~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/sound/x86/intel_hdmi_audio.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *   intel_hdmi_audio.c - Intel HDMI audio driver
  4  *
  5  *  Copyright (C) 2016 Intel Corp
  6  *  Authors:    Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
  7  *              Ramesh Babu K V <ramesh.babu@intel.com>
  8  *              Vaibhav Agarwal <vaibhav.agarwal@intel.com>
  9  *              Jerome Anand <jerome.anand@intel.com>
 10  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 11  *
 12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 13  * ALSA driver for Intel HDMI audio
 14  */
 15 
 16 #include <linux/types.h>
 17 #include <linux/platform_device.h>
 18 #include <linux/io.h>
 19 #include <linux/slab.h>
 20 #include <linux/module.h>
 21 #include <linux/interrupt.h>
 22 #include <linux/pm_runtime.h>
 23 #include <linux/dma-mapping.h>
 24 #include <linux/delay.h>
 25 #include <sound/core.h>
 26 #include <sound/asoundef.h>
 27 #include <sound/pcm.h>
 28 #include <sound/pcm_params.h>
 29 #include <sound/initval.h>
 30 #include <sound/control.h>
 31 #include <sound/jack.h>
 32 #include <drm/drm_edid.h>
 33 #include <drm/drm_eld.h>
 34 #include <drm/intel/intel_lpe_audio.h>
 35 #include "intel_hdmi_audio.h"
 36 
 37 #define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS  5000
 38 
 39 #define for_each_pipe(card_ctx, pipe) \
 40         for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
 41 #define for_each_port(card_ctx, port) \
 42         for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
 43 
 44 /*standard module options for ALSA. This module supports only one card*/
 45 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
 46 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
 47 static bool single_port;
 48 
 49 module_param_named(index, hdmi_card_index, int, 0444);
 50 MODULE_PARM_DESC(index,
 51                 "Index value for INTEL Intel HDMI Audio controller.");
 52 module_param_named(id, hdmi_card_id, charp, 0444);
 53 MODULE_PARM_DESC(id,
 54                 "ID string for INTEL Intel HDMI Audio controller.");
 55 module_param(single_port, bool, 0444);
 56 MODULE_PARM_DESC(single_port,
 57                 "Single-port mode (for compatibility)");
 58 
 59 /*
 60  * ELD SA bits in the CEA Speaker Allocation data block
 61  */
 62 static const int eld_speaker_allocation_bits[] = {
 63         [0] = FL | FR,
 64         [1] = LFE,
 65         [2] = FC,
 66         [3] = RL | RR,
 67         [4] = RC,
 68         [5] = FLC | FRC,
 69         [6] = RLC | RRC,
 70         /* the following are not defined in ELD yet */
 71         [7] = 0,
 72 };
 73 
 74 /*
 75  * This is an ordered list!
 76  *
 77  * The preceding ones have better chances to be selected by
 78  * hdmi_channel_allocation().
 79  */
 80 static struct cea_channel_speaker_allocation channel_allocations[] = {
 81 /*                        channel:   7     6    5    4    3     2    1    0  */
 82 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
 83                                 /* 2.1 */
 84 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
 85                                 /* Dolby Surround */
 86 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
 87                                 /* surround40 */
 88 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
 89                                 /* surround41 */
 90 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
 91                                 /* surround50 */
 92 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
 93                                 /* surround51 */
 94 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
 95                                 /* 6.1 */
 96 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
 97                                 /* surround71 */
 98 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
 99 
100 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
101 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
102 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
103 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
104 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
105 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
106 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
107 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
108 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
109 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
110 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
111 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
112 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
113 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
114 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
115 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
116 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
117 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
118 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
119 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
120 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
121 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
122 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
123 };
124 
125 static const struct channel_map_table map_tables[] = {
126         { SNDRV_CHMAP_FL,       0x00,   FL },
127         { SNDRV_CHMAP_FR,       0x01,   FR },
128         { SNDRV_CHMAP_RL,       0x04,   RL },
129         { SNDRV_CHMAP_RR,       0x05,   RR },
130         { SNDRV_CHMAP_LFE,      0x02,   LFE },
131         { SNDRV_CHMAP_FC,       0x03,   FC },
132         { SNDRV_CHMAP_RLC,      0x06,   RLC },
133         { SNDRV_CHMAP_RRC,      0x07,   RRC },
134         {} /* terminator */
135 };
136 
137 /* hardware capability structure */
138 static const struct snd_pcm_hardware had_pcm_hardware = {
139         .info = (SNDRV_PCM_INFO_INTERLEAVED |
140                 SNDRV_PCM_INFO_MMAP |
141                 SNDRV_PCM_INFO_MMAP_VALID |
142                 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
143         .formats = (SNDRV_PCM_FMTBIT_S16_LE |
144                     SNDRV_PCM_FMTBIT_S24_LE |
145                     SNDRV_PCM_FMTBIT_S32_LE),
146         .rates = SNDRV_PCM_RATE_32000 |
147                 SNDRV_PCM_RATE_44100 |
148                 SNDRV_PCM_RATE_48000 |
149                 SNDRV_PCM_RATE_88200 |
150                 SNDRV_PCM_RATE_96000 |
151                 SNDRV_PCM_RATE_176400 |
152                 SNDRV_PCM_RATE_192000,
153         .rate_min = HAD_MIN_RATE,
154         .rate_max = HAD_MAX_RATE,
155         .channels_min = HAD_MIN_CHANNEL,
156         .channels_max = HAD_MAX_CHANNEL,
157         .buffer_bytes_max = HAD_MAX_BUFFER,
158         .period_bytes_min = HAD_MIN_PERIOD_BYTES,
159         .period_bytes_max = HAD_MAX_PERIOD_BYTES,
160         .periods_min = HAD_MIN_PERIODS,
161         .periods_max = HAD_MAX_PERIODS,
162         .fifo_size = HAD_FIFO_SIZE,
163 };
164 
165 /* Get the active PCM substream;
166  * Call had_substream_put() for unreferecing.
167  * Don't call this inside had_spinlock, as it takes by itself
168  */
169 static struct snd_pcm_substream *
170 had_substream_get(struct snd_intelhad *intelhaddata)
171 {
172         struct snd_pcm_substream *substream;
173         unsigned long flags;
174 
175         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
176         substream = intelhaddata->stream_info.substream;
177         if (substream)
178                 intelhaddata->stream_info.substream_refcount++;
179         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
180         return substream;
181 }
182 
183 /* Unref the active PCM substream;
184  * Don't call this inside had_spinlock, as it takes by itself
185  */
186 static void had_substream_put(struct snd_intelhad *intelhaddata)
187 {
188         unsigned long flags;
189 
190         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
191         intelhaddata->stream_info.substream_refcount--;
192         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
193 }
194 
195 static u32 had_config_offset(int pipe)
196 {
197         switch (pipe) {
198         default:
199         case 0:
200                 return AUDIO_HDMI_CONFIG_A;
201         case 1:
202                 return AUDIO_HDMI_CONFIG_B;
203         case 2:
204                 return AUDIO_HDMI_CONFIG_C;
205         }
206 }
207 
208 /* Register access functions */
209 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
210                                  int pipe, u32 reg)
211 {
212         return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
213 }
214 
215 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
216                                    int pipe, u32 reg, u32 val)
217 {
218         iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
219 }
220 
221 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
222 {
223         if (!ctx->connected)
224                 *val = 0;
225         else
226                 *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
227 }
228 
229 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
230 {
231         if (ctx->connected)
232                 had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
233 }
234 
235 /*
236  * enable / disable audio configuration
237  *
238  * The normal read/modify should not directly be used on VLV2 for
239  * updating AUD_CONFIG register.
