs_length * params_rate(params); 1057 div = stm32_sai_get_clk_div(sai, sai_clk_rate, 1058 den); 1059 if (div < 0) 1060 return div; 1061 } 1062 } 1063 } 1064 1065 return stm32_sai_set_clk_div(sai, div); 1066 } 1067 1068 static int stm32_sai_hw_params(struct snd_pcm_substream *substream, 1069 struct snd_pcm_hw_params *params, 1070 struct snd_soc_dai *cpu_dai) 1071 { 1072 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); 1073 int ret; 1074 1075 sai->data_size = params_width(params); 1076 1077 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { 1078 /* Rate not already set in runtime structure */ 1079 substream->runtime->rate = params_rate(params); 1080 stm32_sai_set_iec958_status(sai, substream->runtime); 1081 } else { 1082 ret = stm32_sai_set_slots(cpu_dai); 1083 if (ret < 0) 1084 return ret; 1085 stm32_sai_set_frame(cpu_dai); 1086 } 1087 1088 ret = stm32_sai_set_config(cpu_dai, substream, params); 1089 if (ret) 1090 return ret; 1091 1092 if (sai->master) 1093 ret = stm32_sai_configure_clock(cpu_dai, params); 1094 1095 return ret; 1096 } 1097 1098 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd, 1099 struct snd_soc_dai *cpu_dai) 1100 { 1101 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); 1102 int ret; 1103 1104 switch (cmd) { 1105 case SNDRV_PCM_TRIGGER_START: 1106 case SNDRV_PCM_TRIGGER_RESUME: 1107 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1108 dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n"); 1109 1110 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, 1111 SAI_XCR1_DMAEN, SAI_XCR1_DMAEN); 1112 1113 /* Enable SAI */ 1114 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, 1115 SAI_XCR1_SAIEN, SAI_XCR1_SAIEN); 1116 if (ret < 0) 1117 dev_err(cpu_dai->dev, "Failed to update CR1 register\n"); 1118 break; 1119 case SNDRV_PCM_TRIGGER_SUSPEND: 1120 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1121 case SNDRV_PCM_TRIGGER_STOP: 1122 dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n"); 1123 1124 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, 1125 SAI_XIMR_MASK, 0); 1126 1127 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, 1128 SAI_XCR1_SAIEN, 1129 (unsigned int)~SAI_XCR1_SAIEN); 1130 1131 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, 1132 SAI_XCR1_DMAEN, 1133 (unsigned int)~SAI_XCR1_DMAEN); 1134 if (ret < 0) 1135 dev_err(cpu_dai->dev, "Failed to update CR1 register\n"); 1136 1137 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) 1138 sai->spdif_frm_cnt = 0; 1139 break; 1140 default: 1141 return -EINVAL; 1142 } 1143 1144 return ret; 1145 } 1146 1147 static void stm32_sai_shutdown(struct snd_pcm_substream *substream, 1148 struct snd_soc_dai *cpu_dai) 1149 { 1150 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); 1151 unsigned long flags; 1152 1153 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0); 1154 1155 clk_disable_unprepare(sai->sai_ck); 1156 1157 spin_lock_irqsave(&sai->irq_lock, flags); 1158 sai->substream = NULL; 1159 spin_unlock_irqrestore(&sai->irq_lock, flags); 1160 } 1161 1162 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd, 1163 struct snd_soc_dai *cpu_dai) 1164 { 1165 struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev); 1166 struct snd_kcontrol_new knew = iec958_ctls; 1167 1168 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { 1169 dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__); 1170 knew.device = rtd->pcm->device; 1171 return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai)); 1172 } 1173 1174 return 0; 1175 } 1176 1177 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai) 1178 { 1179 struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev); 1180 int cr1 = 0, cr1_mask, ret; 1181 1182 sai->cpu_dai = cpu_dai; 1183 1184 sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX); 1185 /* 1186 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice, 1187 * as it allows bytes, half-word and words transfers. (See DMA fifos 1188 * constraints). 