1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 #include "zip.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 64 65 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 66 67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 68 * compilation if user enables corresponding warning. Disable it explicitly. 69 */ 70 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 71 72 #define __printf(a, b) __attribute__((format(printf, a, b))) 73 74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 76 static int map_set_def_max_entries(struct bpf_map *map); 77 78 static const char * const attach_type_name[] = { 79 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 80 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 81 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 82 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 83 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 84 [BPF_CGROUP_DEVICE] = "cgroup_device", 85 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 86 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 87 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 88 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 89 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 90 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 91 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 92 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 93 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 94 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 95 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 96 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 97 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 98 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 99 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 100 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 101 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 102 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 103 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 104 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 105 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 106 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 107 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 108 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 109 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 110 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 111 [BPF_LIRC_MODE2] = "lirc_mode2", 112 [BPF_FLOW_DISSECTOR] = "flow_dissector", 113 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 114 [BPF_TRACE_FENTRY] = "trace_fentry", 115 [BPF_TRACE_FEXIT] = "trace_fexit", 116 [BPF_MODIFY_RETURN] = "modify_return", 117 [BPF_LSM_MAC] = "lsm_mac", 118 [BPF_LSM_CGROUP] = "lsm_cgroup", 119 [BPF_SK_LOOKUP] = "sk_lookup", 120 [BPF_TRACE_ITER] = "trace_iter", 121 [BPF_XDP_DEVMAP] = "xdp_devmap", 122 [BPF_XDP_CPUMAP] = "xdp_cpumap", 123 [BPF_XDP] = "xdp", 124 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 125 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 126 [BPF_PERF_EVENT] = "perf_event", 127 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 128 [BPF_STRUCT_OPS] = "struct_ops", 129 [BPF_NETFILTER] = "netfilter", 130 [BPF_TCX_INGRESS] = "tcx_ingress", 131 [BPF_TCX_EGRESS] = "tcx_egress", 132 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 133 [BPF_NETKIT_PRIMARY] = "netkit_primary", 134 [BPF_NETKIT_PEER] = "netkit_peer", 135 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session", 136 }; 137 138 static const char * const link_type_name[] = { 139 [BPF_LINK_TYPE_UNSPEC] = "unspec", 140 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 141 [BPF_LINK_TYPE_TRACING] = "tracing", 142 [BPF_LINK_TYPE_CGROUP] = "cgroup", 143 [BPF_LINK_TYPE_ITER] = "iter", 144 [BPF_LINK_TYPE_NETNS] = "netns", 145 [BPF_LINK_TYPE_XDP] = "xdp", 146 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 147 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 148 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 149 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 150 [BPF_LINK_TYPE_TCX] = "tcx", 151 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 152 [BPF_LINK_TYPE_NETKIT] = "netkit", 153 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 154 }; 155 156 static const char * const map_type_name[] = { 157 [BPF_MAP_TYPE_UNSPEC] = "unspec", 158 [BPF_MAP_TYPE_HASH] = "hash", 159 [BPF_MAP_TYPE_ARRAY] = "array", 160 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 161 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 162 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 163 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 164 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 165 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 166 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 167 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 168 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 169 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 170 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 171 [BPF_MAP_TYPE_DEVMAP] = "devmap", 172 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 173 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 174 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 175 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 176 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 177 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 178 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 179 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 180 [BPF_MAP_TYPE_QUEUE] = "queue", 181 [BPF_MAP_TYPE_STACK] = "stack", 182 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 183 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 184 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 185 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 186 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 187 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 188 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 189 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 190 [BPF_MAP_TYPE_ARENA] = "arena", 191 }; 192 193 static const char * const prog_type_name[] = { 194 [BPF_PROG_TYPE_UNSPEC] = "unspec", 195 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 196 [BPF_PROG_TYPE_KPROBE] = "kprobe", 197 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 198 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 199 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 200 [BPF_PROG_TYPE_XDP] = "xdp", 201 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 202 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 203 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 204 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 205 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 206 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 207 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 208 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 209 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 210 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 211 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 212 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 213 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 214 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 215 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 216 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 217 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 218 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 219 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 220 [BPF_PROG_TYPE_TRACING] = "tracing", 221 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 222 [BPF_PROG_TYPE_EXT] = "ext", 223 [BPF_PROG_TYPE_LSM] = "lsm", 224 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 225 [BPF_PROG_TYPE_SYSCALL] = "syscall", 226 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 227 }; 228 229 static int __base_pr(enum libbpf_print_level level, const char *format, 230 va_list args) 231 { 232 const char *env_var = "LIBBPF_LOG_LEVEL"; 233 static enum libbpf_print_level min_level = LIBBPF_INFO; 234 static bool initialized; 235 236 if (!initialized) { 237 char *verbosity; 238 239 initialized = true; 240 verbosity = getenv(env_var); 241 if (verbosity) { 242 if (strcasecmp(verbosity, "warn") == 0) 243 min_level = LIBBPF_WARN; 244 else if (strcasecmp(verbosity, "debug") == 0) 245 min_level = LIBBPF_DEBUG; 246 else if (strcasecmp(verbosity, "info") == 0) 247 min_level = LIBBPF_INFO; 248 else 249 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n", 250 env_var, verbosity); 251 } 252 } 253 254 /* if too verbose, skip logging */ 255 if (level > min_level) 256 return 0; 257 258 return vfprintf(stderr, format, args); 259 } 260 261 static libbpf_print_fn_t __libbpf_pr = __base_pr; 262 263 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 264 { 265 libbpf_print_fn_t old_print_fn; 266 267 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 268 269 return old_print_fn; 270 } 271 272 __printf(2, 3) 273 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 274 { 275 va_list args; 276 int old_errno; 277 libbpf_print_fn_t print_fn; 278 279 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 280 if (!print_fn) 281 return; 282 283 old_errno = errno; 284 285 va_start(args, format); 286 __libbpf_pr(level, format, args); 287 va_end(args); 288 289 errno = old_errno; 290 } 291 292 static void pr_perm_msg(int err) 293 { 294 struct rlimit limit; 295 char buf[100]; 296 297 if (err != -EPERM || geteuid() != 0) 298 return; 299 300 err = getrlimit(RLIMIT_MEMLOCK, &limit); 301 if (err) 302 return; 303 304 if (limit.rlim_cur == RLIM_INFINITY) 305 return; 306 307 if (limit.rlim_cur < 1024) 308 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 309 else if (limit.rlim_cur < 1024*1024) 310 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 311 else 312 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 313 314 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 315 buf); 316 } 317 318 #define STRERR_BUFSIZE 128 319 320 /* Copied from tools/perf/util/util.h */ 321 #ifndef zfree 322 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 323 #endif 324 325 #ifndef zclose 326 # define zclose(fd) ({ \ 327 int ___err = 0; \ 328 if ((fd) >= 0) \ 329 ___err = close((fd)); \ 330 fd = -1; \ 331 ___err; }) 332 #endif 333 334 static inline __u64 ptr_to_u64(const void *ptr) 335 { 336 return (__u64) (unsigned long) ptr; 337 } 338 339 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 340 { 341 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 342 return 0; 343 } 344 345 __u32 libbpf_major_version(void) 346 { 347 return LIBBPF_MAJOR_VERSION; 348 } 349 350 __u32 libbpf_minor_version(void) 351 { 352 return LIBBPF_MINOR_VERSION; 353 } 354 355 const char *libbpf_version_string(void) 356 { 357 #define __S(X) #X 358 #define _S(X) __S(X) 359 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 360 #undef _S 361 #undef __S 362 } 363 364 enum reloc_type { 365 RELO_LD64, 366 RELO_CALL, 367 RELO_DATA, 368 RELO_EXTERN_LD64, 369 RELO_EXTERN_CALL, 370 RELO_SUBPROG_ADDR, 371 RELO_CORE, 372 }; 373 374 struct reloc_desc { 375 enum reloc_type type; 376 int insn_idx; 377 union { 378 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 379 struct { 380 int map_idx; 381 int sym_off; 382 int ext_idx; 383 }; 384 }; 385 }; 386 387 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 388 enum sec_def_flags { 389 SEC_NONE = 0, 390 /* expected_attach_type is optional, if kernel doesn't support that */ 391 SEC_EXP_ATTACH_OPT = 1, 392 /* legacy, only used by libbpf_get_type_names() and 393 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 394 * This used to be associated with cgroup (and few other) BPF programs 395 * that were attachable through BPF_PROG_ATTACH command. Pretty 396 * meaningless nowadays, though. 