~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/lib/bpf/btf_dump.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
  2 
  3 /*
  4  * BTF-to-C type converter.
  5  *
  6  * Copyright (c) 2019 Facebook
  7  */
  8 
  9 #include <stdbool.h>
 10 #include <stddef.h>
 11 #include <stdlib.h>
 12 #include <string.h>
 13 #include <ctype.h>
 14 #include <endian.h>
 15 #include <errno.h>
 16 #include <limits.h>
 17 #include <linux/err.h>
 18 #include <linux/btf.h>
 19 #include <linux/kernel.h>
 20 #include "btf.h"
 21 #include "hashmap.h"
 22 #include "libbpf.h"
 23 #include "libbpf_internal.h"
 24 
 25 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
 26 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
 27 
 28 static const char *pfx(int lvl)
 29 {
 30         return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
 31 }
 32 
 33 enum btf_dump_type_order_state {
 34         NOT_ORDERED,
 35         ORDERING,
 36         ORDERED,
 37 };
 38 
 39 enum btf_dump_type_emit_state {
 40         NOT_EMITTED,
 41         EMITTING,
 42         EMITTED,
 43 };
 44 
 45 /* per-type auxiliary state */
 46 struct btf_dump_type_aux_state {
 47         /* topological sorting state */
 48         enum btf_dump_type_order_state order_state: 2;
 49         /* emitting state used to determine the need for forward declaration */
 50         enum btf_dump_type_emit_state emit_state: 2;
 51         /* whether forward declaration was already emitted */
 52         __u8 fwd_emitted: 1;
 53         /* whether unique non-duplicate name was already assigned */
 54         __u8 name_resolved: 1;
 55         /* whether type is referenced from any other type */
 56         __u8 referenced: 1;
 57 };
 58 
 59 /* indent string length; one indent string is added for each indent level */
 60 #define BTF_DATA_INDENT_STR_LEN                 32
 61 
 62 /*
 63  * Common internal data for BTF type data dump operations.
 64  */
 65 struct btf_dump_data {
 66         const void *data_end;           /* end of valid data to show */
 67         bool compact;
 68         bool skip_names;
 69         bool emit_zeroes;
 70         __u8 indent_lvl;        /* base indent level */
 71         char indent_str[BTF_DATA_INDENT_STR_LEN];
 72         /* below are used during iteration */
 73         int depth;
 74         bool is_array_member;
 75         bool is_array_terminated;
 76         bool is_array_char;
 77 };
 78 
 79 struct btf_dump {
 80         const struct btf *btf;
 81         btf_dump_printf_fn_t printf_fn;
 82         void *cb_ctx;
 83         int ptr_sz;
 84         bool strip_mods;
 85         bool skip_anon_defs;
 86         int last_id;
 87 
 88         /* per-type auxiliary state */
 89         struct btf_dump_type_aux_state *type_states;
 90         size_t type_states_cap;
 91         /* per-type optional cached unique name, must be freed, if present */
 92         const char **cached_names;
 93         size_t cached_names_cap;
 94 
 95         /* topo-sorted list of dependent type definitions */
 96         __u32 *emit_queue;
 97         int emit_queue_cap;
 98         int emit_queue_cnt;
 99 
100         /*
101          * stack of type declarations (e.g., chain of modifiers, arrays,
102          * funcs, etc)
103          */
104         __u32 *decl_stack;
105         int decl_stack_cap;
106         int decl_stack_cnt;
107 
108         /* maps struct/union/enum name to a number of name occurrences */
109         struct hashmap *type_names;
110         /*
111          * maps typedef identifiers and enum value names to a number of such
112          * name occurrences
113          */
114         struct hashmap *ident_names;
115         /*
116          * data for typed display; allocated if needed.
117          */
118         struct btf_dump_data *typed_dump;
119 };
120 
121 static size_t str_hash_fn(long key, void *ctx)
122 {
123         return str_hash((void *)key);
124 }
125 
126 static bool str_equal_fn(long a, long b, void *ctx)
127 {
128         return strcmp((void *)a, (void *)b) == 0;
129 }
130 
131 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
132 {
133         return btf__name_by_offset(d->btf, name_off);
134 }
135 
136 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
137 {
138         va_list args;
139 
140         va_start(args, fmt);
141         d->printf_fn(d->cb_ctx, fmt, args);
142         va_end(args);
143 }
144 
145 static int btf_dump_mark_referenced(struct btf_dump *d);
146 static int btf_dump_resize(struct btf_dump *d);
147 
148 struct btf_dump *btf_dump__new(const struct btf *btf,
149                                btf_dump_printf_fn_t printf_fn,
150                                void *ctx,
151                                const struct btf_dump_opts *opts)
152 {
153         struct btf_dump *d;
154         int err;
155 
156         if (!OPTS_VALID(opts, btf_dump_opts))
157                 return libbpf_err_ptr(-EINVAL);
158 
159         if (!printf_fn)
160                 return libbpf_err_ptr(-EINVAL);
161 
162         d = calloc(1, sizeof(struct btf_dump));
163         if (!d)
164                 return libbpf_err_ptr(-ENOMEM);
165 
166         d->btf = btf;
167         d->printf_fn = printf_fn;
168         d->cb_ctx = ctx;
169         d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
170 
171         d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
172         if (IS_ERR(d->type_names)) {
173                 err = PTR_ERR(d->type_names);
174                 d->type_names = NULL;
175                 goto err;
176         }
177         d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
178         if (IS_ERR(d->ident_names)) {
179                 err = PTR_ERR(d->ident_names);
180                 d->ident_names = NULL;
181                 goto err;
182         }
183 
184         err = btf_dump_resize(d);
185         if (err)
186                 goto err;
187 
188         return d;
189 err:
190         btf_dump__free(d);
191         return libbpf_err_ptr(err);
192 }
193 
194 static int btf_dump_resize(struct btf_dump *d)
195 {
196         int err, last_id = btf__type_cnt(d->btf) - 1;
197 
198         if (last_id <= d->last_id)
199                 return 0;
200 
201         if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
202                               sizeof(*d->type_states), last_id + 1))
203                 return -ENOMEM;
204         if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
205                               sizeof(*d->cached_names), last_id + 1))
206                 return -ENOMEM;
207 
208         if (d->last_id == 0) {
209                 /* VOID is special */
210                 d->type_states[0].order_state = ORDERED;
211                 d->type_states[0].emit_state = EMITTED;
212         }
213 
214         /* eagerly determine referenced types for anon enums */
215         err = btf_dump_mark_referenced(d);
216         if (err)
217                 return err;
218 
219         d->last_id = last_id;
220         return 0;
221 }
222 
223 static void btf_dump_free_names(struct hashmap *map)
224 {
225         size_t bkt;
226         struct hashmap_entry *cur;
227 
228         hashmap__for_each_entry(map, cur, bkt)
229                 free((void *)cur->pkey);
230 
231         hashmap__free(map);
232 }
233 
234 void btf_dump__free(struct btf_dump *d)
235 {
236         int i;
237 
238         if (IS_ERR_OR_NULL(d))
239                 return;
240 
241         free(d->type_states);
242         if (d->cached_names) {
243                 /* any set cached name is owned by us and should be freed */
244                 for (i = 0; i <= d->last_id; i++) {
245                         if (d->cached_names[i])
246                                 free((void *)d->cached_names[i]);
247                 }
248         }
249         free(d->cached_names);
250         free(d->emit_queue);
251         free(d->decl_stack);
252         btf_dump_free_names(d->type_names);
253         btf_dump_free_names(d->ident_names);
254 
255         free(d);
256 }
257 
258 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
259 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
260 
261 /*
262  * Dump BTF type in a compilable C syntax, including all the necessary
263  * dependent types, necessary for compilation. If some of the dependent types
264  * were already emitted as part of previous btf_dump__dump_type() invocation
265  * for another type, they won't be emitted again. This API allows callers to
266  * filter out BTF types according to user-defined criterias and emitted only
267  * minimal subset of types, necessary to compile everything. Full struct/union
268  * definitions will still be emitted, even if the only usage is through
269  * pointer and could be satisfied with just a forward declaration.
270  *
271  * Dumping is done in two high-level passes:
272  *   1. Topologically sort type definitions to satisfy C rules of compilation.
273  *   2. Emit type definitions in C syntax.
274  *
275  * Returns 0 on success; <0, otherwise.
276  */
277 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
278 {
279         int err, i;
280 
281         if (id >= btf__type_cnt(d->btf))
282                 return libbpf_err(-EINVAL);
283 
284         err = btf_dump_resize(d);
285         if (err)
286                 return libbpf_err(err);
287 
288         d->emit_queue_cnt = 0;
289         err = btf_dump_order_type(d, id, false);
290         if (err < 0)
291                 return libbpf_err(err);
292 
293         for (i = 0; i < d->emit_queue_cnt; i++)
294                 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
295 
296         return 0;
297 }
298 
299 /*
300  * Mark all types that are referenced from any other type. This is used to
301  * determine top-level anonymous enums that need to be emitted as an
302  * independent type declarations.
303  * Anonymous enums come in two flavors: either embedded in a struct's field
304  * definition, in which case they have to be declared inline as part of field
305  * type declaration; or as a top-level anonymous enum, typically used for
306  * declaring global constants. It's impossible to distinguish between two
307  * without knowning whether given enum type was referenced from other type:
308  * top-level anonymous enum won't be referenced by anything, while embedded
309  * one will.