1189 */ 1190 sai->dma_params.maxburst = 4; 1191 if (sai->pdata->conf.fifo_size < 8) 1192 sai->dma_params.maxburst = 1; 1193 /* Buswidth will be set by framework at runtime */ 1194 sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 1195 1196 if (STM_SAI_IS_PLAYBACK(sai)) 1197 snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL); 1198 else 1199 snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params); 1200 1201 /* Next settings are not relevant for spdif mode */ 1202 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) 1203 return 0; 1204 1205 cr1_mask = SAI_XCR1_RX_TX; 1206 if (STM_SAI_IS_CAPTURE(sai)) 1207 cr1 |= SAI_XCR1_RX_TX; 1208 1209 /* Configure synchronization */ 1210 if (sai->sync == SAI_SYNC_EXTERNAL) { 1211 /* Configure synchro client and provider */ 1212 ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider, 1213 sai->synco, sai->synci); 1214 if (ret) 1215 return ret; 1216 } 1217 1218 cr1_mask |= SAI_XCR1_SYNCEN_MASK; 1219 cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync); 1220 1221 return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1); 1222 } 1223 1224 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = { 1225 .probe = stm32_sai_dai_probe, 1226 .set_sysclk = stm32_sai_set_sysclk, 1227 .set_fmt = stm32_sai_set_dai_fmt, 1228 .set_tdm_slot = stm32_sai_set_dai_tdm_slot, 1229 .startup = stm32_sai_startup, 1230 .hw_params = stm32_sai_hw_params, 1231 .trigger = stm32_sai_trigger, 1232 .shutdown = stm32_sai_shutdown, 1233 .pcm_new = stm32_sai_pcm_new, 1234 }; 1235 1236 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops2 = { 1237 .probe = stm32_sai_dai_probe, 1238 .set_sysclk = stm32_sai_set_sysclk, 1239 .set_fmt = stm32_sai_set_dai_fmt, 1240 .set_tdm_slot = stm32_sai_set_dai_tdm_slot, 1241 .startup = stm32_sai_startup, 1242 .hw_params = stm32_sai_hw_params, 1243 .trigger = stm32_sai_trigger, 1244 .shutdown = stm32_sai_shutdown, 1245 }; 1246 1247 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream, 1248 int channel, unsigned long hwoff, 1249 unsigned long bytes) 1250 { 1251 struct snd_pcm_runtime *runtime = substream->runtime; 1252 struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); 1253 struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0); 1254 struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev); 1255 int *ptr = (int *)(runtime->dma_area + hwoff + 1256 channel * (runtime->dma_bytes / runtime->channels)); 1257 ssize_t cnt = bytes_to_samples(runtime, bytes); 1258 unsigned int frm_cnt = sai->spdif_frm_cnt; 1259 unsigned int byte; 1260 unsigned int mask; 1261 1262 do { 1263 *ptr = ((*ptr >> 8) & 0x00ffffff); 1264 1265 /* Set channel status bit */ 1266 byte = frm_cnt >> 3; 1267 mask = 1 << (frm_cnt - (byte << 3)); 1268 if (sai->iec958.status[byte] & mask) 1269 *ptr |= 0x04000000; 1270 ptr++; 1271 1272 if (!