397 */ 398 SEC_ATTACHABLE = 2, 399 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 400 /* attachment target is specified through BTF ID in either kernel or 401 * other BPF program's BTF object 402 */ 403 SEC_ATTACH_BTF = 4, 404 /* BPF program type allows sleeping/blocking in kernel */ 405 SEC_SLEEPABLE = 8, 406 /* BPF program support non-linear XDP buffer */ 407 SEC_XDP_FRAGS = 16, 408 /* Setup proper attach type for usdt probes. */ 409 SEC_USDT = 32, 410 }; 411 412 struct bpf_sec_def { 413 char *sec; 414 enum bpf_prog_type prog_type; 415 enum bpf_attach_type expected_attach_type; 416 long cookie; 417 int handler_id; 418 419 libbpf_prog_setup_fn_t prog_setup_fn; 420 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 421 libbpf_prog_attach_fn_t prog_attach_fn; 422 }; 423 424 /* 425 * bpf_prog should be a better name but it has been used in 426 * linux/filter.h. 427 */ 428 struct bpf_program { 429 char *name; 430 char *sec_name; 431 size_t sec_idx; 432 const struct bpf_sec_def *sec_def; 433 /* this program's instruction offset (in number of instructions) 434 * within its containing ELF section 435 */ 436 size_t sec_insn_off; 437 /* number of original instructions in ELF section belonging to this 438 * program, not taking into account subprogram instructions possible 439 * appended later during relocation 440 */ 441 size_t sec_insn_cnt; 442 /* Offset (in number of instructions) of the start of instruction 443 * belonging to this BPF program within its containing main BPF 444 * program. For the entry-point (main) BPF program, this is always 445 * zero. For a sub-program, this gets reset before each of main BPF 446 * programs are processed and relocated and is used to determined 447 * whether sub-program was already appended to the main program, and 448 * if yes, at which instruction offset. 449 */ 450 size_t sub_insn_off; 451 452 /* instructions that belong to BPF program; insns[0] is located at 453 * sec_insn_off instruction within its ELF section in ELF file, so 454 * when mapping ELF file instruction index to the local instruction, 455 * one needs to subtract sec_insn_off; and vice versa. 456 */ 457 struct bpf_insn *insns; 458 /* actual number of instruction in this BPF program's image; for 459 * entry-point BPF programs this includes the size of main program 460 * itself plus all the used sub-programs, appended at the end 461 */ 462 size_t insns_cnt; 463 464 struct reloc_desc *reloc_desc; 465 int nr_reloc; 466 467 /* BPF verifier log settings */ 468 char *log_buf; 469 size_t log_size; 470 __u32 log_level; 471 472 struct bpf_object *obj; 473 474 int fd; 475 bool autoload; 476 bool autoattach; 477 bool sym_global; 478 bool mark_btf_static; 479 enum bpf_prog_type type; 480 enum bpf_attach_type expected_attach_type; 481 int exception_cb_idx; 482 483 int prog_ifindex; 484 __u32 attach_btf_obj_fd; 485 __u32 attach_btf_id; 486 __u32 attach_prog_fd; 487 488 void *func_info; 489 __u32 func_info_rec_size; 490 __u32 func_info_cnt; 491 492 void *line_info; 493 __u32 line_info_rec_size; 494 __u32 line_info_cnt; 495 __u32 prog_flags; 496 }; 497 498 struct bpf_struct_ops { 499 struct bpf_program **progs; 500 __u32 *kern_func_off; 501 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 502 void *data; 503 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 504 * btf_vmlinux's format. 505 * struct bpf_struct_ops_tcp_congestion_ops { 506 * [... some other kernel fields ...] 507 * struct tcp_congestion_ops data; 508 * } 509 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 510 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 511 * from "data". 512 */ 513 void *kern_vdata; 514 __u32 type_id; 515 }; 516 517 #define DATA_SEC ".data" 518 #define BSS_SEC ".bss" 519 #define RODATA_SEC ".rodata" 520 #define KCONFIG_SEC ".kconfig" 521 #define KSYMS_SEC ".ksyms" 522 #define STRUCT_OPS_SEC ".struct_ops" 523 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 524 #define ARENA_SEC ".addr_space.1" 525 526 enum libbpf_map_type { 527 LIBBPF_MAP_UNSPEC, 528 LIBBPF_MAP_DATA, 529 LIBBPF_MAP_BSS, 530 LIBBPF_MAP_RODATA, 531 LIBBPF_MAP_KCONFIG, 532 }; 533 534 struct bpf_map_def { 535 unsigned int type; 536 unsigned int key_size; 537 unsigned int value_size; 538 unsigned int max_entries; 539 unsigned int map_flags; 540 }; 541 542 struct bpf_map { 543 struct bpf_object *obj; 544 char *name; 545 /* real_name is defined for special internal maps (.rodata*, 546 * .data*, .bss, .kconfig) and preserves their original ELF section 547 * name. This is important to be able to find corresponding BTF 548 * DATASEC information. 549 */ 550 char *real_name; 551 int fd; 552 int sec_idx; 553 size_t sec_offset; 554 int map_ifindex; 555 int inner_map_fd; 556 struct bpf_map_def def; 557 __u32 numa_node; 558 __u32 btf_var_idx; 559 int mod_btf_fd; 560 __u32 btf_key_type_id; 561 __u32 btf_value_type_id; 562 __u32 btf_vmlinux_value_type_id; 563 enum libbpf_map_type libbpf_type; 564 void *mmaped; 565 struct bpf_struct_ops *st_ops; 566 struct bpf_map *inner_map; 567 void **init_slots; 568 int init_slots_sz; 569 char *pin_path; 570 bool pinned; 571 bool reused; 572 bool autocreate; 573 bool autoattach; 574 __u64 map_extra; 575 }; 576 577 enum extern_type { 578 EXT_UNKNOWN, 579 EXT_KCFG, 580 EXT_KSYM, 581 }; 582 583 enum kcfg_type { 584 KCFG_UNKNOWN, 585 KCFG_CHAR, 586 KCFG_BOOL, 587 KCFG_INT, 588 KCFG_TRISTATE, 589 KCFG_CHAR_ARR, 590 }; 591 592 struct extern_desc { 593 enum extern_type type; 594 int sym_idx; 595 int btf_id; 596 int sec_btf_id; 597 const char *name; 598 char *essent_name; 599 bool is_set; 600 bool is_weak; 601 union { 602 struct { 603 enum kcfg_type type; 604 int sz; 605 int align; 606 int data_off; 607 bool is_signed; 608 } kcfg; 609 struct { 610 unsigned long long addr; 611 612 /* target btf_id of the corresponding kernel var. */ 613 int kernel_btf_obj_fd; 614 int kernel_btf_id; 615 616 /* local btf_id of the ksym extern's type. */ 617 __u32 type_id; 618 /* BTF fd index to be patched in for insn->off, this is 619 * 0 for vmlinux BTF, index in obj->fd_array for module 620 * BTF 621 */ 622 __s16 btf_fd_idx; 623 } ksym; 624 }; 625 }; 626 627 struct module_btf { 628 struct btf *btf; 629 char *name; 630 __u32 id; 631 int fd; 632 int fd_array_idx; 633 }; 634 635 enum sec_type { 636 SEC_UNUSED = 0, 637 SEC_RELO, 638 SEC_BSS, 639 SEC_DATA, 640 SEC_RODATA, 641 SEC_ST_OPS, 642 }; 643 644 struct elf_sec_desc { 645 enum sec_type sec_type; 646 Elf64_Shdr *shdr; 647 Elf_Data *data; 648 }; 649 650 struct elf_state { 651 int fd; 652 const void *obj_buf; 653 size_t obj_buf_sz; 654 Elf *elf; 655 Elf64_Ehdr *ehdr; 656 Elf_Data *symbols; 657 Elf_Data *arena_data; 658 size_t shstrndx; /* section index for section name strings */ 659 size_t strtabidx; 660 struct elf_sec_desc *secs; 661 size_t sec_cnt; 662 int btf_maps_shndx; 663 __u32 btf_maps_sec_btf_id; 664 int text_shndx; 665 int symbols_shndx; 666 bool has_st_ops; 667 int arena_data_shndx; 668 }; 669 670 struct usdt_manager; 671 672 struct bpf_object { 673 char name[BPF_OBJ_NAME_LEN]; 674 char license[64]; 675 __u32 kern_version; 676 677 struct bpf_program *programs; 678 size_t nr_programs; 679 struct bpf_map *maps; 680 size_t nr_maps; 681 size_t maps_cap; 682 683 char *kconfig; 684 struct extern_desc *externs; 685 int nr_extern; 686 int kconfig_map_idx; 687 688 bool loaded; 689 bool has_subcalls; 690 bool has_rodata; 691 692 struct bpf_gen *gen_loader; 693 694 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 695 struct elf_state efile; 696 697 struct btf *btf; 698 struct btf_ext *btf_ext; 699 700 /* Parse and load BTF vmlinux if any of the programs in the object need 701 * it at load time. 702 */ 703 struct btf *btf_vmlinux; 704 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 705 * override for vmlinux BTF. 706 */ 707 char *btf_custom_path; 708 /* vmlinux BTF override for CO-RE relocations */ 709 struct btf *btf_vmlinux_override; 710 /* Lazily initialized kernel module BTFs */ 711 struct module_btf *btf_modules; 712 bool btf_modules_loaded; 713 size_t btf_module_cnt; 714 size_t btf_module_cap; 715 716 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 717 char *log_buf; 718 size_t log_size; 719 __u32 log_level; 720 721 int *fd_array; 722 size_t fd_array_cap; 723 size_t fd_array_cnt; 724 725 struct usdt_manager *usdt_man; 726 727 struct bpf_map *arena_map; 728 void *arena_data; 729 size_t arena_data_sz; 730 731 struct kern_feature_cache *feat_cache; 732 char *token_path; 733 int token_fd; 734 735 char path[]; 736 }; 737 738 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 739 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 740 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 741 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 742 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 743 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 744 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 745 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 746 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 747 748 void bpf_program__unload(struct bpf_program *prog) 749 { 750 if (!prog) 751 return; 752 753 zclose(prog->fd); 754 755 zfree(&prog->func_info); 756 zfree(&prog->line_info); 757 } 758 759 static void bpf_program__exit(struct bpf_program *prog) 760 { 761 if (!prog) 762 return; 763 764 bpf_program__unload(prog); 765 zfree(&prog->name); 766 zfree(&prog->sec_name); 767 zfree(&prog->insns); 768 zfree(&prog->reloc_desc); 769 770 prog->nr_reloc = 0; 771 prog->insns_cnt = 0; 772 prog->sec_idx = -1; 773 } 774 775 static bool insn_is_subprog_call(const struct bpf_insn *insn) 776 { 777 return BPF_CLASS(insn->code) == BPF_JMP && 778 BPF_OP(insn->code) == BPF_CALL && 779 BPF_SRC(insn->code) == BPF_K && 780 insn->src_reg == BPF_PSEUDO_CALL && 781 insn->dst_reg == 0 && 782 insn->off == 0; 783 } 784 785 static bool is_call_insn(const struct bpf_insn *insn) 786 { 787 return insn->code == (BPF_JMP | BPF_CALL); 788 } 789 790 static bool insn_is_pseudo_func(struct bpf_insn *insn) 791 { 792 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 793 } 794 795 static int 796 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 797 const char *name, size_t sec_idx, const char *sec_name, 798 size_t sec_off, void *insn_data, size_t insn_data_sz) 799 { 800 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 801 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 802 sec_name, name, sec_off, insn_data_sz); 803 return -EINVAL; 804 } 805 806 memset(prog, 0, sizeof(*prog)); 807 prog->obj = obj; 808 809 prog->sec_idx = sec_idx; 810 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 811 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 812 /* insns_cnt can later be increased by appending used subprograms */ 813 prog->insns_cnt = prog->sec_insn_cnt; 814 815 prog->type = BPF_PROG_TYPE_UNSPEC; 816 prog->fd = -1; 817 prog->exception_cb_idx = -1; 818 819 /* libbpf's convention for SEC("?abc...") is that it's just like 820 * SEC("abc...") but the corresponding bpf_program starts out with 821 * autoload set to false. 