240  * This is because:
241  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
242  * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
243  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
244  * register. This field should be 1xy binary for configuration with 6 or
245  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
246  * causes the "channels" field to be updated as 0xy binary resulting in
247  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
248  * appropriate value when doing read-modify of AUD_CONFIG register.
249  */
250 static void had_enable_audio(struct snd_intelhad *intelhaddata,
251                              bool enable)
252 {
253         /* update the cached value */
254         intelhaddata->aud_config.regx.aud_en = enable;
255         had_write_register(intelhaddata, AUD_CONFIG,
256                            intelhaddata->aud_config.regval);
257 }
258 
259 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
260 static void had_ack_irqs(struct snd_intelhad *ctx)
261 {
262         u32 status_reg;
263 
264         if (!ctx->connected)
265                 return;
266         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
267         status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
268         had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
269         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
270 }
271 
272 /* Reset buffer pointers */
273 static void had_reset_audio(struct snd_intelhad *intelhaddata)
274 {
275         had_write_register(intelhaddata, AUD_HDMI_STATUS,
276                            AUD_HDMI_STATUSG_MASK_FUNCRST);
277         had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
278 }
279 
280 /*
281  * initialize audio channel status registers
282  * This function is called in the prepare callback
283  */
284 static int had_prog_status_reg(struct snd_pcm_substream *substream,
285                         struct snd_intelhad *intelhaddata)
286 {
287         union aud_ch_status_0 ch_stat0 = {.regval = 0};
288         union aud_ch_status_1 ch_stat1 = {.regval = 0};
289 
290         ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
291                                           IEC958_AES0_NONAUDIO) >> 1;
292         ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
293                                           IEC958_AES3_CON_CLOCK) >> 4;
294 
295         switch (substream->runtime->rate) {
296         case AUD_SAMPLE_RATE_32:
297                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
298                 break;
299 
300         case AUD_SAMPLE_RATE_44_1:
301                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
302                 break;
303         case AUD_SAMPLE_RATE_48:
304                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
305                 break;
306         case AUD_SAMPLE_RATE_88_2:
307                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
308                 break;
309         case AUD_SAMPLE_RATE_96:
310                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
311                 break;
312         case AUD_SAMPLE_RATE_176_4:
313                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
314                 break;
315         case AUD_SAMPLE_RATE_192:
316                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
317                 break;
318 
319         default:
320                 /* control should never come here */
321                 return -EINVAL;
322         }
323 
324         had_write_register(intelhaddata,
325                            AUD_CH_STATUS_0, ch_stat0.regval);
326 
327         switch (substream->runtime->format) {
328         case SNDRV_PCM_FORMAT_S16_LE:
329                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
330                 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
331                 break;
332         case SNDRV_PCM_FORMAT_S24_LE:
333         case SNDRV_PCM_FORMAT_S32_LE:
334                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
335                 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
336                 break;
337         default:
338                 return -EINVAL;
339         }
340 
341         had_write_register(intelhaddata,
342                            AUD_CH_STATUS_1, ch_stat1.regval);
343         return 0;
344 }
345 
346 /*
347  * function to initialize audio
348  * registers and buffer configuration registers
349  * This function is called in the prepare callback
350  */
351 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
352                                struct snd_intelhad *intelhaddata)
353 {
354         union aud_cfg cfg_val = {.regval = 0};
355         union aud_buf_config buf_cfg = {.regval = 0};
356         u8 channels;
357 
358         had_prog_status_reg(substream, intelhaddata);
359 
360         buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
361         buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
362         buf_cfg.regx.aud_delay = 0;
363         had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
364 
365         channels = substream->runtime->channels;
366         cfg_val.regx.num_ch = channels - 2;
367         if (channels <= 2)
368                 cfg_val.regx.layout = LAYOUT0;
369         else
370                 cfg_val.regx.layout = LAYOUT1;
371 
372         if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
373                 cfg_val.regx.packet_mode = 1;
374 
375         if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
376                 cfg_val.regx.left_align = 1;
377 
378         cfg_val.regx.val_bit = 1;
379 
380         /* fix up the DP bits */
381         if (intelhaddata->dp_output) {
382                 cfg_val.regx.dp_modei = 1;
383                 cfg_val.regx.set = 1;
384         }
385 
386         had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
387         intelhaddata->aud_config = cfg_val;
388         return 0;
389 }
390 
391 /*
392  * Compute derived values in channel_allocations[].
393  */
394 static void init_channel_allocations(void)
395 {
396         int i, j;
397         struct cea_channel_speaker_allocation *p;
398 
399         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
400                 p = channel_allocations + i;
401                 p->channels = 0;
402                 p->spk_mask = 0;
403                 for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
404                         if (p->speakers[j]) {
405                                 p->channels++;
406                                 p->spk_mask |= p->speakers[j];
407                         }
408         }
409 }
410 
411 /*
412  * The transformation takes two steps:
413  *
414  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
415  *            spk_mask => (channel_allocations[])         => ai->CA
416  *
417  * TODO: it could select the wrong CA from multiple candidates.
418  */
419 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
420                                   int channels)
421 {
422         int i;
423         int ca = 0;
424         int spk_mask = 0;
425 
426         /*
427          * CA defaults to 0 for basic stereo audio
428          */
429         if (channels <= 2)
430                 return 0;
431 
432         /*
433          * expand ELD's speaker allocation mask
434          *
435          * ELD tells the speaker mask in a compact(paired) form,
436          * expand ELD's notions to match the ones used by Audio InfoFrame.
437          */
438 
439         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
440                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
441                         spk_mask |= eld_speaker_allocation_bits[i];
442         }
443 
444         /* search for the first working match in the CA table */
445         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
446                 if (channels == channel_allocations[i].channels &&
447                 (spk_mask & channel_allocations[i].spk_mask) ==
448                                 channel_allocations[i].spk_mask) {
449                         ca = channel_allocations[i].ca_index;
450                         break;
451                 }
452         }
453 
454         dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
455 
456         return ca;
457 }
458 
459 /* from speaker bit mask to ALSA API channel position */
460 static int spk_to_chmap(int spk)
461 {
462         const struct channel_map_table *t = map_tables;
463 
464         for (; t->map; t++) {
465                 if (t->spk_mask == spk)
466                         return t->map;
467         }
468         return 0;
469 }
470 
471 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
472 {
473         int i, c;
474         int spk_mask = 0;
475         struct snd_pcm_chmap_elem *chmap;
476         u8 eld_high, eld_high_mask = 0xF0;
477         u8 high_msb;
478 
479         kfree(intelhaddata->chmap->chmap);
480         intelhaddata->chmap->chmap = NULL;
481 
482         chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
483         if (!chmap)
484                 return;
485 
486         dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
487                 intelhaddata->eld[DRM_ELD_SPEAKER]);
488 
489         /* WA: Fix the max channel supported to 8 */
490 
491         /*
492          * Sink may support more than 8 channels, if eld_high has more than
493          * one bit set. SOC supports max 8 channels.
