1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * omap-mcbsp.c -- OMAP ALSA SoC DAI driver using McBSP port 4 * 5 * Copyright (C) 2008 Nokia Corporation 6 * 7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com> 8 * Peter Ujfalusi <peter.ujfalusi@ti.com> 9 */ 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/device.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/of.h> 16 #include <sound/core.h> 17 #include <sound/pcm.h> 18 #include <sound/pcm_params.h> 19 #include <sound/initval.h> 20 #include <sound/soc.h> 21 #include <sound/dmaengine_pcm.h> 22 23 #include "omap-mcbsp-priv.h" 24 #include "omap-mcbsp.h" 25 #include "sdma-pcm.h" 26 27 #define OMAP_MCBSP_RATES (SNDRV_PCM_RATE_8000_96000) 28 29 enum { 30 OMAP_MCBSP_WORD_8 = 0, 31 OMAP_MCBSP_WORD_12, 32 OMAP_MCBSP_WORD_16, 33 OMAP_MCBSP_WORD_20, 34 OMAP_MCBSP_WORD_24, 35 OMAP_MCBSP_WORD_32, 36 }; 37 38 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp) 39 { 40 dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id); 41 dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n", MCBSP_READ(mcbsp, DRR2)); 42 dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n", MCBSP_READ(mcbsp, DRR1)); 43 dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n", MCBSP_READ(mcbsp, DXR2)); 44 dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n", MCBSP_READ(mcbsp, DXR1)); 45 dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2)); 46 dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1)); 47 dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n", MCBSP_READ(mcbsp, RCR2)); 48 dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n", MCBSP_READ(mcbsp, RCR1)); 49 dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n", MCBSP_READ(mcbsp, XCR2)); 50 dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n", MCBSP_READ(mcbsp, XCR1)); 51 dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2)); 52 dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1)); 53 dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n", MCBSP_READ(mcbsp, PCR0)); 54 dev_dbg(mcbsp->dev, "***********************\n"); 55 } 56 57 static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id) 58 { 59 struct clk *fck_src; 60 const char *src; 61 int r; 62 63 if (fck_src_id == MCBSP_CLKS_PAD_SRC) 64 src = "pad_fck"; 65 else if (fck_src_id == MCBSP_CLKS_PRCM_SRC) 66 src = "prcm_fck"; 67 else 68 return -EINVAL; 69 70 fck_src = clk_get(mcbsp->dev, src); 71 if (IS_ERR(fck_src)) { 72 dev_info(mcbsp->dev, "CLKS: could not clk_get() %s\n", src); 73 return 0; 74 } 75 76 if (mcbsp->active) 77 pm_runtime_put_sync(mcbsp->dev); 78 79 r = clk_set_parent(mcbsp->fclk, fck_src); 80 if (r) 81 dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n", 82 src); 83 84 if (mcbsp->active) 85 pm_runtime_get_sync(mcbsp->dev); 86 87 clk_put(fck_src); 88 89 return r; 90 } 91 92 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data) 93 { 94 struct omap_mcbsp *mcbsp = data; 95 u16 irqst; 96 97 irqst = MCBSP_READ(mcbsp, IRQST); 98 dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst); 99 100 if (irqst & RSYNCERREN) 101 dev_err(mcbsp->dev, "RX Frame Sync Error!\n"); 102 if (irqst & RFSREN) 103 dev_dbg(mcbsp->dev, "RX Frame Sync\n"); 104 if (irqst & REOFEN) 105 dev_dbg(mcbsp->dev, "RX End Of Frame\n"); 106 if (irqst & RRDYEN) 107 dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n"); 108 if (irqst & RUNDFLEN) 109 dev_err(mcbsp->dev, "RX Buffer Underflow!\n"); 110 if (irqst & ROVFLEN) 111 dev_err(mcbsp->dev, "RX Buffer Overflow!\n"); 112 113 if (irqst & XSYNCERREN) 114 dev_err(mcbsp->dev, "TX Frame Sync Error!\n"); 115 if (irqst & XFSXEN) 116 dev_dbg(mcbsp->dev, "TX Frame Sync\n"); 117 if (irqst & XEOFEN) 118 dev_dbg(mcbsp->dev, "TX End Of Frame\n"); 119 if (irqst & XRDYEN) 120 dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n"); 121 if (irqst & XUNDFLEN) 122 dev_err(mcbsp->dev, "TX Buffer Underflow!\n"); 123 if (irqst & XOVFLEN) 124 dev_err(mcbsp->dev, "TX Buffer Overflow!\n"); 125 if (irqst & XEMPTYEOFEN) 126 dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n"); 127 128 MCBSP_WRITE(mcbsp, IRQST, irqst); 129 130 return IRQ_HANDLED; 131 } 132 133 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data) 134 { 135 struct omap_mcbsp *mcbsp = data; 136 u16 irqst_spcr2; 137 138 irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2); 139 dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2); 140 141 if (irqst_spcr2 & XSYNC_ERR) { 142 dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n", 143 irqst_spcr2); 144 /* Writing zero to XSYNC_ERR clears the IRQ */ 145 MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2)); 146 } 147 148 return IRQ_HANDLED; 149 } 150 151 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data) 152 { 153 struct omap_mcbsp *mcbsp = data; 154 u16 irqst_spcr1; 155 156 irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1); 157 dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1); 158 159 if (irqst_spcr1 & RSYNC_ERR) { 160 dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n", 161 irqst_spcr1); 162 /* Writing zero to RSYNC_ERR clears the IRQ */ 163 MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1)); 164 } 165 166 return IRQ_HANDLED; 167 } 168 169 /* 170 * omap_mcbsp_config simply write a config to the 171 * appropriate McBSP. 172 * You either call this function or set the McBSP registers 173 * by yourself before calling omap_mcbsp_start(). 