1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_hdmi_audio.c - Intel HDMI audio driver 4 * 5 * Copyright (C) 2016 Intel Corp 6 * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com> 7 * Ramesh Babu K V <ramesh.babu@intel.com> 8 * Vaibhav Agarwal <vaibhav.agarwal@intel.com> 9 * Jerome Anand <jerome.anand@intel.com> 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 * 12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 13 * ALSA driver for Intel HDMI audio 14 */ 15 16 #include <linux/types.h> 17 #include <linux/platform_device.h> 18 #include <linux/io.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/interrupt.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/delay.h> 25 #include <sound/core.h> 26 #include <sound/asoundef.h> 27 #include <sound/pcm.h> 28 #include <sound/pcm_params.h> 29 #include <sound/initval.h> 30 #include <sound/control.h> 31 #include <sound/jack.h> 32 #include <drm/drm_edid.h> 33 #include <drm/drm_eld.h> 34 #include <drm/intel/intel_lpe_audio.h> 35 #include "intel_hdmi_audio.h" 36 37 #define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS 5000 38 39 #define for_each_pipe(card_ctx, pipe) \ 40 for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++) 41 #define for_each_port(card_ctx, port) \ 42 for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++) 43 44 /*standard module options for ALSA. This module supports only one card*/ 45 static int hdmi_card_index = SNDRV_DEFAULT_IDX1; 46 static char *hdmi_card_id = SNDRV_DEFAULT_STR1; 47 static bool single_port; 48 49 module_param_named(index, hdmi_card_index, int, 0444); 50 MODULE_PARM_DESC(index, 51 "Index value for INTEL Intel HDMI Audio controller."); 52 module_param_named(id, hdmi_card_id, charp, 0444); 53 MODULE_PARM_DESC(id, 54 "ID string for INTEL Intel HDMI Audio controller."); 55 module_param(single_port, bool, 0444); 56 MODULE_PARM_DESC(single_port, 57 "Single-port mode (for compatibility)"); 58 59 /* 60 * ELD SA bits in the CEA Speaker Allocation data block 61 */ 62 static const int eld_speaker_allocation_bits[] = { 63 [0] = FL | FR, 64 [1] = LFE, 65 [2] = FC, 66 [3] = RL | RR, 67 [4] = RC, 68 [5] = FLC | FRC, 69 [6] = RLC | RRC, 70 /* the following are not defined in ELD yet */ 71 [7] = 0, 72 }; 73 74 /* 75 * This is an ordered list! 76 * 77 * The preceding ones have better chances to be selected by 78 * hdmi_channel_allocation(). 79 */ 80 static struct cea_channel_speaker_allocation channel_allocations[] = { 81 /* channel: 7 6 5 4 3 2 1 0 */ 82 { .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } }, 83 /* 2.1 */ 84 { .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } }, 85 /* Dolby Surround */ 86 { .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } }, 87 /* surround40 */ 88 { .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } }, 89 /* surround41 */ 90 { .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } }, 91 /* surround50 */ 92 { .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } }, 93 /* surround51 */ 94 { .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } }, 95 /* 6.1 */ 96 { .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } }, 97 /* surround71 */ 98 { .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } }, 99 100 { .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } }, 101 { .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } }, 102 { .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } }, 103 { .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } }, 104 { .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } }, 105 { .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } }, 106 { .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } }, 107 { .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } }, 108 { .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } }, 109 { .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } }, 110 { .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } }, 111 { .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } }, 112 { .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } }, 113 { .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } }, 114 { .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } }, 115 { .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } }, 116 { .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } }, 117 { .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } }, 118 { .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } }, 119 { .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } }, 120 { .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } }, 121 { .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } }, 122 { .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } }, 123 }; 124 125 static const struct channel_map_table map_tables[] = { 126 { SNDRV_CHMAP_FL, 0x00, FL }, 127 { SNDRV_CHMAP_FR, 0x01, FR }, 128 { SNDRV_CHMAP_RL, 0x04, RL }, 129 { SNDRV_CHMAP_RR, 0x05, RR }, 130 { SNDRV_CHMAP_LFE, 0x02, LFE }, 131 { SNDRV_CHMAP_FC, 0x03, FC }, 132 { SNDRV_CHMAP_RLC, 0x06, RLC }, 133 { SNDRV_CHMAP_RRC, 0x07, RRC }, 134 {} /* terminator */ 135 }; 136 137 /* hardware capability structure */ 138 static const struct snd_pcm_hardware had_pcm_hardware = { 139 .info = (SNDRV_PCM_INFO_INTERLEAVED | 140 SNDRV_PCM_INFO_MMAP | 141 SNDRV_PCM_INFO_MMAP_VALID | 142 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP), 143 .formats = (SNDRV_PCM_FMTBIT_S16_LE | 144 SNDRV_PCM_FMTBIT_S24_LE | 145 SNDRV_PCM_FMTBIT_S32_LE), 146 .rates = SNDRV_PCM_RATE_32000 | 147 SNDRV_PCM_RATE_44100 | 148 SNDRV_PCM_RATE_48000 | 149 SNDRV_PCM_RATE_88200 | 150 SNDRV_PCM_RATE_96000 | 151 SNDRV_PCM_RATE_176400 | 152 SNDRV_PCM_RATE_192000, 153 .rate_min = HAD_MIN_RATE, 154 .rate_max = HAD_MAX_RATE, 155 .channels_min = HAD_MIN_CHANNEL, 156 .channels_max = HAD_MAX_CHANNEL, 157 .buffer_bytes_max = HAD_MAX_BUFFER, 158 .period_bytes_min = HAD_MIN_PERIOD_BYTES, 159 .period_bytes_max = HAD_MAX_PERIOD_BYTES, 160 .periods_min = HAD_MIN_PERIODS, 161 .periods_max = HAD_MAX_PERIODS, 162 .fifo_size = HAD_FIFO_SIZE, 163 }; 164 165 /* Get the active PCM substream; 166 * Call had_substream_put() for unreferecing. 