310  */
311 static int btf_dump_mark_referenced(struct btf_dump *d)
312 {
313         int i, j, n = btf__type_cnt(d->btf);
314         const struct btf_type *t;
315         __u16 vlen;
316 
317         for (i = d->last_id + 1; i < n; i++) {
318                 t = btf__type_by_id(d->btf, i);
319                 vlen = btf_vlen(t);
320 
321                 switch (btf_kind(t)) {
322                 case BTF_KIND_INT:
323                 case BTF_KIND_ENUM:
324                 case BTF_KIND_ENUM64:
325                 case BTF_KIND_FWD:
326                 case BTF_KIND_FLOAT:
327                         break;
328 
329                 case BTF_KIND_VOLATILE:
330                 case BTF_KIND_CONST:
331                 case BTF_KIND_RESTRICT:
332                 case BTF_KIND_PTR:
333                 case BTF_KIND_TYPEDEF:
334                 case BTF_KIND_FUNC:
335                 case BTF_KIND_VAR:
336                 case BTF_KIND_DECL_TAG:
337                 case BTF_KIND_TYPE_TAG:
338                         d->type_states[t->type].referenced = 1;
339                         break;
340 
341                 case BTF_KIND_ARRAY: {
342                         const struct btf_array *a = btf_array(t);
343 
344                         d->type_states[a->index_type].referenced = 1;
345                         d->type_states[a->type].referenced = 1;
346                         break;
347                 }
348                 case BTF_KIND_STRUCT:
349                 case BTF_KIND_UNION: {
350                         const struct btf_member *m = btf_members(t);
351 
352                         for (j = 0; j < vlen; j++, m++)
353                                 d->type_states[m->type].referenced = 1;
354                         break;
355                 }
356                 case BTF_KIND_FUNC_PROTO: {
357                         const struct btf_param *p = btf_params(t);
358 
359                         for (j = 0; j < vlen; j++, p++)
360                                 d->type_states[p->type].referenced = 1;
361                         break;
362                 }
363                 case BTF_KIND_DATASEC: {
364                         const struct btf_var_secinfo *v = btf_var_secinfos(t);
365 
366                         for (j = 0; j < vlen; j++, v++)
367                                 d->type_states[v->type].referenced = 1;
368                         break;
369                 }
370                 default:
371                         return -EINVAL;
372                 }
373         }
374         return 0;
375 }
376 
377 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
378 {
379         __u32 *new_queue;
380         size_t new_cap;
381 
382         if (d->emit_queue_cnt >= d->emit_queue_cap) {
383                 new_cap = max(16, d->emit_queue_cap * 3 / 2);
384                 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
385                 if (!new_queue)
386                         return -ENOMEM;
387                 d->emit_queue = new_queue;
388                 d->emit_queue_cap = new_cap;
389         }
390 
391         d->emit_queue[d->emit_queue_cnt++] = id;
392         return 0;
393 }
394 
395 /*
396  * Determine order of emitting dependent types and specified type to satisfy
397  * C compilation rules.  This is done through topological sorting with an
398  * additional complication which comes from C rules. The main idea for C is
399  * that if some type is "embedded" into a struct/union, it's size needs to be
400  * known at the time of definition of containing type. E.g., for:
401  *
402  *      struct A {};
403  *      struct B { struct A x; }
404  *
405  * struct A *HAS* to be defined before struct B, because it's "embedded",
406  * i.e., it is part of struct B layout. But in the following case:
407  *
408  *      struct A;
409  *      struct B { struct A *x; }
410  *      struct A {};
411  *
412  * it's enough to just have a forward declaration of struct A at the time of
413  * struct B definition, as struct B has a pointer to struct A, so the size of
414  * field x is known without knowing struct A size: it's sizeof(void *).
415  *
416  * Unfortunately, there are some trickier cases we need to handle, e.g.:
417  *
418  *      struct A {}; // if this was forward-declaration: compilation error
419  *      struct B {
420  *              struct { // anonymous struct
421  *                      struct A y;
422  *              } *x;
423  *      };
424  *
425  * In this case, struct B's field x is a pointer, so it's size is known
426  * regardless of the size of (anonymous) struct it points to. But because this
427  * struct is anonymous and thus defined inline inside struct B, *and* it
428  * embeds struct A, compiler requires full definition of struct A to be known
429  * before struct B can be defined. This creates a transitive dependency
430  * between struct A and struct B. If struct A was forward-declared before
431  * struct B definition and fully defined after struct B definition, that would
432  * trigger compilation error.
433  *
434  * All this means that while we are doing topological sorting on BTF type
435  * graph, we need to determine relationships between different types (graph
436  * nodes):
437  *   - weak link (relationship) between X and Y, if Y *CAN* be
438  *   forward-declared at the point of X definition;
439  *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
440  *
441  * The rule is as follows. Given a chain of BTF types from X to Y, if there is
442  * BTF_KIND_PTR type in the chain and at least one non-anonymous type
443  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
444  * Weak/strong relationship is determined recursively during DFS traversal and
445  * is returned as a result from btf_dump_order_type().
446  *
447  * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
448  * but it is not guaranteeing that no extraneous forward declarations will be
449  * emitted.
450  *
451  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
452  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
453  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
454  * entire graph path, so depending where from one came to that BTF type, it
455  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
456  * once they are processed, there is no need to do it again, so they are
457  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
458  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
459  * in any case, once those are processed, no need to do it again, as the
460  * result won't change.
461  *
462  * Returns:
463  *   - 1, if type is part of strong link (so there is strong topological
464  *   ordering requirements);
465  *   - 0, if type is part of weak link (so can be satisfied through forward
466  *   declaration);
467  *   - <0, on error (e.g., unsatisfiable type loop detected).
468  */
469 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
470 {
471         /*
472          * Order state is used to detect strong link cycles, but only for BTF
473          * kinds that are or could be an independent definition (i.e.,
474          * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
475          * func_protos, modifiers are just means to get to these definitions.
476          * Int/void don't need definitions, they are assumed to be always
477          * properly defined.  We also ignore datasec, var, and funcs for now.
478          * So for all non-defining kinds, we never even set ordering state,
479          * for defining kinds we set ORDERING and subsequently ORDERED if it
480          * forms a strong link.
481          */
482         struct btf_dump_type_aux_state *tstate = &d->type_states[id];
483         const struct btf_type *t;
484         __u16 vlen;
485         int err, i;
486 
487         /* return true, letting typedefs know that it's ok to be emitted */
488         if (tstate->order_state == ORDERED)
489                 return 1;
490 
491         t = btf__type_by_id(d->btf, id);
492 
493         if (tstate->order_state == ORDERING) {
494                 /* type loop, but resolvable through fwd declaration */
495                 if (btf_is_composite(t) && through_ptr && t->name_off != 0)
496                         return 0;
497                 pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
498                 return -ELOOP;
499         }
500 
501         switch (btf_kind(t)) {
502         case BTF_KIND_INT:
503         case BTF_KIND_FLOAT:
504                 tstate->order_state = ORDERED;
505                 return 0;
506 
507         case BTF_KIND_PTR:
508                 err = btf_dump_order_type(d, t->type, true);
509                 tstate->order_state = ORDERED;
510                 return err;
511 
512         case BTF_KIND_ARRAY:
513                 return btf_dump_order_type(d, btf_array(t)->type, false);
514 
515         case BTF_KIND_STRUCT:
516         case BTF_KIND_UNION: {
517                 const struct btf_member *m = btf_members(t);
518                 /*
519                  * struct/union is part of strong link, only if it's embedded
520                  * (so no ptr in a path) or it's anonymous (so has to be
521                  * defined inline, even if declared through ptr)
522                  */
523                 if (through_ptr && t->name_off != 0)
524                         return 0;
525 
526                 tstate->order_state = ORDERING;
527 
528                 vlen = btf_vlen(t);
529                 for (i = 0; i < vlen; i++, m++) {
530                         err = btf_dump_order_type(d, m->type, false);
531                         if (err < 0)
532                                 return err;
533                 }
534 
535                 if (t->name_off != 0) {
536                         err = btf_dump_add_emit_queue_id(d, id);
537                         if (err < 0)
538                                 return err;
539                 }
540 
541                 tstate->order_state = ORDERED;
542                 return 1;
543         }
544         case BTF_KIND_ENUM:
545         case BTF_KIND_ENUM64:
546         case BTF_KIND_FWD:
547                 /*
548                  * non-anonymous or non-referenced enums are top-level
549                  * declarations and should be emitted. Same logic can be
550                  * applied to FWDs, it won't hurt anyways.
551                  */
552                 if (t->name_off != 0 || !tstate->referenced) {
553                         err = btf_dump_add_emit_queue_id(d, id);
554                         if (err)
555                                 return err;
556                 }
557                 tstate->order_state = ORDERED;
558                 return 1;
559 
560         case BTF_KIND_TYPEDEF: {
561                 int is_strong;
562 
563                 is_strong = btf_dump_order_type(d, t->type, through_ptr);
564                 if (is_strong < 0)
565                         return is_strong;
566 
567                 /* typedef is similar to struct/union w.r.t. fwd-decls */
568                 if (through_ptr && !is_strong)
569                         return 0;
570 
571                 /* typedef is always a named definition */
572                 err = btf_dump_add_emit_queue_id(d, id);
573                 if (err)
574                         return err;
575 
576                 d->type_states[id].order_state = ORDERED;
577                 return 1;
578         }
579         case BTF_KIND_VOLATILE:
580         case BTF_KIND_CONST:
581         case BTF_KIND_RESTRICT:
582         case BTF_KIND_TYPE_TAG:
583                 return btf_dump_order_type(d, t->type, through_ptr);
584 
585         case BTF_KIND_FUNC_PROTO: {
586                 const struct btf_param *p = btf_params(t);
587                 bool is_strong;
588 
589                 err = btf_dump_order_type(d, t->type, through_ptr);
590                 if (err < 0)
591                         return err;
592                 is_strong = err > 0;
593 
594                 vlen = btf_vlen(t);
595                 for (i = 0; i < vlen; i++, p++) {
596                         err = btf_dump_order_type(d, p->type, through_ptr);
597                         if (err < 0)
598                                 return err;
599                         if (err > 0)
600                                 is_strong = true;
601                 }
602                 return is_strong;
603         }
604         case BTF_KIND_FUNC:
605         case BTF_KIND_VAR:
606         case BTF_KIND_DATASEC:
607         case BTF_KIND_DECL_TAG:
608                 d->type_states[id].order_state = ORDERED;
609                 return 0;
610 
611         default:
612                 return -EINVAL;
613         }
614 }
615 
616 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
617                                           const struct btf_type *t);
618 
619 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
620                                      const struct btf_type *t);
621 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
622                                      const struct btf_type *t, int lvl);
623 
624 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
625                                    const struct btf_type *t);
626 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
627                                    const struct btf_type *t, int lvl);
628 
629 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
630                                   const struct btf_type *t);
631 
632 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
633                                       const struct btf_type *t, int lvl);
634 
635 /* a local view into a shared stack */
636 struct id_stack {
637         const __u32 *ids;
638         int cnt;
639 };
640 
641 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
642                                     const char *fname, int lvl);
643 static void btf_dump_emit_type_chain(struct btf_dump *d,
644                                      struct id_stack *decl_stack,
645                                      const char *fname, int lvl);
646 
647 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
648 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
649 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
650                                  const char *orig_name);
651 
652 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
653 {
654         const struct btf_type *t = btf__type_by_id(d->btf, id);
655 
656         /* __builtin_va_list is a compiler built-in, which causes compilation
657          * errors, when compiling w/ different compiler, then used to compile
658          * original code (e.g., GCC to compile kernel, Clang to use generated
659          * C header from BTF). As it is built-in, it should be already defined
660          * properly internally in compiler.
661          */
662         if (t->name_off == 0)
663                 return false;
664         return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
665 }
666 
667 /*
668  * Emit C-syntax definitions of types from chains of BTF types.
669  *
670  * High-level handling of determining necessary forward declarations are handled
671  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
672  * declarations/definitions in C syntax  are handled by a combo of
673  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
674  * corresponding btf_dump_emit_*_{def,fwd}() functions.
675  *
676  * We also keep track of "containing struct/union type ID" to determine when
677  * we reference it from inside and thus can avoid emitting unnecessary forward
678  * declaration.
679  *
680  * This algorithm is designed in such a way, that even if some error occurs
681  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
682  * that doesn't comply to C rules completely), algorithm will try to proceed
683  * and produce as much meaningful output as possible.