494          * Refer eld_speaker_allocation_bits, for sink speaker allocation
495          */
496 
497         /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
498         eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
499         if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
500                 /* eld_high & (eld_high-1): if more than 1 bit set */
501                 /* 0x1F: 7 channels */
502                 for (i = 1; i < 4; i++) {
503                         high_msb = eld_high & (0x80 >> i);
504                         if (high_msb) {
505                                 intelhaddata->eld[DRM_ELD_SPEAKER] &=
506                                         high_msb | 0xF;
507                                 break;
508                         }
509                 }
510         }
511 
512         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
513                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
514                         spk_mask |= eld_speaker_allocation_bits[i];
515         }
516 
517         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
518                 if (spk_mask == channel_allocations[i].spk_mask) {
519                         for (c = 0; c < channel_allocations[i].channels; c++) {
520                                 chmap->map[c] = spk_to_chmap(
521                                         channel_allocations[i].speakers[
522                                                 (MAX_SPEAKERS - 1) - c]);
523                         }
524                         chmap->channels = channel_allocations[i].channels;
525                         intelhaddata->chmap->chmap = chmap;
526                         break;
527                 }
528         }
529         if (i >= ARRAY_SIZE(channel_allocations))
530                 kfree(chmap);
531 }
532 
533 /*
534  * ALSA API channel-map control callbacks
535  */
536 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
537                                 struct snd_ctl_elem_info *uinfo)
538 {
539         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
540         uinfo->count = HAD_MAX_CHANNEL;
541         uinfo->value.integer.min = 0;
542         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
543         return 0;
544 }
545 
546 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
547                                 struct snd_ctl_elem_value *ucontrol)
548 {
549         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
550         struct snd_intelhad *intelhaddata = info->private_data;
551         int i;
552         const struct snd_pcm_chmap_elem *chmap;
553 
554         memset(ucontrol->value.integer.value, 0,
555                sizeof(long) * HAD_MAX_CHANNEL);
556         mutex_lock(&intelhaddata->mutex);
557         if (!intelhaddata->chmap->chmap) {
558                 mutex_unlock(&intelhaddata->mutex);
559                 return 0;
560         }
561 
562         chmap = intelhaddata->chmap->chmap;
563         for (i = 0; i < chmap->channels; i++)
564                 ucontrol->value.integer.value[i] = chmap->map[i];
565         mutex_unlock(&intelhaddata->mutex);
566 
567         return 0;
568 }
569 
570 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
571                                                 struct snd_pcm *pcm)
572 {
573         int err;
574 
575         err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
576                         NULL, 0, (unsigned long)intelhaddata,
577                         &intelhaddata->chmap);
578         if (err < 0)
579                 return err;
580 
581         intelhaddata->chmap->private_data = intelhaddata;
582         intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
583         intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
584         intelhaddata->chmap->chmap = NULL;
585         return 0;
586 }
587 
588 /*
589  * Initialize Data Island Packets registers
590  * This function is called in the prepare callback
591  */
592 static void had_prog_dip(struct snd_pcm_substream *substream,
593                          struct snd_intelhad *intelhaddata)
594 {
595         int i;
596         union aud_ctrl_st ctrl_state = {.regval = 0};
597         union aud_info_frame2 frame2 = {.regval = 0};
598         union aud_info_frame3 frame3 = {.regval = 0};
599         u8 checksum = 0;
600         u32 info_frame;
601         int channels;
602         int ca;
603 
604         channels = substream->runtime->channels;
605 
606         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
607 
608         ca = had_channel_allocation(intelhaddata, channels);
609         if (intelhaddata->dp_output) {
610                 info_frame = DP_INFO_FRAME_WORD1;
611                 frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
612         } else {
613                 info_frame = HDMI_INFO_FRAME_WORD1;
614                 frame2.regx.chnl_cnt = substream->runtime->channels - 1;
615                 frame3.regx.chnl_alloc = ca;
616 
617                 /* Calculte the byte wide checksum for all valid DIP words */
618                 for (i = 0; i < BYTES_PER_WORD; i++)
619                         checksum += (info_frame >> (i * 8)) & 0xff;
620                 for (i = 0; i < BYTES_PER_WORD; i++)
621                         checksum += (frame2.regval >> (i * 8)) & 0xff;
622                 for (i = 0; i < BYTES_PER_WORD; i++)
623                         checksum += (frame3.regval >> (i * 8)) & 0xff;
624 
625                 frame2.regx.chksum = -(checksum);
626         }
627 
628         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
629         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
630         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
631 
632         /* program remaining DIP words with zero */
633         for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
634                 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
635 
636         ctrl_state.regx.dip_freq = 1;
637         ctrl_state.regx.dip_en_sta = 1;
638         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
639 }
640 
641 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
642 {
643         u32 maud_val;
644 
645         /* Select maud according to DP 1.2 spec */
646         if (link_rate == DP_2_7_GHZ) {
647                 switch (aud_samp_freq) {
648                 case AUD_SAMPLE_RATE_32:
649                         maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
650                         break;
651 
652                 case AUD_SAMPLE_RATE_44_1:
653                         maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
654                         break;
655 
656                 case AUD_SAMPLE_RATE_48:
657                         maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
658                         break;
659 
660                 case AUD_SAMPLE_RATE_88_2:
661                         maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
662                         break;
663 
664                 case AUD_SAMPLE_RATE_96:
665                         maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
666                         break;
667 
668                 case AUD_SAMPLE_RATE_176_4:
669                         maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
670                         break;
671 
672                 case HAD_MAX_RATE:
673                         maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
674                         break;
675 
676                 default:
677                         maud_val = -EINVAL;
678                         break;
679                 }
680         } else if (link_rate == DP_1_62_GHZ) {
681                 switch (aud_samp_freq) {
682                 case AUD_SAMPLE_RATE_32:
683                         maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
684                         break;
685 
686                 case AUD_SAMPLE_RATE_44_1:
687                         maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
688                         break;
689 
690                 case AUD_SAMPLE_RATE_48:
691                         maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
692                         break;
693 
694                 case AUD_SAMPLE_RATE_88_2:
695                         maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
696                         break;
697 
698                 case AUD_SAMPLE_RATE_96:
699                         maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
700                         break;
701 
702                 case AUD_SAMPLE_RATE_176_4:
703                         maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
704                         break;
705 
706                 case HAD_MAX_RATE:
707                         maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