174 */ 175 static void omap_mcbsp_config(struct omap_mcbsp *mcbsp, 176 const struct omap_mcbsp_reg_cfg *config) 177 { 178 dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n", 179 mcbsp->id, mcbsp->phys_base); 180 181 /* We write the given config */ 182 MCBSP_WRITE(mcbsp, SPCR2, config->spcr2); 183 MCBSP_WRITE(mcbsp, SPCR1, config->spcr1); 184 MCBSP_WRITE(mcbsp, RCR2, config->rcr2); 185 MCBSP_WRITE(mcbsp, RCR1, config->rcr1); 186 MCBSP_WRITE(mcbsp, XCR2, config->xcr2); 187 MCBSP_WRITE(mcbsp, XCR1, config->xcr1); 188 MCBSP_WRITE(mcbsp, SRGR2, config->srgr2); 189 MCBSP_WRITE(mcbsp, SRGR1, config->srgr1); 190 MCBSP_WRITE(mcbsp, MCR2, config->mcr2); 191 MCBSP_WRITE(mcbsp, MCR1, config->mcr1); 192 MCBSP_WRITE(mcbsp, PCR0, config->pcr0); 193 if (mcbsp->pdata->has_ccr) { 194 MCBSP_WRITE(mcbsp, XCCR, config->xccr); 195 MCBSP_WRITE(mcbsp, RCCR, config->rccr); 196 } 197 /* Enable wakeup behavior */ 198 if (mcbsp->pdata->has_wakeup) 199 MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN); 200 201 /* Enable TX/RX sync error interrupts by default */ 202 if (mcbsp->irq) 203 MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN | 204 RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN); 205 } 206 207 /** 208 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register 209 * @mcbsp: omap_mcbsp struct for the McBSP instance 210 * @stream: Stream direction (playback/capture) 211 * 212 * Returns the address of mcbsp data transmit register or data receive register 213 * to be used by DMA for transferring/receiving data 214 */ 215 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp, 216 unsigned int stream) 217 { 218 int data_reg; 219 220 if (stream == SNDRV_PCM_STREAM_PLAYBACK) { 221 if (mcbsp->pdata->reg_size == 2) 222 data_reg = OMAP_MCBSP_REG_DXR1; 223 else 224 data_reg = OMAP_MCBSP_REG_DXR; 225 } else { 226 if (mcbsp->pdata->reg_size == 2) 227 data_reg = OMAP_MCBSP_REG_DRR1; 228 else 229 data_reg = OMAP_MCBSP_REG_DRR; 230 } 231 232 return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step; 233 } 234 235 /* 236 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words. 237 * The threshold parameter is 1 based, and it is converted (threshold - 1) 238 * for the THRSH2 register. 239 */ 240 static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold) 241 { 242 if (threshold && threshold <= mcbsp->max_tx_thres) 243 MCBSP_WRITE(mcbsp, THRSH2, threshold - 1); 244 } 245 246 /* 247 * omap_mcbsp_set_rx_threshold configures the receive threshold in words. 248 * The threshold parameter is 1 based, and it is converted (threshold - 1) 249 * for the THRSH1 register. 250 */ 251 static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold) 252 { 253 if (threshold && threshold <= mcbsp->max_rx_thres) 254 MCBSP_WRITE(mcbsp, THRSH1, threshold - 1); 255 } 256 257 /* 258 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO 259 */ 260 static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp) 261 { 262 u16 buffstat; 263 264 /* Returns the number of free locations in the buffer */ 265 buffstat = MCBSP_READ(mcbsp, XBUFFSTAT); 266 267 /* Number of slots are different in McBSP ports */ 268 return mcbsp->pdata->buffer_size - buffstat; 269 } 270 271 /* 272 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO 273 * to reach the threshold value (when the DMA will be triggered to read it) 274 */ 275 static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp) 276 { 277 u16 buffstat, threshold; 278 279 /* Returns the number of used locations in the buffer */ 280 buffstat = MCBSP_READ(mcbsp, RBUFFSTAT); 281 /* RX threshold */ 282 threshold = MCBSP_READ(mcbsp, THRSH1); 283 284 /* Return the number of location till we reach the threshold limit */ 285 if (threshold <= buffstat) 286 return 0; 287 else 288 return threshold - buffstat; 289 } 290 291 static int omap_mcbsp_request(struct omap_mcbsp *mcbsp) 292 { 293 void *reg_cache; 294 int err; 295 296 reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL); 297 if (!reg_cache) 298 return -ENOMEM; 299 300 spin_lock(&mcbsp->lock); 301 if (!mcbsp->free) { 302 dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id); 303 err = -EBUSY; 304 goto err_kfree; 305 } 306 307 mcbsp->free = false; 308 mcbsp->reg_cache = reg_cache; 309 spin_unlock(&mcbsp->lock); 310 311 if(mcbsp->pdata->ops && mcbsp->pdata->ops->request) 312 mcbsp->pdata->ops->request(mcbsp->id - 1); 313 314 /* 315 * Make sure that transmitter, receiver and sample-rate generator are 316 * not running before activating IRQs. 317 */ 318 MCBSP_WRITE(mcbsp, SPCR1, 0); 319 MCBSP_WRITE(mcbsp, SPCR2, 0); 320 321 if (mcbsp->irq) { 322 err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0, 323 "McBSP", (void *)mcbsp); 324 if (err != 0) { 325 dev_err(mcbsp->dev, "Unable to request IRQ\n"); 326 goto err_clk_disable; 327 } 328 } else { 329 err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0, 330 "McBSP TX", (void *)mcbsp); 331 if (err != 0) { 332 dev_err(mcbsp->dev, "Unable to request TX IRQ\n"); 333 goto err_clk_disable; 334 } 335 336 err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0, 337 "McBSP RX", (void *)mcbsp); 338 if (err != 0) { 339 dev_err(mcbsp->dev, "Unable to request RX IRQ\n"); 340 goto err_free_irq; 341 } 342 } 343 344 return 0; 345 err_free_irq: 346 free_irq(mcbsp->tx_irq, (void *)mcbsp); 347 err_clk_disable: 348 if(mcbsp->pdata->ops && mcbsp->pdata->ops->free) 349 mcbsp->pdata->ops->free(mcbsp->id - 1); 350 351 /* Disable wakeup behavior */ 352 if (mcbsp->pdata->has_wakeup) 353 MCBSP_WRITE(mcbsp, WAKEUPEN, 0); 354 355 spin_lock(&mcbsp->lock); 356 mcbsp->free = true; 357 mcbsp->reg_cache = NULL; 358 err_kfree: 359 spin_unlock(&mcbsp->lock); 360 kfree(reg_cache); 361 362 return err; 363 } 364 365 static void omap_mcbsp_free(struct omap_mcbsp *mcbsp) 366 { 367 void *reg_cache; 368 369 if(mcbsp->pdata->ops && mcbsp->pdata->ops->free) 370 mcbsp->pdata->ops->free(mcbsp->id - 1); 371 372 /* Disable wakeup behavior */ 373 if (mcbsp->pdata->has_wakeup) 374 MCBSP_WRITE(mcbsp, WAKEUPEN, 0); 375 376 /* Disable interrupt requests */ 377 if (mcbsp->irq) { 378 MCBSP_WRITE(mcbsp, IRQEN, 0); 379 380 free_irq(mcbsp->irq, (void *)mcbsp); 381 } else { 382 free_irq(mcbsp->rx_irq, (void *)mcbsp); 383 free_irq(mcbsp->tx_irq, (void *)mcbsp); 384 } 385 386 reg_cache = mcbsp->reg_cache; 387 388 /* 389 * Select CLKS source from internal source unconditionally before 390 * marking the McBSP port as free. 391 * If the external clock source via MCBSP_CLKS pin has been selected the 392 * system will refuse to enter idle if the CLKS pin source is not reset 393 * back to internal source. 394 */ 395 if (!mcbsp_omap1()) 396 omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC); 397 398 spin_lock(&mcbsp->lock); 399 if (mcbsp->free) 400 dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id); 401 else 402 mcbsp->free = true; 403 mcbsp->reg_cache = NULL; 404 spin_unlock(&mcbsp->lock); 405 406 kfree(reg_cache); 407 } 408 409 /* 410 * Here we start the McBSP, by enabling transmitter, receiver or both. 411 * If no transmitter or receiver is active prior calling, then sample-rate 412 * generator and frame sync are started. 413 */ 414 static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream) 415 { 416 int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK); 417 int rx = !tx; 418 int enable_srg = 0; 419 u16 w; 420 421 if (mcbsp->st_data) 422 omap_mcbsp_st_start(mcbsp); 423 424 /* Only enable SRG, if McBSP is master */ 425 w = MCBSP_READ_CACHE(mcbsp, PCR0); 426 if (w & (FSXM | FSRM | CLKXM | CLKRM)) 427 enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) | 428 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1); 429 430 if (enable_srg) { 431 /* Start the sample generator */ 432 w = MCBSP_READ_CACHE(mcbsp, SPCR2); 433 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6)); 434 } 435 436 /* Enable transmitter and receiver */ 437 tx &= 1; 438 w = MCBSP_READ_CACHE(mcbsp, SPCR2); 439 MCBSP_WRITE(mcbsp, SPCR2, w | tx); 440 441 rx &= 1; 442 w = MCBSP_READ_CACHE(mcbsp, SPCR1); 443 MCBSP_WRITE(mcbsp, SPCR1, w | rx); 444 445 /* 446 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec 447 * REVISIT: 100us may give enough time for two CLKSRG, however 448 * due to some unknown PM related, clock gating etc. reason it 449 * is now at 500us. 450 */ 451 udelay(500); 452 453 if (enable_srg) { 454 /* Start frame sync */ 455 w = MCBSP_READ_CACHE(mcbsp, SPCR2); 456 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7)); 457 } 458 459 if (mcbsp->pdata->has_ccr) { 460 /* Release the transmitter and receiver */ 461 w = MCBSP_READ_CACHE(mcbsp, XCCR); 462 w &= ~(tx ? XDISABLE : 0); 463 MCBSP_WRITE(mcbsp, XCCR, w); 464 w = MCBSP_READ_CACHE(mcbsp, RCCR); 465 w &= ~(rx ? RDISABLE : 0); 466 MCBSP_WRITE(mcbsp, RCCR, w); 467 } 468 469 /* Dump McBSP Regs */ 470 omap_mcbsp_dump_reg(mcbsp); 471 } 472 473 static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream) 474 { 475 int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK); 476 int rx = !tx; 477 int idle; 478 u16 w; 479 480 /* Reset transmitter */ 481 tx &= 1; 482 if (mcbsp->pdata->has_ccr) { 483 w = MCBSP_READ_CACHE(mcbsp, XCCR); 484 w |= (tx ? XDISABLE : 0); 485 MCBSP_WRITE(mcbsp, XCCR, w); 486 } 487 w = MCBSP_READ_CACHE(mcbsp, SPCR2); 488 MCBSP_WRITE(mcbsp, SPCR2, w & ~tx); 489 490 /* Reset receiver */ 491 rx &= 1; 492 if (mcbsp->pdata->has_ccr) { 493 w = MCBSP_READ_CACHE(mcbsp, RCCR); 494 w |= (rx ? RDISABLE : 0); 495 MCBSP_WRITE(mcbsp, RCCR, w); 496 } 497 w = MCBSP_READ_CACHE(mcbsp, SPCR1); 498 MCBSP_WRITE(mcbsp, SPCR1, w & ~rx); 499 500 idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) | 501 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1); 502 503 if (idle) { 504 /* Reset the sample rate generator */ 505 w = MCBSP_READ_CACHE(mcbsp, SPCR2); 506 MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6)); 507 } 508 509 if (mcbsp->st_data) 510 omap_mcbsp_st_stop(mcbsp); 511 } 512 513 #define max_thres(m) (mcbsp->pdata->buffer_size) 514 #define valid_threshold(m, val) ((val) <= max_thres(m)) 515 #define THRESHOLD_PROP_BUILDER(prop) \ 516 static ssize_t prop##_show(struct device *dev, \ 517 struct device_attribute *attr, char *buf) \ 518 { \ 519 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \ 520 \ 521 return sysfs_emit(buf, "%u\n", mcbsp->prop); \ 522 } \ 523 \ 524 static ssize_t prop##_store(struct device *dev, \ 525 struct device_attribute *attr, \ 526 const char *buf, size_t size) \ 527 { \ 528 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \ 529 unsigned long val; \ 530 int status; \ 531 \ 532 status = kstrtoul(buf, 0, &val); \ 533 if (status) \ 534 return status; \ 535 \ 536 if (!valid_threshold(mcbsp, val)) \ 537 return -EDOM; \ 538 \ 539 mcbsp->prop = val; \ 540 return size; \ 541 } \ 542 \ 543 static DEVICE_ATTR_RW(prop) 544 545 THRESHOLD_PROP_BUILDER(max_tx_thres); 546 THRESHOLD_PROP_BUILDER(max_rx_thres); 547 548 static const char * const dma_op_modes[] = { 549 "element", "threshold", 550 }; 551 552 static ssize_t dma_op_mode_show(struct device *dev, 553 struct device_attribute *attr, char *buf) 554 { 555 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); 556 int dma_op_mode, i = 0; 557 ssize_t len = 0; 558 const char * const *s; 559 560 dma_op_mode = mcbsp->dma_op_mode; 561 562 for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) { 563 if (dma_op_mode == i) 564 len += sysfs_emit_at(buf, len, "[%s] ", *s); 565 else 566 len += sysfs_emit_at(buf, len, "%s ", *s); 567 } 568 len += sysfs_emit_at(buf, len, "\n"); 569 570 return len; 571 } 572 573 static ssize_t dma_op_mode_store(struct device *dev, 574 struct device_attribute *attr, const char *buf, 575 size_t size) 576 { 577 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); 578 int i; 579 580 i = sysfs_match_string(dma_op_modes, buf); 581 if (i < 0) 582 return i; 583 584 spin_lock_irq(&mcbsp->lock); 585 if (!mcbsp->free) { 586 size = -EBUSY; 587 goto unlock; 588 } 589 mcbsp->dma_op_mode = i; 590 591 unlock: 592 spin_unlock_irq(&mcbsp->lock); 593 594 return size; 595 } 596 597 static DEVICE_ATTR_RW(dma_op_mode); 598 599 static const struct attribute *additional_attrs[] = { 600 &dev_attr_max_tx_thres.attr, 601 &dev_attr_max_rx_thres.attr, 602 &dev_attr_dma_op_mode.attr, 603 NULL, 604 }; 605 606 static const struct attribute_group additional_attr_group = { 607 .attrs = (struct attribute **)additional_attrs, 608 }; 609 610 /* 611 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510. 612 * 730 has only 2 McBSP, and both of them are MPU peripherals. 613 */ 614 static int omap_mcbsp_init(struct platform_device *pdev) 615 { 616 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev); 617 struct resource *res; 618 int ret; 619 620 spin_lock_init(&mcbsp->lock); 621 mcbsp->free = true; 622 623 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu"); 624 if (!res) 625 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 626 627 mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res); 628 if (IS_ERR(mcbsp->io_base)) 629 return PTR_ERR(mcbsp->io_base); 630 631 mcbsp->phys_base = res->start; 632 mcbsp->reg_cache_size = resource_size(res); 633 634 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma"); 635 if (!res) 636 mcbsp->phys_dma_base = mcbsp->phys_base; 637 else 638 mcbsp->phys_dma_base = res->start; 639 640 /* 641 * OMAP1, 2 uses two interrupt lines: TX, RX 642 * OMAP2430, OMAP3 SoC have combined IRQ line as well. 643 * OMAP4 and newer SoC only have the combined IRQ line. 644 * Use the combined IRQ if available since it gives better debugging 645 * possibilities. 646 */ 647 mcbsp->irq = platform_get_irq_byname(pdev, "common"); 648 if (mcbsp->irq == -ENXIO) { 649 mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx"); 650 651 if (mcbsp->tx_irq == -ENXIO) { 652 mcbsp->irq = platform_get_irq(pdev, 0); 653 mcbsp->tx_irq = 0; 654 } else { 655 mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx"); 656 mcbsp->irq = 0; 657 } 658 } 659 660 if (!pdev->dev.of_node) { 661 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx"); 662 if (!res) { 663 dev_err(&pdev->dev, "invalid tx DMA channel\n"); 664 return -ENODEV; 665 } 666 mcbsp->dma_req[0] = res->start; 667 mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0]; 668 669 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx"); 670 if (!res) { 671 dev_err(&pdev->dev, "invalid rx DMA channel\n"); 672 return -ENODEV; 673 } 674 mcbsp->dma_req[1] = res->start; 675 mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1]; 676 } else { 677 mcbsp->dma_data[0].filter_data = "tx"; 678 mcbsp->dma_data[1].filter_data = "rx"; 679 } 680 681 mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp, 682 SNDRV_PCM_STREAM_PLAYBACK); 683 mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp, 684 SNDRV_PCM_STREAM_CAPTURE); 685 686 mcbsp->fclk = devm_clk_get(&pdev->dev, "fck"); 687 if (IS_ERR(mcbsp->fclk)) { 688 ret = PTR_ERR(mcbsp->fclk); 689 dev_err(mcbsp->dev, "unable to get fck: %d\n", ret); 690 return ret; 691 } 692 693 mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT; 694 if (mcbsp->pdata->buffer_size) { 695 /* 696 * Initially configure the maximum thresholds to a safe value. 697 * The McBSP FIFO usage with these values should not go under 698 * 16 locations. 699 * If the whole FIFO without safety buffer is used, than there 700 * is a possibility that the DMA will be not able to push the 701 * new data on time, causing channel shifts in runtime. 702 */ 703 mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10; 704 mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10; 705 706 ret = devm_device_add_group(mcbsp->dev, &additional_attr_group); 707 if (ret) { 708 dev_err(mcbsp->dev, 709 "Unable to create additional controls\n"); 710 return ret; 711 } 712 } 713 714 return omap_mcbsp_st_init(pdev); 715 } 716 717 /* 718 * Stream DMA parameters. DMA request line and port address are set runtime 719 * since they are different between OMAP1 and later OMAPs 720 */ 721 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream, 722 unsigned int packet_size) 723 { 724 struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); 725 struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0); 726 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 727 int words; 728 729 /* No need to proceed further if McBSP does not have FIFO */ 730 if (mcbsp->pdata->buffer_size == 0) 731 return; 732 733 /* 734 * Configure McBSP threshold based on either: 735 * packet_size, when the sDMA is in packet mode, or based on the 736 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1 737 * for mono streams. 