167 * Don't call this inside had_spinlock, as it takes by itself 168 */ 169 static struct snd_pcm_substream * 170 had_substream_get(struct snd_intelhad *intelhaddata) 171 { 172 struct snd_pcm_substream *substream; 173 unsigned long flags; 174 175 spin_lock_irqsave(&intelhaddata->had_spinlock, flags); 176 substream = intelhaddata->stream_info.substream; 177 if (substream) 178 intelhaddata->stream_info.substream_refcount++; 179 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); 180 return substream; 181 } 182 183 /* Unref the active PCM substream; 184 * Don't call this inside had_spinlock, as it takes by itself 185 */ 186 static void had_substream_put(struct snd_intelhad *intelhaddata) 187 { 188 unsigned long flags; 189 190 spin_lock_irqsave(&intelhaddata->had_spinlock, flags); 191 intelhaddata->stream_info.substream_refcount--; 192 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); 193 } 194 195 static u32 had_config_offset(int pipe) 196 { 197 switch (pipe) { 198 default: 199 case 0: 200 return AUDIO_HDMI_CONFIG_A; 201 case 1: 202 return AUDIO_HDMI_CONFIG_B; 203 case 2: 204 return AUDIO_HDMI_CONFIG_C; 205 } 206 } 207 208 /* Register access functions */ 209 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx, 210 int pipe, u32 reg) 211 { 212 return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg); 213 } 214 215 static void had_write_register_raw(struct snd_intelhad_card *card_ctx, 216 int pipe, u32 reg, u32 val) 217 { 218 iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg); 219 } 220 221 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val) 222 { 223 if (!ctx->connected) 224 *val = 0; 225 else 226 *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg); 227 } 228 229 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val) 230 { 231 if (ctx->connected) 232 had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val); 233 } 234 235 /* 236 * enable / disable audio configuration 237 * 238 * The normal read/modify should not directly be used on VLV2 for 239 * updating AUD_CONFIG register. 240 * This is because: 241 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2 242 * HDMI IP. As a result a read-modify of AUD_CONFIG register will always 243 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the 244 * register. This field should be 1xy binary for configuration with 6 or 245 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio) 246 * causes the "channels" field to be updated as 0xy binary resulting in 247 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with 248 * appropriate value when doing read-modify of AUD_CONFIG register. 249 */ 250 static void had_enable_audio(struct snd_intelhad *intelhaddata, 251 bool enable) 252 { 253 /* update the cached value */ 254 intelhaddata->aud_config.regx.aud_en = enable; 255 had_write_register(intelhaddata, AUD_CONFIG, 256 intelhaddata->aud_config.regval); 257 } 258 259 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */ 260 static void had_ack_irqs(struct snd_intelhad *ctx) 261 { 262 u32 status_reg; 263 264 if (!ctx->connected) 265 return; 266 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg); 267 status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN; 268 had_write_register(ctx, AUD_HDMI_STATUS, status_reg); 269 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg); 270 } 271 272 /* Reset buffer pointers */ 273 static void had_reset_audio(struct snd_intelhad *intelhaddata) 274 { 275 had_write_register(intelhaddata, AUD_HDMI_STATUS, 276 AUD_HDMI_STATUSG_MASK_FUNCRST); 277 had_write_register(intelhaddata, AUD_HDMI_STATUS, 0); 278 } 279 280 /* 281 * initialize audio channel status registers 282 * This function is called in the prepare callback 283 */ 284 static int had_prog_status_reg(struct snd_pcm_substream *substream, 285 struct snd_intelhad *intelhaddata) 286 { 287 union aud_ch_status_0 ch_stat0 = {.regval = 0}; 288 union aud_ch_status_1 ch_stat1 = {.regval = 0}; 289 290 ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits & 291 IEC958_AES0_NONAUDIO) >> 1; 292 ch_stat0.regx.clk_acc = (intelhaddata->aes_bits & 293 IEC958_AES3_CON_CLOCK) >> 4; 294 295 switch (substream->runtime->rate) { 296 case AUD_SAMPLE_RATE_32: 297 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ; 298 break; 299 300 case AUD_SAMPLE_RATE_44_1: 301 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ; 302 break; 303 case AUD_SAMPLE_RATE_48: 304 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ; 305 break; 306 case AUD_SAMPLE_RATE_88_2: 307 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ; 308 break; 309 case AUD_SAMPLE_RATE_96: 310 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ; 311 break; 312 case AUD_SAMPLE_RATE_176_4: 313 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ; 314 break; 315 case AUD_SAMPLE_RATE_192: 316 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ; 317 break; 318 319 default: 320 /* control should never come here */ 321 return -EINVAL; 322 } 323 324 had_write_register(intelhaddata, 325 AUD_CH_STATUS_0, ch_stat0.regval); 326 327 switch (substream->runtime->format) { 328 case SNDRV_PCM_FORMAT_S16_LE: 329 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20; 330 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS; 331 break; 332 case SNDRV_PCM_FORMAT_S24_LE: 333 case SNDRV_PCM_FORMAT_S32_LE: 334 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24; 335 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS; 336 break; 337 default: 338 return -EINVAL; 339 } 340 341 had_write_register(intelhaddata, 342 AUD_CH_STATUS_1, ch_stat1.regval); 343 return 0; 344 } 345 346 /* 347 * function to initialize audio 348 * registers and buffer configuration registers 349 * This function is called in the prepare callback 350 */ 351 static int had_init_audio_ctrl(struct snd_pcm_substream *substream, 352 struct snd_intelhad *intelhaddata) 353 { 354 union aud_cfg cfg_val = {.regval = 0}; 355 union aud_buf_config buf_cfg = {.regval = 0}; 356 u8 channels; 357 358 had_prog_status_reg(substream, intelhaddata); 359 360 buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD; 361 buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD; 362 buf_cfg.regx.aud_delay = 0; 363 had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval); 364 365 channels = substream->runtime->channels; 366 cfg_val.regx.num_ch = channels - 2; 367 if (channels <= 2) 368 cfg_val.regx.layout = LAYOUT0; 369 else 370 cfg_val.regx.layout = LAYOUT1; 371 372 if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE) 373 cfg_val.regx.packet_mode = 1; 374 375 if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE) 376 cfg_val.regx.left_align = 1; 377 378 cfg_val.regx.val_bit = 1; 379 380 /* fix up the DP bits */ 381 if (intelhaddata->dp_output) { 382 cfg_val.regx.dp_modei = 1; 383 cfg_val.regx.set = 1; 384 } 385 386 had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval); 387 intelhaddata->aud_config = cfg_val; 388 return 0; 389 } 390 391 /* 392 * Compute derived values in channel_allocations[]. 393 */ 394 static void init_channel_allocations(void) 395 { 396 int i, j; 397 struct cea_channel_speaker_allocation *p; 398 399 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { 400 p = channel_allocations + i; 401 p->channels = 0; 402 p->spk_mask = 0; 403 for (j = 0; j < ARRAY_SIZE(p->speakers); j++) 404 if (p->speakers[j]) { 405 p->channels++; 406 p->spk_mask |= p->speakers[j]; 407 } 408 } 409 } 410 411 /* 412 * The transformation takes two steps: 413 * 414 * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask 415 * spk_mask => (channel_allocations[]) => ai->CA 416 * 417 * TODO: it could select the wrong CA from multiple candidates. 