822 */ 823 if (sec_name[0] == '?') { 824 prog->autoload = false; 825 /* from now on forget there was ? in section name */ 826 sec_name++; 827 } else { 828 prog->autoload = true; 829 } 830 831 prog->autoattach = true; 832 833 /* inherit object's log_level */ 834 prog->log_level = obj->log_level; 835 836 prog->sec_name = strdup(sec_name); 837 if (!prog->sec_name) 838 goto errout; 839 840 prog->name = strdup(name); 841 if (!prog->name) 842 goto errout; 843 844 prog->insns = malloc(insn_data_sz); 845 if (!prog->insns) 846 goto errout; 847 memcpy(prog->insns, insn_data, insn_data_sz); 848 849 return 0; 850 errout: 851 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 852 bpf_program__exit(prog); 853 return -ENOMEM; 854 } 855 856 static int 857 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 858 const char *sec_name, int sec_idx) 859 { 860 Elf_Data *symbols = obj->efile.symbols; 861 struct bpf_program *prog, *progs; 862 void *data = sec_data->d_buf; 863 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 864 int nr_progs, err, i; 865 const char *name; 866 Elf64_Sym *sym; 867 868 progs = obj->programs; 869 nr_progs = obj->nr_programs; 870 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 871 872 for (i = 0; i < nr_syms; i++) { 873 sym = elf_sym_by_idx(obj, i); 874 875 if (sym->st_shndx != sec_idx) 876 continue; 877 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 878 continue; 879 880 prog_sz = sym->st_size; 881 sec_off = sym->st_value; 882 883 name = elf_sym_str(obj, sym->st_name); 884 if (!name) { 885 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 886 sec_name, sec_off); 887 return -LIBBPF_ERRNO__FORMAT; 888 } 889 890 if (sec_off + prog_sz > sec_sz) { 891 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 892 sec_name, sec_off); 893 return -LIBBPF_ERRNO__FORMAT; 894 } 895 896 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 897 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 898 return -ENOTSUP; 899 } 900 901 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 902 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 903 904 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 905 if (!progs) { 906 /* 907 * In this case the original obj->programs 908 * is still valid, so don't need special treat for 909 * bpf_close_object(). 910 */ 911 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 912 sec_name, name); 913 return -ENOMEM; 914 } 915 obj->programs = progs; 916 917 prog = &progs[nr_progs]; 918 919 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 920 sec_off, data + sec_off, prog_sz); 921 if (err) 922 return err; 923 924 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 925 prog->sym_global = true; 926 927 /* if function is a global/weak symbol, but has restricted 928 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 929 * as static to enable more permissive BPF verification mode 930 * with more outside context available to BPF verifier 931 */ 932 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 933 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 934 prog->mark_btf_static = true; 935 936 nr_progs++; 937 obj->nr_programs = nr_progs; 938 } 939 940 return 0; 941 } 942 943 static const struct btf_member * 944 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 945 { 946 struct btf_member *m; 947 int i; 948 949 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 950 if (btf_member_bit_offset(t, i) == bit_offset) 951 return m; 952 } 953 954 return NULL; 955 } 956 957 static const struct btf_member * 958 find_member_by_name(const struct btf *btf, const struct btf_type *t, 959 const char *name) 960 { 961 struct btf_member *m; 962 int i; 963 964 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 965 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 966 return m; 967 } 968 969 return NULL; 970 } 971 972 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 973 __u16 kind, struct btf **res_btf, 974 struct module_btf **res_mod_btf); 975 976 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 977 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 978 const char *name, __u32 kind); 979 980 static int 981 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 982 struct module_btf **mod_btf, 983 const struct btf_type **type, __u32 *type_id, 984 const struct btf_type **vtype, __u32 *vtype_id, 985 const struct btf_member **data_member) 986 { 987 const struct btf_type *kern_type, *kern_vtype; 988 const struct btf_member *kern_data_member; 989 struct btf *btf; 990 __s32 kern_vtype_id, kern_type_id; 991 char tname[256]; 992 __u32 i; 993 994 snprintf(tname, sizeof(tname), "%.*s", 995 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 996 997 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 998 &btf, mod_btf); 999 if (kern_type_id < 0) { 1000 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 1001 tname); 1002 return kern_type_id; 1003 } 1004 kern_type = btf__type_by_id(btf, kern_type_id); 1005 1006 /* Find the corresponding "map_value" type that will be used 1007 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 1008 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 1009 * btf_vmlinux. 1010 */ 1011 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 1012 tname, BTF_KIND_STRUCT); 1013 if (kern_vtype_id < 0) { 1014 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 1015 STRUCT_OPS_VALUE_PREFIX, tname); 1016 return kern_vtype_id; 1017 } 1018 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1019 1020 /* Find "struct tcp_congestion_ops" from 1021 * struct bpf_struct_ops_tcp_congestion_ops { 1022 * [ ... ] 1023 * struct tcp_congestion_ops data; 1024 * } 1025 */ 1026 kern_data_member = btf_members(kern_vtype); 1027 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1028 if (kern_data_member->type == kern_type_id) 1029 break; 1030 } 1031 if (i == btf_vlen(kern_vtype)) { 1032 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1033 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1034 return -EINVAL; 1035 } 1036 1037 *type = kern_type; 1038 *type_id = kern_type_id; 1039 *vtype = kern_vtype; 1040 *vtype_id = kern_vtype_id; 1041 *data_member = kern_data_member; 1042 1043 return 0; 1044 } 1045 1046 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1047 { 1048 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1049 } 1050 1051 static bool is_valid_st_ops_program(struct bpf_object *obj, 1052 const struct bpf_program *prog) 1053 { 1054 int i; 1055 1056 for (i = 0; i < obj->nr_programs; i++) { 1057 if (&obj->programs[i] == prog) 1058 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1059 } 1060 1061 return false; 1062 } 1063 1064 /* For each struct_ops program P, referenced from some struct_ops map M, 1065 * enable P.autoload if there are Ms for which M.autocreate is true, 1066 * disable P.autoload if for all Ms M.autocreate is false. 1067 * Don't change P.autoload for programs that are not referenced from any maps. 1068 */ 1069 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1070 { 1071 struct bpf_program *prog, *slot_prog; 1072 struct bpf_map *map; 1073 int i, j, k, vlen; 1074 1075 for (i = 0; i < obj->nr_programs; ++i) { 1076 int should_load = false; 1077 int use_cnt = 0; 1078 1079 prog = &obj->programs[i]; 1080 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1081 continue; 1082 1083 for (j = 0; j < obj->nr_maps; ++j) { 1084 const struct btf_type *type; 1085 1086 map = &obj->maps[j]; 1087 if (!bpf_map__is_struct_ops(map)) 1088 continue; 1089 1090 type = btf__type_by_id(obj->btf, map->st_ops->type_id); 1091 vlen = btf_vlen(type); 1092 for (k = 0; k < vlen; ++k) { 1093 slot_prog = map->st_ops->progs[k]; 1094 if (prog != slot_prog) 1095 continue; 1096 1097 use_cnt++; 1098 if (map->autocreate) 1099 should_load = true; 1100 } 1101 } 1102 if (use_cnt) 1103 prog->autoload = should_load; 1104 } 1105 1106 return 0; 1107 } 1108 1109 /* Init the map's fields that depend on kern_btf */ 1110 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1111 { 1112 const struct btf_member *member, *kern_member, *kern_data_member; 1113 const struct btf_type *type, *kern_type, *kern_vtype; 1114 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1115 struct bpf_object *obj = map->obj; 1116 const struct btf *btf = obj->btf; 1117 struct bpf_struct_ops *st_ops; 1118 const struct btf *kern_btf; 1119 struct module_btf *mod_btf; 1120 void *data, *kern_data; 1121 const char *tname; 1122 int err; 1123 1124 st_ops = map->st_ops; 1125 type = btf__type_by_id(btf, st_ops->type_id); 1126 tname = btf__name_by_offset(btf, type->name_off); 1127 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1128 &kern_type, &kern_type_id, 1129 &kern_vtype, &kern_vtype_id, 1130 &kern_data_member); 1131 if (err) 1132 return err; 1133 1134 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1135 1136 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1137 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1138 1139 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1140 map->def.value_size = kern_vtype->size; 1141 map->btf_vmlinux_value_type_id = kern_vtype_id; 1142 1143 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1144 if (!st_ops->kern_vdata) 1145 return -ENOMEM; 1146 1147 data = st_ops->data; 1148 kern_data_off = kern_data_member->offset / 8; 1149 kern_data = st_ops->kern_vdata + kern_data_off; 1150 1151 member = btf_members(type); 1152 for (i = 0; i < btf_vlen(type); i++, member++) { 1153 const struct btf_type *mtype, *kern_mtype; 1154 __u32 mtype_id, kern_mtype_id; 1155 void *mdata, *kern_mdata; 1156 struct bpf_program *prog; 1157 __s64 msize, kern_msize; 1158 __u32 moff, kern_moff; 1159 __u32 kern_member_idx; 1160 const char *mname; 1161 1162 mname = btf__name_by_offset(btf, member->name_off); 1163 moff = member->offset / 8; 1164 mdata = data + moff; 1165 msize = btf__resolve_size(btf, member->type); 1166 if (msize < 0) { 1167 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1168 map->name, mname); 1169 return msize; 1170 } 1171 1172 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1173 if (!kern_member) { 1174 if (!libbpf_is_mem_zeroed(mdata, msize)) { 1175 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1176 map->name, mname); 1177 return -ENOTSUP; 1178 } 1179 1180 if (st_ops->progs[i]) { 1181 /* If we had declaratively set struct_ops callback, we need to 1182 * force its autoload to false, because it doesn't have 1183 * a chance of succeeding from POV of the current struct_ops map. 1184 * If this program is still referenced somewhere else, though, 1185 * then bpf_object_adjust_struct_ops_autoload() will update its 1186 * autoload accordingly. 