684  */
685 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
686 {
687         struct btf_dump_type_aux_state *tstate = &d->type_states[id];
688         bool top_level_def = cont_id == 0;
689         const struct btf_type *t;
690         __u16 kind;
691 
692         if (tstate->emit_state == EMITTED)
693                 return;
694 
695         t = btf__type_by_id(d->btf, id);
696         kind = btf_kind(t);
697 
698         if (tstate->emit_state == EMITTING) {
699                 if (tstate->fwd_emitted)
700                         return;
701 
702                 switch (kind) {
703                 case BTF_KIND_STRUCT:
704                 case BTF_KIND_UNION:
705                         /*
706                          * if we are referencing a struct/union that we are
707                          * part of - then no need for fwd declaration
708                          */
709                         if (id == cont_id)
710                                 return;
711                         if (t->name_off == 0) {
712                                 pr_warn("anonymous struct/union loop, id:[%u]\n",
713                                         id);
714                                 return;
715                         }
716                         btf_dump_emit_struct_fwd(d, id, t);
717                         btf_dump_printf(d, ";\n\n");
718                         tstate->fwd_emitted = 1;
719                         break;
720                 case BTF_KIND_TYPEDEF:
721                         /*
722                          * for typedef fwd_emitted means typedef definition
723                          * was emitted, but it can be used only for "weak"
724                          * references through pointer only, not for embedding
725                          */
726                         if (!btf_dump_is_blacklisted(d, id)) {
727                                 btf_dump_emit_typedef_def(d, id, t, 0);
728                                 btf_dump_printf(d, ";\n\n");
729                         }
730                         tstate->fwd_emitted = 1;
731                         break;
732                 default:
733                         break;
734                 }
735 
736                 return;
737         }
738 
739         switch (kind) {
740         case BTF_KIND_INT:
741                 /* Emit type alias definitions if necessary */
742                 btf_dump_emit_missing_aliases(d, id, t);
743 
744                 tstate->emit_state = EMITTED;
745                 break;
746         case BTF_KIND_ENUM:
747         case BTF_KIND_ENUM64:
748                 if (top_level_def) {
749                         btf_dump_emit_enum_def(d, id, t, 0);
750                         btf_dump_printf(d, ";\n\n");
751                 }
752                 tstate->emit_state = EMITTED;
753                 break;
754         case BTF_KIND_PTR:
755         case BTF_KIND_VOLATILE:
756         case BTF_KIND_CONST:
757         case BTF_KIND_RESTRICT:
758         case BTF_KIND_TYPE_TAG:
759                 btf_dump_emit_type(d, t->type, cont_id);
760                 break;
761         case BTF_KIND_ARRAY:
762                 btf_dump_emit_type(d, btf_array(t)->type, cont_id);
763                 break;
764         case BTF_KIND_FWD:
765                 btf_dump_emit_fwd_def(d, id, t);
766                 btf_dump_printf(d, ";\n\n");
767                 tstate->emit_state = EMITTED;
768                 break;
769         case BTF_KIND_TYPEDEF:
770                 tstate->emit_state = EMITTING;
771                 btf_dump_emit_type(d, t->type, id);
772                 /*
773                  * typedef can server as both definition and forward
774                  * declaration; at this stage someone depends on
775                  * typedef as a forward declaration (refers to it
776                  * through pointer), so unless we already did it,
777                  * emit typedef as a forward declaration
778                  */
779                 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
780                         btf_dump_emit_typedef_def(d, id, t, 0);
781                         btf_dump_printf(d, ";\n\n");
782                 }
783                 tstate->emit_state = EMITTED;
784                 break;
785         case BTF_KIND_STRUCT:
786         case BTF_KIND_UNION:
787                 tstate->emit_state = EMITTING;
788                 /* if it's a top-level struct/union definition or struct/union
789                  * is anonymous, then in C we'll be emitting all fields and
790                  * their types (as opposed to just `struct X`), so we need to
791                  * make sure that all types, referenced from struct/union
792                  * members have necessary forward-declarations, where
793                  * applicable
794                  */
795                 if (top_level_def || t->name_off == 0) {
796                         const struct btf_member *m = btf_members(t);
797                         __u16 vlen = btf_vlen(t);
798                         int i, new_cont_id;
799 
800                         new_cont_id = t->name_off == 0 ? cont_id : id;
801                         for (i = 0; i < vlen; i++, m++)
802                                 btf_dump_emit_type(d, m->type, new_cont_id);
803                 } else if (!tstate->fwd_emitted && id != cont_id) {
804                         btf_dump_emit_struct_fwd(d, id, t);
805                         btf_dump_printf(d, ";\n\n");
806                         tstate->fwd_emitted = 1;
807                 }
808 
809                 if (top_level_def) {
810                         btf_dump_emit_struct_def(d, id, t, 0);
811                         btf_dump_printf(d, ";\n\n");
812                         tstate->emit_state = EMITTED;
813                 } else {
814                         tstate->emit_state = NOT_EMITTED;
815                 }
816                 break;
817         case BTF_KIND_FUNC_PROTO: {
818                 const struct btf_param *p = btf_params(t);
819                 __u16 n = btf_vlen(t);
820                 int i;
821 
822                 btf_dump_emit_type(d, t->type, cont_id);
823                 for (i = 0; i < n; i++, p++)
824                         btf_dump_emit_type(d, p->type, cont_id);
825 
826                 break;
827         }
828         default:
829                 break;
830         }
831 }
832 
833 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
834                                  const struct btf_type *t)
835 {
836         const struct btf_member *m;
837         int max_align = 1, align, i, bit_sz;
838         __u16 vlen;
839 
840         m = btf_members(t);
841         vlen = btf_vlen(t);
842         /* all non-bitfield fields have to be naturally aligned */
843         for (i = 0; i < vlen; i++, m++) {
844                 align = btf__align_of(btf, m->type);
845                 bit_sz = btf_member_bitfield_size(t, i);
846                 if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
847                         return true;
848                 max_align = max(align, max_align);
849         }
850         /* size of a non-packed struct has to be a multiple of its alignment */
851         if (t->size % max_align != 0)
852                 return true;
853         /*
854          * if original struct was marked as packed, but its layout is
855          * naturally aligned, we'll detect that it's not packed
856          */
857         return false;
858 }
859 
860 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
861                                       int cur_off, int next_off, int next_align,
862                                       bool in_bitfield, int lvl)
863 {
864         const struct {
865                 const char *name;
866                 int bits;
867         } pads[] = {
868                 {"long", d->ptr_sz * 8}, {"int", 32}, {"short", 16}, {"char", 8}
869         };
870         int new_off, pad_bits, bits, i;
871         const char *pad_type;
872 
873         if (cur_off >= next_off)
874                 return; /* no gap */
875 
876         /* For filling out padding we want to take advantage of
877          * natural alignment rules to minimize unnecessary explicit
878          * padding. First, we find the largest type (among long, int,
879          * short, or char) that can be used to force naturally aligned
880          * boundary. Once determined, we'll use such type to fill in
881          * the remaining padding gap. In some cases we can rely on
882          * compiler filling some gaps, but sometimes we need to force
883          * alignment to close natural alignment with markers like
884          * `long: 0` (this is always the case for bitfields).  Note
885          * that even if struct itself has, let's say 4-byte alignment
886          * (i.e., it only uses up to int-aligned types), using `long:
887          * X;` explicit padding doesn't actually change struct's
888          * overall alignment requirements, but compiler does take into
889          * account that type's (long, in this example) natural
890          * alignment requirements when adding implicit padding. We use
891          * this fact heavily and don't worry about ruining correct
892          * struct alignment requirement.
893          */
894         for (i = 0; i < ARRAY_SIZE(pads); i++) {
895                 pad_bits = pads[i].bits;
896                 pad_type = pads[i].name;
897 
898                 new_off = roundup(cur_off, pad_bits);
899                 if (new_off <= next_off)
900                         break;
901         }
902 
903         if (new_off > cur_off && new_off <= next_off) {
904                 /* We need explicit `<type>: 0` aligning mark if next
905                  * field is right on alignment offset and its
906                  * alignment requirement is less strict than <type>'s
907                  * alignment (so compiler won't naturally align to the
908                  * offset we expect), or if subsequent `<type>: X`,
909                  * will actually completely fit in the remaining hole,
910                  * making compiler basically ignore `<type>: X`
911                  * completely.
912                  */
913                 if (in_bitfield ||
914                     (new_off == next_off && roundup(cur_off, next_align * 8) != new_off) ||
915                     (new_off != next_off && next_off - new_off <= new_off - cur_off))
916                         /* but for bitfields we'll emit explicit bit count */
917                         btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type,
918                                         in_bitfield ? new_off - cur_off : 0);
919                 cur_off = new_off;
920         }
921 
922         /* Now we know we start at naturally aligned offset for a chosen
923          * padding type (long, int, short, or char), and so the rest is just
924          * a straightforward filling of remaining padding gap with full
925          * `<type>: sizeof(<type>);` markers, except for the last one, which
926          * might need smaller than sizeof(<type>) padding.
927          */
928         while (cur_off != next_off) {
929                 bits = min(next_off - cur_off, pad_bits);
930                 if (bits == pad_bits) {
931                         btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
932                         cur_off += bits;
933                         continue;
934                 }
935                 /* For the remainder padding that doesn't cover entire
936                  * pad_type bit length, we pick the smallest necessary type.
937                  * This is pure aesthetics, we could have just used `long`,
938                  * but having smallest necessary one communicates better the
939                  * scale of the padding gap.
940                  */
941                 for (i = ARRAY_SIZE(pads) - 1; i >= 0; i--) {
942                         pad_type = pads[i].name;
943                         pad_bits = pads[i].bits;
944                         if (pad_bits < bits)
945                                 continue;
946 
947                         btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, bits);
948                         cur_off += bits;
949                         break;
950                 }
951         }
952 }
953 
954 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
955                                      const struct btf_type *t)
956 {
957         btf_dump_printf(d, "%s%s%s",
958                         btf_is_struct(t) ? "struct" : "union",
959                         t->name_off ? " " : "",
960                         btf_dump_type_name(d, id));
961 }
962 
963 static void btf_dump_emit_struct_def(struct btf_dump *d,
964                                      __u32 id,
965                                      const struct btf_type *t,
966                                      int lvl)
967 {
968         const struct btf_member *m = btf_members(t);
969         bool is_struct = btf_is_struct(t);
970         bool packed, prev_bitfield = false;
971         int align, i, off = 0;
972         __u16 vlen = btf_vlen(t);
973 
974         align = btf__align_of(d->btf, id);
975         packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
976 
977         btf_dump_printf(d, "%s%s%s {",
978                         is_struct ? "struct" : "union",
979                         t->name_off ? " " : "",
980                         btf_dump_type_name(d, id));
981 
982         for (i = 0; i < vlen; i++, m++) {
983                 const char *fname;
984                 int m_off, m_sz, m_align;
985                 bool in_bitfield;
986 
987                 fname = btf_name_of(d, m->name_off);
988                 m_sz = btf_member_bitfield_size(t, i);
989                 m_off = btf_member_bit_offset(t, i);
990                 m_align = packed ? 1 : btf__align_of(d->btf, m->type);
991 
992                 in_bitfield = prev_bitfield && m_sz != 0;
993 
994                 btf_dump_emit_bit_padding(d, off, m_off, m_align, in_bitfield, lvl + 1);
995                 btf_dump_printf(d, "\n%s", pfx(lvl + 1));
996                 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
997 
998                 if (m_sz) {
999                         btf_dump_printf(d, ": %d", m_sz);
1000                         off = m_off + m_sz;
1001                         prev_bitfield = true;
1002                 } else {
1003                         m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
1004                         off = m_off + m_sz * 8;
1005                         prev_bitfield = false;
1006                 }
1007 
1008                 btf_dump_printf(d, ";");
1009         }
1010 
1011         /* pad at the end, if necessary */
1012         if (is_struct)
1013                 btf_dump_emit_bit_padding(d, off, t->size * 8, align, false, lvl + 1);
1014 
1015         /*
1016          * Keep `struct empty {}` on a single line,
1017          * only print newline when there are regular or padding fields.