(cnt % 2)) 1273 frm_cnt++; 1274 1275 if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES) 1276 frm_cnt = 0; 1277 } while (--cnt); 1278 sai->spdif_frm_cnt = frm_cnt; 1279 1280 return 0; 1281 } 1282 1283 /* No support of mmap in S/PDIF mode */ 1284 static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = { 1285 .info = SNDRV_PCM_INFO_INTERLEAVED, 1286 .buffer_bytes_max = 8 * PAGE_SIZE, 1287 .period_bytes_min = 1024, 1288 .period_bytes_max = PAGE_SIZE, 1289 .periods_min = 2, 1290 .periods_max = 8, 1291 }; 1292 1293 static const struct snd_pcm_hardware stm32_sai_pcm_hw = { 1294 .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP, 1295 .buffer_bytes_max = 8 * PAGE_SIZE, 1296 .period_bytes_min = 1024, /* 5ms at 48kHz */ 1297 .period_bytes_max = PAGE_SIZE, 1298 .periods_min = 2, 1299 .periods_max = 8, 1300 }; 1301 1302 static struct snd_soc_dai_driver stm32_sai_playback_dai = { 1303 .id = 1, /* avoid call to fmt_single_name() */ 1304 .playback = { 1305 .channels_min = 1, 1306 .channels_max = 16, 1307 .rate_min = 8000, 1308 .rate_max = 192000, 1309 .rates = SNDRV_PCM_RATE_CONTINUOUS, 1310 /* DMA does not support 24 bits transfers */ 1311 .formats = 1312 SNDRV_PCM_FMTBIT_S8 | 1313 SNDRV_PCM_FMTBIT_S16_LE | 1314 SNDRV_PCM_FMTBIT_S32_LE, 1315 }, 1316 .ops = &stm32_sai_pcm_dai_ops, 1317 }; 1318 1319 static struct snd_soc_dai_driver stm32_sai_capture_dai = { 1320 .id = 1, /* avoid call to fmt_single_name() */ 1321 .capture = { 1322 .channels_min = 1, 1323 .channels_max = 16, 1324 .rate_min = 8000, 1325 .rate_max = 192000, 1326 .rates = SNDRV_PCM_RATE_CONTINUOUS, 1327 /* DMA does not support 24 bits transfers */ 1328 .formats = 1329 SNDRV_PCM_FMTBIT_S8 | 1330 SNDRV_PCM_FMTBIT_S16_LE | 1331 SNDRV_PCM_FMTBIT_S32_LE, 1332 }, 1333 .ops = &stm32_sai_pcm_dai_ops2, 1334 }; 1335 1336 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = { 1337 .pcm_hardware = &stm32_sai_pcm_hw, 1338 .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config, 1339 }; 1340 1341 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = { 1342 .pcm_hardware = &stm32_sai_pcm_hw_spdif, 1343 .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config, 1344 .process = stm32_sai_pcm_process_spdif, 1345 }; 1346 1347 static const struct snd_soc_component_driver stm32_component = { 1348 .name = "stm32-sai", 1349 .legacy_dai_naming = 1, 1350 }; 1351 1352 static const struct of_device_id stm32_sai_sub_ids[] = { 1353 { .compatible = "st,stm32-sai-sub-a", 1354 .data = (void *)STM_SAI_A_ID}, 1355 { .compatible = "st,stm32-sai-sub-b", 1356 .data = (void *)STM_SAI_B_ID}, 1357 {} 1358 }; 1359 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids); 1360 1361 static int stm32_sai_sub_parse_of(struct platform_device *pdev, 1362 struct stm32_sai_sub_data *sai) 1363 { 1364 struct device_node *np = pdev->dev.of_node; 1365 struct resource *res; 1366 void __iomem *base; 1367 struct of_phandle_args args; 1368 int ret; 1369 1370 if (!np) 1371 return -ENODEV; 1372 1373 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1374 if (IS_ERR(base)) 1375 return PTR_ERR(base); 1376 1377 sai->phys_addr = res->start; 1378 1379 sai->regmap_config = &stm32_sai_sub_regmap_config_f4; 1380 /* Note: PDM registers not available for sub-block B */ 1381 if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai)) 1382 sai->regmap_config = &stm32_sai_sub_regmap_config_h7; 1383 1384 /* 1385 * Do not manage peripheral clock through regmap framework as this 1386 * can lead to circular locking issue with sai master clock provider. 1387 * Manage peripheral clock directly in driver instead. 