738 */ 739 if (packet_size) 740 words = packet_size; 741 else 742 words = 1; 743 744 /* Configure McBSP internal buffer usage */ 745 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 746 omap_mcbsp_set_tx_threshold(mcbsp, words); 747 else 748 omap_mcbsp_set_rx_threshold(mcbsp, words); 749 } 750 751 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params, 752 struct snd_pcm_hw_rule *rule) 753 { 754 struct snd_interval *buffer_size = hw_param_interval(params, 755 SNDRV_PCM_HW_PARAM_BUFFER_SIZE); 756 struct snd_interval *channels = hw_param_interval(params, 757 SNDRV_PCM_HW_PARAM_CHANNELS); 758 struct omap_mcbsp *mcbsp = rule->private; 759 struct snd_interval frames; 760 int size; 761 762 snd_interval_any(&frames); 763 size = mcbsp->pdata->buffer_size; 764 765 frames.min = size / channels->min; 766 frames.integer = 1; 767 return snd_interval_refine(buffer_size, &frames); 768 } 769 770 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream, 771 struct snd_soc_dai *cpu_dai) 772 { 773 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 774 int err = 0; 775 776 if (!snd_soc_dai_active(cpu_dai)) 777 err = omap_mcbsp_request(mcbsp); 778 779 /* 780 * OMAP3 McBSP FIFO is word structured. 781 * McBSP2 has 1024 + 256 = 1280 word long buffer, 782 * McBSP1,3,4,5 has 128 word long buffer 783 * This means that the size of the FIFO depends on the sample format. 784 * For example on McBSP3: 785 * 16bit samples: size is 128 * 2 = 256 bytes 786 * 32bit samples: size is 128 * 4 = 512 bytes 787 * It is simpler to place constraint for buffer and period based on 788 * channels. 789 * McBSP3 as example again (16 or 32 bit samples): 790 * 1 channel (mono): size is 128 frames (128 words) 791 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words) 792 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words) 793 */ 794 if (mcbsp->pdata->buffer_size) { 795 /* 796 * Rule for the buffer size. We should not allow 797 * smaller buffer than the FIFO size to avoid underruns. 798 * This applies only for the playback stream. 799 */ 800 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 801 snd_pcm_hw_rule_add(substream->runtime, 0, 802 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 803 omap_mcbsp_hwrule_min_buffersize, 804 mcbsp, 805 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 806 807 /* Make sure, that the period size is always even */ 808 snd_pcm_hw_constraint_step(substream->runtime, 0, 809 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2); 810 } 811 812 return err; 813 } 814 815 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream, 816 struct snd_soc_dai *cpu_dai) 817 { 818 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 819 int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); 820 int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE; 821 int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; 822 823 if (mcbsp->latency[stream2]) 824 cpu_latency_qos_update_request(&mcbsp->pm_qos_req, 825 mcbsp->latency[stream2]); 826 else if (mcbsp->latency[stream1]) 827 cpu_latency_qos_remove_request(&mcbsp->pm_qos_req); 828 829 mcbsp->latency[stream1] = 0; 830 831 if (!snd_soc_dai_active(cpu_dai)) { 832 omap_mcbsp_free(mcbsp); 833 mcbsp->configured = 0; 834 } 835 } 836 837 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream, 838 struct snd_soc_dai *cpu_dai) 839 { 840 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 841 struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req; 842 int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); 843 int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE; 844 int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; 845 int latency = mcbsp->latency[stream2]; 846 847 /* Prevent omap hardware from hitting off between FIFO fills */ 848 if (!latency || mcbsp->latency[stream1] < latency) 849 latency = mcbsp->latency[stream1]; 850 851 if (cpu_latency_qos_request_active(pm_qos_req)) 852 cpu_latency_qos_update_request(pm_qos_req, latency); 853 else if (latency) 854 cpu_latency_qos_add_request(pm_qos_req, latency); 855 856 return 0; 857 } 858 859 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd, 860 struct snd_soc_dai *cpu_dai) 861 { 862 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 863 864 switch (cmd) { 865 case SNDRV_PCM_TRIGGER_START: 866 case SNDRV_PCM_TRIGGER_RESUME: 867 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 868 mcbsp->active++; 869 omap_mcbsp_start(mcbsp, substream->stream); 870 break; 871 872 case SNDRV_PCM_TRIGGER_STOP: 873 case SNDRV_PCM_TRIGGER_SUSPEND: 874 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 875 omap_mcbsp_stop(mcbsp, substream->stream); 876 mcbsp->active--; 877 break; 878 default: 879 return -EINVAL; 880 } 881 882 return 0; 883 } 884 885 static snd_pcm_sframes_t omap_mcbsp_dai_delay( 886 struct snd_pcm_substream *substream, 887 struct snd_soc_dai *dai) 888 { 889 struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); 890 struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0); 891 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 892 u16 fifo_use; 893 snd_pcm_sframes_t delay; 894 895 /* No need to proceed further if McBSP does not have FIFO */ 896 if (mcbsp->pdata->buffer_size == 0) 897 return 0; 898 899 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 900 fifo_use = omap_mcbsp_get_tx_delay(mcbsp); 901 else 902 fifo_use = omap_mcbsp_get_rx_delay(mcbsp); 903 904 /* 905 * Divide the used locations with the channel count to get the 906 * FIFO usage in samples (don't care about partial samples in the 907 * buffer). 