418 */ 419 static int had_channel_allocation(struct snd_intelhad *intelhaddata, 420 int channels) 421 { 422 int i; 423 int ca = 0; 424 int spk_mask = 0; 425 426 /* 427 * CA defaults to 0 for basic stereo audio 428 */ 429 if (channels <= 2) 430 return 0; 431 432 /* 433 * expand ELD's speaker allocation mask 434 * 435 * ELD tells the speaker mask in a compact(paired) form, 436 * expand ELD's notions to match the ones used by Audio InfoFrame. 437 */ 438 439 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { 440 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i)) 441 spk_mask |= eld_speaker_allocation_bits[i]; 442 } 443 444 /* search for the first working match in the CA table */ 445 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { 446 if (channels == channel_allocations[i].channels && 447 (spk_mask & channel_allocations[i].spk_mask) == 448 channel_allocations[i].spk_mask) { 449 ca = channel_allocations[i].ca_index; 450 break; 451 } 452 } 453 454 dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels); 455 456 return ca; 457 } 458 459 /* from speaker bit mask to ALSA API channel position */ 460 static int spk_to_chmap(int spk) 461 { 462 const struct channel_map_table *t = map_tables; 463 464 for (; t->map; t++) { 465 if (t->spk_mask == spk) 466 return t->map; 467 } 468 return 0; 469 } 470 471 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata) 472 { 473 int i, c; 474 int spk_mask = 0; 475 struct snd_pcm_chmap_elem *chmap; 476 u8 eld_high, eld_high_mask = 0xF0; 477 u8 high_msb; 478 479 kfree(intelhaddata->chmap->chmap); 480 intelhaddata->chmap->chmap = NULL; 481 482 chmap = kzalloc(sizeof(*chmap), GFP_KERNEL); 483 if (!chmap) 484 return; 485 486 dev_dbg(intelhaddata->dev, "eld speaker = %x\n", 487 intelhaddata->eld[DRM_ELD_SPEAKER]); 488 489 /* WA: Fix the max channel supported to 8 */ 490 491 /* 492 * Sink may support more than 8 channels, if eld_high has more than 493 * one bit set. SOC supports max 8 channels. 494 * Refer eld_speaker_allocation_bits, for sink speaker allocation 495 */ 496 497 /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */ 498 eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask; 499 if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) { 500 /* eld_high & (eld_high-1): if more than 1 bit set */ 501 /* 0x1F: 7 channels */ 502 for (i = 1; i < 4; i++) { 503 high_msb = eld_high & (0x80 >> i); 504 if (high_msb) { 505 intelhaddata->eld[DRM_ELD_SPEAKER] &= 506 high_msb | 0xF; 507 break; 508 } 509 } 510 } 511 512 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { 513 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i)) 514 spk_mask |= eld_speaker_allocation_bits[i]; 515 } 516 517 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { 518 if (spk_mask == channel_allocations[i].spk_mask) { 519 for (c = 0; c < channel_allocations[i].channels; c++) { 520 chmap->map[c] = spk_to_chmap( 521 channel_allocations[i].speakers[ 522 (MAX_SPEAKERS - 1) - c]); 523 } 524 chmap->channels = channel_allocations[i].channels; 525 intelhaddata->chmap->chmap = chmap; 526 break; 527 } 528 } 529 if (i >= ARRAY_SIZE(channel_allocations)) 530 kfree(chmap); 531 } 532 533 /* 534 * ALSA API channel-map control callbacks 535 */ 536 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol, 537 struct snd_ctl_elem_info *uinfo) 538 { 539 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 540 uinfo->count = HAD_MAX_CHANNEL; 541 uinfo->value.integer.min = 0; 542 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 543 return 0; 544 } 545 546 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol, 547 struct snd_ctl_elem_value *ucontrol) 548 { 549 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 550 struct snd_intelhad *intelhaddata = info->private_data; 551 int i; 552 const struct snd_pcm_chmap_elem *chmap; 553 554 memset(ucontrol->value.integer.value, 0, 555 sizeof(long) * HAD_MAX_CHANNEL); 556 mutex_lock(&intelhaddata->mutex); 557 if (!intelhaddata->chmap->chmap) { 558 mutex_unlock(&intelhaddata->mutex); 559 return 0; 560 } 561 562 chmap = intelhaddata->chmap->chmap; 563 for (i = 0; i < chmap->channels; i++) 564 ucontrol->value.integer.value[i] = chmap->map[i]; 565 mutex_unlock(&intelhaddata->mutex); 566 567 return 0; 568 } 569 570 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata, 571 struct snd_pcm *pcm) 572 { 573 int err; 574 575 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 576 NULL, 0, (unsigned long)intelhaddata, 577 &intelhaddata->chmap); 578 if (err < 0) 579 return err; 580 581 intelhaddata->chmap->private_data = intelhaddata; 582 intelhaddata->chmap->kctl->info = had_chmap_ctl_info; 583 intelhaddata->chmap->kctl->get = had_chmap_ctl_get; 584 intelhaddata->chmap->chmap = NULL; 585 return 0; 586 } 587 588 /* 589 * Initialize Data Island Packets registers 590 * This function is called in the prepare callback 591 */ 592 static void had_prog_dip(struct snd_pcm_substream *substream, 593 struct snd_intelhad *intelhaddata) 594 { 595 int i; 596 union aud_ctrl_st ctrl_state = {.regval = 0}; 597 union aud_info_frame2 frame2 = {.regval = 0}; 598 union aud_info_frame3 frame3 = {.regval = 0}; 599 u8 checksum = 0; 600 u32 info_frame; 601 int channels; 602 int ca; 603 604 channels = substream->runtime->channels; 605 606 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval); 607 608 ca = had_channel_allocation(intelhaddata, channels); 609 if (intelhaddata->dp_output) { 610 info_frame = DP_INFO_FRAME_WORD1; 611 frame2.regval = (substream->runtime->channels - 1) | (ca << 24); 612 } else { 613 info_frame = HDMI_INFO_FRAME_WORD1; 614 frame2.regx.chnl_cnt = substream->runtime->channels - 1; 615 frame3.regx.chnl_alloc = ca; 616 617 /* Calculte the byte wide checksum for all valid DIP words */ 618 for (i = 0; i < BYTES_PER_WORD; i++) 619 checksum += (info_frame >> (i * 8)) & 0xff; 620 for (i = 0; i < BYTES_PER_WORD; i++) 621 checksum += (frame2.regval >> (i * 8)) & 0xff; 622 for (i = 0; i < BYTES_PER_WORD; i++) 623 checksum += (frame3.regval >> (i * 8)) & 0xff; 624 625 frame2.regx.chksum = -(checksum); 626 } 627 628 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame); 629 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval); 630 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval); 631 632 /* program remaining DIP words with zero */ 633 for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++) 634 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0); 635 636 ctrl_state.regx.dip_freq = 1; 637 ctrl_state.regx.dip_en_sta = 1; 638 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval); 639 } 640 641 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate) 642 { 643 u32 maud_val; 644 645 /* Select maud according to DP 1.2 spec */ 646 if (link_rate == DP_2_7_GHZ) { 647 switch (aud_samp_freq) { 648 case AUD_SAMPLE_RATE_32: 649 maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL; 650 break; 651 652 case AUD_SAMPLE_RATE_44_1: 653 maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL; 654 break; 655 656 case AUD_SAMPLE_RATE_48: 657 maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL; 658 break; 659 660 case AUD_SAMPLE_RATE_88_2: 661 maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL; 662 break; 663 664 case AUD_SAMPLE_RATE_96: 665 maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL; 666 break; 667 668 case AUD_SAMPLE_RATE_176_4: 669 maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL; 670 break; 671 672 case HAD_MAX_RATE: 673 maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL; 674 break; 675 676 default: 677 maud_val = -EINVAL; 678 break; 679 } 680 } else if (link_rate == DP_1_62_GHZ) { 681 switch (aud_samp_freq) { 682 case AUD_SAMPLE_RATE_32: 683 maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL; 684 break; 685 686 case AUD_SAMPLE_RATE_44_1: 687 maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL; 688 break; 689 690 case AUD_SAMPLE_RATE_48: 691 maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL; 692 break; 693 694 case AUD_SAMPLE_RATE_88_2: 695 maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL; 696 break; 697 698 case AUD_SAMPLE_RATE_96: 699 maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL; 700 break; 701 702 case AUD_SAMPLE_RATE_176_4: 703 maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL; 704 break; 705 706 case HAD_MAX_RATE: 707 maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL; 708 break; 709 710 default: 711 maud_val = -EINVAL; 712 break; 713 } 714 } else 715 maud_val = -EINVAL; 716 717 return maud_val; 718 } 719 720 /* 721 * Program HDMI audio CTS value 722 * 723 * @aud_samp_freq: sampling frequency of audio data 724 * @tmds: sampling frequency of the display data 725 * @link_rate: DP link rate 726 * @n_param: N value, depends on aud_samp_freq 727 * @intelhaddata: substream private data 728 * 729 * Program CTS register based on the audio and display sampling frequency 730 */ 731 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate, 732 u32 n_param, struct snd_intelhad *intelhaddata) 733 { 734 u32 cts_val; 735 u64 dividend, divisor; 736 737 if (intelhaddata->dp_output) { 738 /* Substitute cts_val with Maud according to DP 1.2 spec*/ 739 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate); 740 } else { 741 /* Calculate CTS according to HDMI 1.3a spec*/ 742 dividend = (u64)tmds * n_param*1000; 743 divisor = 128 * aud_samp_freq; 744 cts_val = div64_u64(dividend, divisor); 745 } 746 dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n", 747 tmds, n_param, cts_val); 748 had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val)); 749 } 750 751 static int had_calculate_n_value(u32 aud_samp_freq) 752 { 753 int n_val; 754 755 /* Select N according to HDMI 1.3a spec*/ 756 switch (aud_samp_freq) { 757 case AUD_SAMPLE_RATE_32: 758 n_val = 4096; 759 break; 760 761 case AUD_SAMPLE_RATE_44_1: 762 n_val = 6272; 763 break; 764 765 case AUD_SAMPLE_RATE_48: 766 n_val = 6144; 767 break; 768 769 case AUD_SAMPLE_RATE_88_2: 770 n_val = 12544; 771 break; 772 773 case AUD_SAMPLE_RATE_96: 774 n_val = 12288; 775 break; 776 777 case AUD_SAMPLE_RATE_176_4: 778 n_val = 25088; 779 break; 780 781 case HAD_MAX_RATE: 782 n_val = 24576; 783 break; 784 785 default: 786 n_val = -EINVAL; 787 break; 788 } 789 return n_val; 790 } 791 792 /* 793 * Program HDMI audio N value 794 * 795 * @aud_samp_freq: sampling frequency of audio data 796 * @n_param: N value, depends on aud_samp_freq 797 * @intelhaddata: substream private data 798 * 799 * This function is called in the prepare callback. 800 * It programs based on the audio and display sampling frequency 801 */ 802 static int had_prog_n(u32 aud_samp_freq, u32 *n_param, 803 struct snd_intelhad *intelhaddata) 804 { 805 int n_val; 806 807 if (intelhaddata->dp_output) { 808 /* 809 * According to DP specs, Maud and Naud values hold 810 * a relationship, which is stated as: 811 * Maud/Naud = 512 * fs / f_LS_Clk 812 * where, fs is the sampling frequency of the audio stream 813 * and Naud is 32768 for Async clock. 814 */ 815 816 n_val = DP_NAUD_VAL; 817 } else 818 n_val = had_calculate_n_value(aud_samp_freq); 819 820 if (n_val < 0) 821 return n_val; 822 823 had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val)); 824 *n_param = n_val; 825 return 0; 826 } 827 828 /* 829 * PCM ring buffer handling 830 * 831 * The hardware provides a ring buffer with the fixed 4 buffer descriptors 832 * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping 833 * moves at each period elapsed. The below illustrates how it works: 834 * 835 * At time=0 836 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| 837 * BD | 0 | 1 | 2 | 3 | 838 * 839 * At time=1 (period elapsed) 840 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| 841 * BD | 1 | 2 | 3 | 0 | 842 * 843 * At time=2 (second period elapsed) 844 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| 845 * BD | 2 | 3 | 0 | 1 | 846 * 847 * The bd_head field points to the index of the BD to be read. It's also the 848 * position to be filled at next. The pcm_head and the pcm_filled fields 849 * point to the indices of the current position and of the next position to 850 * be filled, respectively. For PCM buffer there are both _head and _filled 851 * because they may be difference when nperiods > 4. For example, in the 852 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5: 853 * 854 * pcm_head (=1) --v v-- pcm_filled (=5) 855 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| 856 * BD | 1 | 2 | 3 | 0 | 857 * bd_head (=1) --^ ^-- next to fill (= bd_head) 858 * 859 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that 860 * the hardware skips those BDs in the loop. 861 * 862 * An exceptional setup is the case with nperiods=1. Since we have to update 863 * BDs after finishing one BD processing, we'd need at least two BDs, where 864 * both BDs point to the same content, the same address, the same size of the 865 * whole PCM buffer. 866 */ 867 868 #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH) 869 #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH) 870 871 /* Set up a buffer descriptor at the "filled" position */ 872 static void had_prog_bd(struct snd_pcm_substream *substream, 873 struct snd_intelhad *intelhaddata) 874 { 875 int idx = intelhaddata->bd_head; 876 int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes; 877 u32 addr = substream->runtime->dma_addr + ofs; 878 879 addr |= AUD_BUF_VALID; 880 if (!substream->runtime->no_period_wakeup) 881 addr |= AUD_BUF_INTR_EN; 882 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr); 883 had_write_register(intelhaddata, AUD_BUF_LEN(idx), 884 intelhaddata->period_bytes); 885 886 /* advance the indices to the next */ 887 intelhaddata->bd_head++; 888 intelhaddata->bd_head %= intelhaddata->num_bds; 889 intelhaddata->pcmbuf_filled++; 890 intelhaddata->pcmbuf_filled %= substream->runtime->periods; 891 } 892 893 /* invalidate a buffer descriptor with the given index */ 894 static void had_invalidate_bd(struct snd_intelhad *intelhaddata, 895 int idx) 896 { 897 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0); 898 had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0); 