708                         break;
709 
710                 default:
711                         maud_val = -EINVAL;
712                         break;
713                 }
714         } else
715                 maud_val = -EINVAL;
716 
717         return maud_val;
718 }
719 
720 /*
721  * Program HDMI audio CTS value
722  *
723  * @aud_samp_freq: sampling frequency of audio data
724  * @tmds: sampling frequency of the display data
725  * @link_rate: DP link rate
726  * @n_param: N value, depends on aud_samp_freq
727  * @intelhaddata: substream private data
728  *
729  * Program CTS register based on the audio and display sampling frequency
730  */
731 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
732                          u32 n_param, struct snd_intelhad *intelhaddata)
733 {
734         u32 cts_val;
735         u64 dividend, divisor;
736 
737         if (intelhaddata->dp_output) {
738                 /* Substitute cts_val with Maud according to DP 1.2 spec*/
739                 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
740         } else {
741                 /* Calculate CTS according to HDMI 1.3a spec*/
742                 dividend = (u64)tmds * n_param*1000;
743                 divisor = 128 * aud_samp_freq;
744                 cts_val = div64_u64(dividend, divisor);
745         }
746         dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
747                  tmds, n_param, cts_val);
748         had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
749 }
750 
751 static int had_calculate_n_value(u32 aud_samp_freq)
752 {
753         int n_val;
754 
755         /* Select N according to HDMI 1.3a spec*/
756         switch (aud_samp_freq) {
757         case AUD_SAMPLE_RATE_32:
758                 n_val = 4096;
759                 break;
760 
761         case AUD_SAMPLE_RATE_44_1:
762                 n_val = 6272;
763                 break;
764 
765         case AUD_SAMPLE_RATE_48:
766                 n_val = 6144;
767                 break;
768 
769         case AUD_SAMPLE_RATE_88_2:
770                 n_val = 12544;
771                 break;
772 
773         case AUD_SAMPLE_RATE_96:
774                 n_val = 12288;
775                 break;
776 
777         case AUD_SAMPLE_RATE_176_4:
778                 n_val = 25088;
779                 break;
780 
781         case HAD_MAX_RATE:
782                 n_val = 24576;
783                 break;
784 
785         default:
786                 n_val = -EINVAL;
787                 break;
788         }
789         return n_val;
790 }
791 
792 /*
793  * Program HDMI audio N value
794  *
795  * @aud_samp_freq: sampling frequency of audio data
796  * @n_param: N value, depends on aud_samp_freq
797  * @intelhaddata: substream private data
798  *
799  * This function is called in the prepare callback.
800  * It programs based on the audio and display sampling frequency
801  */
802 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
803                       struct snd_intelhad *intelhaddata)
804 {
805         int n_val;
806 
807         if (intelhaddata->dp_output) {
808                 /*
809                  * According to DP specs, Maud and Naud values hold
810                  * a relationship, which is stated as:
811                  * Maud/Naud = 512 * fs / f_LS_Clk
812                  * where, fs is the sampling frequency of the audio stream
813                  * and Naud is 32768 for Async clock.
814                  */
815 
816                 n_val = DP_NAUD_VAL;
817         } else
818                 n_val = had_calculate_n_value(aud_samp_freq);
819 
820         if (n_val < 0)
821                 return n_val;
822 
823         had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
824         *n_param = n_val;
825         return 0;
826 }
827 
828 /*
829  * PCM ring buffer handling
830  *
831  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
832  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
833  * moves at each period elapsed.  The below illustrates how it works:
834  *
835  * At time=0
836  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
837  *  BD  | 0 | 1 | 2 | 3 |
838  *
839  * At time=1 (period elapsed)
840  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
841  *  BD      | 1 | 2 | 3 | 0 |
842  *
843  * At time=2 (second period elapsed)
844  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
845  *  BD          | 2 | 3 | 0 | 1 |
846  *
847  * The bd_head field points to the index of the BD to be read.  It's also the
848  * position to be filled at next.  The pcm_head and the pcm_filled fields
849  * point to the indices of the current position and of the next position to
850  * be filled, respectively.  For PCM buffer there are both _head and _filled
851  * because they may be difference when nperiods > 4.  For example, in the
852  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
853  *
854  * pcm_head (=1) --v               v-- pcm_filled (=5)
855  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
856  *       BD      | 1 | 2 | 3 | 0 |
857  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
858  *
859  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
860  * the hardware skips those BDs in the loop.
861  *
862  * An exceptional setup is the case with nperiods=1.  Since we have to update
863  * BDs after finishing one BD processing, we'd need at least two BDs, where
864  * both BDs point to the same content, the same address, the same size of the
865  * whole PCM buffer.
866  */
867 
868 #define AUD_BUF_ADDR(x)         (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
869 #define AUD_BUF_LEN(x)          (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
870 
871 /* Set up a buffer descriptor at the "filled" position */
872 static void had_prog_bd(struct snd_pcm_substream *substream,
873                         struct snd_intelhad *intelhaddata)
874 {
875         int idx = intelhaddata->bd_head;
876         int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
877         u32 addr = substream->runtime->dma_addr + ofs;
878 
879         addr |= AUD_BUF_VALID;
880         if (!substream->runtime->no_period_wakeup)
881                 addr |= AUD_BUF_INTR_EN;
882         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
883         had_write_register(intelhaddata, AUD_BUF_LEN(idx),
884                            intelhaddata->period_bytes);
885 
886         /* advance the indices to the next */
887         intelhaddata->bd_head++;
888         intelhaddata->bd_head %= intelhaddata->num_bds;
889         intelhaddata->pcmbuf_filled++;
890         intelhaddata->pcmbuf_filled %= substream->runtime->periods;
891 }
892 
893 /* invalidate a buffer descriptor with the given index */
894 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
895                               int idx)
896 {
897         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
898         had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
899 }
900 
901 /* Initial programming of ring buffer */
902 static void had_init_ringbuf(struct snd_pcm_substream *substream,
903                              struct snd_intelhad *intelhaddata)
904 {
905         struct snd_pcm_runtime *runtime = substream->runtime;
906         int i, num_periods;
907 
908         num_periods = runtime->periods;
909         intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
910         /* set the minimum 2 BDs for num_periods=1 */
911         intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
912         intelhaddata->period_bytes =
913                 frames_to_bytes(runtime, runtime->period_size);
914         WARN_ON(intelhaddata->period_bytes & 0x3f);
915 
916         intelhaddata->bd_head = 0;
917         intelhaddata->pcmbuf_head = 0;
918         intelhaddata->pcmbuf_filled = 0;
919 
920         for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
921                 if (i < intelhaddata->num_bds)
922                         had_prog_bd(substream, intelhaddata);
923                 else /* invalidate the rest */
924                         had_invalidate_bd(intelhaddata, i);
925         }
926 
927         intelhaddata->bd_head = 0; /* reset at head again before starting */
928 }
929 
930 /* process a bd, advance to the next */
931 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
932                                 struct snd_intelhad *intelhaddata)
933 {
934         int num_periods = substream->runtime->periods;
935 
936         /* reprogram the next buffer */
937         had_prog_bd(substream, intelhaddata);
938 
939         /* proceed to next */
940         intelhaddata->pcmbuf_head++;
941         intelhaddata->pcmbuf_head %= num_periods;
942 }
943 
944 /* process the current BD(s);
945  * returns the current PCM buffer byte position, or -EPIPE for underrun.