1187 */ 1188 st_ops->progs[i]->autoload = false; 1189 st_ops->progs[i] = NULL; 1190 } 1191 1192 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */ 1193 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1194 map->name, mname); 1195 continue; 1196 } 1197 1198 kern_member_idx = kern_member - btf_members(kern_type); 1199 if (btf_member_bitfield_size(type, i) || 1200 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1201 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1202 map->name, mname); 1203 return -ENOTSUP; 1204 } 1205 1206 kern_moff = kern_member->offset / 8; 1207 kern_mdata = kern_data + kern_moff; 1208 1209 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1210 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1211 &kern_mtype_id); 1212 if (BTF_INFO_KIND(mtype->info) != 1213 BTF_INFO_KIND(kern_mtype->info)) { 1214 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1215 map->name, mname, BTF_INFO_KIND(mtype->info), 1216 BTF_INFO_KIND(kern_mtype->info)); 1217 return -ENOTSUP; 1218 } 1219 1220 if (btf_is_ptr(mtype)) { 1221 prog = *(void **)mdata; 1222 /* just like for !kern_member case above, reset declaratively 1223 * set (at compile time) program's autload to false, 1224 * if user replaced it with another program or NULL 1225 */ 1226 if (st_ops->progs[i] && st_ops->progs[i] != prog) 1227 st_ops->progs[i]->autoload = false; 1228 1229 /* Update the value from the shadow type */ 1230 st_ops->progs[i] = prog; 1231 if (!prog) 1232 continue; 1233 1234 if (!is_valid_st_ops_program(obj, prog)) { 1235 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1236 map->name, mname); 1237 return -ENOTSUP; 1238 } 1239 1240 kern_mtype = skip_mods_and_typedefs(kern_btf, 1241 kern_mtype->type, 1242 &kern_mtype_id); 1243 1244 /* mtype->type must be a func_proto which was 1245 * guaranteed in bpf_object__collect_st_ops_relos(), 1246 * so only check kern_mtype for func_proto here. 1247 */ 1248 if (!btf_is_func_proto(kern_mtype)) { 1249 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1250 map->name, mname); 1251 return -ENOTSUP; 1252 } 1253 1254 if (mod_btf) 1255 prog->attach_btf_obj_fd = mod_btf->fd; 1256 1257 /* if we haven't yet processed this BPF program, record proper 1258 * attach_btf_id and member_idx 1259 */ 1260 if (!prog->attach_btf_id) { 1261 prog->attach_btf_id = kern_type_id; 1262 prog->expected_attach_type = kern_member_idx; 1263 } 1264 1265 /* struct_ops BPF prog can be re-used between multiple 1266 * .struct_ops & .struct_ops.link as long as it's the 1267 * same struct_ops struct definition and the same 1268 * function pointer field 1269 */ 1270 if (prog->attach_btf_id != kern_type_id) { 1271 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1272 map->name, mname, prog->name, prog->sec_name, prog->type, 1273 prog->attach_btf_id, kern_type_id); 1274 return -EINVAL; 1275 } 1276 if (prog->expected_attach_type != kern_member_idx) { 1277 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1278 map->name, mname, prog->name, prog->sec_name, prog->type, 1279 prog->expected_attach_type, kern_member_idx); 1280 return -EINVAL; 1281 } 1282 1283 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1284 1285 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1286 map->name, mname, prog->name, moff, 1287 kern_moff); 1288 1289 continue; 1290 } 1291 1292 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1293 if (kern_msize < 0 || msize != kern_msize) { 1294 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1295 map->name, mname, (ssize_t)msize, 1296 (ssize_t)kern_msize); 1297 return -ENOTSUP; 1298 } 1299 1300 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1301 map->name, mname, (unsigned int)msize, 1302 moff, kern_moff); 1303 memcpy(kern_mdata, mdata, msize); 1304 } 1305 1306 return 0; 1307 } 1308 1309 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1310 { 1311 struct bpf_map *map; 1312 size_t i; 1313 int err; 1314 1315 for (i = 0; i < obj->nr_maps; i++) { 1316 map = &obj->maps[i]; 1317 1318 if (!bpf_map__is_struct_ops(map)) 1319 continue; 1320 1321 if (!map->autocreate) 1322 continue; 1323 1324 err = bpf_map__init_kern_struct_ops(map); 1325 if (err) 1326 return err; 1327 } 1328 1329 return 0; 1330 } 1331 1332 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1333 int shndx, Elf_Data *data) 1334 { 1335 const struct btf_type *type, *datasec; 1336 const struct btf_var_secinfo *vsi; 1337 struct bpf_struct_ops *st_ops; 1338 const char *tname, *var_name; 1339 __s32 type_id, datasec_id; 1340 const struct btf *btf; 1341 struct bpf_map *map; 1342 __u32 i; 1343 1344 if (shndx == -1) 1345 return 0; 1346 1347 btf = obj->btf; 1348 datasec_id = btf__find_by_name_kind(btf, sec_name, 1349 BTF_KIND_DATASEC); 1350 if (datasec_id < 0) { 1351 pr_warn("struct_ops init: DATASEC %s not found\n", 1352 sec_name); 1353 return -EINVAL; 1354 } 1355 1356 datasec = btf__type_by_id(btf, datasec_id); 1357 vsi = btf_var_secinfos(datasec); 1358 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1359 type = btf__type_by_id(obj->btf, vsi->type); 1360 var_name = btf__name_by_offset(obj->btf, type->name_off); 1361 1362 type_id = btf__resolve_type(obj->btf, vsi->type); 1363 if (type_id < 0) { 1364 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1365 vsi->type, sec_name); 1366 return -EINVAL; 1367 } 1368 1369 type = btf__type_by_id(obj->btf, type_id); 1370 tname = btf__name_by_offset(obj->btf, type->name_off); 1371 if (!tname[0]) { 1372 pr_warn("struct_ops init: anonymous type is not supported\n"); 1373 return -ENOTSUP; 1374 } 1375 if (!btf_is_struct(type)) { 1376 pr_warn("struct_ops init: %s is not a struct\n", tname); 1377 return -EINVAL; 1378 } 1379 1380 map = bpf_object__add_map(obj); 1381 if (IS_ERR(map)) 1382 return PTR_ERR(map); 1383 1384 map->sec_idx = shndx; 1385 map->sec_offset = vsi->offset; 1386 map->name = strdup(var_name); 1387 if (!map->name) 1388 return -ENOMEM; 1389 map->btf_value_type_id = type_id; 1390 1391 /* Follow same convention as for programs autoload: 1392 * SEC("?.struct_ops") means map is not created by default. 1393 */ 1394 if (sec_name[0] == '?') { 1395 map->autocreate = false; 1396 /* from now on forget there was ? in section name */ 1397 sec_name++; 1398 } 1399 1400 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1401 map->def.key_size = sizeof(int); 1402 map->def.value_size = type->size; 1403 map->def.max_entries = 1; 1404 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1405 map->autoattach = true; 1406 1407 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1408 if (!map->st_ops) 1409 return -ENOMEM; 1410 st_ops = map->st_ops; 1411 st_ops->data = malloc(type->size); 1412 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1413 st_ops->kern_func_off = malloc(btf_vlen(type) * 1414 sizeof(*st_ops->kern_func_off)); 1415 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1416 return -ENOMEM; 1417 1418 if (vsi->offset + type->size > data->d_size) { 1419 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1420 var_name, sec_name); 1421 return -EINVAL; 1422 } 1423 1424 memcpy(st_ops->data, 1425 data->d_buf + vsi->offset, 1426 type->size); 1427 st_ops->type_id = type_id; 1428 1429 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1430 tname, type_id, var_name, vsi->offset); 1431 } 1432 1433 return 0; 1434 } 1435 1436 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1437 { 1438 const char *sec_name; 1439 int sec_idx, err; 1440 1441 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1442 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1443 1444 if (desc->sec_type != SEC_ST_OPS) 1445 continue; 1446 1447 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1448 if (!sec_name) 1449 return -LIBBPF_ERRNO__FORMAT; 1450 1451 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1452 if (err) 1453 return err; 1454 } 1455 1456 return 0; 1457 } 1458 1459 static struct bpf_object *bpf_object__new(const char *path, 1460 const void *obj_buf, 1461 size_t obj_buf_sz, 1462 const char *obj_name) 1463 { 1464 struct bpf_object *obj; 1465 char *end; 1466 1467 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1468 if (!obj) { 1469 pr_warn("alloc memory failed for %s\n", path); 1470 return ERR_PTR(-ENOMEM); 1471 } 1472 1473 strcpy(obj->path, path); 1474 if (obj_name) { 1475 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1476 } else { 1477 /* Using basename() GNU version which doesn't modify arg. */ 1478 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1479 end = strchr(obj->name, '.'); 1480 if (end) 1481 *end = 0; 1482 } 1483 1484 obj->efile.fd = -1; 1485 /* 1486 * Caller of this function should also call 1487 * bpf_object__elf_finish() after data collection to return 1488 * obj_buf to user. If not, we should duplicate the buffer to 1489 * avoid user freeing them before elf finish. 