899 } 900 901 /* Initial programming of ring buffer */ 902 static void had_init_ringbuf(struct snd_pcm_substream *substream, 903 struct snd_intelhad *intelhaddata) 904 { 905 struct snd_pcm_runtime *runtime = substream->runtime; 906 int i, num_periods; 907 908 num_periods = runtime->periods; 909 intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS); 910 /* set the minimum 2 BDs for num_periods=1 */ 911 intelhaddata->num_bds = max(intelhaddata->num_bds, 2U); 912 intelhaddata->period_bytes = 913 frames_to_bytes(runtime, runtime->period_size); 914 WARN_ON(intelhaddata->period_bytes & 0x3f); 915 916 intelhaddata->bd_head = 0; 917 intelhaddata->pcmbuf_head = 0; 918 intelhaddata->pcmbuf_filled = 0; 919 920 for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) { 921 if (i < intelhaddata->num_bds) 922 had_prog_bd(substream, intelhaddata); 923 else /* invalidate the rest */ 924 had_invalidate_bd(intelhaddata, i); 925 } 926 927 intelhaddata->bd_head = 0; /* reset at head again before starting */ 928 } 929 930 /* process a bd, advance to the next */ 931 static void had_advance_ringbuf(struct snd_pcm_substream *substream, 932 struct snd_intelhad *intelhaddata) 933 { 934 int num_periods = substream->runtime->periods; 935 936 /* reprogram the next buffer */ 937 had_prog_bd(substream, intelhaddata); 938 939 /* proceed to next */ 940 intelhaddata->pcmbuf_head++; 941 intelhaddata->pcmbuf_head %= num_periods; 942 } 943 944 /* process the current BD(s); 945 * returns the current PCM buffer byte position, or -EPIPE for underrun. 946 */ 947 static int had_process_ringbuf(struct snd_pcm_substream *substream, 948 struct snd_intelhad *intelhaddata) 949 { 950 int len, processed; 951 unsigned long flags; 952 953 processed = 0; 954 spin_lock_irqsave(&intelhaddata->had_spinlock, flags); 955 for (;;) { 956 /* get the remaining bytes on the buffer */ 957 had_read_register(intelhaddata, 958 AUD_BUF_LEN(intelhaddata->bd_head), 959 &len); 960 if (len < 0 || len > intelhaddata->period_bytes) { 961 dev_dbg(intelhaddata->dev, "Invalid buf length %d\n", 962 len); 963 len = -EPIPE; 964 goto out; 965 } 966 967 if (len > 0) /* OK, this is the current buffer */ 968 break; 969 970 /* len=0 => already empty, check the next buffer */ 971 if (++processed >= intelhaddata->num_bds) { 972 len = -EPIPE; /* all empty? - report underrun */ 973 goto out; 974 } 975 had_advance_ringbuf(substream, intelhaddata); 976 } 977 978 len = intelhaddata->period_bytes - len; 979 len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head; 980 out: 981 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); 982 return len; 983 } 984 985 /* called from irq handler */ 986 static void had_process_buffer_done(struct snd_intelhad *intelhaddata) 987 { 988 struct snd_pcm_substream *substream; 989 990 substream = had_substream_get(intelhaddata); 991 if (!substream) 992 return; /* no stream? - bail out */ 993 994 if (!intelhaddata->connected) { 995 snd_pcm_stop_xrun(substream); 996 goto out; /* disconnected? - bail out */ 997 } 998 999 /* process or stop the stream */ 1000 if (had_process_ringbuf(substream, intelhaddata) < 0) 1001 snd_pcm_stop_xrun(substream); 1002 else 1003 snd_pcm_period_elapsed(substream); 1004 1005 out: 1006 had_substream_put(intelhaddata); 1007 } 1008 1009 /* 1010 * The interrupt status 'sticky' bits might not be cleared by 1011 * setting '1' to that bit once... 1012 */ 1013 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata) 1014 { 1015 int i; 1016 u32 val; 1017 1018 for (i = 0; i < 100; i++) { 1019 /* clear bit30, 31 AUD_HDMI_STATUS */ 1020 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val); 1021 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN)) 1022 return; 1023 udelay(100); 1024 cond_resched(); 1025 had_write_register(intelhaddata, AUD_HDMI_STATUS, val); 1026 } 1027 dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n"); 1028 } 1029 1030 /* Perform some reset procedure after stopping the stream; 1031 * this is called from prepare or hw_free callbacks once after trigger STOP 1032 * or underrun has been processed in order to settle down the h/w state. 1033 */ 1034 static int had_pcm_sync_stop(struct snd_pcm_substream *substream) 1035 { 1036 struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream); 1037 1038 if (!intelhaddata->connected) 1039 return 0; 1040 1041 /* Reset buffer pointers */ 1042 had_reset_audio(intelhaddata); 1043 wait_clear_underrun_bit(intelhaddata); 1044 return 0; 1045 } 1046 1047 /* called from irq handler */ 1048 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata) 1049 { 1050 struct snd_pcm_substream *substream; 1051 1052 /* Report UNDERRUN error to above layers */ 1053 substream = had_substream_get(intelhaddata); 1054 if (substream) { 1055 snd_pcm_stop_xrun(substream); 1056 had_substream_put(intelhaddata); 1057 } 1058 } 1059 1060 /* 1061 * ALSA PCM open callback 1062 */ 1063 static int had_pcm_open(struct snd_pcm_substream *substream) 1064 { 1065 struct snd_intelhad *intelhaddata; 1066 struct snd_pcm_runtime *runtime; 1067 int retval; 1068 1069 intelhaddata = snd_pcm_substream_chip(substream); 1070 runtime = substream->runtime; 1071 1072 retval = pm_runtime_resume_and_get(intelhaddata->dev); 1073 if (retval < 0) 1074 return retval; 1075 1076 /* set the runtime hw parameter with local snd_pcm_hardware struct */ 1077 runtime->hw = had_pcm_hardware; 1078 1079 retval = snd_pcm_hw_constraint_integer(runtime, 1080 SNDRV_PCM_HW_PARAM_PERIODS); 1081 if (retval < 0) 1082 goto error; 1083 1084 /* Make sure, that the period size is always aligned 1085 * 64byte boundary 1086 */ 1087 retval = snd_pcm_hw_constraint_step(substream->runtime, 0, 1088 SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64); 1089 if (retval < 0) 1090 goto error; 1091 1092 retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 1093 if (retval < 0) 1094 goto error; 1095 1096 /* expose PCM substream */ 1097 spin_lock_irq(&intelhaddata->had_spinlock); 1098 intelhaddata->stream_info.substream = substream; 1099 intelhaddata->stream_info.substream_refcount++; 1100 spin_unlock_irq(&intelhaddata->had_spinlock); 1101 1102 return retval; 1103 error: 1104 pm_runtime_mark_last_busy(intelhaddata->dev); 1105 pm_runtime_put_autosuspend(intelhaddata->dev); 1106 return retval; 1107 } 1108 1109 /* 1110 * ALSA PCM close callback 1111 */ 1112 static int had_pcm_close(struct snd_pcm_substream *substream) 1113 { 1114 struct snd_intelhad *intelhaddata; 1115 1116 intelhaddata = snd_pcm_substream_chip(substream); 1117 1118 /* unreference and sync with the pending PCM accesses */ 1119 spin_lock_irq(&intelhaddata->had_spinlock); 1120 intelhaddata->stream_info.substream = NULL; 1121 intelhaddata->stream_info.substream_refcount--; 1122 while (intelhaddata->stream_info.substream_refcount > 0) { 1123 spin_unlock_irq(&intelhaddata->had_spinlock); 1124 cpu_relax(); 1125 spin_lock_irq(&intelhaddata->had_spinlock); 1126 } 1127 spin_unlock_irq(&intelhaddata->had_spinlock); 1128 1129 