1388 */ 1389 sai->regmap = devm_regmap_init_mmio(&pdev->dev, base, 1390 sai->regmap_config); 1391 if (IS_ERR(sai->regmap)) 1392 return dev_err_probe(&pdev->dev, PTR_ERR(sai->regmap), 1393 "Regmap init error\n"); 1394 1395 /* Get direction property */ 1396 if (of_property_match_string(np, "dma-names", "tx") >= 0) { 1397 sai->dir = SNDRV_PCM_STREAM_PLAYBACK; 1398 } else if (of_property_match_string(np, "dma-names", "rx") >= 0) { 1399 sai->dir = SNDRV_PCM_STREAM_CAPTURE; 1400 } else { 1401 dev_err(&pdev->dev, "Unsupported direction\n"); 1402 return -EINVAL; 1403 } 1404 1405 /* Get spdif iec60958 property */ 1406 sai->spdif = false; 1407 if (of_property_present(np, "st,iec60958")) { 1408 if (!STM_SAI_HAS_SPDIF(sai) || 1409 sai->dir == SNDRV_PCM_STREAM_CAPTURE) { 1410 dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n"); 1411 return -EINVAL; 1412 } 1413 stm32_sai_init_iec958_status(sai); 1414 sai->spdif = true; 1415 sai->master = true; 1416 } 1417 1418 /* Get synchronization property */ 1419 args.np = NULL; 1420 ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args); 1421 if (ret < 0 && ret != -ENOENT) { 1422 dev_err(&pdev->dev, "Failed to get st,sync property\n"); 1423 return ret; 1424 } 1425 1426 sai->sync = SAI_SYNC_NONE; 1427 if (args.np) { 1428 if (args.np == np) { 1429 dev_err(&pdev->dev, "%pOFn sync own reference\n", np); 1430 of_node_put(args.np); 1431 return -EINVAL; 1432 } 1433 1434 sai->np_sync_provider = of_get_parent(args.np); 1435 if (!sai->np_sync_provider) { 1436 dev_err(&pdev->dev, "%pOFn parent node not found\n", 1437 np); 1438 of_node_put(args.np); 1439 return -ENODEV; 1440 } 1441 1442 sai->sync = SAI_SYNC_INTERNAL; 1443 if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) { 1444 if (!STM_SAI_HAS_EXT_SYNC(sai)) { 1445 dev_err(&pdev->dev, 1446 "External synchro not supported\n"); 1447 of_node_put(args.np); 1448 return -EINVAL; 1449 } 1450 sai->sync = SAI_SYNC_EXTERNAL; 1451 1452 sai->synci = args.args[0]; 1453 if (sai->synci < 1 || 1454 (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) { 1455 dev_err(&pdev->dev, "Wrong SAI index\n"); 1456 of_node_put(args.np); 1457 return -EINVAL; 1458 } 1459 1460 if (of_property_match_string(args.np, "compatible", 1461 "st,stm32-sai-sub-a") >= 0) 1462 sai->synco = STM_SAI_SYNC_OUT_A; 1463 1464 if (of_property_match_string(args.np, "compatible", 1465 "st,stm32-sai-sub-b") >= 0) 1466 sai->synco = STM_SAI_SYNC_OUT_B; 1467 1468 if (!sai->synco) { 1469 dev_err(&pdev->dev, "Unknown SAI sub-block\n"); 1470 of_node_put(args.np); 1471 return -EINVAL; 1472 } 1473 } 1474 1475 dev_dbg(&pdev->dev, "%s synchronized with %s\n", 1476 pdev->name, args.np->full_name); 1477 } 1478 1479 of_node_put(args.np); 1480 sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck"); 1481 if (IS_ERR(sai->sai_ck)) 1482 return dev_err_probe(&pdev->dev, PTR_ERR(sai->sai_ck), 1483 "Missing kernel clock sai_ck\n"); 1484 1485 ret = clk_prepare(sai->pdata->pclk); 1486 if (ret < 0) 1487 return ret; 1488 1489 if (STM_SAI_IS_F4(sai->pdata)) 1490 return 0; 1491 1492 /* Register mclk provider if requested */ 1493 if (of_property_present(np, "#clock-cells")) { 1494 ret = stm32_sai_add_mclk_provider(sai); 1495 if (ret < 0) 1496 return ret; 1497 } else { 1498 sai->sai_mclk = devm_clk_get_optional(&pdev->dev, "MCLK"); 1499 if (IS_ERR(sai->sai_mclk)) 1500 return PTR_ERR(sai->sai_mclk); 1501 } 1502 1503 return 0; 1504 } 1505 1506 static int stm32_sai_sub_probe(struct platform_device *pdev) 1507 { 1508 struct stm32_sai_sub_data *sai; 1509 