908 */ 909 delay = fifo_use / substream->runtime->channels; 910 911 return delay; 912 } 913 914 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream, 915 struct snd_pcm_hw_params *params, 916 struct snd_soc_dai *cpu_dai) 917 { 918 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 919 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs; 920 struct snd_dmaengine_dai_dma_data *dma_data; 921 int wlen, channels, wpf; 922 int pkt_size = 0; 923 unsigned int format, div, framesize, master; 924 unsigned int buffer_size = mcbsp->pdata->buffer_size; 925 926 dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream); 927 channels = params_channels(params); 928 929 switch (params_format(params)) { 930 case SNDRV_PCM_FORMAT_S16_LE: 931 wlen = 16; 932 break; 933 case SNDRV_PCM_FORMAT_S32_LE: 934 wlen = 32; 935 break; 936 default: 937 return -EINVAL; 938 } 939 if (buffer_size) { 940 int latency; 941 942 if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) { 943 int period_words, max_thrsh; 944 int divider = 0; 945 946 period_words = params_period_bytes(params) / (wlen / 8); 947 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 948 max_thrsh = mcbsp->max_tx_thres; 949 else 950 max_thrsh = mcbsp->max_rx_thres; 951 /* 952 * Use sDMA packet mode if McBSP is in threshold mode: 953 * If period words less than the FIFO size the packet 954 * size is set to the number of period words, otherwise 955 * Look for the biggest threshold value which divides 956 * the period size evenly. 957 */ 958 divider = period_words / max_thrsh; 959 if (period_words % max_thrsh) 960 divider++; 961 while (period_words % divider && 962 divider < period_words) 963 divider++; 964 if (divider == period_words) 965 return -EINVAL; 966 967 pkt_size = period_words / divider; 968 } else if (channels > 1) { 969 /* Use packet mode for non mono streams */ 970 pkt_size = channels; 971 } 972 973 latency = (buffer_size - pkt_size) / channels; 974 latency = latency * USEC_PER_SEC / 975 (params->rate_num / params->rate_den); 976 mcbsp->latency[substream->stream] = latency; 977 978 omap_mcbsp_set_threshold(substream, pkt_size); 979 } 980 981 dma_data->maxburst = pkt_size; 982 983 if (mcbsp->configured) { 984 /* McBSP already configured by another stream */ 985 return 0; 986 } 987 988 regs->rcr2 &= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7)); 989 regs->xcr2 &= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7)); 990 regs->rcr1 &= ~(RFRLEN1(0x7f) | RWDLEN1(7)); 991 regs->xcr1 &= ~(XFRLEN1(0x7f) | XWDLEN1(7)); 992 format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK; 993 wpf = channels; 994 if (channels == 2 && (format == SND_SOC_DAIFMT_I2S || 995 format == SND_SOC_DAIFMT_LEFT_J)) { 996 /* Use dual-phase frames */ 997 regs->rcr2 |= RPHASE; 998 regs->xcr2 |= XPHASE; 999 /* Set 1 word per (McBSP) frame for phase1 and phase2 */ 1000 wpf--; 1001 regs->rcr2 |= RFRLEN2(wpf - 1); 1002 regs->xcr2 |= XFRLEN2(wpf - 1); 1003 } 1004 1005 regs->rcr1 |= RFRLEN1(wpf - 1); 1006 regs->xcr1 |= XFRLEN1(wpf - 1); 1007 1008 switch (params_format(params)) { 1009 case SNDRV_PCM_FORMAT_S16_LE: 1010 /* Set word lengths */ 1011 regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_16); 1012 regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_16); 1013 regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_16); 1014 regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_16); 1015 break; 1016 case SNDRV_PCM_FORMAT_S32_LE: 1017 /* Set word lengths */ 1018 regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_32); 1019 regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_32); 1020 regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_32); 1021 regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_32); 1022 break; 1023 default: 1024 /* Unsupported PCM format */ 1025 return -EINVAL; 1026 } 1027 1028 /* In McBSP master modes, FRAME (i.e. sample rate) is generated 1029 * by _counting_ BCLKs. Calculate frame size in BCLKs */ 1030 master = mcbsp->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK; 1031 if (master == SND_SOC_DAIFMT_BP_FP) { 1032 div = mcbsp->clk_div ? mcbsp->clk_div : 1; 1033 framesize = (mcbsp->in_freq / div) / params_rate(params); 1034 1035 if (framesize < wlen * channels) { 1036 printk(KERN_ERR "%s: not enough bandwidth for desired rate and " 1037 "channels\n", __func__); 1038 return -EINVAL; 1039 } 1040 } else 1041 framesize = wlen * channels; 1042 1043 /* Set FS period and length in terms of bit clock periods */ 1044 regs->srgr2 &= ~FPER(0xfff); 1045 regs->srgr1 &= ~FWID(0xff); 1046 switch (format) { 1047 case SND_SOC_DAIFMT_I2S: 1048 case SND_SOC_DAIFMT_LEFT_J: 1049 regs->srgr2 |= FPER(framesize - 1); 1050 regs->srgr1 |= FWID((framesize >> 1) - 1); 1051 break; 1052 case SND_SOC_DAIFMT_DSP_A: 1053 case SND_SOC_DAIFMT_DSP_B: 1054 regs->srgr2 |= FPER(framesize - 1); 1055 regs->srgr1 |= FWID(0); 1056 break; 1057 } 1058 1059 omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs); 1060 mcbsp->wlen = wlen; 1061 mcbsp->configured = 1; 1062 1063 return 0; 1064 } 1065 1066 /* 1067 * This must be called before _set_clkdiv and _set_sysclk since McBSP register 1068 * cache is initialized here 1069 */ 1070 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai, 1071 unsigned int fmt) 1072 { 1073 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 1074 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs; 1075 bool inv_fs = false; 1076 1077 if (mcbsp->configured) 1078 return 0; 1079 1080 mcbsp->fmt = fmt; 1081 memset(regs, 0, sizeof(*regs)); 1082 /* Generic McBSP register settings */ 1083 regs->spcr2 |= XINTM(3) | FREE; 1084 regs->spcr1 |= RINTM(3); 1085 /* RFIG and XFIG are not defined in 2430 and on OMAP3+ */ 1086 if (!mcbsp->pdata->has_ccr) { 1087 regs->rcr2 |= RFIG; 1088 regs->xcr2 |= XFIG; 1089 } 1090 1091 /* Configure XCCR/RCCR only for revisions which have ccr registers */ 1092 if (mcbsp->pdata->has_ccr) { 1093 regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE; 1094 regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE; 1095 } 1096 1097 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 1098 case SND_SOC_DAIFMT_I2S: 1099 /* 1-bit data delay */ 1100 regs->rcr2 |= RDATDLY(1); 1101 regs->xcr2 |= XDATDLY(1); 1102 break; 1103 case SND_SOC_DAIFMT_LEFT_J: 1104 /* 0-bit data delay */ 1105 regs->rcr2 |= RDATDLY(0); 1106 regs->xcr2 |= XDATDLY(0); 1107 regs->spcr1 |= RJUST(2); 1108 /* Invert FS polarity configuration */ 1109 inv_fs = true; 1110 break; 1111 case SND_SOC_DAIFMT_DSP_A: 1112 /* 1-bit data delay */ 1113 regs->rcr2 |= RDATDLY(1); 1114 regs->xcr2 |= XDATDLY(1); 1115 /* Invert FS polarity configuration */ 1116 inv_fs = true; 1117 break; 1118 case SND_SOC_DAIFMT_DSP_B: 1119 /* 0-bit data delay */ 1120 regs->rcr2 |= RDATDLY(0); 1121 regs->xcr2 |= XDATDLY(0); 1122 /* Invert FS polarity configuration */ 1123 inv_fs = true; 1124 break; 1125 default: 1126 /* Unsupported data format */ 1127 return -EINVAL; 1128 } 1129 1130 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { 1131 case SND_SOC_DAIFMT_BP_FP: 1132 /* McBSP master. Set FS and bit clocks as outputs */ 1133 regs->pcr0 |= FSXM | FSRM | 1134 CLKXM | CLKRM; 1135 /* Sample rate generator drives the FS */ 1136 regs->srgr2 |= FSGM; 1137 break; 1138 case SND_SOC_DAIFMT_BC_FP: 1139 /* McBSP slave. FS clock as output */ 1140 regs->srgr2 |= FSGM; 1141 regs->pcr0 |= FSXM | FSRM; 1142 break; 1143 case SND_SOC_DAIFMT_BC_FC: 1144 /* McBSP slave */ 1145 break; 1146 default: 1147 /* Unsupported master/slave configuration */ 1148 return -EINVAL; 1149 } 1150 1151 /* Set bit clock (CLKX/CLKR) and FS polarities */ 1152 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 1153 case SND_SOC_DAIFMT_NB_NF: 1154 /* 1155 * Normal BCLK + FS. 1156 * FS active low. TX data driven on falling edge of bit clock 1157 * and RX data sampled on rising edge of bit clock. 1158 */ 1159 regs->pcr0 |= FSXP | FSRP | 1160 CLKXP | CLKRP; 1161 break; 1162 case SND_SOC_DAIFMT_NB_IF: 1163 regs->pcr0 |= CLKXP | CLKRP; 1164 break; 1165 case SND_SOC_DAIFMT_IB_NF: 1166 regs->pcr0 |= FSXP | FSRP; 1167 break; 1168 case SND_SOC_DAIFMT_IB_IF: 1169 break; 1170 default: 1171 return -EINVAL; 1172 } 1173 if (inv_fs) 1174 regs->pcr0 ^= FSXP | FSRP; 1175 1176 return 0; 1177 } 1178 1179 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai, 1180 int div_id, int div) 1181 { 1182 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 1183 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs; 1184 1185 if (div_id != OMAP_MCBSP_CLKGDV) 1186 return -ENODEV; 1187 1188 mcbsp->clk_div = div; 1189 regs->srgr1 &= ~CLKGDV(0xff); 1190 regs->srgr1 |= CLKGDV(div - 1); 1191 1192 return 0; 1193 } 1194 1195 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai, 1196 int clk_id, unsigned int freq, 1197 int dir) 1198 { 1199 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 1200 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs; 1201 int err = 0; 1202 1203 if (mcbsp->active) { 1204 if (freq == mcbsp->in_freq) 1205 return 0; 1206 else 1207 return -EBUSY; 1208 } 1209 1210 mcbsp->in_freq = freq; 1211 regs->srgr2 &= ~CLKSM; 1212 regs->pcr0 &= ~SCLKME; 1213 1214 switch (clk_id) { 1215 case OMAP_MCBSP_SYSCLK_CLK: 1216 regs->srgr2 |= CLKSM; 1217 break; 1218 case OMAP_MCBSP_SYSCLK_CLKS_FCLK: 1219 if (mcbsp_omap1()) { 1220 err = -EINVAL; 1221 break; 1222 } 1223 err = omap2_mcbsp_set_clks_src(mcbsp, 1224 MCBSP_CLKS_PRCM_SRC); 1225 break; 1226 case OMAP_MCBSP_SYSCLK_CLKS_EXT: 1227 if (mcbsp_omap1()) { 1228 err = 0; 1229 break; 1230 } 1231 err = omap2_mcbsp_set_clks_src(mcbsp, 1232 MCBSP_CLKS_PAD_SRC); 1233 break; 1234 1235 case OMAP_MCBSP_SYSCLK_CLKX_EXT: 1236 regs->srgr2 |= CLKSM; 1237 regs->pcr0 |= SCLKME; 1238 /* 1239 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG, 1240 * disable output on those pins. This enables to inject the 1241 * reference clock through CLKX/CLKR. For this to work 1242 * set_dai_sysclk() _needs_ to be called after set_dai_fmt(). 