946  */
947 static int had_process_ringbuf(struct snd_pcm_substream *substream,
948                                struct snd_intelhad *intelhaddata)
949 {
950         int len, processed;
951         unsigned long flags;
952 
953         processed = 0;
954         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
955         for (;;) {
956                 /* get the remaining bytes on the buffer */
957                 had_read_register(intelhaddata,
958                                   AUD_BUF_LEN(intelhaddata->bd_head),
959                                   &len);
960                 if (len < 0 || len > intelhaddata->period_bytes) {
961                         dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
962                                 len);
963                         len = -EPIPE;
964                         goto out;
965                 }
966 
967                 if (len > 0) /* OK, this is the current buffer */
968                         break;
969 
970                 /* len=0 => already empty, check the next buffer */
971                 if (++processed >= intelhaddata->num_bds) {
972                         len = -EPIPE; /* all empty? - report underrun */
973                         goto out;
974                 }
975                 had_advance_ringbuf(substream, intelhaddata);
976         }
977 
978         len = intelhaddata->period_bytes - len;
979         len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
980  out:
981         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
982         return len;
983 }
984 
985 /* called from irq handler */
986 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
987 {
988         struct snd_pcm_substream *substream;
989 
990         substream = had_substream_get(intelhaddata);
991         if (!substream)
992                 return; /* no stream? - bail out */
993 
994         if (!intelhaddata->connected) {
995                 snd_pcm_stop_xrun(substream);
996                 goto out; /* disconnected? - bail out */
997         }
998 
999         /* process or stop the stream */
1000         if (had_process_ringbuf(substream, intelhaddata) < 0)
1001                 snd_pcm_stop_xrun(substream);
1002         else
1003                 snd_pcm_period_elapsed(substream);
1004 
1005  out:
1006         had_substream_put(intelhaddata);
1007 }
1008 
1009 /*
1010  * The interrupt status 'sticky' bits might not be cleared by
1011  * setting '1' to that bit once...
1012  */
1013 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1014 {
1015         int i;
1016         u32 val;
1017 
1018         for (i = 0; i < 100; i++) {
1019                 /* clear bit30, 31 AUD_HDMI_STATUS */
1020                 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1021                 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1022                         return;
1023                 udelay(100);
1024                 cond_resched();
1025                 had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1026         }
1027         dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1028 }
1029 
1030 /* Perform some reset procedure after stopping the stream;
1031  * this is called from prepare or hw_free callbacks once after trigger STOP
1032  * or underrun has been processed in order to settle down the h/w state.
1033  */
1034 static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1035 {
1036         struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1037 
1038         if (!intelhaddata->connected)
1039                 return 0;
1040 
1041         /* Reset buffer pointers */
1042         had_reset_audio(intelhaddata);
1043         wait_clear_underrun_bit(intelhaddata);
1044         return 0;
1045 }
1046 
1047 /* called from irq handler */
1048 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1049 {
1050         struct snd_pcm_substream *substream;
1051 
1052         /* Report UNDERRUN error to above layers */
1053         substream = had_substream_get(intelhaddata);
1054         if (substream) {
1055                 snd_pcm_stop_xrun(substream);
1056                 had_substream_put(intelhaddata);
1057         }
1058 }
1059 
1060 /*
1061  * ALSA PCM open callback
1062  */
1063 static int had_pcm_open(struct snd_pcm_substream *substream)
1064 {
1065         struct snd_intelhad *intelhaddata;
1066         struct snd_pcm_runtime *runtime;
1067         int retval;
1068 
1069         intelhaddata = snd_pcm_substream_chip(substream);
1070         runtime = substream->runtime;
1071 
1072         retval = pm_runtime_resume_and_get(intelhaddata->dev);
1073         if (retval < 0)
1074                 return retval;
1075 
1076         /* set the runtime hw parameter with local snd_pcm_hardware struct */
1077         runtime->hw = had_pcm_hardware;
1078 
1079         retval = snd_pcm_hw_constraint_integer(runtime,
1080                          SNDRV_PCM_HW_PARAM_PERIODS);
1081         if (retval < 0)
1082                 goto error;
1083 
1084         /* Make sure, that the period size is always aligned
1085          * 64byte boundary
1086          */
1087         retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1088                         SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1089         if (retval < 0)
1090                 goto error;
1091 
1092         retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1093         if (retval < 0)
1094                 goto error;
1095 
1096         /* expose PCM substream */
1097         spin_lock_irq(&intelhaddata->had_spinlock);
1098         intelhaddata->stream_info.substream = substream;
1099         intelhaddata->stream_info.substream_refcount++;
1100         spin_unlock_irq(&intelhaddata->had_spinlock);
1101 
1102         return retval;
1103  error:
1104         pm_runtime_mark_last_busy(intelhaddata->dev);
1105         pm_runtime_put_autosuspend(intelhaddata->dev);
1106         return retval;
1107 }
1108 
1109 /*
1110  * ALSA PCM close callback
1111  */
1112 static int had_pcm_close(struct snd_pcm_substream *substream)
1113 {
1114         struct snd_intelhad *intelhaddata;
1115 
1116         intelhaddata = snd_pcm_substream_chip(substream);
1117 
1118         /* unreference and sync with the pending PCM accesses */
1119         spin_lock_irq(&intelhaddata->had_spinlock);
1120         intelhaddata->stream_info.substream = NULL;
1121         intelhaddata->stream_info.substream_refcount--;
1122         while (intelhaddata->stream_info.substream_refcount > 0) {
1123                 spin_unlock_irq(&intelhaddata->had_spinlock);
1124                 cpu_relax();
1125                 spin_lock_irq(&intelhaddata->had_spinlock);
1126         }
1127         spin_unlock_irq(&intelhaddata->had_spinlock);
1128 
1129         pm_runtime_mark_last_busy(intelhaddata->dev);
1130         pm_runtime_put_autosuspend(intelhaddata->dev);
1131         return 0;
1132 }
1133 
1134 /*
1135  * ALSA PCM hw_params callback
1136  */
1137 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1138                              struct snd_pcm_hw_params *hw_params)
1139 {
1140         struct snd_intelhad *intelhaddata;
1141         int buf_size;
1142 
1143         intelhaddata = snd_pcm_substream_chip(substream);
1144         buf_size = params_buffer_bytes(hw_params);
1145         dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1146                 __func__, buf_size);
1147         return 0;
1148 }
1149 
1150 /*
1151  * ALSA PCM trigger callback
1152  */
1153 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1154 {
1155         int retval = 0;
1156         struct snd_intelhad *intelhaddata;
1157 
1158         intelhaddata = snd_pcm_substream_chip(substream);
1159 
1160         spin_lock(&intelhaddata->had_spinlock);
1161         switch (cmd) {
1162         case SNDRV_PCM_TRIGGER_START:
1163         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1164         case SNDRV_PCM_TRIGGER_RESUME:
1165                 /* Enable Audio */
1166                 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1167                 had_enable_audio(intelhaddata, true);
1168                 break;
1169 
1170         case SNDRV_PCM_TRIGGER_STOP:
1171         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1172                 /* Disable Audio */
1173                 had_enable_audio(intelhaddata, false);
1174                 break;
1175 
1176         default:
1177                 retval = -EINVAL;
1178         }
1179         spin_unlock(&intelhaddata->had_spinlock);
1180         return retval;
1181 }
1182 
1183 /*
1184  * ALSA PCM prepare callback
1185  */