pm_runtime_mark_last_busy(intelhaddata->dev); 1130 pm_runtime_put_autosuspend(intelhaddata->dev); 1131 return 0; 1132 } 1133 1134 /* 1135 * ALSA PCM hw_params callback 1136 */ 1137 static int had_pcm_hw_params(struct snd_pcm_substream *substream, 1138 struct snd_pcm_hw_params *hw_params) 1139 { 1140 struct snd_intelhad *intelhaddata; 1141 int buf_size; 1142 1143 intelhaddata = snd_pcm_substream_chip(substream); 1144 buf_size = params_buffer_bytes(hw_params); 1145 dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n", 1146 __func__, buf_size); 1147 return 0; 1148 } 1149 1150 /* 1151 * ALSA PCM trigger callback 1152 */ 1153 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 1154 { 1155 int retval = 0; 1156 struct snd_intelhad *intelhaddata; 1157 1158 intelhaddata = snd_pcm_substream_chip(substream); 1159 1160 spin_lock(&intelhaddata->had_spinlock); 1161 switch (cmd) { 1162 case SNDRV_PCM_TRIGGER_START: 1163 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1164 case SNDRV_PCM_TRIGGER_RESUME: 1165 /* Enable Audio */ 1166 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */ 1167 had_enable_audio(intelhaddata, true); 1168 break; 1169 1170 case SNDRV_PCM_TRIGGER_STOP: 1171 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1172 /* Disable Audio */ 1173 had_enable_audio(intelhaddata, false); 1174 break; 1175 1176 default: 1177 retval = -EINVAL; 1178 } 1179 spin_unlock(&intelhaddata->had_spinlock); 1180 return retval; 1181 } 1182 1183 /* 1184 * ALSA PCM prepare callback 1185 */ 1186 static int had_pcm_prepare(struct snd_pcm_substream *substream) 1187 { 1188 int retval; 1189 u32 disp_samp_freq, n_param; 1190 u32 link_rate = 0; 1191 struct snd_intelhad *intelhaddata; 1192 struct snd_pcm_runtime *runtime; 1193 1194 intelhaddata = snd_pcm_substream_chip(substream); 1195 runtime = substream->runtime; 1196 1197 dev_dbg(intelhaddata->dev, "period_size=%d\n", 1198 (int)frames_to_bytes(runtime, runtime->period_size)); 1199 dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods); 1200 dev_dbg(intelhaddata->dev, "buffer_size=%d\n", 1201 (int)snd_pcm_lib_buffer_bytes(substream)); 1202 dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate); 1203 dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels); 1204 1205 /* Get N value in KHz */ 1206 disp_samp_freq = intelhaddata->tmds_clock_speed; 1207 1208 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata); 1209 if (retval) { 1210 dev_err(intelhaddata->dev, 1211 "programming N value failed %#x\n", retval); 1212 goto prep_end; 1213 } 1214 1215 if (intelhaddata->dp_output) 1216 link_rate = intelhaddata->link_rate; 1217 1218 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, 1219 n_param, intelhaddata); 1220 1221 had_prog_dip(substream, intelhaddata); 1222 1223 retval = had_init_audio_ctrl(substream, intelhaddata); 1224 1225 /* Prog buffer address */ 1226 had_init_ringbuf(substream, intelhaddata); 1227 1228 /* 1229 * Program channel mapping in following order: 1230 * FL, FR, C, LFE, RL, RR 1231 */ 1232 1233 had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER); 1234 1235 prep_end: 1236 return retval; 1237 } 1238 1239 /* 1240 * ALSA PCM pointer callback 1241 */ 1242 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream) 1243 { 1244 struct snd_intelhad *intelhaddata; 1245 int len; 1246 1247 intelhaddata = snd_pcm_substream_chip(substream); 1248 1249 if (!intelhaddata->connected) 1250 return SNDRV_PCM_POS_XRUN; 1251 1252 len = had_process_ringbuf(substream, intelhaddata); 1253 if (len < 0) 1254 return SNDRV_PCM_POS_XRUN; 1255 len = bytes_to_frames(substream->runtime, len); 1256 /* wrapping may happen when periods=1 */ 1257 len %= substream->runtime->buffer_size; 1258 return len; 1259 } 1260 1261 /* 1262 * ALSA PCM ops 1263 */ 1264 static const struct snd_pcm_ops had_pcm_ops = { 1265 .open = had_pcm_open, 1266 .close = had_pcm_close, 1267 .hw_params = had_pcm_hw_params, 1268 .prepare = had_pcm_prepare, 1269 .trigger = had_pcm_trigger, 1270 .sync_stop = had_pcm_sync_stop, 1271 .pointer = had_pcm_pointer, 1272 }; 1273 1274 /* process mode change of the running stream; called in mutex */ 1275 static int had_process_mode_change(struct snd_intelhad *intelhaddata) 1276 { 1277 struct snd_pcm_substream *substream; 1278 int retval = 0; 1279 u32 disp_samp_freq, n_param; 1280 u32 link_rate = 0; 1281 1282 substream = had_substream_get(intelhaddata); 1283 if (!substream) 1284 return 0; 1285 1286 /* Disable Audio */ 1287 had_enable_audio(intelhaddata, false); 1288 1289 /* Update CTS value */ 1290 disp_samp_freq = intelhaddata->tmds_clock_speed; 1291 1292 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata); 1293 if (retval) { 1294 dev_err(intelhaddata->dev, 1295 "programming N value failed %#x\n", retval); 1296 goto out; 1297 } 1298 1299 if (intelhaddata->dp_output) 1300 link_rate = intelhaddata->link_rate; 1301 1302 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, 1303 n_param, intelhaddata); 1304 1305 /* Enable Audio */ 1306 had_enable_audio(intelhaddata, true); 1307 1308 out: 1309 had_substream_put(intelhaddata); 1310 return retval; 1311 } 1312 1313 /* process hot plug, called from wq with mutex locked */ 1314 static void had_process_hot_plug(struct snd_intelhad *intelhaddata) 1315 { 1316 struct snd_pcm_substream *substream; 1317 1318 spin_lock_irq(&intelhaddata->had_spinlock); 1319 if (intelhaddata->connected) { 1320 dev_dbg(intelhaddata->dev, "Device already connected\n"); 1321 spin_unlock_irq(&intelhaddata->had_spinlock); 1322 return; 1323 } 1324 1325 /* Disable Audio */ 1326 had_enable_audio(intelhaddata, false); 1327 1328 intelhaddata->connected = true; 1329 dev_dbg(intelhaddata->dev, 1330 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n", 1331 __func__, __LINE__); 1332 spin_unlock_irq(&intelhaddata->had_spinlock); 1333 1334 had_build_channel_allocation_map(intelhaddata); 1335 1336 /* Report to above ALSA layer */ 1337 substream = had_substream_get(intelhaddata); 1338 if (substream) { 1339 snd_pcm_stop_xrun(substream); 1340 had_substream_put(intelhaddata); 1341 } 1342 1343 snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT); 1344 } 1345 1346 /* process hot unplug, called from wq with mutex locked */ 1347 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata) 1348 { 1349 struct snd_pcm_substream *substream; 1350 1351 spin_lock_irq(&intelhaddata->had_spinlock); 1352 if (!intelhaddata->connected) { 1353 dev_dbg(intelhaddata->dev, "Device already disconnected\n"); 1354 spin_unlock_irq(&intelhaddata->had_spinlock); 1355 return; 1356 1357 } 1358 1359 /* Disable Audio */ 1360 had_enable_audio(intelhaddata, false); 1361 1362 intelhaddata->connected = false; 1363 dev_dbg(intelhaddata->dev, 1364 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n", 1365 __func__, __LINE__); 1366 spin_unlock_irq(&intelhaddata->had_spinlock); 1367 1368 kfree(intelhaddata->chmap->chmap); 1369 intelhaddata->chmap->chmap = NULL; 1370 1371 /* Report to above ALSA layer */ 1372 substream = had_substream_get(intelhaddata); 