1018          */
1019         if (vlen || t->size) {
1020                 btf_dump_printf(d, "\n");
1021                 btf_dump_printf(d, "%s}", pfx(lvl));
1022         } else {
1023                 btf_dump_printf(d, "}");
1024         }
1025         if (packed)
1026                 btf_dump_printf(d, " __attribute__((packed))");
1027 }
1028 
1029 static const char *missing_base_types[][2] = {
1030         /*
1031          * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
1032          * SIMD intrinsics. Alias them to standard base types.
1033          */
1034         { "__Poly8_t",          "unsigned char" },
1035         { "__Poly16_t",         "unsigned short" },
1036         { "__Poly64_t",         "unsigned long long" },
1037         { "__Poly128_t",        "unsigned __int128" },
1038 };
1039 
1040 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
1041                                           const struct btf_type *t)
1042 {
1043         const char *name = btf_dump_type_name(d, id);
1044         int i;
1045 
1046         for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
1047                 if (strcmp(name, missing_base_types[i][0]) == 0) {
1048                         btf_dump_printf(d, "typedef %s %s;\n\n",
1049                                         missing_base_types[i][1], name);
1050                         break;
1051                 }
1052         }
1053 }
1054 
1055 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
1056                                    const struct btf_type *t)
1057 {
1058         btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
1059 }
1060 
1061 static void btf_dump_emit_enum32_val(struct btf_dump *d,
1062                                      const struct btf_type *t,
1063                                      int lvl, __u16 vlen)
1064 {
1065         const struct btf_enum *v = btf_enum(t);
1066         bool is_signed = btf_kflag(t);
1067         const char *fmt_str;
1068         const char *name;
1069         size_t dup_cnt;
1070         int i;
1071 
1072         for (i = 0; i < vlen; i++, v++) {
1073                 name = btf_name_of(d, v->name_off);
1074                 /* enumerators share namespace with typedef idents */
1075                 dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1076                 if (dup_cnt > 1) {
1077                         fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,";
1078                         btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val);
1079                 } else {
1080                         fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,";
1081                         btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val);
1082                 }
1083         }
1084 }
1085 
1086 static void btf_dump_emit_enum64_val(struct btf_dump *d,
1087                                      const struct btf_type *t,
1088                                      int lvl, __u16 vlen)
1089 {
1090         const struct btf_enum64 *v = btf_enum64(t);
1091         bool is_signed = btf_kflag(t);
1092         const char *fmt_str;
1093         const char *name;
1094         size_t dup_cnt;
1095         __u64 val;
1096         int i;
1097 
1098         for (i = 0; i < vlen; i++, v++) {
1099                 name = btf_name_of(d, v->name_off);
1100                 dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1101                 val = btf_enum64_value(v);
1102                 if (dup_cnt > 1) {
1103                         fmt_str = is_signed ? "\n%s%s___%zd = %lldLL,"
1104                                             : "\n%s%s___%zd = %lluULL,";
1105                         btf_dump_printf(d, fmt_str,
1106                                         pfx(lvl + 1), name, dup_cnt,
1107                                         (unsigned long long)val);
1108                 } else {
1109                         fmt_str = is_signed ? "\n%s%s = %lldLL,"
1110                                             : "\n%s%s = %lluULL,";
1111                         btf_dump_printf(d, fmt_str,
1112                                         pfx(lvl + 1), name,
1113                                         (unsigned long long)val);
1114                 }
1115         }
1116 }
1117 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
1118                                    const struct btf_type *t,
1119                                    int lvl)
1120 {
1121         __u16 vlen = btf_vlen(t);
1122 
1123         btf_dump_printf(d, "enum%s%s",
1124                         t->name_off ? " " : "",
1125                         btf_dump_type_name(d, id));
1126 
1127         if (!vlen)
1128                 return;
1129 
1130         btf_dump_printf(d, " {");
1131         if (btf_is_enum(t))
1132                 btf_dump_emit_enum32_val(d, t, lvl, vlen);
1133         else
1134                 btf_dump_emit_enum64_val(d, t, lvl, vlen);
1135         btf_dump_printf(d, "\n%s}", pfx(lvl));
1136 
1137         /* special case enums with special sizes */
1138         if (t->size == 1) {
1139                 /* one-byte enums can be forced with mode(byte) attribute */
1140                 btf_dump_printf(d, " __attribute__((mode(byte)))");
1141         } else if (t->size == 8 && d->ptr_sz == 8) {
1142                 /* enum can be 8-byte sized if one of the enumerator values
1143                  * doesn't fit in 32-bit integer, or by adding mode(word)
1144                  * attribute (but probably only on 64-bit architectures); do
1145                  * our best here to try to satisfy the contract without adding
1146                  * unnecessary attributes
1147                  */
1148                 bool needs_word_mode;
1149 
1150                 if (btf_is_enum(t)) {
1151                         /* enum can't represent 64-bit values, so we need word mode */
1152                         needs_word_mode = true;
1153                 } else {
1154                         /* enum64 needs mode(word) if none of its values has
1155                          * non-zero upper 32-bits (which means that all values
1156                          * fit in 32-bit integers and won't cause compiler to
1157                          * bump enum to be 64-bit naturally
1158                          */
1159                         int i;
1160 
1161                         needs_word_mode = true;
1162                         for (i = 0; i < vlen; i++) {
1163                                 if (btf_enum64(t)[i].val_hi32 != 0) {
1164                                         needs_word_mode = false;
1165                                         break;
1166                                 }
1167                         }
1168                 }
1169                 if (needs_word_mode)
1170                         btf_dump_printf(d, " __attribute__((mode(word)))");
1171         }
1172 
1173 }
1174 
1175 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
1176                                   const struct btf_type *t)
1177 {
1178         const char *name = btf_dump_type_name(d, id);
1179 
1180         if (btf_kflag(t))
1181                 btf_dump_printf(d, "union %s", name);
1182         else
1183                 btf_dump_printf(d, "struct %s", name);
1184 }
1185 
1186 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
1187                                      const struct btf_type *t, int lvl)
1188 {
1189         const char *name = btf_dump_ident_name(d, id);
1190 
1191         /*
1192          * Old GCC versions are emitting invalid typedef for __gnuc_va_list
1193          * pointing to VOID. This generates warnings from btf_dump() and
1194          * results in uncompilable header file, so we are fixing it up here
1195          * with valid typedef into __builtin_va_list.
1196          */
1197         if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1198                 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1199                 return;
1200         }
1201 
1202         btf_dump_printf(d, "typedef ");
1203         btf_dump_emit_type_decl(d, t->type, name, lvl);
1204 }
1205 
1206 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1207 {
1208         __u32 *new_stack;
1209         size_t new_cap;
1210 
1211         if (d->decl_stack_cnt >= d->decl_stack_cap) {
1212                 new_cap = max(16, d->decl_stack_cap * 3 / 2);
1213                 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1214                 if (!new_stack)
1215                         return -ENOMEM;
1216                 d->decl_stack = new_stack;
1217                 d->decl_stack_cap = new_cap;
1218         }
1219 
1220         d->decl_stack[d->decl_stack_cnt++] = id;
1221 
1222         return 0;
1223 }
1224 
1225 /*
1226  * Emit type declaration (e.g., field type declaration in a struct or argument
1227  * declaration in function prototype) in correct C syntax.
1228  *
1229  * For most types it's trivial, but there are few quirky type declaration
1230  * cases worth mentioning:
1231  *   - function prototypes (especially nesting of function prototypes);
1232  *   - arrays;
1233  *   - const/volatile/restrict for pointers vs other types.
1234  *
1235  * For a good discussion of *PARSING* C syntax (as a human), see
1236  * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1237  * Ch.3 "Unscrambling Declarations in C".
1238  *
1239  * It won't help with BTF to C conversion much, though, as it's an opposite
1240  * problem. So we came up with this algorithm in reverse to van der Linden's
1241  * parsing algorithm. It goes from structured BTF representation of type
1242  * declaration to a valid compilable C syntax.
1243  *
1244  * For instance, consider this C typedef:
1245  *      typedef const int * const * arr[10] arr_t;
1246  * It will be represented in BTF with this chain of BTF types:
1247  *      [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1248  *
1249  * Notice how [const] modifier always goes before type it modifies in BTF type
1250  * graph, but in C syntax, const/volatile/restrict modifiers are written to
1251  * the right of pointers, but to the left of other types. There are also other
1252  * quirks, like function pointers, arrays of them, functions returning other
1253  * functions, etc.
1254  *
1255  * We handle that by pushing all the types to a stack, until we hit "terminal"
1256  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1257  * top of a stack, modifiers are handled differently. Array/function pointers
1258  * have also wildly different syntax and how nesting of them are done. See
1259  * code for authoritative definition.
1260  *
1261  * To avoid allocating new stack for each independent chain of BTF types, we
1262  * share one bigger stack, with each chain working only on its own local view
1263  * of a stack frame. Some care is required to "pop" stack frames after
1264  * processing type declaration chain.