1243 */ 1244 regs->pcr0 &= ~CLKXM; 1245 break; 1246 case OMAP_MCBSP_SYSCLK_CLKR_EXT: 1247 regs->pcr0 |= SCLKME; 1248 /* Disable ouput on CLKR pin in master mode */ 1249 regs->pcr0 &= ~CLKRM; 1250 break; 1251 default: 1252 err = -ENODEV; 1253 } 1254 1255 return err; 1256 } 1257 1258 static int omap_mcbsp_probe(struct snd_soc_dai *dai) 1259 { 1260 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai); 1261 1262 pm_runtime_enable(mcbsp->dev); 1263 1264 snd_soc_dai_init_dma_data(dai, 1265 &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK], 1266 &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]); 1267 1268 return 0; 1269 } 1270 1271 static int omap_mcbsp_remove(struct snd_soc_dai *dai) 1272 { 1273 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai); 1274 1275 pm_runtime_disable(mcbsp->dev); 1276 1277 return 0; 1278 } 1279 1280 static const struct snd_soc_dai_ops mcbsp_dai_ops = { 1281 .probe = omap_mcbsp_probe, 1282 .remove = omap_mcbsp_remove, 1283 .startup = omap_mcbsp_dai_startup, 1284 .shutdown = omap_mcbsp_dai_shutdown, 1285 .prepare = omap_mcbsp_dai_prepare, 1286 .trigger = omap_mcbsp_dai_trigger, 1287 .delay = omap_mcbsp_dai_delay, 1288 .hw_params = omap_mcbsp_dai_hw_params, 1289 .set_fmt = omap_mcbsp_dai_set_dai_fmt, 1290 .set_clkdiv = omap_mcbsp_dai_set_clkdiv, 1291 .set_sysclk = omap_mcbsp_dai_set_dai_sysclk, 1292 }; 1293 1294 static struct snd_soc_dai_driver omap_mcbsp_dai = { 1295 .playback = { 1296 .channels_min = 1, 1297 .channels_max = 16, 1298 .rates = OMAP_MCBSP_RATES, 1299 .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE, 1300 }, 1301 .capture = { 1302 .channels_min = 1, 1303 .channels_max = 16, 1304 .rates = OMAP_MCBSP_RATES, 1305 .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE, 1306 }, 1307 .ops = &mcbsp_dai_ops, 1308 }; 1309 1310 static const struct snd_soc_component_driver omap_mcbsp_component = { 1311 .name = "omap-mcbsp", 1312 .legacy_dai_naming = 1, 1313 }; 1314 1315 static struct omap_mcbsp_platform_data omap2420_pdata = { 1316 .reg_step = 4, 1317 .reg_size = 2, 1318 }; 1319 1320 static struct omap_mcbsp_platform_data omap2430_pdata = { 1321 .reg_step = 4, 1322 .reg_size = 4, 1323 .has_ccr = true, 1324 }; 1325 1326 static struct omap_mcbsp_platform_data omap3_pdata = { 1327 .reg_step = 4, 1328 .reg_size = 4, 1329 .has_ccr = true, 1330 .has_wakeup = true, 1331 }; 1332 1333 static struct omap_mcbsp_platform_data omap4_pdata = { 1334 .reg_step = 4, 1335 .reg_size = 4, 1336 .has_ccr = true, 1337 .has_wakeup = true, 1338 }; 1339 1340 static const struct of_device_id omap_mcbsp_of_match[] = { 1341 { 1342 .compatible = "ti,omap2420-mcbsp", 1343 .data = &omap2420_pdata, 1344 }, 1345 { 1346 .compatible = "ti,omap2430-mcbsp", 1347 .data = &omap2430_pdata, 1348 }, 1349 { 1350 .compatible = "ti,omap3-mcbsp", 1351 .data = &omap3_pdata, 1352 }, 1353 { 1354 .compatible = "ti,omap4-mcbsp", 1355 .data = &omap4_pdata, 1356 }, 1357 { }, 1358 }; 1359 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match); 1360 1361 static int asoc_mcbsp_probe(struct platform_device *pdev) 1362 { 1363 struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev); 1364 const struct omap_mcbsp_platform_data *match_pdata = 1365 device_get_match_data(&pdev->dev); 1366 struct omap_mcbsp *mcbsp; 1367 int ret; 1368 1369 if (match_pdata) { 1370 struct device_node *node = pdev->dev.of_node; 1371 struct omap_mcbsp_platform_data *pdata_quirk = pdata; 1372 int buffer_size; 1373 1374 pdata = devm_kmemdup(&pdev->dev, match_pdata, 1375 sizeof(struct omap_mcbsp_platform_data), 1376 GFP_KERNEL); 1377 if (!pdata) 1378 return -ENOMEM; 1379 1380 if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size)) 1381 pdata->buffer_size = buffer_size; 1382 if (pdata_quirk) 1383 pdata->force_ick_on = pdata_quirk->force_ick_on; 1384 } else if (!pdata) { 1385 dev_err(&pdev->dev, "missing platform data.\n"); 1386 return -EINVAL; 1387 } 1388 mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL); 1389 if (!mcbsp) 1390 return -ENOMEM; 1391 1392 mcbsp->id = pdev->id; 1393 mcbsp->pdata = pdata; 1394 mcbsp->dev = &pdev->dev; 1395 platform_set_drvdata(pdev, mcbsp); 1396 1397 ret = omap_mcbsp_init(pdev); 1398 if (ret) 1399 return ret; 1400 1401 if (mcbsp->pdata->reg_size == 2) { 1402 omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE; 1403 omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE; 1404 } 1405 1406 ret = devm_snd_soc_register_component(&pdev->dev, 1407 &omap_mcbsp_component, 1408 &omap_mcbsp_dai, 1); 1409 if (ret) 1410 return ret; 1411 1412 return sdma_pcm_platform_register(&pdev->dev, "tx", "rx"); 1413 } 1414 1415 static void asoc_mcbsp_remove(struct platform_device *pdev) 1416 { 1417 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev); 1418 1419 if (mcbsp->pdata->ops && mcbsp->pdata->ops->free) 1420 mcbsp->pdata->ops->free(mcbsp->id); 1421 1422 if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req)) 1423 cpu_latency_qos_remove_request(&mcbsp->pm_qos_req); 1424 } 1425 1426 static struct platform_driver asoc_mcbsp_driver = { 1427 .driver = { 1428 .name = "omap-mcbsp", 1429 .of_match_table = omap_mcbsp_of_match, 1430 }, 1431 1432 .probe = asoc_mcbsp_probe, 1433 .remove_new = asoc_mcbsp_remove, 1434 }; 1435 1436 module_platform_driver(asoc_mcbsp_driver); 1437 1438 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>"); 1439 MODULE_DESCRIPTION("OMAP I2S SoC Interface"); 1440 MODULE_LICENSE("GPL"); 1441 MODULE_ALIAS("platform:omap-mcbsp"); 1442
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.