1186 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1187 {
1188         int retval;
1189         u32 disp_samp_freq, n_param;
1190         u32 link_rate = 0;
1191         struct snd_intelhad *intelhaddata;
1192         struct snd_pcm_runtime *runtime;
1193 
1194         intelhaddata = snd_pcm_substream_chip(substream);
1195         runtime = substream->runtime;
1196 
1197         dev_dbg(intelhaddata->dev, "period_size=%d\n",
1198                 (int)frames_to_bytes(runtime, runtime->period_size));
1199         dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1200         dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1201                 (int)snd_pcm_lib_buffer_bytes(substream));
1202         dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1203         dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1204 
1205         /* Get N value in KHz */
1206         disp_samp_freq = intelhaddata->tmds_clock_speed;
1207 
1208         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1209         if (retval) {
1210                 dev_err(intelhaddata->dev,
1211                         "programming N value failed %#x\n", retval);
1212                 goto prep_end;
1213         }
1214 
1215         if (intelhaddata->dp_output)
1216                 link_rate = intelhaddata->link_rate;
1217 
1218         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1219                      n_param, intelhaddata);
1220 
1221         had_prog_dip(substream, intelhaddata);
1222 
1223         retval = had_init_audio_ctrl(substream, intelhaddata);
1224 
1225         /* Prog buffer address */
1226         had_init_ringbuf(substream, intelhaddata);
1227 
1228         /*
1229          * Program channel mapping in following order:
1230          * FL, FR, C, LFE, RL, RR
1231          */
1232 
1233         had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1234 
1235 prep_end:
1236         return retval;
1237 }
1238 
1239 /*
1240  * ALSA PCM pointer callback
1241  */
1242 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1243 {
1244         struct snd_intelhad *intelhaddata;
1245         int len;
1246 
1247         intelhaddata = snd_pcm_substream_chip(substream);
1248 
1249         if (!intelhaddata->connected)
1250                 return SNDRV_PCM_POS_XRUN;
1251 
1252         len = had_process_ringbuf(substream, intelhaddata);
1253         if (len < 0)
1254                 return SNDRV_PCM_POS_XRUN;
1255         len = bytes_to_frames(substream->runtime, len);
1256         /* wrapping may happen when periods=1 */
1257         len %= substream->runtime->buffer_size;
1258         return len;
1259 }
1260 
1261 /*
1262  * ALSA PCM ops
1263  */
1264 static const struct snd_pcm_ops had_pcm_ops = {
1265         .open =         had_pcm_open,
1266         .close =        had_pcm_close,
1267         .hw_params =    had_pcm_hw_params,
1268         .prepare =      had_pcm_prepare,
1269         .trigger =      had_pcm_trigger,
1270         .sync_stop =    had_pcm_sync_stop,
1271         .pointer =      had_pcm_pointer,
1272 };
1273 
1274 /* process mode change of the running stream; called in mutex */
1275 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1276 {
1277         struct snd_pcm_substream *substream;
1278         int retval = 0;
1279         u32 disp_samp_freq, n_param;
1280         u32 link_rate = 0;
1281 
1282         substream = had_substream_get(intelhaddata);
1283         if (!substream)
1284                 return 0;
1285 
1286         /* Disable Audio */
1287         had_enable_audio(intelhaddata, false);
1288 
1289         /* Update CTS value */
1290         disp_samp_freq = intelhaddata->tmds_clock_speed;
1291 
1292         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1293         if (retval) {
1294                 dev_err(intelhaddata->dev,
1295                         "programming N value failed %#x\n", retval);
1296                 goto out;
1297         }
1298 
1299         if (intelhaddata->dp_output)
1300                 link_rate = intelhaddata->link_rate;
1301 
1302         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1303                      n_param, intelhaddata);
1304 
1305         /* Enable Audio */
1306         had_enable_audio(intelhaddata, true);
1307 
1308 out:
1309         had_substream_put(intelhaddata);
1310         return retval;
1311 }
1312 
1313 /* process hot plug, called from wq with mutex locked */
1314 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1315 {
1316         struct snd_pcm_substream *substream;
1317 
1318         spin_lock_irq(&intelhaddata->had_spinlock);
1319         if (intelhaddata->connected) {
1320                 dev_dbg(intelhaddata->dev, "Device already connected\n");
1321                 spin_unlock_irq(&intelhaddata->had_spinlock);
1322                 return;
1323         }
1324 
1325         /* Disable Audio */
1326         had_enable_audio(intelhaddata, false);
1327 
1328         intelhaddata->connected = true;
1329         dev_dbg(intelhaddata->dev,
1330                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1331                         __func__, __LINE__);
1332         spin_unlock_irq(&intelhaddata->had_spinlock);
1333 
1334         had_build_channel_allocation_map(intelhaddata);
1335 
1336         /* Report to above ALSA layer */
1337         substream = had_substream_get(intelhaddata);
1338         if (substream) {
1339                 snd_pcm_stop_xrun(substream);
1340                 had_substream_put(intelhaddata);
1341         }
1342 
1343         snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1344 }
1345 
1346 /* process hot unplug, called from wq with mutex locked */
1347 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1348 {
1349         struct snd_pcm_substream *substream;
1350 
1351         spin_lock_irq(&intelhaddata->had_spinlock);
1352         if (!intelhaddata->connected) {
1353                 dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1354                 spin_unlock_irq(&intelhaddata->had_spinlock);
1355                 return;
1356 
1357         }
1358 
1359         /* Disable Audio */
1360         had_enable_audio(intelhaddata, false);
1361 
1362         intelhaddata->connected = false;
1363         dev_dbg(intelhaddata->dev,
1364                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1365                         __func__, __LINE__);
1366         spin_unlock_irq(&intelhaddata->had_spinlock);
1367 
1368         kfree(intelhaddata->chmap->chmap);
1369         intelhaddata->chmap->chmap = NULL;
1370 
1371         /* Report to above ALSA layer */
1372         substream = had_substream_get(intelhaddata);
1373         if (substream) {
1374                 snd_pcm_stop_xrun(substream);
1375                 had_substream_put(intelhaddata);
1376         }
1377 
1378         snd_jack_report(intelhaddata->jack, 0);
1379 }
1380 
1381 /*
1382  * ALSA iec958 and ELD controls
1383  */
1384 
1385 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1386                                 struct snd_ctl_elem_info *uinfo)
1387 {
1388         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1389         uinfo->count = 1;
1390         return 0;
1391 }
1392 
1393 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1394                                 struct snd_ctl_elem_value *ucontrol)
1395 {
1396         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1397 
1398         mutex_lock(&intelhaddata->mutex);
1399         ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1400         ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1401         ucontrol->value.iec958.status[2] =
1402                                         (intelhaddata->aes_bits >> 16) & 0xff;
1403         ucontrol->value.iec958.status[3] =
1404                                         (intelhaddata->aes_bits >> 24) & 0xff;
1405         mutex_unlock(&intelhaddata->mutex);
1406         return 0;
1407 }
1408 
1409 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1410                                 struct snd_ctl_elem_value *ucontrol)
1411 {
1412         ucontrol->value.iec958.status[0] = 0xff;
1413         ucontrol->value.iec958.status[1] = 0xff;
1414         ucontrol->value.iec958.status[2] = 0xff;
1415         ucontrol->value.iec958.status[3] = 0xff;
1416         return 0;
1417 }
1418 
1419 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1420                                 struct snd_ctl_elem_value *ucontrol)
1421 {
1422         unsigned int val;
1423         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1424         int changed = 0;
1425 