1265  */
1266 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1267                              const struct btf_dump_emit_type_decl_opts *opts)
1268 {
1269         const char *fname;
1270         int lvl, err;
1271 
1272         if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1273                 return libbpf_err(-EINVAL);
1274 
1275         err = btf_dump_resize(d);
1276         if (err)
1277                 return libbpf_err(err);
1278 
1279         fname = OPTS_GET(opts, field_name, "");
1280         lvl = OPTS_GET(opts, indent_level, 0);
1281         d->strip_mods = OPTS_GET(opts, strip_mods, false);
1282         btf_dump_emit_type_decl(d, id, fname, lvl);
1283         d->strip_mods = false;
1284         return 0;
1285 }
1286 
1287 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1288                                     const char *fname, int lvl)
1289 {
1290         struct id_stack decl_stack;
1291         const struct btf_type *t;
1292         int err, stack_start;
1293 
1294         stack_start = d->decl_stack_cnt;
1295         for (;;) {
1296                 t = btf__type_by_id(d->btf, id);
1297                 if (d->strip_mods && btf_is_mod(t))
1298                         goto skip_mod;
1299 
1300                 err = btf_dump_push_decl_stack_id(d, id);
1301                 if (err < 0) {
1302                         /*
1303                          * if we don't have enough memory for entire type decl
1304                          * chain, restore stack, emit warning, and try to
1305                          * proceed nevertheless
1306                          */
1307                         pr_warn("not enough memory for decl stack:%d", err);
1308                         d->decl_stack_cnt = stack_start;
1309                         return;
1310                 }
1311 skip_mod:
1312                 /* VOID */
1313                 if (id == 0)
1314                         break;
1315 
1316                 switch (btf_kind(t)) {
1317                 case BTF_KIND_PTR:
1318                 case BTF_KIND_VOLATILE:
1319                 case BTF_KIND_CONST:
1320                 case BTF_KIND_RESTRICT:
1321                 case BTF_KIND_FUNC_PROTO:
1322                 case BTF_KIND_TYPE_TAG:
1323                         id = t->type;
1324                         break;
1325                 case BTF_KIND_ARRAY:
1326                         id = btf_array(t)->type;
1327                         break;
1328                 case BTF_KIND_INT:
1329                 case BTF_KIND_ENUM:
1330                 case BTF_KIND_ENUM64:
1331                 case BTF_KIND_FWD:
1332                 case BTF_KIND_STRUCT:
1333                 case BTF_KIND_UNION:
1334                 case BTF_KIND_TYPEDEF:
1335                 case BTF_KIND_FLOAT:
1336                         goto done;
1337                 default:
1338                         pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1339                                 btf_kind(t), id);
1340                         goto done;
1341                 }
1342         }
1343 done:
1344         /*
1345          * We might be inside a chain of declarations (e.g., array of function
1346          * pointers returning anonymous (so inlined) structs, having another
1347          * array field). Each of those needs its own "stack frame" to handle
1348          * emitting of declarations. Those stack frames are non-overlapping
1349          * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1350          * handle this set of nested stacks, we create a view corresponding to
1351          * our own "stack frame" and work with it as an independent stack.
1352          * We'll need to clean up after emit_type_chain() returns, though.
1353          */
1354         decl_stack.ids = d->decl_stack + stack_start;
1355         decl_stack.cnt = d->decl_stack_cnt - stack_start;
1356         btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1357         /*
1358          * emit_type_chain() guarantees that it will pop its entire decl_stack
1359          * frame before returning. But it works with a read-only view into
1360          * decl_stack, so it doesn't actually pop anything from the
1361          * perspective of shared btf_dump->decl_stack, per se. We need to
1362          * reset decl_stack state to how it was before us to avoid it growing
1363          * all the time.
1364          */
1365         d->decl_stack_cnt = stack_start;
1366 }
1367 
1368 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1369 {
1370         const struct btf_type *t;
1371         __u32 id;
1372 
1373         while (decl_stack->cnt) {
1374                 id = decl_stack->ids[decl_stack->cnt - 1];
1375                 t = btf__type_by_id(d->btf, id);
1376 
1377                 switch (btf_kind(t)) {
1378                 case BTF_KIND_VOLATILE:
1379                         btf_dump_printf(d, "volatile ");
1380                         break;
1381                 case BTF_KIND_CONST:
1382                         btf_dump_printf(d, "const ");
1383                         break;
1384                 case BTF_KIND_RESTRICT:
1385                         btf_dump_printf(d, "restrict ");
1386                         break;
1387                 default:
1388                         return;
1389                 }
1390                 decl_stack->cnt--;
1391         }
1392 }
1393 
1394 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1395 {
1396         const struct btf_type *t;
1397         __u32 id;
1398 
1399         while (decl_stack->cnt) {
1400                 id = decl_stack->ids[decl_stack->cnt - 1];
1401                 t = btf__type_by_id(d->btf, id);
1402                 if (!btf_is_mod(t))
1403                         return;
1404                 decl_stack->cnt--;
1405         }
1406 }
1407 
1408 static void btf_dump_emit_name(const struct btf_dump *d,
1409                                const char *name, bool last_was_ptr)
1410 {
1411         bool separate = name[0] && !last_was_ptr;
1412 
1413         btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1414 }
1415 
1416 static void btf_dump_emit_type_chain(struct btf_dump *d,
1417                                      struct id_stack *decls,
1418                                      const char *fname, int lvl)
1419 {
1420         /*
1421          * last_was_ptr is used to determine if we need to separate pointer
1422          * asterisk (*) from previous part of type signature with space, so
1423          * that we get `int ***`, instead of `int * * *`. We default to true
1424          * for cases where we have single pointer in a chain. E.g., in ptr ->
1425          * func_proto case. func_proto will start a new emit_type_chain call
1426          * with just ptr, which should be emitted as (*) or (*<fname>), so we
1427          * don't want to prepend space for that last pointer.
1428          */
1429         bool last_was_ptr = true;
1430         const struct btf_type *t;
1431         const char *name;
1432         __u16 kind;
1433         __u32 id;
1434 
1435         while (decls->cnt) {
1436                 id = decls->ids[--decls->cnt];
1437                 if (id == 0) {
1438                         /* VOID is a special snowflake */
1439                         btf_dump_emit_mods(d, decls);
1440                         btf_dump_printf(d, "void");
1441                         last_was_ptr = false;
1442                         continue;
1443                 }
1444 
1445                 t = btf__type_by_id(d->btf, id);
1446                 kind = btf_kind(t);
1447 
1448                 switch (kind) {
1449                 case BTF_KIND_INT:
1450                 case BTF_KIND_FLOAT:
1451                         btf_dump_emit_mods(d, decls);
1452                         name = btf_name_of(d, t->name_off);
1453                         btf_dump_printf(d, "%s", name);
1454                         break;
1455                 case BTF_KIND_STRUCT:
1456                 case BTF_KIND_UNION:
1457                         btf_dump_emit_mods(d, decls);
1458                         /* inline anonymous struct/union */
1459                         if (t->name_off == 0 && !d->skip_anon_defs)
1460                                 btf_dump_emit_struct_def(d, id, t, lvl);
1461                         else
1462                                 btf_dump_emit_struct_fwd(d, id, t);
1463                         break;
1464                 case BTF_KIND_ENUM:
1465                 case BTF_KIND_ENUM64:
1466                         btf_dump_emit_mods(d, decls);
1467                         /* inline anonymous enum */
1468                         if (t->name_off == 0 && !d->skip_anon_defs)
1469                                 btf_dump_emit_enum_def(d, id, t, lvl);
1470                         else
1471                                 btf_dump_emit_enum_fwd(d, id, t);
1472                         break;
1473                 case BTF_KIND_FWD:
1474                         btf_dump_emit_mods(d, decls);
1475                         btf_dump_emit_fwd_def(d, id, t);
1476                         break;
1477                 case BTF_KIND_TYPEDEF:
1478                         btf_dump_emit_mods(d, decls);
1479                         btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1480                         break;
1481                 case BTF_KIND_PTR:
1482                         btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1483                         break;
1484                 case BTF_KIND_VOLATILE:
1485                         btf_dump_printf(d, " volatile");
1486                         break;
1487                 case BTF_KIND_CONST:
1488                         btf_dump_printf(d, " const");
1489                         break;
1490                 case BTF_KIND_RESTRICT:
1491                         btf_dump_printf(d, " restrict");
1492                         break;
1493                 case BTF_KIND_TYPE_TAG:
1494                         btf_dump_emit_mods(d, decls);
1495                         name = btf_name_of(d, t->name_off);
1496                         btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name);
1497                         break;
1498                 case BTF_KIND_ARRAY: {
1499                         const struct btf_array *a = btf_array(t);
1500                         const struct btf_type *next_t;
1501                         __u32 next_id;
1502                         bool multidim;
1503                         /*
1504                          * GCC has a bug
1505                          * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1506                          * which causes it to emit extra const/volatile
1507                          * modifiers for an array, if array's element type has
1508                          * const/volatile modifiers. Clang doesn't do that.
1509                          * In general, it doesn't seem very meaningful to have
1510                          * a const/volatile modifier for array, so we are
1511                          * going to silently skip them here.
1512                          */
1513                         btf_dump_drop_mods(d, decls);
1514 
1515                         if (decls->cnt == 0) {
1516                                 btf_dump_emit_name(d, fname, last_was_ptr);
1517                                 btf_dump_printf(d, "[%u]", a->nelems);
1518                                 return;
1519                         }
1520 
1521                         next_id = decls->ids[decls->cnt - 1];
1522                         next_t = btf__type_by_id(d->btf, next_id);
1523                         multidim = btf_is_array(next_t);
1524                         /* we need space if we have named non-pointer */
1525                         if (fname[0] && !last_was_ptr)
1526                                 btf_dump_printf(d, " ");
1527                         /* no parentheses for multi-dimensional array */
1528                         if (!multidim)
1529                                 btf_dump_printf(d, "(");
1530                         btf_dump_emit_type_chain(d, decls, fname, lvl);
1531                         if (!multidim)
1532                                 btf_dump_printf(d, ")");
1533                         btf_dump_printf(d, "[%u]", a->nelems);
1534                         return;
1535                 }
1536                 case BTF_KIND_FUNC_PROTO: {
1537                         const struct btf_param *p = btf_params(t);
1538                         __u16 vlen = btf_vlen(t);
1539                         int i;
1540 
1541                         /*
1542                          * GCC emits extra volatile qualifier for
1543                          * __attribute__((noreturn)) function pointers. Clang
1544                          * doesn't do it. It's a GCC quirk for backwards
1545                          * compatibility with code written for GCC <2.5. So,
1546                          * similarly to extra qualifiers for array, just drop
1547                          * them, instead of handling them.
1548                          */
1549                         btf_dump_drop_mods(d, decls);
1550                         if (decls->cnt) {
1551                                 btf_dump_printf(d, " (");
1552                                 btf_dump_emit_type_chain(d, decls, fname, lvl);
1553                                 btf_dump_printf(d, ")");
1554                         } else {
1555                                 btf_dump_emit_name(d, fname, last_was_ptr);
1556                         }
1557                         btf_dump_printf(d, "(");
1558                         /*
1559                          * Clang for BPF target generates func_proto with no
1560                          * args as a func_proto with a single void arg (e.g.,
1561                          * `int (*f)(void)` vs just `int (*f)()`). We are
1562                          * going to emit valid empty args (void) syntax for
1563                          * such case. Similarly and conveniently, valid
1564                          * no args case can be special-cased here as well.
