~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/include/linux/log2.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-or-later */
  2 /* Integer base 2 logarithm calculation
  3  *
  4  * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
  5  * Written by David Howells (dhowells@redhat.com)
  6  */
  7 
  8 #ifndef _TOOLS_LINUX_LOG2_H
  9 #define _TOOLS_LINUX_LOG2_H
 10 
 11 #include <linux/bitops.h>
 12 #include <linux/types.h>
 13 
 14 /*
 15  * non-constant log of base 2 calculators
 16  * - the arch may override these in asm/bitops.h if they can be implemented
 17  *   more efficiently than using fls() and fls64()
 18  * - the arch is not required to handle n==0 if implementing the fallback
 19  */
 20 static inline __attribute__((const))
 21 int __ilog2_u32(u32 n)
 22 {
 23         return fls(n) - 1;
 24 }
 25 
 26 static inline __attribute__((const))
 27 int __ilog2_u64(u64 n)
 28 {
 29         return fls64(n) - 1;
 30 }
 31 
 32 /*
 33  *  Determine whether some value is a power of two, where zero is
 34  * *not* considered a power of two.
 35  */
 36 
 37 static inline __attribute__((const))
 38 bool is_power_of_2(unsigned long n)
 39 {
 40         return (n != 0 && ((n & (n - 1)) == 0));
 41 }
 42 
 43 /*
 44  * round up to nearest power of two
 45  */
 46 static inline __attribute__((const))
 47 unsigned long __roundup_pow_of_two(unsigned long n)
 48 {
 49         return 1UL << fls_long(n - 1);
 50 }
 51 
 52 /*
 53  * round down to nearest power of two
 54  */
 55 static inline __attribute__((const))
 56 unsigned long __rounddown_pow_of_two(unsigned long n)
 57 {
 58         return 1UL << (fls_long(n) - 1);
 59 }
 60 
 61 /**
 62  * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value
 63  * @n - parameter
 64  *
 65  * constant-capable log of base 2 calculation
 66  * - this can be used to initialise global variables from constant data, hence
 67  *   the massive ternary operator construction
 68  *
 69  * selects the appropriately-sized optimised version depending on sizeof(n)
 70  */
 71 #define ilog2(n)                                \
 72 (                                               \
 73         __builtin_constant_p(n) ? (             \
 74                 (n) < 2 ? 0 :                   \
 75                 (n) & (1ULL << 63) ? 63 :       \
 76                 (n) & (1ULL << 62) ? 62 :       \
 77                 (n) & (1ULL << 61) ? 61 :       \
 78                 (n) & (1ULL << 60) ? 60 :       \
 79                 (n) & (1ULL << 59) ? 59 :       \
 80                 (n) & (1ULL << 58) ? 58 :       \
 81                 (n) & (1ULL << 57) ? 57 :       \
 82                 (n) & (1ULL << 56) ? 56 :       \
 83                 (n) & (1ULL << 55) ? 55 :       \
 84                 (n) & (1ULL << 54) ? 54 :       \
 85                 (n) & (1ULL << 53) ? 53 :       \
 86                 (n) & (1ULL << 52) ? 52 :       \
 87                 (n) & (1ULL << 51) ? 51 :       \
 88                 (n) & (1ULL << 50) ? 50 :       \
 89                 (n) & (1ULL << 49) ? 49 :       \
 90                 (n) & (1ULL << 48) ? 48 :       \
 91                 (n) & (1ULL << 47) ? 47 :       \
 92                 (n) & (1ULL << 46) ? 46 :       \
 93                 (n) & (1ULL << 45) ? 45 :       \
 94                 (n) & (1ULL << 44) ? 44 :       \
 95                 (n) & (1ULL << 43) ? 43 :       \
 96                 (n) & (1ULL << 42) ? 42 :       \
 97                 (n) & (1ULL << 41) ? 41 :       \
 98                 (n) & (1ULL << 40) ? 40 :       \
 99                 (n) & (1ULL << 39) ? 39 :       \
100                 (n) & (1ULL << 38) ? 38 :       \
101                 (n) & (1ULL << 37) ? 37 :       \
102                 (n) & (1ULL << 36) ? 36 :       \
103                 (n) & (1ULL << 35) ? 35 :       \
104                 (n) & (1ULL << 34) ? 34 :       \
105                 (n) & (1ULL << 33) ? 33 :       \
106                 (n) & (1ULL << 32) ? 32 :       \
107                 (n) & (1ULL << 31) ? 31 :       \
108                 (n) & (1ULL << 30) ? 30 :       \
109                 (n) & (1ULL << 29) ? 29 :       \
110                 (n) & (1ULL << 28) ? 28 :       \
111                 (n) & (1ULL << 27) ? 27 :       \
112                 (n) & (1ULL << 26) ? 26 :       \
113                 (n) & (1ULL << 25) ? 25 :       \
114                 (n) & (1ULL << 24) ? 24 :       \
115                 (n) & (1ULL << 23) ? 23 :       \
116                 (n) & (1ULL << 22) ? 22 :       \
117                 (n) & (1ULL << 21) ? 21 :       \
118                 (n) & (1ULL << 20) ? 20 :       \
119                 (n) & (1ULL << 19) ? 19 :       \
120                 (n) & (1ULL << 18) ? 18 :       \
121                 (n) & (1ULL << 17) ? 17 :       \
122                 (n) & (1ULL << 16) ? 16 :       \
123                 (n) & (1ULL << 15) ? 15 :       \
124                 (n) & (1ULL << 14) ? 14 :       \
125                 (n) & (1ULL << 13) ? 13 :       \
126                 (n) & (1ULL << 12) ? 12 :       \
127                 (n) & (1ULL << 11) ? 11 :       \
128                 (n) & (1ULL << 10) ? 10 :       \
129                 (n) & (1ULL <<  9) ?  9 :       \
130                 (n) & (1ULL <<  8) ?  8 :       \
131                 (n) & (1ULL <<  7) ?  7 :       \
132                 (n) & (1ULL <<  6) ?  6 :       \
133                 (n) & (1ULL <<  5) ?  5 :       \
134                 (n) & (1ULL <<  4) ?  4 :       \
135                 (n) & (1ULL <<  3) ?  3 :       \
136                 (n) & (1ULL <<  2) ?  2 :       \
137                 1 ) :                           \
138         (sizeof(n) <= 4) ?                      \
139         __ilog2_u32(n) :                        \
140         __ilog2_u64(n)                          \
141  )
142 
143 /**
144  * roundup_pow_of_two - round the given value up to nearest power of two
145  * @n - parameter
146  *
147  * round the given value up to the nearest power of two
148  * - the result is undefined when n == 0
149  * - this can be used to initialise global variables from constant data
150  */
151 #define roundup_pow_of_two(n)                   \
152 (                                               \
153         __builtin_constant_p(n) ? (             \
154                 (n == 1) ? 1 :                  \
155                 (1UL << (ilog2((n) - 1) + 1))   \
156                                    ) :          \
157         __roundup_pow_of_two(n)                 \
158  )
159 
160 /**
161  * rounddown_pow_of_two - round the given value down to nearest power of two
162  * @n - parameter
163  *
164  * round the given value down to the nearest power of two
165  * - the result is undefined when n == 0
166  * - this can be used to initialise global variables from constant data
167  */
168 #define rounddown_pow_of_two(n)                 \
169 (                                               \
170         __builtin_constant_p(n) ? (             \
171                 (1UL << ilog2(n))) :            \
172         __rounddown_pow_of_two(n)               \
173  )
174 
175 #endif /* _TOOLS_LINUX_LOG2_H */
176 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php