1426         val = (ucontrol->value.iec958.status[0] << 0) |
1427                 (ucontrol->value.iec958.status[1] << 8) |
1428                 (ucontrol->value.iec958.status[2] << 16) |
1429                 (ucontrol->value.iec958.status[3] << 24);
1430         mutex_lock(&intelhaddata->mutex);
1431         if (intelhaddata->aes_bits != val) {
1432                 intelhaddata->aes_bits = val;
1433                 changed = 1;
1434         }
1435         mutex_unlock(&intelhaddata->mutex);
1436         return changed;
1437 }
1438 
1439 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1440                             struct snd_ctl_elem_info *uinfo)
1441 {
1442         uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1443         uinfo->count = HDMI_MAX_ELD_BYTES;
1444         return 0;
1445 }
1446 
1447 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1448                            struct snd_ctl_elem_value *ucontrol)
1449 {
1450         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1451 
1452         mutex_lock(&intelhaddata->mutex);
1453         memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1454                HDMI_MAX_ELD_BYTES);
1455         mutex_unlock(&intelhaddata->mutex);
1456         return 0;
1457 }
1458 
1459 static const struct snd_kcontrol_new had_controls[] = {
1460         {
1461                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1462                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1463                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1464                 .info = had_iec958_info, /* shared */
1465                 .get = had_iec958_mask_get,
1466         },
1467         {
1468                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1469                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1470                 .info = had_iec958_info,
1471                 .get = had_iec958_get,
1472                 .put = had_iec958_put,
1473         },
1474         {
1475                 .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1476                            SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1477                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1478                 .name = "ELD",
1479                 .info = had_ctl_eld_info,
1480                 .get = had_ctl_eld_get,
1481         },
1482 };
1483 
1484 /*
1485  * audio interrupt handler
1486  */
1487 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1488 {
1489         struct snd_intelhad_card *card_ctx = dev_id;
1490         u32 audio_stat[3] = {};
1491         int pipe, port;
1492 
1493         for_each_pipe(card_ctx, pipe) {
1494                 /* use raw register access to ack IRQs even while disconnected */
1495                 audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1496                                                          AUD_HDMI_STATUS) &
1497                         (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1498 
1499                 if (audio_stat[pipe])
1500                         had_write_register_raw(card_ctx, pipe,
1501                                                AUD_HDMI_STATUS, audio_stat[pipe]);
1502         }
1503 
1504         for_each_port(card_ctx, port) {
1505                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1506                 int pipe = ctx->pipe;
1507 
1508                 if (pipe < 0)
1509                         continue;
1510 
1511                 if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1512                         had_process_buffer_done(ctx);
1513                 if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1514                         had_process_buffer_underrun(ctx);
1515         }
1516 
1517         return IRQ_HANDLED;
1518 }
1519 
1520 /*
1521  * monitor plug/unplug notification from i915; just kick off the work
1522  */
1523 static void notify_audio_lpe(struct platform_device *pdev, int port)
1524 {
1525         struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1526         struct snd_intelhad *ctx;
1527 
1528         ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1529         if (single_port)
1530                 ctx->port = port;
1531 
1532         schedule_work(&ctx->hdmi_audio_wq);
1533 }
1534 
1535 /* the work to handle monitor hot plug/unplug */
1536 static void had_audio_wq(struct work_struct *work)
1537 {
1538         struct snd_intelhad *ctx =
1539                 container_of(work, struct snd_intelhad, hdmi_audio_wq);
1540         struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1541         struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1542         int ret;
1543 
1544         ret = pm_runtime_resume_and_get(ctx->dev);
1545         if (ret < 0)
1546                 return;
1547 
1548         mutex_lock(&ctx->mutex);
1549         if (ppdata->pipe < 0) {
1550                 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1551                         __func__, ctx->port);
1552 
1553                 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1554 
1555                 ctx->dp_output = false;
1556                 ctx->tmds_clock_speed = 0;
1557                 ctx->link_rate = 0;
1558 
1559                 /* Shut down the stream */
1560                 had_process_hot_unplug(ctx);
1561 
1562                 ctx->pipe = -1;
1563         } else {
1564                 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1565                         __func__, ctx->port, ppdata->ls_clock);
1566 
1567                 memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1568 
1569                 ctx->dp_output = ppdata->dp_output;
1570                 if (ctx->dp_output) {
1571                         ctx->tmds_clock_speed = 0;
1572                         ctx->link_rate = ppdata->ls_clock;
1573                 } else {
1574                         ctx->tmds_clock_speed = ppdata->ls_clock;
1575                         ctx->link_rate = 0;
1576                 }
1577 
1578                 /*
1579                  * Shut down the stream before we change
1580                  * the pipe assignment for this pcm device
1581                  */
1582                 had_process_hot_plug(ctx);
1583 
1584                 ctx->pipe = ppdata->pipe;
1585 
1586                 /* Restart the stream if necessary */
1587                 had_process_mode_change(ctx);
1588         }
1589 
1590         mutex_unlock(&ctx->mutex);
1591         pm_runtime_mark_last_busy(ctx->dev);
1592         pm_runtime_put_autosuspend(ctx->dev);
1593 }
1594 
1595 /*
1596  * Jack interface
1597  */
1598 static int had_create_jack(struct snd_intelhad *ctx,
1599                            struct snd_pcm *pcm)
1600 {
1601         char hdmi_str[32];
1602         int err;
1603 
1604         snprintf(hdmi_str, sizeof(hdmi_str),
1605                  "HDMI/DP,pcm=%d", pcm->device);
1606 
1607         err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1608                            SND_JACK_AVOUT, &ctx->jack,
1609                            true, false);
1610         if (err < 0)
1611                 return err;
1612         ctx->jack->private_data = ctx;
1613         return 0;
1614 }
1615 
1616 /*
1617  * PM callbacks
1618  */
1619 
1620 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1621 {
1622         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1623 
1624         snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1625 
1626         return 0;
1627 }
1628 
1629 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1630 {
1631         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1632 
1633         pm_runtime_mark_last_busy(dev);
1634 
1635         snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1636 
1637         return 0;
1638 }
1639 
1640 /* release resources */
1641 static void hdmi_lpe_audio_free(struct snd_card *card)
1642 {
1643         struct snd_intelhad_card *card_ctx = card->private_data;
1644         struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1645         int port;
1646 
1647         spin_lock_irq(&pdata->lpe_audio_slock);
1648         pdata->notify_audio_lpe = NULL;
1649         spin_unlock_irq(&pdata->lpe_audio_slock);
1650 
1651         for_each_port(card_ctx, port) {
1652                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1653 
1654                 cancel_work_sync(&ctx->hdmi_audio_wq);
1655         }
1656 }
1657 
1658 /*
1659  * hdmi_lpe_audio_probe - start bridge with i915
1660  *
1661  * This function is called when the i915 driver creates the
1662  * hdmi-lpe-audio platform device.