1373 if (substream) { 1374 snd_pcm_stop_xrun(substream); 1375 had_substream_put(intelhaddata); 1376 } 1377 1378 snd_jack_report(intelhaddata->jack, 0); 1379 } 1380 1381 /* 1382 * ALSA iec958 and ELD controls 1383 */ 1384 1385 static int had_iec958_info(struct snd_kcontrol *kcontrol, 1386 struct snd_ctl_elem_info *uinfo) 1387 { 1388 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1389 uinfo->count = 1; 1390 return 0; 1391 } 1392 1393 static int had_iec958_get(struct snd_kcontrol *kcontrol, 1394 struct snd_ctl_elem_value *ucontrol) 1395 { 1396 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); 1397 1398 mutex_lock(&intelhaddata->mutex); 1399 ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff; 1400 ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff; 1401 ucontrol->value.iec958.status[2] = 1402 (intelhaddata->aes_bits >> 16) & 0xff; 1403 ucontrol->value.iec958.status[3] = 1404 (intelhaddata->aes_bits >> 24) & 0xff; 1405 mutex_unlock(&intelhaddata->mutex); 1406 return 0; 1407 } 1408 1409 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol, 1410 struct snd_ctl_elem_value *ucontrol) 1411 { 1412 ucontrol->value.iec958.status[0] = 0xff; 1413 ucontrol->value.iec958.status[1] = 0xff; 1414 ucontrol->value.iec958.status[2] = 0xff; 1415 ucontrol->value.iec958.status[3] = 0xff; 1416 return 0; 1417 } 1418 1419 static int had_iec958_put(struct snd_kcontrol *kcontrol, 1420 struct snd_ctl_elem_value *ucontrol) 1421 { 1422 unsigned int val; 1423 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); 1424 int changed = 0; 1425 1426 val = (ucontrol->value.iec958.status[0] << 0) | 1427 (ucontrol->value.iec958.status[1] << 8) | 1428 (ucontrol->value.iec958.status[2] << 16) | 1429 (ucontrol->value.iec958.status[3] << 24); 1430 mutex_lock(&intelhaddata->mutex); 1431 if (intelhaddata->aes_bits != val) { 1432 intelhaddata->aes_bits = val; 1433 changed = 1; 1434 } 1435 mutex_unlock(&intelhaddata->mutex); 1436 return changed; 1437 } 1438 1439 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol, 1440 struct snd_ctl_elem_info *uinfo) 1441 { 1442 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 1443 uinfo->count = HDMI_MAX_ELD_BYTES; 1444 return 0; 1445 } 1446 1447 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol, 1448 struct snd_ctl_elem_value *ucontrol) 1449 { 1450 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); 1451 1452 mutex_lock(&intelhaddata->mutex); 1453 memcpy(ucontrol->value.bytes.data, intelhaddata->eld, 1454 HDMI_MAX_ELD_BYTES); 1455 mutex_unlock(&intelhaddata->mutex); 1456 return 0; 1457 } 1458 1459 static const struct snd_kcontrol_new had_controls[] = { 1460 { 1461 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1462 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1463 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK), 1464 .info = had_iec958_info, /* shared */ 1465 .get = had_iec958_mask_get, 1466 }, 1467 { 1468 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1469 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), 1470 .info = had_iec958_info, 1471 .get = had_iec958_get, 1472 .put = had_iec958_put, 1473 }, 1474 { 1475 .access = (SNDRV_CTL_ELEM_ACCESS_READ | 1476 SNDRV_CTL_ELEM_ACCESS_VOLATILE), 1477 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1478 .name = "ELD", 1479 .info = had_ctl_eld_info, 1480 .get = had_ctl_eld_get, 1481 }, 1482 }; 1483 1484 /* 1485 * audio interrupt handler 1486 */ 1487 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id) 1488 { 1489 struct snd_intelhad_card *card_ctx = dev_id; 1490 u32 audio_stat[3] = {}; 1491 int pipe, port; 1492 1493 for_each_pipe(card_ctx, pipe) { 1494 /* use raw register access to ack IRQs even while disconnected */ 1495 audio_stat[pipe] = had_read_register_raw(card_ctx, pipe, 1496 AUD_HDMI_STATUS) & 1497 (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE); 1498 1499 if (audio_stat[pipe]) 1500 had_write_register_raw(card_ctx, pipe, 1501 AUD_HDMI_STATUS, audio_stat[pipe]); 1502 } 1503 1504 for_each_port(card_ctx, port) { 1505 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; 1506 int pipe = ctx->pipe; 1507 1508 if (pipe < 0) 1509 continue; 1510 1511 if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE) 1512 had_process_buffer_done(ctx); 1513 if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN) 1514 had_process_buffer_underrun(ctx); 1515 } 1516 1517 return IRQ_HANDLED; 1518 } 1519 1520 /* 1521 * monitor plug/unplug notification from i915; just kick off the work 1522 */ 1523 static void notify_audio_lpe(struct platform_device *pdev, int port) 1524 { 1525 struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev); 1526 struct snd_intelhad *ctx; 1527 1528 ctx = &card_ctx->pcm_ctx[single_port ? 0 : port]; 1529 if (single_port) 1530 ctx->port = port; 1531 1532 schedule_work(&ctx->hdmi_audio_wq); 1533 } 1534 1535 /* the work to handle monitor hot plug/unplug */ 1536 static void had_audio_wq(struct work_struct *work) 1537 { 1538 struct snd_intelhad *ctx = 1539 container_of(work, struct snd_intelhad, hdmi_audio_wq); 1540 struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data; 1541 struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port]; 1542 int ret; 1543 1544 ret = pm_runtime_resume_and_get(ctx->dev); 1545 if (ret < 0) 1546 return; 1547 1548 mutex_lock(&ctx->mutex); 1549 if (ppdata->pipe < 0) { 1550 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n", 1551 __func__, ctx->port); 1552 1553 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */ 1554 1555 ctx->dp_output = false; 1556 ctx->tmds_clock_speed = 0; 1557 ctx->link_rate = 0; 1558 1559 /* Shut down the stream */ 1560 had_process_hot_unplug(ctx); 1561 1562 ctx->pipe = -1; 1563 } else { 1564 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n", 1565 __func__, ctx->port, ppdata->ls_clock); 1566 1567 memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld)); 1568 1569 ctx->dp_output = ppdata->dp_output; 1570 if (ctx->dp_output) { 1571 ctx->tmds_clock_speed = 0; 1572 ctx->link_rate = ppdata->ls_clock; 1573 } else { 1574 ctx->tmds_clock_speed = ppdata->ls_clock; 1575 ctx->link_rate = 0; 1576 } 1577 1578 /* 1579 * Shut down the stream before we change 1580 * the pipe assignment for this pcm device 1581 */ 1582 had_process_hot_plug(ctx); 1583 1584 ctx->pipe = ppdata->pipe; 1585 1586 /* Restart the stream if necessary */ 1587 had_process_mode_change(ctx); 1588 } 1589 1590 mutex_unlock(&ctx->mutex); 1591 pm_runtime_mark_last_busy(ctx->dev); 1592 pm_runtime_put_autosuspend(ctx->dev); 1593 } 1594 1595 /* 1596 * Jack interface 1597 */ 1598 static int had_create_jack(struct snd_intelhad *ctx, 1599 struct snd_pcm *pcm) 1600 { 1601 char hdmi_str[32]; 1602 int err; 1603 1604 snprintf(hdmi_str, sizeof(hdmi_str), 1605 "HDMI/DP,pcm=%d", pcm->device); 1606 1607 err = snd_jack_new(ctx->card_ctx->card, hdmi_str, 1608 SND_JACK_AVOUT, &ctx->jack, 1609 true, false); 1610 if (err < 0) 1611 return err; 1612 ctx->jack->private_data = ctx; 1613 return 0; 