1565                          */
1566                         if (vlen == 0 || (vlen == 1 && p->type == 0)) {
1567                                 btf_dump_printf(d, "void)");
1568                                 return;
1569                         }
1570 
1571                         for (i = 0; i < vlen; i++, p++) {
1572                                 if (i > 0)
1573                                         btf_dump_printf(d, ", ");
1574 
1575                                 /* last arg of type void is vararg */
1576                                 if (i == vlen - 1 && p->type == 0) {
1577                                         btf_dump_printf(d, "...");
1578                                         break;
1579                                 }
1580 
1581                                 name = btf_name_of(d, p->name_off);
1582                                 btf_dump_emit_type_decl(d, p->type, name, lvl);
1583                         }
1584 
1585                         btf_dump_printf(d, ")");
1586                         return;
1587                 }
1588                 default:
1589                         pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1590                                 kind, id);
1591                         return;
1592                 }
1593 
1594                 last_was_ptr = kind == BTF_KIND_PTR;
1595         }
1596 
1597         btf_dump_emit_name(d, fname, last_was_ptr);
1598 }
1599 
1600 /* show type name as (type_name) */
1601 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id,
1602                                     bool top_level)
1603 {
1604         const struct btf_type *t;
1605 
1606         /* for array members, we don't bother emitting type name for each
1607          * member to avoid the redundancy of
1608          * .name = (char[4])[(char)'f',(char)'o',(char)'o',]
1609          */
1610         if (d->typed_dump->is_array_member)
1611                 return;
1612 
1613         /* avoid type name specification for variable/section; it will be done
1614          * for the associated variable value(s).
1615          */
1616         t = btf__type_by_id(d->btf, id);
1617         if (btf_is_var(t) || btf_is_datasec(t))
1618                 return;
1619 
1620         if (top_level)
1621                 btf_dump_printf(d, "(");
1622 
1623         d->skip_anon_defs = true;
1624         d->strip_mods = true;
1625         btf_dump_emit_type_decl(d, id, "", 0);
1626         d->strip_mods = false;
1627         d->skip_anon_defs = false;
1628 
1629         if (top_level)
1630                 btf_dump_printf(d, ")");
1631 }
1632 
1633 /* return number of duplicates (occurrences) of a given name */
1634 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1635                                  const char *orig_name)
1636 {
1637         char *old_name, *new_name;
1638         size_t dup_cnt = 0;
1639         int err;
1640 
1641         new_name = strdup(orig_name);
1642         if (!new_name)
1643                 return 1;
1644 
1645         (void)hashmap__find(name_map, orig_name, &dup_cnt);
1646         dup_cnt++;
1647 
1648         err = hashmap__set(name_map, new_name, dup_cnt, &old_name, NULL);
1649         if (err)
1650                 free(new_name);
1651 
1652         free(old_name);
1653 
1654         return dup_cnt;
1655 }
1656 
1657 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1658                                          struct hashmap *name_map)
1659 {
1660         struct btf_dump_type_aux_state *s = &d->type_states[id];
1661         const struct btf_type *t = btf__type_by_id(d->btf, id);
1662         const char *orig_name = btf_name_of(d, t->name_off);
1663         const char **cached_name = &d->cached_names[id];
1664         size_t dup_cnt;
1665 
1666         if (t->name_off == 0)
1667                 return "";
1668 
1669         if (s->name_resolved)
1670                 return *cached_name ? *cached_name : orig_name;
1671 
1672         if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) {
1673                 s->name_resolved = 1;
1674                 return orig_name;
1675         }
1676 
1677         dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1678         if (dup_cnt > 1) {
1679                 const size_t max_len = 256;
1680                 char new_name[max_len];
1681 
1682                 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1683                 *cached_name = strdup(new_name);
1684         }
1685 
1686         s->name_resolved = 1;
1687         return *cached_name ? *cached_name : orig_name;
1688 }
1689 
1690 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1691 {
1692         return btf_dump_resolve_name(d, id, d->type_names);
1693 }
1694 
1695 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1696 {
1697         return btf_dump_resolve_name(d, id, d->ident_names);
1698 }
1699 
1700 static int btf_dump_dump_type_data(struct btf_dump *d,
1701                                    const char *fname,
1702                                    const struct btf_type *t,
1703                                    __u32 id,
1704                                    const void *data,
1705                                    __u8 bits_offset,
1706                                    __u8 bit_sz);
1707 
1708 static const char *btf_dump_data_newline(struct btf_dump *d)
1709 {
1710         return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n";
1711 }
1712 
1713 static const char *btf_dump_data_delim(struct btf_dump *d)
1714 {
1715         return d->typed_dump->depth == 0 ? "" : ",";
1716 }
1717 
1718 static void btf_dump_data_pfx(struct btf_dump *d)
1719 {
1720         int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth;
1721 
1722         if (d->typed_dump->compact)
1723                 return;
1724 
1725         for (i = 0; i < lvl; i++)
1726                 btf_dump_printf(d, "%s", d->typed_dump->indent_str);
1727 }
1728 
1729 /* A macro is used here as btf_type_value[s]() appends format specifiers
1730  * to the format specifier passed in; these do the work of appending
1731  * delimiters etc while the caller simply has to specify the type values
1732  * in the format specifier + value(s).
1733  */
1734 #define btf_dump_type_values(d, fmt, ...)                               \
1735         btf_dump_printf(d, fmt "%s%s",                                  \
1736                         ##__VA_ARGS__,                                  \
1737                         btf_dump_data_delim(d),                         \
1738                         btf_dump_data_newline(d))
1739 
1740 static int btf_dump_unsupported_data(struct btf_dump *d,
1741                                      const struct btf_type *t,
1742                                      __u32 id)
1743 {
1744         btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t));
1745         return -ENOTSUP;
1746 }
1747 
1748 static int btf_dump_get_bitfield_value(struct btf_dump *d,
1749                                        const struct btf_type *t,
1750                                        const void *data,
1751                                        __u8 bits_offset,
1752                                        __u8 bit_sz,
1753                                        __u64 *value)
1754 {
1755         __u16 left_shift_bits, right_shift_bits;
1756         const __u8 *bytes = data;
1757         __u8 nr_copy_bits;
1758         __u64 num = 0;
1759         int i;
1760 
1761         /* Maximum supported bitfield size is 64 bits */
1762         if (t->size > 8) {
1763                 pr_warn("unexpected bitfield size %d\n", t->size);
1764                 return -EINVAL;
1765         }
1766 
1767         /* Bitfield value retrieval is done in two steps; first relevant bytes are
1768          * stored in num, then we left/right shift num to eliminate irrelevant bits.
1769          */
1770 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1771         for (i = t->size - 1; i >= 0; i--)
1772                 num = num * 256 + bytes[i];
1773         nr_copy_bits = bit_sz + bits_offset;
1774 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1775         for (i = 0; i < t->size; i++)
1776                 num = num * 256 + bytes[i];
1777         nr_copy_bits = t->size * 8 - bits_offset;
1778 #else
1779 # error "Unrecognized __BYTE_ORDER__"
1780 #endif
1781         left_shift_bits = 64 - nr_copy_bits;
1782         right_shift_bits = 64 - bit_sz;
1783 
1784         *value = (num << left_shift_bits) >> right_shift_bits;
1785 
1786         return 0;
1787 }
1788 
1789 static int btf_dump_bitfield_check_zero(struct btf_dump *d,
1790                                         const struct btf_type *t,
1791                                         const void *data,
1792                                         __u8 bits_offset,
1793                                         __u8 bit_sz)
1794 {
1795         __u64 check_num;
1796         int err;
1797 
1798         err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num);
1799         if (err)
1800                 return err;
1801         if (check_num == 0)
1802                 return -ENODATA;
1803         return 0;
1804 }
1805 
1806 static int btf_dump_bitfield_data(struct btf_dump *d,
1807                                   const struct btf_type *t,
1808                                   const void *data,
1809                                   __u8 bits_offset,
1810                                   __u8 bit_sz)
1811 {
1812         __u64 print_num;
1813         int err;
1814 
1815         err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num);
1816         if (err)
1817                 return err;
1818 
1819         btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num);
1820 
1821         return 0;
1822 }
1823 
1824 /* ints, floats and ptrs */
1825 static int btf_dump_base_type_check_zero(struct btf_dump *d,
1826                                          const struct btf_type *t,
1827                                          __u32 id,
1828                                          const void *data)
1829 {
1830         static __u8 bytecmp[16] = {};
1831         int nr_bytes;
1832 
1833         /* For pointer types, pointer size is not defined on a per-type basis.
1834          * On dump creation however, we store the pointer size.
1835          */
1836         if (btf_kind(t) == BTF_KIND_PTR)
1837                 nr_bytes = d->ptr_sz;
1838         else
1839                 nr_bytes = t->size;
1840 
1841         if (nr_bytes < 1 || nr_bytes > 16) {
1842                 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id);
1843                 return -EINVAL;
1844         }
1845 
1846         if (memcmp(data, bytecmp, nr_bytes) == 0)
1847                 return -ENODATA;
1848         return 0;
1849 }
1850 
1851 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id,
1852                            const void *data)
1853 {
1854         int alignment = btf__align_of(btf, type_id);
1855 
1856         if (alignment == 0)
1857                 return false;
1858 
1859         return ((uintptr_t)data) % alignment == 0;
1860 }
1861 
1862 static int btf_dump_int_data(struct btf_dump *d,
1863                              const struct btf_type *t,
1864                              __u32 type_id,
1865                              const void *data,
1866                              __u8 bits_offset)
1867 {
1868         __u8 encoding = btf_int_encoding(t);
1869         bool sign = encoding & BTF_INT_SIGNED;
1870         char buf[16] __attribute__((aligned(16)));
1871         int sz = t->size;
1872 
1873         if (sz == 0 || sz > sizeof(buf)) {
1874                 pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1875                 return -EINVAL;
1876         }
1877 
1878         /* handle packed int data - accesses of integers not aligned on
1879          * int boundaries can cause problems on some platforms.
1880          */
1881         if (!ptr_is_aligned(d->btf, type_id, data)) {
1882                 memcpy(buf, data, sz);
1883                 data = buf;
1884         }
1885 
1886         switch (sz) {
1887         case 16: {
1888                 const __u64 *ints = data;
1889                 __u64 lsi, msi;
1890 
1891                 /* avoid use of __int128 as some 32-bit platforms do not
1892                  * support it.