1663  */
1664 static int __hdmi_lpe_audio_probe(struct platform_device *pdev)
1665 {
1666         struct snd_card *card;
1667         struct snd_intelhad_card *card_ctx;
1668         struct snd_intelhad *ctx;
1669         struct snd_pcm *pcm;
1670         struct intel_hdmi_lpe_audio_pdata *pdata;
1671         int irq;
1672         struct resource *res_mmio;
1673         int port, ret;
1674 
1675         pdata = pdev->dev.platform_data;
1676         if (!pdata) {
1677                 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1678                 return -EINVAL;
1679         }
1680 
1681         /* get resources */
1682         irq = platform_get_irq(pdev, 0);
1683         if (irq < 0)
1684                 return irq;
1685 
1686         res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1687         if (!res_mmio) {
1688                 dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1689                 return -ENXIO;
1690         }
1691 
1692         /* create a card instance with ALSA framework */
1693         ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1694                                 THIS_MODULE, sizeof(*card_ctx), &card);
1695         if (ret)
1696                 return ret;
1697 
1698         card_ctx = card->private_data;
1699         card_ctx->dev = &pdev->dev;
1700         card_ctx->card = card;
1701         strcpy(card->driver, INTEL_HAD);
1702         strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1703         strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1704 
1705         card_ctx->irq = -1;
1706 
1707         card->private_free = hdmi_lpe_audio_free;
1708 
1709         platform_set_drvdata(pdev, card_ctx);
1710 
1711         card_ctx->num_pipes = pdata->num_pipes;
1712         card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1713 
1714         for_each_port(card_ctx, port) {
1715                 ctx = &card_ctx->pcm_ctx[port];
1716                 ctx->card_ctx = card_ctx;
1717                 ctx->dev = card_ctx->dev;
1718                 ctx->port = single_port ? -1 : port;
1719                 ctx->pipe = -1;
1720 
1721                 spin_lock_init(&ctx->had_spinlock);
1722                 mutex_init(&ctx->mutex);
1723                 INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1724         }
1725 
1726         dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1727                 __func__, (unsigned int)res_mmio->start,
1728                 (unsigned int)res_mmio->end);
1729 
1730         card_ctx->mmio_start =
1731                 devm_ioremap(&pdev->dev, res_mmio->start,
1732                              (size_t)(resource_size(res_mmio)));
1733         if (!card_ctx->mmio_start) {
1734                 dev_err(&pdev->dev, "Could not get ioremap\n");
1735                 return -EACCES;
1736         }
1737 
1738         /* setup interrupt handler */
1739         ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1740                                0, pdev->name, card_ctx);
1741         if (ret < 0) {
1742                 dev_err(&pdev->dev, "request_irq failed\n");
1743                 return ret;
1744         }
1745 
1746         card_ctx->irq = irq;
1747 
1748         /* only 32bit addressable */
1749         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1750         if (ret)
1751                 return ret;
1752 
1753         init_channel_allocations();
1754 
1755         card_ctx->num_pipes = pdata->num_pipes;
1756         card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1757 
1758         for_each_port(card_ctx, port) {
1759                 int i;
1760 
1761                 ctx = &card_ctx->pcm_ctx[port];
1762                 ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1763                                   MAX_CAP_STREAMS, &pcm);
1764                 if (ret)
1765                         return ret;
1766 
1767                 /* setup private data which can be retrieved when required */
1768                 pcm->private_data = ctx;
1769                 pcm->info_flags = 0;
1770                 strscpy(pcm->name, card->shortname, strlen(card->shortname));
1771                 /* setup the ops for playback */
1772                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1773 
1774                 /* allocate dma pages;
1775                  * try to allocate 600k buffer as default which is large enough
1776                  */
1777                 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1778                                                card->dev, HAD_DEFAULT_BUFFER,
1779                                                HAD_MAX_BUFFER);
1780 
1781                 /* create controls */
1782                 for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1783                         struct snd_kcontrol *kctl;
1784 
1785                         kctl = snd_ctl_new1(&had_controls[i], ctx);
1786                         if (!kctl)
1787                                 return -ENOMEM;
1788 
1789                         kctl->id.device = pcm->device;
1790 
1791                         ret = snd_ctl_add(card, kctl);
1792                         if (ret < 0)
1793                                 return ret;
1794                 }
1795 
1796                 /* Register channel map controls */
1797                 ret = had_register_chmap_ctls(ctx, pcm);
1798                 if (ret < 0)
1799                         return ret;
1800 
1801                 ret = had_create_jack(ctx, pcm);
1802                 if (ret < 0)
1803                         return ret;
1804         }
1805 
1806         ret = snd_card_register(card);
1807         if (ret)
1808                 return ret;
1809 
1810         spin_lock_irq(&pdata->lpe_audio_slock);
1811         pdata->notify_audio_lpe = notify_audio_lpe;
1812         spin_unlock_irq(&pdata->lpe_audio_slock);
1813 
1814         pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS);
1815         pm_runtime_use_autosuspend(&pdev->dev);
1816         pm_runtime_enable(&pdev->dev);
1817         pm_runtime_mark_last_busy(&pdev->dev);
1818         pm_runtime_idle(&pdev->dev);
1819 
1820         dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1821         for_each_port(card_ctx, port) {
1822                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1823 
1824                 schedule_work(&ctx->hdmi_audio_wq);
1825         }
1826 
1827         return 0;
1828 }
1829 
1830 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1831 {
1832         return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev));
1833 }
1834 
1835 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1836         SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1837 };
1838 
1839 static struct platform_driver hdmi_lpe_audio_driver = {
1840         .driver         = {
1841                 .name  = "hdmi-lpe-audio",
1842                 .pm = &hdmi_lpe_audio_pm,
1843         },
1844         .probe          = hdmi_lpe_audio_probe,
1845 };
1846 
1847 module_platform_driver(hdmi_lpe_audio_driver);
1848 MODULE_ALIAS("platform:hdmi_lpe_audio");
1849 
1850 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1851 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1852 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1853 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1854 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1855 MODULE_LICENSE("GPL v2");
1856 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php