1490 */ 1491 obj->efile.obj_buf = obj_buf; 1492 obj->efile.obj_buf_sz = obj_buf_sz; 1493 obj->efile.btf_maps_shndx = -1; 1494 obj->kconfig_map_idx = -1; 1495 1496 obj->kern_version = get_kernel_version(); 1497 obj->loaded = false; 1498 1499 return obj; 1500 } 1501 1502 static void bpf_object__elf_finish(struct bpf_object *obj) 1503 { 1504 if (!obj->efile.elf) 1505 return; 1506 1507 elf_end(obj->efile.elf); 1508 obj->efile.elf = NULL; 1509 obj->efile.symbols = NULL; 1510 obj->efile.arena_data = NULL; 1511 1512 zfree(&obj->efile.secs); 1513 obj->efile.sec_cnt = 0; 1514 zclose(obj->efile.fd); 1515 obj->efile.obj_buf = NULL; 1516 obj->efile.obj_buf_sz = 0; 1517 } 1518 1519 static int bpf_object__elf_init(struct bpf_object *obj) 1520 { 1521 Elf64_Ehdr *ehdr; 1522 int err = 0; 1523 Elf *elf; 1524 1525 if (obj->efile.elf) { 1526 pr_warn("elf: init internal error\n"); 1527 return -LIBBPF_ERRNO__LIBELF; 1528 } 1529 1530 if (obj->efile.obj_buf_sz > 0) { 1531 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1532 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1533 } else { 1534 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1535 if (obj->efile.fd < 0) { 1536 char errmsg[STRERR_BUFSIZE], *cp; 1537 1538 err = -errno; 1539 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1540 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1541 return err; 1542 } 1543 1544 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1545 } 1546 1547 if (!elf) { 1548 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1549 err = -LIBBPF_ERRNO__LIBELF; 1550 goto errout; 1551 } 1552 1553 obj->efile.elf = elf; 1554 1555 if (elf_kind(elf) != ELF_K_ELF) { 1556 err = -LIBBPF_ERRNO__FORMAT; 1557 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1558 goto errout; 1559 } 1560 1561 if (gelf_getclass(elf) != ELFCLASS64) { 1562 err = -LIBBPF_ERRNO__FORMAT; 1563 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1564 goto errout; 1565 } 1566 1567 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1568 if (!obj->efile.ehdr) { 1569 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1570 err = -LIBBPF_ERRNO__FORMAT; 1571 goto errout; 1572 } 1573 1574 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1575 pr_warn("elf: failed to get section names section index for %s: %s\n", 1576 obj->path, elf_errmsg(-1)); 1577 err = -LIBBPF_ERRNO__FORMAT; 1578 goto errout; 1579 } 1580 1581 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1582 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1583 pr_warn("elf: failed to get section names strings from %s: %s\n", 1584 obj->path, elf_errmsg(-1)); 1585 err = -LIBBPF_ERRNO__FORMAT; 1586 goto errout; 1587 } 1588 1589 /* Old LLVM set e_machine to EM_NONE */ 1590 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1591 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1592 err = -LIBBPF_ERRNO__FORMAT; 1593 goto errout; 1594 } 1595 1596 return 0; 1597 errout: 1598 bpf_object__elf_finish(obj); 1599 return err; 1600 } 1601 1602 static int bpf_object__check_endianness(struct bpf_object *obj) 1603 { 1604 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1605 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1606 return 0; 1607 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1608 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1609 return 0; 1610 #else 1611 # error "Unrecognized __BYTE_ORDER__" 1612 #endif 1613 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1614 return -LIBBPF_ERRNO__ENDIAN; 1615 } 1616 1617 static int 1618 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1619 { 1620 if (!data) { 1621 pr_warn("invalid license section in %s\n", obj->path); 1622 return -LIBBPF_ERRNO__FORMAT; 1623 } 1624 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1625 * go over allowed ELF data section buffer 1626 */ 1627 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1628 pr_debug("license of %s is %s\n", obj->path, obj->license); 1629 return 0; 1630 } 1631 1632 static int 1633 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1634 { 1635 __u32 kver; 1636 1637 if (!data || size != sizeof(kver)) { 1638 pr_warn("invalid kver section in %s\n", obj->path); 1639 return -LIBBPF_ERRNO__FORMAT; 1640 } 1641 memcpy(&kver, data, sizeof(kver)); 1642 obj->kern_version = kver; 1643 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1644 return 0; 1645 } 1646 1647 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1648 { 1649 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1650 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1651 return true; 1652 return false; 1653 } 1654 1655 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1656 { 1657 Elf_Data *data; 1658 Elf_Scn *scn; 1659 1660 if (!name) 1661 return -EINVAL; 1662 1663 scn = elf_sec_by_name(obj, name); 1664 data = elf_sec_data(obj, scn); 1665 if (data) { 1666 *size = data->d_size; 1667 return 0; /* found it */ 1668 } 1669 1670 return -ENOENT; 1671 } 1672 1673 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1674 { 1675 Elf_Data *symbols = obj->efile.symbols; 1676 const char *sname; 1677 size_t si; 1678 1679 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1680 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1681 1682 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1683 continue; 1684 1685 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1686 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1687 continue; 1688 1689 sname = elf_sym_str(obj, sym->st_name); 1690 if (!sname) { 1691 pr_warn("failed to get sym name string for var %s\n", name); 1692 return ERR_PTR(-EIO); 1693 } 1694 if (strcmp(name, sname) == 0) 1695 return sym; 1696 } 1697 1698 return ERR_PTR(-ENOENT); 1699 } 1700 1701 /* Some versions of Android don't provide memfd_create() in their libc 1702 * implementation, so avoid complications and just go straight to Linux 1703 * syscall. 1704 */ 1705 static int sys_memfd_create(const char *name, unsigned flags) 1706 { 1707 return syscall(__NR_memfd_create, name, flags); 1708 } 1709 1710 #ifndef MFD_CLOEXEC 1711 #define MFD_CLOEXEC 0x0001U 1712 #endif 1713 1714 static int create_placeholder_fd(void) 1715 { 1716 int fd; 1717 1718 fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC)); 1719 if (fd < 0) 1720 return -errno; 1721 return fd; 1722 } 1723 1724 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1725 { 1726 struct bpf_map *map; 1727 int err; 1728 1729 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1730 sizeof(*obj->maps), obj->nr_maps + 1); 1731 if (err) 1732 return ERR_PTR(err); 1733 1734 map = &obj->maps[obj->nr_maps++]; 1735 map->obj = obj; 1736 /* Preallocate map FD without actually creating BPF map just yet. 1737 * These map FD "placeholders" will be reused later without changing 1738 * FD value when map is actually created in the kernel. 1739 * 1740 * This is useful to be able to perform BPF program relocations 1741 * without having to create BPF maps before that step. This allows us 1742 * to finalize and load BTF very late in BPF object's loading phase, 1743 * right before BPF maps have to be created and BPF programs have to 1744 * be loaded. By having these map FD placeholders we can perform all 1745 * the sanitizations, relocations, and any other adjustments before we 1746 * start creating actual BPF kernel objects (BTF, maps, progs). 1747 */ 1748 map->fd = create_placeholder_fd(); 1749 if (map->fd < 0) 1750 return ERR_PTR(map->fd); 1751 map->inner_map_fd = -1; 1752 map->autocreate = true; 1753 1754 return map; 1755 } 1756 1757 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1758 { 1759 const long page_sz = sysconf(_SC_PAGE_SIZE); 1760 size_t map_sz; 1761 1762 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1763 map_sz = roundup(map_sz, page_sz); 1764 return map_sz; 1765 } 1766 1767 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1768 { 1769 const long page_sz = sysconf(_SC_PAGE_SIZE); 1770 1771 switch (map->def.type) { 1772 case BPF_MAP_TYPE_ARRAY: 1773 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1774 case BPF_MAP_TYPE_ARENA: 1775 return page_sz * map->def.max_entries; 1776 default: 1777 return 0; /* not supported */ 1778 } 1779 } 1780 1781 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1782 { 1783 void *mmaped; 1784 1785 if (!map->mmaped) 1786 return -EINVAL; 1787 1788 if (old_sz == new_sz) 1789 return 0; 1790 1791 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1792 if (mmaped == MAP_FAILED) 1793 return -errno; 1794 1795 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1796 munmap(map->mmaped, old_sz); 1797 map->mmaped = mmaped; 1798 return 0; 1799 } 1800 1801 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1802 { 1803 char map_name[BPF_OBJ_NAME_LEN], *p; 1804 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1805 1806 /* This is one of the more confusing parts of libbpf for various 1807 * reasons, some of which are historical. The original idea for naming 1808 * internal names was to include as much of BPF object name prefix as 1809 * possible, so that it can be distinguished from similar internal 1810 * maps of a different BPF object. 1811 * As an example, let's say we have bpf_object named 'my_object_name' 1812 * and internal map corresponding to '.rodata' ELF section. The final 1813 * map name advertised to user and to the kernel will be 1814 * 'my_objec.rodata', taking first 8 characters of object name and 1815 * entire 7 characters of '.rodata'. 1816 * Somewhat confusingly, if internal map ELF section name is shorter 1817 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1818 * for the suffix, even though we only have 4 actual characters, and 1819 * resulting map will be called 'my_objec.bss', not even using all 15 1820 * characters allowed by the kernel. Oh well, at least the truncated 1821 * object name is somewhat consistent in this case. But if the map 1822 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1823 * (8 chars) and thus will be left with only first 7 characters of the 1824 * object name ('my_obje'). Happy guessing, user, that the final map 1825 * name will be "my_obje.kconfig". 1826 * Now, with libbpf starting to support arbitrarily named .rodata.* 1827 * and .data.* data sections, it's possible that ELF section name is 1828 * longer than allowed 15 chars, so we now need to be careful to take 1829 * only up to 15 first characters of ELF name, taking no BPF object 1830 * name characters at all. So '.rodata.abracadabra' will result in 1831 * '.rodata.abracad' kernel and user-visible name. 1832 * We need to keep this convoluted logic intact for .data, .bss and 1833 * .rodata maps, but for new custom .data.custom and .rodata.custom 1834 * maps we use their ELF names as is, not prepending bpf_object name 1835 * in front. We still need to truncate them to 15 characters for the 1836 * kernel. Full name can be recovered for such maps by using DATASEC 1837 * BTF type associated with such map's value type, though. 1838 */ 1839 if (sfx_len >= BPF_OBJ_NAME_LEN) 1840 sfx_len = BPF_OBJ_NAME_LEN - 1; 1841 1842 /* if there are two or more dots in map name, it's a custom dot map */ 1843 if (strchr(real_name + 1, '.') != NULL) 1844 pfx_len = 0; 1845 else 1846 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1847 1848 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1849 sfx_len, real_name); 1850 1851 /* sanitise map name to characters allowed by kernel */ 1852 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1853 if (!isalnum(*p) && *p != '_' && *p != '.') 