1614 } 1615 1616 /* 1617 * PM callbacks 1618 */ 1619 1620 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev) 1621 { 1622 struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev); 1623 1624 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot); 1625 1626 return 0; 1627 } 1628 1629 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev) 1630 { 1631 struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev); 1632 1633 pm_runtime_mark_last_busy(dev); 1634 1635 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0); 1636 1637 return 0; 1638 } 1639 1640 /* release resources */ 1641 static void hdmi_lpe_audio_free(struct snd_card *card) 1642 { 1643 struct snd_intelhad_card *card_ctx = card->private_data; 1644 struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data; 1645 int port; 1646 1647 spin_lock_irq(&pdata->lpe_audio_slock); 1648 pdata->notify_audio_lpe = NULL; 1649 spin_unlock_irq(&pdata->lpe_audio_slock); 1650 1651 for_each_port(card_ctx, port) { 1652 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; 1653 1654 cancel_work_sync(&ctx->hdmi_audio_wq); 1655 } 1656 } 1657 1658 /* 1659 * hdmi_lpe_audio_probe - start bridge with i915 1660 * 1661 * This function is called when the i915 driver creates the 1662 * hdmi-lpe-audio platform device. 1663 */ 1664 static int __hdmi_lpe_audio_probe(struct platform_device *pdev) 1665 { 1666 struct snd_card *card; 1667 struct snd_intelhad_card *card_ctx; 1668 struct snd_intelhad *ctx; 1669 struct snd_pcm *pcm; 1670 struct intel_hdmi_lpe_audio_pdata *pdata; 1671 int irq; 1672 struct resource *res_mmio; 1673 int port, ret; 1674 1675 pdata = pdev->dev.platform_data; 1676 if (!pdata) { 1677 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__); 1678 return -EINVAL; 1679 } 1680 1681 /* get resources */ 1682 irq = platform_get_irq(pdev, 0); 1683 if (irq < 0) 1684 return irq; 1685 1686 res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1687 if (!res_mmio) { 1688 dev_err(&pdev->dev, "Could not get IO_MEM resources\n"); 1689 return -ENXIO; 1690 } 1691 1692 /* create a card instance with ALSA framework */ 1693 ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id, 1694 THIS_MODULE, sizeof(*card_ctx), &card); 1695 if (ret) 1696 return ret; 1697 1698 card_ctx = card->private_data; 1699 card_ctx->dev = &pdev->dev; 1700 card_ctx->card = card; 1701 strcpy(card->driver, INTEL_HAD); 1702 strcpy(card->shortname, "Intel HDMI/DP LPE Audio"); 1703 strcpy(card->longname, "Intel HDMI/DP LPE Audio"); 1704 1705 card_ctx->irq = -1; 1706 1707 card->private_free = hdmi_lpe_audio_free; 1708 1709 platform_set_drvdata(pdev, card_ctx); 1710 1711 card_ctx->num_pipes = pdata->num_pipes; 1712 card_ctx->num_ports = single_port ? 1 : pdata->num_ports; 1713 1714 for_each_port(card_ctx, port) { 1715 ctx = &card_ctx->pcm_ctx[port]; 1716 ctx->card_ctx = card_ctx; 1717 ctx->dev = card_ctx->dev; 1718 ctx->port = single_port ? -1 : port; 1719 ctx->pipe = -1; 1720 1721 spin_lock_init(&ctx->had_spinlock); 1722 mutex_init(&ctx->mutex); 1723 INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq); 1724 } 1725 1726 dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n", 1727 __func__, (unsigned int)res_mmio->start, 1728 (unsigned int)res_mmio->end); 1729 1730 card_ctx->mmio_start = 1731 devm_ioremap(&pdev->dev, res_mmio->start, 1732 (size_t)(resource_size(res_mmio))); 1733 if (!card_ctx->mmio_start) { 1734 dev_err(&pdev->dev, "Could not get ioremap\n"); 1735 return -EACCES; 1736 } 1737 1738 /* setup interrupt handler */ 1739 ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler, 1740 0, pdev->name, card_ctx); 1741 if (ret < 0) { 1742 dev_err(&pdev->dev, "request_irq failed\n"); 1743 return ret; 1744 } 1745 1746 card_ctx->irq = irq; 1747 1748 /* only 32bit addressable */ 1749 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1750 if (ret) 1751 return ret; 1752 1753 init_channel_allocations(); 1754 1755 card_ctx->num_pipes = pdata->num_pipes; 1756 card_ctx->num_ports = single_port ? 1 : pdata->num_ports; 1757 1758 for_each_port(card_ctx, port) { 1759 int i; 1760 1761 ctx = &card_ctx->pcm_ctx[port]; 1762 ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS, 1763 MAX_CAP_STREAMS, &pcm); 1764 if (ret) 1765 return ret; 1766 1767 /* setup private data which can be retrieved when required */ 1768 pcm->private_data = ctx; 1769 pcm->info_flags = 0; 1770 strscpy(pcm->name, card->shortname, strlen(card->shortname)); 1771 /* setup the ops for playback */ 1772 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops); 1773 1774 /* allocate dma pages; 1775 * try to allocate 600k buffer as default which is large enough 1776 */ 1777 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC, 1778 card->dev, HAD_DEFAULT_BUFFER, 1779 HAD_MAX_BUFFER); 1780 1781 /* create controls */ 1782 for (i = 0; i < ARRAY_SIZE(had_controls); i++) { 1783 struct snd_kcontrol *kctl; 1784 1785 kctl = snd_ctl_new1(&had_controls[i], ctx); 1786 if (!kctl) 1787 return -ENOMEM; 1788 1789 kctl->id.device = pcm->device; 1790 1791 ret = snd_ctl_add(card, kctl); 1792 if (ret < 0) 1793 return ret; 1794 } 1795 1796 /* Register channel map controls */ 1797 ret = had_register_chmap_ctls(ctx, pcm); 1798 if (ret < 0) 1799 return ret; 1800 1801 ret = had_create_jack(ctx, pcm); 1802 if (ret < 0) 1803 return ret; 1804 } 1805 1806 ret = snd_card_register(card); 1807 if (ret) 1808 return ret; 1809 1810 spin_lock_irq(&pdata->lpe_audio_slock); 1811 pdata->notify_audio_lpe = notify_audio_lpe; 1812 spin_unlock_irq(&pdata->lpe_audio_slock); 1813 1814 pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS); 1815 pm_runtime_use_autosuspend(&pdev->dev); 1816 pm_runtime_enable(&pdev->dev); 1817 pm_runtime_mark_last_busy(&pdev->dev); 1818 pm_runtime_idle(&pdev->dev); 1819 1820 dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__); 1821 for_each_port(card_ctx, port) { 1822 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; 1823 1824 schedule_work(&ctx->hdmi_audio_wq); 1825 } 1826 1827 return 0; 1828 } 1829 1830 static int hdmi_lpe_audio_probe(struct platform_device *pdev) 1831 { 1832 return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev)); 1833 } 1834 1835 static const struct dev_pm_ops hdmi_lpe_audio_pm = { 1836 SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume) 1837 }; 1838 1839 static struct platform_driver hdmi_lpe_audio_driver = { 1840 .driver = { 1841 .name = "hdmi-lpe-audio", 1842 .pm = &hdmi_lpe_audio_pm, 1843 }, 1844 .probe = hdmi_lpe_audio_probe, 1845 }; 1846 1847 module_platform_driver(hdmi_lpe_audio_driver); 1848 MODULE_ALIAS("platform:hdmi_lpe_audio"); 1849 1850 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>"); 1851 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>"); 1852 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>"); 1853 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>"); 1854 MODULE_DESCRIPTION("Intel HDMI Audio driver"); 1855 MODULE_LICENSE("GPL v2"); 1856
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.