const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config; 1510 int ret; 1511 1512 sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL); 1513 if (!sai) 1514 return -ENOMEM; 1515 1516 sai->id = (uintptr_t)device_get_match_data(&pdev->dev); 1517 1518 sai->pdev = pdev; 1519 mutex_init(&sai->ctrl_lock); 1520 spin_lock_init(&sai->irq_lock); 1521 platform_set_drvdata(pdev, sai); 1522 1523 sai->pdata = dev_get_drvdata(pdev->dev.parent); 1524 if (!sai->pdata) { 1525 dev_err(&pdev->dev, "Parent device data not available\n"); 1526 return -EINVAL; 1527 } 1528 1529 ret = stm32_sai_sub_parse_of(pdev, sai); 1530 if (ret) 1531 return ret; 1532 1533 if (STM_SAI_IS_PLAYBACK(sai)) 1534 sai->cpu_dai_drv = stm32_sai_playback_dai; 1535 else 1536 sai->cpu_dai_drv = stm32_sai_capture_dai; 1537 sai->cpu_dai_drv.name = dev_name(&pdev->dev); 1538 1539 ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr, 1540 IRQF_SHARED, dev_name(&pdev->dev), sai); 1541 if (ret) { 1542 dev_err(&pdev->dev, "IRQ request returned %d\n", ret); 1543 return ret; 1544 } 1545 1546 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) 1547 conf = &stm32_sai_pcm_config_spdif; 1548 1549 ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0); 1550 if (ret) 1551 return dev_err_probe(&pdev->dev, ret, "Could not register pcm dma\n"); 1552 1553 ret = snd_soc_register_component(&pdev->dev, &stm32_component, 1554 &sai->cpu_dai_drv, 1); 1555 if (ret) { 1556 snd_dmaengine_pcm_unregister(&pdev->dev); 1557 return ret; 1558 } 1559 1560 pm_runtime_enable(&pdev->dev); 1561 1562 return 0; 1563 } 1564 1565 static void stm32_sai_sub_remove(struct platform_device *pdev) 1566 { 1567 struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev); 1568 1569 clk_unprepare(sai->pdata->pclk); 1570 snd_dmaengine_pcm_unregister(&pdev->dev); 1571 snd_soc_unregister_component(&pdev->dev); 1572 pm_runtime_disable(&pdev->dev); 1573 } 1574 1575 #ifdef CONFIG_PM_SLEEP 1576 static int stm32_sai_sub_suspend(struct device *dev) 1577 { 1578 struct stm32_sai_sub_data *sai = dev_get_drvdata(dev); 1579 int ret; 1580 1581 ret = clk_enable(sai->pdata->pclk); 1582 if (ret < 0) 1583 return ret; 1584 1585 regcache_cache_only(sai->regmap, true); 1586 regcache_mark_dirty(sai->regmap); 1587 1588 clk_disable(sai->pdata->pclk); 1589 1590 return 0; 1591 } 1592 1593 static int stm32_sai_sub_resume(struct device *dev) 1594 { 1595 struct stm32_sai_sub_data *sai = dev_get_drvdata(dev); 1596 int ret; 1597 1598 ret = clk_enable(sai->pdata->pclk); 1599 if (ret < 0) 1600 return ret; 1601 1602 regcache_cache_only(sai->regmap, false); 1603 ret = regcache_sync(sai->regmap); 1604 1605 clk_disable(sai->pdata->pclk); 1606 1607 return ret; 1608 } 1609 #endif /* CONFIG_PM_SLEEP */ 1610 1611 static const struct dev_pm_ops stm32_sai_sub_pm_ops = { 1612 SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume) 1613 }; 1614 1615 static struct platform_driver stm32_sai_sub_driver = { 1616 .driver = { 1617 .name = "st,stm32-sai-sub", 1618 .of_match_table = stm32_sai_sub_ids, 1619 .pm = &stm32_sai_sub_pm_ops, 1620 }, 1621 .probe = stm32_sai_sub_probe, 1622 .remove_new = stm32_sai_sub_remove, 1623 }; 1624 1625 module_platform_driver(stm32_sai_sub_driver); 1626 1627 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface"); 1628 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>"); 1629 MODULE_ALIAS("platform:st,stm32-sai-sub"); 1630 MODULE_LICENSE("GPL v2"); 1631
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.