1854 *p = '_'; 1855 1856 return strdup(map_name); 1857 } 1858 1859 static int 1860 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1861 1862 /* Internal BPF map is mmap()'able only if at least one of corresponding 1863 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1864 * variable and it's not marked as __hidden (which turns it into, effectively, 1865 * a STATIC variable). 1866 */ 1867 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1868 { 1869 const struct btf_type *t, *vt; 1870 struct btf_var_secinfo *vsi; 1871 int i, n; 1872 1873 if (!map->btf_value_type_id) 1874 return false; 1875 1876 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1877 if (!btf_is_datasec(t)) 1878 return false; 1879 1880 vsi = btf_var_secinfos(t); 1881 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1882 vt = btf__type_by_id(obj->btf, vsi->type); 1883 if (!btf_is_var(vt)) 1884 continue; 1885 1886 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1887 return true; 1888 } 1889 1890 return false; 1891 } 1892 1893 static int 1894 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1895 const char *real_name, int sec_idx, void *data, size_t data_sz) 1896 { 1897 struct bpf_map_def *def; 1898 struct bpf_map *map; 1899 size_t mmap_sz; 1900 int err; 1901 1902 map = bpf_object__add_map(obj); 1903 if (IS_ERR(map)) 1904 return PTR_ERR(map); 1905 1906 map->libbpf_type = type; 1907 map->sec_idx = sec_idx; 1908 map->sec_offset = 0; 1909 map->real_name = strdup(real_name); 1910 map->name = internal_map_name(obj, real_name); 1911 if (!map->real_name || !map->name) { 1912 zfree(&map->real_name); 1913 zfree(&map->name); 1914 return -ENOMEM; 1915 } 1916 1917 def = &map->def; 1918 def->type = BPF_MAP_TYPE_ARRAY; 1919 def->key_size = sizeof(int); 1920 def->value_size = data_sz; 1921 def->max_entries = 1; 1922 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1923 ? BPF_F_RDONLY_PROG : 0; 1924 1925 /* failures are fine because of maps like .rodata.str1.1 */ 1926 (void) map_fill_btf_type_info(obj, map); 1927 1928 if (map_is_mmapable(obj, map)) 1929 def->map_flags |= BPF_F_MMAPABLE; 1930 1931 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1932 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1933 1934 mmap_sz = bpf_map_mmap_sz(map); 1935 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1936 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1937 if (map->mmaped == MAP_FAILED) { 1938 err = -errno; 1939 map->mmaped = NULL; 1940 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1941 map->name, err); 1942 zfree(&map->real_name); 1943 zfree(&map->name); 1944 return err; 1945 } 1946 1947 if (data) 1948 memcpy(map->mmaped, data, data_sz); 1949 1950 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1951 return 0; 1952 } 1953 1954 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1955 { 1956 struct elf_sec_desc *sec_desc; 1957 const char *sec_name; 1958 int err = 0, sec_idx; 1959 1960 /* 1961 * Populate obj->maps with libbpf internal maps. 1962 */ 1963 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1964 sec_desc = &obj->efile.secs[sec_idx]; 1965 1966 /* Skip recognized sections with size 0. */ 1967 if (!sec_desc->data || sec_desc->data->d_size == 0) 1968 continue; 1969 1970 switch (sec_desc->sec_type) { 1971 case SEC_DATA: 1972 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1973 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1974 sec_name, sec_idx, 1975 sec_desc->data->d_buf, 1976 sec_desc->data->d_size); 1977 break; 1978 case SEC_RODATA: 1979 obj->has_rodata = true; 1980 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1981 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1982 sec_name, sec_idx, 1983 sec_desc->data->d_buf, 1984 sec_desc->data->d_size); 1985 break; 1986 case SEC_BSS: 1987 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1988 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1989 sec_name, sec_idx, 1990 NULL, 1991 sec_desc->data->d_size); 1992 break; 1993 default: 1994 /* skip */ 1995 break; 1996 } 1997 if (err) 1998 return err; 1999 } 2000 return 0; 2001 } 2002 2003 2004 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 2005 const void *name) 2006 { 2007 int i; 2008 2009 for (i = 0; i < obj->nr_extern; i++) { 2010 if (strcmp(obj->externs[i].name, name) == 0) 2011 return &obj->externs[i]; 2012 } 2013 return NULL; 2014 } 2015 2016 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 2017 const void *name, int len) 2018 { 2019 const char *ext_name; 2020 int i; 2021 2022 for (i = 0; i < obj->nr_extern; i++) { 2023 ext_name = obj->externs[i].name; 2024 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 2025 return &obj->externs[i]; 2026 } 2027 return NULL; 2028 } 2029 2030 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 2031 char value) 2032 { 2033 switch (ext->kcfg.type) { 2034 case KCFG_BOOL: 2035 if (value == 'm') { 2036 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 2037 ext->name, value); 2038 return -EINVAL; 2039 } 2040 *(bool *)ext_val = value == 'y' ? true : false; 2041 break; 2042 case KCFG_TRISTATE: 2043 if (value == 'y') 2044 *(enum libbpf_tristate *)ext_val = TRI_YES; 2045 else if (value == 'm') 2046 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2047 else /* value == 'n' */ 2048 *(enum libbpf_tristate *)ext_val = TRI_NO; 2049 break; 2050 case KCFG_CHAR: 2051 *(char *)ext_val = value; 2052 break; 2053 case KCFG_UNKNOWN: 2054 case KCFG_INT: 2055 case KCFG_CHAR_ARR: 2056 default: 2057 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2058 ext->name, value); 2059 return -EINVAL; 2060 } 2061 ext->is_set = true; 2062 return 0; 2063 } 2064 2065 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2066 const char *value) 2067 { 2068 size_t len; 2069 2070 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2071 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2072 ext->name, value); 2073 return -EINVAL; 2074 } 2075 2076 len = strlen(value); 2077 if (value[len - 1] != '"') { 2078 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2079 ext->name, value); 2080 return -EINVAL; 2081 } 2082 2083 /* strip quotes */ 2084 len -= 2; 2085 if (len >= ext->kcfg.sz) { 2086 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2087 ext->name, value, len, ext->kcfg.sz - 1); 2088 len = ext->kcfg.sz - 1; 2089 } 2090 memcpy(ext_val, value + 1, len); 2091 ext_val[len] = '\0'; 2092 ext->is_set = true; 2093 return 0; 2094 } 2095 2096 static int parse_u64(const char *value, __u64 *res) 2097 { 2098 char *value_end; 2099 int err; 2100 2101 errno = 0; 2102 *res = strtoull(value, &value_end, 0); 2103 if (errno) { 2104 err = -errno; 2105 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 2106 return err; 2107 } 2108 if (*value_end) { 2109 pr_warn("failed to parse '%s' as integer completely\n", value); 2110 return -EINVAL; 2111 } 2112 return 0; 2113 } 2114 2115 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2116 { 2117 int bit_sz = ext->kcfg.sz * 8; 2118 2119 if (ext->kcfg.sz == 8) 2120 return true; 2121 2122 /* Validate that value stored in u64 fits in integer of `ext->sz` 2123 * bytes size without any loss of information. If the target integer 2124 * is signed, we rely on the following limits of integer type of 2125 * Y bits and subsequent transformation: 2126 * 2127 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2128 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2129 * 0 <= X + 2^(Y-1) < 2^Y 2130 * 2131 * For unsigned target integer, check that all the (64 - Y) bits are 2132 * zero. 2133 */ 2134 if (ext->kcfg.is_signed) 2135 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2136 else 2137 return (v >> bit_sz) == 0; 2138 } 2139 2140 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2141 __u64 value) 2142 { 2143 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2144 ext->kcfg.type != KCFG_BOOL) { 2145 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2146 ext->name, (unsigned long long)value); 2147 return -EINVAL; 2148 } 2149 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2150 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2151 ext->name, (unsigned long long)value); 2152 return -EINVAL; 2153 2154 } 2155 if (!is_kcfg_value_in_range(ext, value)) { 2156 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2157 ext->name, (unsigned long long)value, ext->kcfg.sz); 2158 return -ERANGE; 2159 } 2160 switch (ext->kcfg.sz) { 2161 case 1: 2162 *(__u8 *)ext_val = value; 2163 break; 2164 case 2: 2165 *(__u16 *)ext_val = value; 2166 break; 2167 case 4: 2168 *(__u32 *)ext_val = value; 2169 break; 2170 case 8: 2171 *(__u64 *)ext_val = value; 2172 break; 2173 default: 2174 return -EINVAL; 2175 } 2176 ext->is_set = true; 2177 return 0; 2178 } 2179 2180 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2181 char *buf, void *data) 2182 { 2183 struct extern_desc *ext; 2184 char *sep, *value; 2185 int len, err = 0; 2186 void *ext_val; 2187 __u64 num; 2188 2189 if (!str_has_pfx(buf, "CONFIG_")) 2190 return 0; 2191 2192 sep = strchr(buf, '='); 2193 if (!sep) { 2194 pr_warn("failed to parse '%s': no separator\n", buf); 2195 return -EINVAL; 2196 } 2197 2198 /* Trim ending '\n' */ 2199 len = strlen(buf); 2200 if (buf[len - 1] == '\n') 2201 buf[len - 1] = '\0'; 2202 /* Split on '=' and ensure that a value is present. */ 2203 *sep = '\0'; 2204 if (!sep[1]) { 2205 *sep = '='; 2206 pr_warn("failed to parse '%s': no value\n", buf); 2207 return -EINVAL; 2208 } 2209 2210 ext = find_extern_by_name(obj, buf); 2211 if (!ext || ext->is_set) 2212 return 0; 2213 2214 ext_val = data + ext->kcfg.data_off; 2215 value = sep + 1; 2216 2217 switch (*value) { 2218 case 'y': case 'n': case 'm': 2219 err = set_kcfg_value_tri(ext, ext_val, *value); 2220 break; 2221 case '"': 2222 err = set_kcfg_value_str(ext, ext_val, value); 2223 break; 2224 default: 2225 /* assume integer */ 2226 err = parse_u64(value, &num); 2227 if (err) { 2228 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2229 return err; 2230 } 2231 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2232 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2233 return -EINVAL; 2234 } 2235 err = set_kcfg_value_num(ext, ext_val, num); 2236 break; 2237 } 2238 if (err) 2239 return err; 2240 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2241 return 0; 2242 } 2243 2244 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2245 { 2246 char buf[PATH_MAX]; 2247 struct utsname uts; 2248 int len, err = 0; 2249 gzFile file; 2250 2251 uname(&uts); 2252 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2253 if (len < 0) 2254 return -EINVAL; 2255 else if (len >= PATH_MAX) 2256 return -ENAMETOOLONG; 2257 2258 /* gzopen also accepts uncompressed files. */ 2259 file = gzopen(buf, "re"); 2260 if (!file) 2261 file = gzopen("/proc/config.gz", "re"); 2262 2263 if (!file) { 2264 pr_warn("failed to open system Kconfig\n"); 2265 return -ENOENT; 2266 } 2267 2268 while (gzgets(file, buf, sizeof(buf))) { 2269 err = bpf_object__process_kconfig_line(obj, buf, data); 