1893                  */
1894 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1895                 lsi = ints[0];
1896                 msi = ints[1];
1897 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1898                 lsi = ints[1];
1899                 msi = ints[0];
1900 #else
1901 # error "Unrecognized __BYTE_ORDER__"
1902 #endif
1903                 if (msi == 0)
1904                         btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi);
1905                 else
1906                         btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi,
1907                                              (unsigned long long)lsi);
1908                 break;
1909         }
1910         case 8:
1911                 if (sign)
1912                         btf_dump_type_values(d, "%lld", *(long long *)data);
1913                 else
1914                         btf_dump_type_values(d, "%llu", *(unsigned long long *)data);
1915                 break;
1916         case 4:
1917                 if (sign)
1918                         btf_dump_type_values(d, "%d", *(__s32 *)data);
1919                 else
1920                         btf_dump_type_values(d, "%u", *(__u32 *)data);
1921                 break;
1922         case 2:
1923                 if (sign)
1924                         btf_dump_type_values(d, "%d", *(__s16 *)data);
1925                 else
1926                         btf_dump_type_values(d, "%u", *(__u16 *)data);
1927                 break;
1928         case 1:
1929                 if (d->typed_dump->is_array_char) {
1930                         /* check for null terminator */
1931                         if (d->typed_dump->is_array_terminated)
1932                                 break;
1933                         if (*(char *)data == '\0') {
1934                                 btf_dump_type_values(d, "'\\'");
1935                                 d->typed_dump->is_array_terminated = true;
1936                                 break;
1937                         }
1938                         if (isprint(*(char *)data)) {
1939                                 btf_dump_type_values(d, "'%c'", *(char *)data);
1940                                 break;
1941                         }
1942                 }
1943                 if (sign)
1944                         btf_dump_type_values(d, "%d", *(__s8 *)data);
1945                 else
1946                         btf_dump_type_values(d, "%u", *(__u8 *)data);
1947                 break;
1948         default:
1949                 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id);
1950                 return -EINVAL;
1951         }
1952         return 0;
1953 }
1954 
1955 union float_data {
1956         long double ld;
1957         double d;
1958         float f;
1959 };
1960 
1961 static int btf_dump_float_data(struct btf_dump *d,
1962                                const struct btf_type *t,
1963                                __u32 type_id,
1964                                const void *data)
1965 {
1966         const union float_data *flp = data;
1967         union float_data fl;
1968         int sz = t->size;
1969 
1970         /* handle unaligned data; copy to local union */
1971         if (!ptr_is_aligned(d->btf, type_id, data)) {
1972                 memcpy(&fl, data, sz);
1973                 flp = &fl;
1974         }
1975 
1976         switch (sz) {
1977         case 16:
1978                 btf_dump_type_values(d, "%Lf", flp->ld);
1979                 break;
1980         case 8:
1981                 btf_dump_type_values(d, "%lf", flp->d);
1982                 break;
1983         case 4:
1984                 btf_dump_type_values(d, "%f", flp->f);
1985                 break;
1986         default:
1987                 pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1988                 return -EINVAL;
1989         }
1990         return 0;
1991 }
1992 
1993 static int btf_dump_var_data(struct btf_dump *d,
1994                              const struct btf_type *v,
1995                              __u32 id,
1996                              const void *data)
1997 {
1998         enum btf_func_linkage linkage = btf_var(v)->linkage;
1999         const struct btf_type *t;
2000         const char *l;
2001         __u32 type_id;
2002 
2003         switch (linkage) {
2004         case BTF_FUNC_STATIC:
2005                 l = "static ";
2006                 break;
2007         case BTF_FUNC_EXTERN:
2008                 l = "extern ";
2009                 break;
2010         case BTF_FUNC_GLOBAL:
2011         default:
2012                 l = "";
2013                 break;
2014         }
2015 
2016         /* format of output here is [linkage] [type] [varname] = (type)value,
2017          * for example "static int cpu_profile_flip = (int)1"
2018          */
2019         btf_dump_printf(d, "%s", l);
2020         type_id = v->type;
2021         t = btf__type_by_id(d->btf, type_id);
2022         btf_dump_emit_type_cast(d, type_id, false);
2023         btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off));
2024         return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0);
2025 }
2026 
2027 static int btf_dump_array_data(struct btf_dump *d,
2028                                const struct btf_type *t,
2029                                __u32 id,
2030                                const void *data)
2031 {
2032         const struct btf_array *array = btf_array(t);
2033         const struct btf_type *elem_type;
2034         __u32 i, elem_type_id;
2035         __s64 elem_size;
2036         bool is_array_member;
2037         bool is_array_terminated;
2038 
2039         elem_type_id = array->type;
2040         elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2041         elem_size = btf__resolve_size(d->btf, elem_type_id);
2042         if (elem_size <= 0) {
2043                 pr_warn("unexpected elem size %zd for array type [%u]\n",
2044                         (ssize_t)elem_size, id);
2045                 return -EINVAL;
2046         }
2047 
2048         if (btf_is_int(elem_type)) {
2049                 /*
2050                  * BTF_INT_CHAR encoding never seems to be set for
2051                  * char arrays, so if size is 1 and element is
2052                  * printable as a char, we'll do that.
2053                  */
2054                 if (elem_size == 1)
2055                         d->typed_dump->is_array_char = true;
2056         }
2057 
2058         /* note that we increment depth before calling btf_dump_print() below;
2059          * this is intentional.  btf_dump_data_newline() will not print a
2060          * newline for depth 0 (since this leaves us with trailing newlines
2061          * at the end of typed display), so depth is incremented first.
2062          * For similar reasons, we decrement depth before showing the closing
2063          * parenthesis.
2064          */
2065         d->typed_dump->depth++;
2066         btf_dump_printf(d, "[%s", btf_dump_data_newline(d));
2067 
2068         /* may be a multidimensional array, so store current "is array member"
2069          * status so we can restore it correctly later.
2070          */
2071         is_array_member = d->typed_dump->is_array_member;
2072         d->typed_dump->is_array_member = true;
2073         is_array_terminated = d->typed_dump->is_array_terminated;
2074         d->typed_dump->is_array_terminated = false;
2075         for (i = 0; i < array->nelems; i++, data += elem_size) {
2076                 if (d->typed_dump->is_array_terminated)
2077                         break;
2078                 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0);
2079         }
2080         d->typed_dump->is_array_member = is_array_member;
2081         d->typed_dump->is_array_terminated = is_array_terminated;
2082         d->typed_dump->depth--;
2083         btf_dump_data_pfx(d);
2084         btf_dump_type_values(d, "]");
2085 
2086         return 0;
2087 }
2088 
2089 static int btf_dump_struct_data(struct btf_dump *d,
2090                                 const struct btf_type *t,
2091                                 __u32 id,
2092                                 const void *data)
2093 {
2094         const struct btf_member *m = btf_members(t);
2095         __u16 n = btf_vlen(t);
2096         int i, err = 0;
2097 
2098         /* note that we increment depth before calling btf_dump_print() below;
2099          * this is intentional.  btf_dump_data_newline() will not print a
2100          * newline for depth 0 (since this leaves us with trailing newlines
2101          * at the end of typed display), so depth is incremented first.
2102          * For similar reasons, we decrement depth before showing the closing
2103          * parenthesis.
2104          */
2105         d->typed_dump->depth++;
2106         btf_dump_printf(d, "{%s", btf_dump_data_newline(d));
2107 
2108         for (i = 0; i < n; i++, m++) {
2109                 const struct btf_type *mtype;
2110                 const char *mname;
2111                 __u32 moffset;
2112                 __u8 bit_sz;
2113 
2114                 mtype = btf__type_by_id(d->btf, m->type);
2115                 mname = btf_name_of(d, m->name_off);
2116                 moffset = btf_member_bit_offset(t, i);
2117 
2118                 bit_sz = btf_member_bitfield_size(t, i);
2119                 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8,
2120                                               moffset % 8, bit_sz);
2121                 if (err < 0)
2122                         return err;
2123         }
2124         d->typed_dump->depth--;
2125         btf_dump_data_pfx(d);
2126         btf_dump_type_values(d, "}");
2127         return err;
2128 }
2129 
2130 union ptr_data {
2131         unsigned int p;
2132         unsigned long long lp;
2133 };
2134 
2135 static int btf_dump_ptr_data(struct btf_dump *d,
2136                               const struct btf_type *t,
2137                               __u32 id,
2138                               const void *data)
2139 {
2140         if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) {
2141                 btf_dump_type_values(d, "%p", *(void **)data);
2142         } else {
2143                 union ptr_data pt;
2144 
2145                 memcpy(&pt, data, d->ptr_sz);
2146                 if (d->ptr_sz == 4)
2147                         btf_dump_type_values(d, "0x%x", pt.p);
2148                 else
2149                         btf_dump_type_values(d, "0x%llx", pt.lp);
2150         }
2151         return 0;
2152 }
2153 
2154 static int btf_dump_get_enum_value(struct btf_dump *d,
2155                                    const struct btf_type *t,
2156                                    const void *data,
2157                                    __u32 id,
2158                                    __s64 *value)
2159 {
2160         bool is_signed = btf_kflag(t);
2161 
2162         if (!ptr_is_aligned(d->btf, id, data)) {
2163                 __u64 val;
2164                 int err;
2165 
2166                 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val);
2167                 if (err)
2168                         return err;
2169                 *value = (__s64)val;
2170                 return 0;
2171         }
2172 
2173         switch (t->size) {
2174         case 8:
2175                 *value = *(__s64 *)data;
2176                 return 0;
2177         case 4:
2178                 *value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data;
2179                 return 0;
2180         case 2:
2181                 *value = is_signed ? *(__s16 *)data : *(__u16 *)data;
2182                 return 0;
2183         case 1:
2184                 *value = is_signed ? *(__s8 *)data : *(__u8 *)data;
2185                 return 0;
2186         default:
2187                 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id);
2188                 return -EINVAL;
2189         }
2190 }
2191 
2192 static int btf_dump_enum_data(struct btf_dump *d,
2193                               const struct btf_type *t,
2194                               __u32 id,
2195                               const void *data)
2196 {
2197         bool is_signed;
2198         __s64 value;
2199         int i, err;
2200 
2201         err = btf_dump_get_enum_value(d, t, data, id, &value);
2202         if (err)
2203                 return err;
2204 
2205         is_signed = btf_kflag(t);
2206         if (btf_is_enum(t)) {
2207                 const struct btf_enum *e;
2208 
2209                 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) {
2210                         if (value != e->val)
2211                                 continue;
2212                         btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2213                         return 0;
2214                 }
2215 
2216                 btf_dump_type_values(d, is_signed ? "%d" : "%u", value);
2217         } else {
2218                 const struct btf_enum64 *e;
2219 
2220                 for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) {
2221                         if (value != btf_enum64_value(e))
2222                                 continue;
2223                         btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2224                         return 0;
2225                 }
2226 
2227                 btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL",
2228                                      (unsigned long long)value);
2229         }
2230         return 0;
2231 }
2232 
2233 static int btf_dump_datasec_data(struct btf_dump *d,
2234                                  const struct btf_type *t,
2235                                  __u32 id,
2236                                  const void *data)
2237 {
2238         const struct btf_var_secinfo *vsi;
2239         const struct btf_type *var;
2240         __u32 i;
2241         int err;
2242 
2243         btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off));
2244 
2245         for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) {
2246                 var = btf__type_by_id(d->btf, vsi->type);
2247                 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0);
2248                 if (err < 0)
2249                         return err;
2250                 btf_dump_printf(d, ";");
2251         }
2252         return 0;
2253 }
2254 
2255 /* return size of type, or if base type overflows, return -E2BIG. */
2256 static int btf_dump_type_data_check_overflow(struct btf_dump *d,
2257                                              const struct btf_type *t,
2258                                              __u32 id,
2259                                              const void *data,
2260                                              __u8 bits_offset,
2261                                              __u8 bit_sz)
2262 {
2263         __s64 size;
2264 
2265         if (bit_sz) {
2266                 /* bits_offset is at most 7. bit_sz is at most 128. */
2267                 __u8 nr_bytes = (bits_offset + bit_sz + 7) / 8;
2268 
2269                 /* When bit_sz is non zero, it is called from
2270                  * btf_dump_struct_data() where it only cares about
2271                  * negative error value.