2270 if (err) { 2271 pr_warn("error parsing system Kconfig line '%s': %d\n", 2272 buf, err); 2273 goto out; 2274 } 2275 } 2276 2277 out: 2278 gzclose(file); 2279 return err; 2280 } 2281 2282 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2283 const char *config, void *data) 2284 { 2285 char buf[PATH_MAX]; 2286 int err = 0; 2287 FILE *file; 2288 2289 file = fmemopen((void *)config, strlen(config), "r"); 2290 if (!file) { 2291 err = -errno; 2292 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2293 return err; 2294 } 2295 2296 while (fgets(buf, sizeof(buf), file)) { 2297 err = bpf_object__process_kconfig_line(obj, buf, data); 2298 if (err) { 2299 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2300 buf, err); 2301 break; 2302 } 2303 } 2304 2305 fclose(file); 2306 return err; 2307 } 2308 2309 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2310 { 2311 struct extern_desc *last_ext = NULL, *ext; 2312 size_t map_sz; 2313 int i, err; 2314 2315 for (i = 0; i < obj->nr_extern; i++) { 2316 ext = &obj->externs[i]; 2317 if (ext->type == EXT_KCFG) 2318 last_ext = ext; 2319 } 2320 2321 if (!last_ext) 2322 return 0; 2323 2324 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2325 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2326 ".kconfig", obj->efile.symbols_shndx, 2327 NULL, map_sz); 2328 if (err) 2329 return err; 2330 2331 obj->kconfig_map_idx = obj->nr_maps - 1; 2332 2333 return 0; 2334 } 2335 2336 const struct btf_type * 2337 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2338 { 2339 const struct btf_type *t = btf__type_by_id(btf, id); 2340 2341 if (res_id) 2342 *res_id = id; 2343 2344 while (btf_is_mod(t) || btf_is_typedef(t)) { 2345 if (res_id) 2346 *res_id = t->type; 2347 t = btf__type_by_id(btf, t->type); 2348 } 2349 2350 return t; 2351 } 2352 2353 static const struct btf_type * 2354 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2355 { 2356 const struct btf_type *t; 2357 2358 t = skip_mods_and_typedefs(btf, id, NULL); 2359 if (!btf_is_ptr(t)) 2360 return NULL; 2361 2362 t = skip_mods_and_typedefs(btf, t->type, res_id); 2363 2364 return btf_is_func_proto(t) ? t : NULL; 2365 } 2366 2367 static const char *__btf_kind_str(__u16 kind) 2368 { 2369 switch (kind) { 2370 case BTF_KIND_UNKN: return "void"; 2371 case BTF_KIND_INT: return "int"; 2372 case BTF_KIND_PTR: return "ptr"; 2373 case BTF_KIND_ARRAY: return "array"; 2374 case BTF_KIND_STRUCT: return "struct"; 2375 case BTF_KIND_UNION: return "union"; 2376 case BTF_KIND_ENUM: return "enum"; 2377 case BTF_KIND_FWD: return "fwd"; 2378 case BTF_KIND_TYPEDEF: return "typedef"; 2379 case BTF_KIND_VOLATILE: return "volatile"; 2380 case BTF_KIND_CONST: return "const"; 2381 case BTF_KIND_RESTRICT: return "restrict"; 2382 case BTF_KIND_FUNC: return "func"; 2383 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2384 case BTF_KIND_VAR: return "var"; 2385 case BTF_KIND_DATASEC: return "datasec"; 2386 case BTF_KIND_FLOAT: return "float"; 2387 case BTF_KIND_DECL_TAG: return "decl_tag"; 2388 case BTF_KIND_TYPE_TAG: return "type_tag"; 2389 case BTF_KIND_ENUM64: return "enum64"; 2390 default: return "unknown"; 2391 } 2392 } 2393 2394 const char *btf_kind_str(const struct btf_type *t) 2395 { 2396 return __btf_kind_str(btf_kind(t)); 2397 } 2398 2399 /* 2400 * Fetch integer attribute of BTF map definition. Such attributes are 2401 * represented using a pointer to an array, in which dimensionality of array 2402 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2403 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2404 * type definition, while using only sizeof(void *) space in ELF data section. 2405 */ 2406 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2407 const struct btf_member *m, __u32 *res) 2408 { 2409 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2410 const char *name = btf__name_by_offset(btf, m->name_off); 2411 const struct btf_array *arr_info; 2412 const struct btf_type *arr_t; 2413 2414 if (!btf_is_ptr(t)) { 2415 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2416 map_name, name, btf_kind_str(t)); 2417 return false; 2418 } 2419 2420 arr_t = btf__type_by_id(btf, t->type); 2421 if (!arr_t) { 2422 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2423 map_name, name, t->type); 2424 return false; 2425 } 2426 if (!btf_is_array(arr_t)) { 2427 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2428 map_name, name, btf_kind_str(arr_t)); 2429 return false; 2430 } 2431 arr_info = btf_array(arr_t); 2432 *res = arr_info->nelems; 2433 return true; 2434 } 2435 2436 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2437 const struct btf_member *m, __u64 *res) 2438 { 2439 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2440 const char *name = btf__name_by_offset(btf, m->name_off); 2441 2442 if (btf_is_ptr(t)) { 2443 __u32 res32; 2444 bool ret; 2445 2446 ret = get_map_field_int(map_name, btf, m, &res32); 2447 if (ret) 2448 *res = (__u64)res32; 2449 return ret; 2450 } 2451 2452 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2453 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2454 map_name, name, btf_kind_str(t)); 2455 return false; 2456 } 2457 2458 if (btf_vlen(t) != 1) { 2459 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2460 map_name, name); 2461 return false; 2462 } 2463 2464 if (btf_is_enum(t)) { 2465 const struct btf_enum *e = btf_enum(t); 2466 2467 *res = e->val; 2468 } else { 2469 const struct btf_enum64 *e = btf_enum64(t); 2470 2471 *res = btf_enum64_value(e); 2472 } 2473 return true; 2474 } 2475 2476 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2477 { 2478 int len; 2479 2480 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2481 if (len < 0) 2482 return -EINVAL; 2483 if (len >= buf_sz) 2484 return -ENAMETOOLONG; 2485 2486 return 0; 2487 } 2488 2489 static int build_map_pin_path(struct bpf_map *map, const char *path) 2490 { 2491 char buf[PATH_MAX]; 2492 int err; 2493 2494 if (!path) 2495 path = BPF_FS_DEFAULT_PATH; 2496 2497 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2498 if (err) 2499 return err; 2500 2501 return bpf_map__set_pin_path(map, buf); 2502 } 2503 2504 /* should match definition in bpf_helpers.h */ 2505 enum libbpf_pin_type { 2506 LIBBPF_PIN_NONE, 2507 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2508 LIBBPF_PIN_BY_NAME, 2509 }; 2510 2511 int parse_btf_map_def(const char *map_name, struct btf *btf, 2512 const struct btf_type *def_t, bool strict, 2513 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2514 { 2515 const struct btf_type *t; 2516 const struct btf_member *m; 2517 bool is_inner = inner_def == NULL; 2518 int vlen, i; 2519 2520 vlen = btf_vlen(def_t); 2521 m = btf_members(def_t); 2522 for (i = 0; i < vlen; i++, m++) { 2523 const char *name = btf__name_by_offset(btf, m->name_off); 2524 2525 if (!name) { 2526 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2527 return -EINVAL; 2528 } 2529 if (strcmp(name, "type") == 0) { 2530 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2531 return -EINVAL; 2532 map_def->parts |= MAP_DEF_MAP_TYPE; 2533 } else if (strcmp(name, "max_entries") == 0) { 2534 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2535 return -EINVAL; 2536 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2537 } else if (strcmp(name, "map_flags") == 0) { 2538 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2539 return -EINVAL; 2540 map_def->parts |= MAP_DEF_MAP_FLAGS; 2541 } else if (strcmp(name, "numa_node") == 0) { 2542 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2543 return -EINVAL; 2544 map_def->parts |= MAP_DEF_NUMA_NODE; 2545 } else if (strcmp(name, "key_size") == 0) { 2546 __u32 sz; 2547 2548 if (!get_map_field_int(map_name, btf, m, &sz)) 2549 return -EINVAL; 2550 if (map_def->key_size && map_def->key_size != sz) { 2551 pr_warn("map '%s': conflicting key size %u != %u.\n", 2552 map_name, map_def->key_size, sz); 2553 return -EINVAL; 2554 } 2555 map_def->key_size = sz; 2556 map_def->parts |= MAP_DEF_KEY_SIZE; 2557 } else if (strcmp(name, "key") == 0) { 2558 __s64 sz; 2559 2560 t = btf__type_by_id(btf, m->type); 2561 if (!t) { 2562 pr_warn("map '%s': key type [%d] not found.\n", 2563 map_name, m->type); 2564 return -EINVAL; 2565 } 2566 if (!btf_is_ptr(t)) { 2567 pr_warn("map '%s': key spec is not PTR: %s.\n", 2568 map_name, btf_kind_str(t)); 2569 return -EINVAL; 2570 } 2571 sz = btf__resolve_size(btf, t->type); 2572 if (sz < 0) { 2573 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2574 map_name, t->type, (ssize_t)sz); 2575 return sz; 2576 } 2577 if (map_def->key_size && map_def->key_size != sz) { 2578 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2579 map_name, map_def->key_size, (ssize_t)sz); 2580 return -EINVAL; 2581 } 2582 map_def->key_size = sz; 2583 map_def->key_type_id = t->type; 2584 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2585 } else if (strcmp(name, "value_size") == 0) { 2586 __u32 sz; 2587 2588 if (!get_map_field_int(map_name, btf, m, &sz)) 2589 return -EINVAL; 2590 if (map_def->value_size && map_def->value_size != sz) { 2591 pr_warn("map '%s': conflicting value size %u != %u.\n", 2592 map_name, map_def->value_size, sz); 2593 return -EINVAL; 2594 } 2595 map_def->value_size = sz; 2596 map_def->parts |= MAP_DEF_VALUE_SIZE; 2597 } else if (strcmp(name, "value") == 0) { 2598 __s64 sz; 2599 2600 t = btf__type_by_id(btf, m->type); 2601 if (!t) { 2602 pr_warn("map '%s': value type [%d] not found.\n", 2603 map_name, m->type); 2604 return -EINVAL; 2605 } 2606 if (!btf_is_ptr(t)) { 2607 pr_warn("map '%s': value spec is not PTR: %s.\n", 2608 map_name, btf_kind_str(t)); 2609 return -EINVAL; 2610 } 2611 sz = btf__resolve_size(btf, t->type); 2612 if (sz < 0) { 2613 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2614 map_name, t->type, (ssize_t)sz); 2615 return sz; 2616 } 2617 if (map_def->value_size && map_def->value_size != sz) { 2618 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2619 map_name, map_def->value_size, (ssize_t)sz); 2620 return -EINVAL; 2621 } 2622 map_def->value_size = sz; 2623 map_def->value_type_id = t->type; 2624 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2625 } 2626 else if (strcmp(name, "values") == 0) { 2627 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2628 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2629 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2630 char inner_map_name[128]; 2631 int err; 2632 2633 if (is_inner) { 2634 pr_warn("map '%s': multi-level inner maps not supported.\n", 2635 map_name); 2636 return -ENOTSUP; 2637 } 2638 if (i != vlen - 1) { 2639 pr_warn("map '%s': '%s' member should be last.\n", 2640 map_name, name); 2641 return -EINVAL; 2642 } 2643 if (!is_map_in_map && !is_prog_array) { 2644 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2645 map_name); 2646 return -ENOTSUP; 2647 } 2648 if (map_def->value_size && map_def->value_size != 4) { 2649 pr_warn("map '%s': conflicting value size %u != 4.