2272                  * Return nr_bytes in success case to make it
2273                  * consistent as the regular integer case below.
2274                  */
2275                 return data + nr_bytes > d->typed_dump->data_end ? -E2BIG : nr_bytes;
2276         }
2277 
2278         size = btf__resolve_size(d->btf, id);
2279 
2280         if (size < 0 || size >= INT_MAX) {
2281                 pr_warn("unexpected size [%zu] for id [%u]\n",
2282                         (size_t)size, id);
2283                 return -EINVAL;
2284         }
2285 
2286         /* Only do overflow checking for base types; we do not want to
2287          * avoid showing part of a struct, union or array, even if we
2288          * do not have enough data to show the full object.  By
2289          * restricting overflow checking to base types we can ensure
2290          * that partial display succeeds, while avoiding overflowing
2291          * and using bogus data for display.
2292          */
2293         t = skip_mods_and_typedefs(d->btf, id, NULL);
2294         if (!t) {
2295                 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n",
2296                         id);
2297                 return -EINVAL;
2298         }
2299 
2300         switch (btf_kind(t)) {
2301         case BTF_KIND_INT:
2302         case BTF_KIND_FLOAT:
2303         case BTF_KIND_PTR:
2304         case BTF_KIND_ENUM:
2305         case BTF_KIND_ENUM64:
2306                 if (data + bits_offset / 8 + size > d->typed_dump->data_end)
2307                         return -E2BIG;
2308                 break;
2309         default:
2310                 break;
2311         }
2312         return (int)size;
2313 }
2314 
2315 static int btf_dump_type_data_check_zero(struct btf_dump *d,
2316                                          const struct btf_type *t,
2317                                          __u32 id,
2318                                          const void *data,
2319                                          __u8 bits_offset,
2320                                          __u8 bit_sz)
2321 {
2322         __s64 value;
2323         int i, err;
2324 
2325         /* toplevel exceptions; we show zero values if
2326          * - we ask for them (emit_zeros)
2327          * - if we are at top-level so we see "struct empty { }"
2328          * - or if we are an array member and the array is non-empty and
2329          *   not a char array; we don't want to be in a situation where we
2330          *   have an integer array 0, 1, 0, 1 and only show non-zero values.
2331          *   If the array contains zeroes only, or is a char array starting
2332          *   with a '\0', the array-level check_zero() will prevent showing it;
2333          *   we are concerned with determining zero value at the array member
2334          *   level here.
2335          */
2336         if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 ||
2337             (d->typed_dump->is_array_member &&
2338              !d->typed_dump->is_array_char))
2339                 return 0;
2340 
2341         t = skip_mods_and_typedefs(d->btf, id, NULL);
2342 
2343         switch (btf_kind(t)) {
2344         case BTF_KIND_INT:
2345                 if (bit_sz)
2346                         return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz);
2347                 return btf_dump_base_type_check_zero(d, t, id, data);
2348         case BTF_KIND_FLOAT:
2349         case BTF_KIND_PTR:
2350                 return btf_dump_base_type_check_zero(d, t, id, data);
2351         case BTF_KIND_ARRAY: {
2352                 const struct btf_array *array = btf_array(t);
2353                 const struct btf_type *elem_type;
2354                 __u32 elem_type_id, elem_size;
2355                 bool ischar;
2356 
2357                 elem_type_id = array->type;
2358                 elem_size = btf__resolve_size(d->btf, elem_type_id);
2359                 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2360 
2361                 ischar = btf_is_int(elem_type) && elem_size == 1;
2362 
2363                 /* check all elements; if _any_ element is nonzero, all
2364                  * of array is displayed.  We make an exception however
2365                  * for char arrays where the first element is 0; these
2366                  * are considered zeroed also, even if later elements are
2367                  * non-zero because the string is terminated.
2368                  */
2369                 for (i = 0; i < array->nelems; i++) {
2370                         if (i == 0 && ischar && *(char *)data == 0)
2371                                 return -ENODATA;
2372                         err = btf_dump_type_data_check_zero(d, elem_type,
2373                                                             elem_type_id,
2374                                                             data +
2375                                                             (i * elem_size),
2376                                                             bits_offset, 0);
2377                         if (err != -ENODATA)
2378                                 return err;
2379                 }
2380                 return -ENODATA;
2381         }
2382         case BTF_KIND_STRUCT:
2383         case BTF_KIND_UNION: {
2384                 const struct btf_member *m = btf_members(t);
2385                 __u16 n = btf_vlen(t);
2386 
2387                 /* if any struct/union member is non-zero, the struct/union
2388                  * is considered non-zero and dumped.
2389                  */
2390                 for (i = 0; i < n; i++, m++) {
2391                         const struct btf_type *mtype;
2392                         __u32 moffset;
2393 
2394                         mtype = btf__type_by_id(d->btf, m->type);
2395                         moffset = btf_member_bit_offset(t, i);
2396 
2397                         /* btf_int_bits() does not store member bitfield size;
2398                          * bitfield size needs to be stored here so int display
2399                          * of member can retrieve it.
2400                          */
2401                         bit_sz = btf_member_bitfield_size(t, i);
2402                         err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8,
2403                                                             moffset % 8, bit_sz);
2404                         if (err != ENODATA)
2405                                 return err;
2406                 }
2407                 return -ENODATA;
2408         }
2409         case BTF_KIND_ENUM:
2410         case BTF_KIND_ENUM64:
2411                 err = btf_dump_get_enum_value(d, t, data, id, &value);
2412                 if (err)
2413                         return err;
2414                 if (value == 0)
2415                         return -ENODATA;
2416                 return 0;
2417         default:
2418                 return 0;
2419         }
2420 }
2421 
2422 /* returns size of data dumped, or error. */
2423 static int btf_dump_dump_type_data(struct btf_dump *d,
2424                                    const char *fname,
2425                                    const struct btf_type *t,
2426                                    __u32 id,
2427                                    const void *data,
2428                                    __u8 bits_offset,
2429                                    __u8 bit_sz)
2430 {
2431         int size, err = 0;
2432 
2433         size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset, bit_sz);
2434         if (size < 0)
2435                 return size;
2436         err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz);
2437         if (err) {
2438                 /* zeroed data is expected and not an error, so simply skip
2439                  * dumping such data.  Record other errors however.
2440                  */
2441                 if (err == -ENODATA)
2442                         return size;
2443                 return err;
2444         }
2445         btf_dump_data_pfx(d);
2446 
2447         if (!d->typed_dump->skip_names) {
2448                 if (fname && strlen(fname) > 0)
2449                         btf_dump_printf(d, ".%s = ", fname);
2450                 btf_dump_emit_type_cast(d, id, true);
2451         }
2452 
2453         t = skip_mods_and_typedefs(d->btf, id, NULL);
2454 
2455         switch (btf_kind(t)) {
2456         case BTF_KIND_UNKN:
2457         case BTF_KIND_FWD:
2458         case BTF_KIND_FUNC:
2459         case BTF_KIND_FUNC_PROTO:
2460         case BTF_KIND_DECL_TAG:
2461                 err = btf_dump_unsupported_data(d, t, id);
2462                 break;
2463         case BTF_KIND_INT:
2464                 if (bit_sz)
2465                         err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz);
2466                 else
2467                         err = btf_dump_int_data(d, t, id, data, bits_offset);
2468                 break;
2469         case BTF_KIND_FLOAT:
2470                 err = btf_dump_float_data(d, t, id, data);
2471                 break;
2472         case BTF_KIND_PTR:
2473                 err = btf_dump_ptr_data(d, t, id, data);
2474                 break;
2475         case BTF_KIND_ARRAY:
2476                 err = btf_dump_array_data(d, t, id, data);
2477                 break;
2478         case BTF_KIND_STRUCT:
2479         case BTF_KIND_UNION:
2480                 err = btf_dump_struct_data(d, t, id, data);
2481                 break;
2482         case BTF_KIND_ENUM:
2483         case BTF_KIND_ENUM64:
2484                 /* handle bitfield and int enum values */
2485                 if (bit_sz) {
2486                         __u64 print_num;
2487                         __s64 enum_val;
2488 
2489                         err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz,
2490                                                           &print_num);
2491                         if (err)
2492                                 break;
2493                         enum_val = (__s64)print_num;
2494                         err = btf_dump_enum_data(d, t, id, &enum_val);
2495                 } else
2496                         err = btf_dump_enum_data(d, t, id, data);
2497                 break;
2498         case BTF_KIND_VAR:
2499                 err = btf_dump_var_data(d, t, id, data);
2500                 break;
2501         case BTF_KIND_DATASEC:
2502                 err = btf_dump_datasec_data(d, t, id, data);
2503                 break;
2504         default:
2505                 pr_warn("unexpected kind [%u] for id [%u]\n",
2506                         BTF_INFO_KIND(t->info), id);
2507                 return -EINVAL;
2508         }
2509         if (err < 0)
2510                 return err;
2511         return size;
2512 }
2513 
2514 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
2515                              const void *data, size_t data_sz,
2516                              const struct btf_dump_type_data_opts *opts)
2517 {
2518         struct btf_dump_data typed_dump = {};
2519         const struct btf_type *t;
2520         int ret;
2521 
2522         if (!OPTS_VALID(opts, btf_dump_type_data_opts))
2523                 return libbpf_err(-EINVAL);
2524 
2525         t = btf__type_by_id(d->btf, id);
2526         if (!t)
2527                 return libbpf_err(-ENOENT);
2528 
2529         d->typed_dump = &typed_dump;
2530         d->typed_dump->data_end = data + data_sz;
2531         d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0);
2532 
2533         /* default indent string is a tab */
2534         if (!OPTS_GET(opts, indent_str, NULL))
2535                 d->typed_dump->indent_str[0] = '\t';
2536         else
2537                 libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str,
2538                                sizeof(d->typed_dump->indent_str));
2539 
2540         d->typed_dump->compact = OPTS_GET(opts, compact, false);
2541         d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false);
2542         d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false);
2543 
2544         ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0);
2545 
2546         d->typed_dump = NULL;
2547 
2548         return libbpf_err(ret);
2549 }
2550 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php