\n", 2650 map_name, map_def->value_size); 2651 return -EINVAL; 2652 } 2653 map_def->value_size = 4; 2654 t = btf__type_by_id(btf, m->type); 2655 if (!t) { 2656 pr_warn("map '%s': %s type [%d] not found.\n", 2657 map_name, desc, m->type); 2658 return -EINVAL; 2659 } 2660 if (!btf_is_array(t) || btf_array(t)->nelems) { 2661 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2662 map_name, desc); 2663 return -EINVAL; 2664 } 2665 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2666 if (!btf_is_ptr(t)) { 2667 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2668 map_name, desc, btf_kind_str(t)); 2669 return -EINVAL; 2670 } 2671 t = skip_mods_and_typedefs(btf, t->type, NULL); 2672 if (is_prog_array) { 2673 if (!btf_is_func_proto(t)) { 2674 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2675 map_name, btf_kind_str(t)); 2676 return -EINVAL; 2677 } 2678 continue; 2679 } 2680 if (!btf_is_struct(t)) { 2681 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2682 map_name, btf_kind_str(t)); 2683 return -EINVAL; 2684 } 2685 2686 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2687 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2688 if (err) 2689 return err; 2690 2691 map_def->parts |= MAP_DEF_INNER_MAP; 2692 } else if (strcmp(name, "pinning") == 0) { 2693 __u32 val; 2694 2695 if (is_inner) { 2696 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2697 return -EINVAL; 2698 } 2699 if (!get_map_field_int(map_name, btf, m, &val)) 2700 return -EINVAL; 2701 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2702 pr_warn("map '%s': invalid pinning value %u.\n", 2703 map_name, val); 2704 return -EINVAL; 2705 } 2706 map_def->pinning = val; 2707 map_def->parts |= MAP_DEF_PINNING; 2708 } else if (strcmp(name, "map_extra") == 0) { 2709 __u64 map_extra; 2710 2711 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2712 return -EINVAL; 2713 map_def->map_extra = map_extra; 2714 map_def->parts |= MAP_DEF_MAP_EXTRA; 2715 } else { 2716 if (strict) { 2717 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2718 return -ENOTSUP; 2719 } 2720 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2721 } 2722 } 2723 2724 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2725 pr_warn("map '%s': map type isn't specified.\n", map_name); 2726 return -EINVAL; 2727 } 2728 2729 return 0; 2730 } 2731 2732 static size_t adjust_ringbuf_sz(size_t sz) 2733 { 2734 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2735 __u32 mul; 2736 2737 /* if user forgot to set any size, make sure they see error */ 2738 if (sz == 0) 2739 return 0; 2740 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2741 * a power-of-2 multiple of kernel's page size. If user diligently 2742 * satisified these conditions, pass the size through. 2743 */ 2744 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2745 return sz; 2746 2747 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2748 * user-set size to satisfy both user size request and kernel 2749 * requirements and substitute correct max_entries for map creation. 2750 */ 2751 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2752 if (mul * page_sz > sz) 2753 return mul * page_sz; 2754 } 2755 2756 /* if it's impossible to satisfy the conditions (i.e., user size is 2757 * very close to UINT_MAX but is not a power-of-2 multiple of 2758 * page_size) then just return original size and let kernel reject it 2759 */ 2760 return sz; 2761 } 2762 2763 static bool map_is_ringbuf(const struct bpf_map *map) 2764 { 2765 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2766 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2767 } 2768 2769 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2770 { 2771 map->def.type = def->map_type; 2772 map->def.key_size = def->key_size; 2773 map->def.value_size = def->value_size; 2774 map->def.max_entries = def->max_entries; 2775 map->def.map_flags = def->map_flags; 2776 map->map_extra = def->map_extra; 2777 2778 map->numa_node = def->numa_node; 2779 map->btf_key_type_id = def->key_type_id; 2780 map->btf_value_type_id = def->value_type_id; 2781 2782 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2783 if (map_is_ringbuf(map)) 2784 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2785 2786 if (def->parts & MAP_DEF_MAP_TYPE) 2787 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2788 2789 if (def->parts & MAP_DEF_KEY_TYPE) 2790 pr_debug("map '%s': found key [%u], sz = %u.\n", 2791 map->name, def->key_type_id, def->key_size); 2792 else if (def->parts & MAP_DEF_KEY_SIZE) 2793 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2794 2795 if (def->parts & MAP_DEF_VALUE_TYPE) 2796 pr_debug("map '%s': found value [%u], sz = %u.\n", 2797 map->name, def->value_type_id, def->value_size); 2798 else if (def->parts & MAP_DEF_VALUE_SIZE) 2799 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2800 2801 if (def->parts & MAP_DEF_MAX_ENTRIES) 2802 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2803 if (def->parts & MAP_DEF_MAP_FLAGS) 2804 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2805 if (def->parts & MAP_DEF_MAP_EXTRA) 2806 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2807 (unsigned long long)def->map_extra); 2808 if (def->parts & MAP_DEF_PINNING) 2809 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2810 if (def->parts & MAP_DEF_NUMA_NODE) 2811 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2812 2813 if (def->parts & MAP_DEF_INNER_MAP) 2814 pr_debug("map '%s': found inner map definition.\n", map->name); 2815 } 2816 2817 static const char *btf_var_linkage_str(__u32 linkage) 2818 { 2819 switch (linkage) { 2820 case BTF_VAR_STATIC: return "static"; 2821 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2822 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2823 default: return "unknown"; 2824 } 2825 } 2826 2827 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2828 const struct btf_type *sec, 2829 int var_idx, int sec_idx, 2830 const Elf_Data *data, bool strict, 2831 const char *pin_root_path) 2832 { 2833 struct btf_map_def map_def = {}, inner_def = {}; 2834 const struct btf_type *var, *def; 2835 const struct btf_var_secinfo *vi; 2836 const struct btf_var *var_extra; 2837 const char *map_name; 2838 struct bpf_map *map; 2839 int err; 2840 2841 vi = btf_var_secinfos(sec) + var_idx; 2842 var = btf__type_by_id(obj->btf, vi->type); 2843 var_extra = btf_var(var); 2844 map_name = btf__name_by_offset(obj->btf, var->name_off); 2845 2846 if (map_name == NULL || map_name[0] == '\0') { 2847 pr_warn("map #%d: empty name.\n", var_idx); 2848 return -EINVAL; 2849 } 2850 if ((__u64)vi->offset + vi->size > data->d_size) { 2851 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2852 return -EINVAL; 2853 } 2854 if (!btf_is_var(var)) { 2855 pr_warn("map '%s': unexpected var kind %s.\n", 2856 map_name, btf_kind_str(var)); 2857 return -EINVAL; 2858 } 2859 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2860 pr_warn("map '%s': unsupported map linkage %s.\n", 2861 map_name, btf_var_linkage_str(var_extra->linkage)); 2862 return -EOPNOTSUPP; 2863 } 2864 2865 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2866 if (!btf_is_struct(def)) { 2867 pr_warn("map '%s': unexpected def kind %s.\n", 2868 map_name, btf_kind_str(var)); 2869 return -EINVAL; 2870 } 2871 if (def->size > vi->size) { 2872 pr_warn("map '%s': invalid def size.\n", map_name); 2873 return -EINVAL; 2874 } 2875 2876 map = bpf_object__add_map(obj); 2877 if (IS_ERR(map)) 2878 return PTR_ERR(map); 2879 map->name = strdup(map_name); 2880 if (!map->name) { 2881 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2882 return -ENOMEM; 2883 } 2884 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2885 map->def.type = BPF_MAP_TYPE_UNSPEC; 2886 map->sec_idx = sec_idx; 2887 map->sec_offset = vi->offset; 2888 map->btf_var_idx = var_idx; 2889 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2890 map_name, map->sec_idx, map->sec_offset); 2891 2892 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2893 if (err) 2894 return err; 2895 2896 fill_map_from_def(map, &map_def); 2897 2898 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2899 err = build_map_pin_path(map, pin_root_path); 2900 if (err) { 2901 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2902 return err; 2903 } 2904 } 2905 2906 if (map_def.parts & MAP_DEF_INNER_MAP) { 2907 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2908 if (!map->inner_map) 2909 return -ENOMEM; 2910 map->inner_map->fd = create_placeholder_fd(); 2911 if (map->inner_map->fd < 0) 2912 return map->inner_map->fd; 2913 map->inner_map->sec_idx = sec_idx; 2914 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2915 if (!map->inner_map->name) 2916 return -ENOMEM; 2917 sprintf(map->inner_map->name, "%s.inner", map_name); 2918 2919 fill_map_from_def(map->inner_map, &inner_def); 2920 } 2921 2922 err = map_fill_btf_type_info(obj, map); 2923 if (err) 2924 return err; 2925 2926 return 0; 2927 } 2928 2929 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2930 const char *sec_name, int sec_idx, 2931 void *data, size_t data_sz) 2932 { 2933 const long page_sz = sysconf(_SC_PAGE_SIZE); 2934 size_t mmap_sz; 2935 2936 mmap_sz = bpf_map_mmap_sz(obj->arena_map); 2937 if (roundup(data_sz, page_sz) > mmap_sz) { 2938 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2939 sec_name, mmap_sz, data_sz); 2940 return -E2BIG; 2941 } 2942 2943 obj->arena_data = malloc(data_sz); 2944 if (!obj->arena_data) 2945 return -ENOMEM; 2946 memcpy(obj->arena_data, data, data_sz); 2947 obj->arena_data_sz = data_sz; 2948 2949 /* make bpf_map__init_value() work for ARENA maps */ 2950 map->mmaped = obj->arena_data; 2951 2952 return 0; 2953 } 2954 2955 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2956 const char *pin_root_path) 2957 { 2958 const struct btf_type *sec = NULL; 2959 int nr_types, i, vlen, err; 2960 const struct btf_type *t; 2961 const char *name; 2962 Elf_Data *data; 2963 Elf_Scn *scn; 2964 2965 if (obj->efile.btf_maps_shndx < 0) 2966 return 0; 2967 2968 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2969 data = elf_sec_data(obj, scn); 2970 if (!scn || !data) { 2971 pr_warn("elf: failed to get %s map definitions for %s\n", 2972 MAPS_ELF_SEC, obj->path); 2973 return -EINVAL; 2974 } 2975 2976 nr_types = btf__type_cnt(obj->btf); 2977 for (i = 1; i < nr_types; i++) { 2978 t = btf__type_by_id(obj->btf, i); 2979 if (!btf_is_datasec(t)) 2980 continue; 2981 name = btf__name_by_offset(obj->btf, t->name_off); 2982 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2983 sec = t; 2984 obj->efile.btf_maps_sec_btf_id = i; 2985 break; 2986 } 2987 } 2988 2989 if (!sec) { 2990 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2991 return -ENOENT; 2992 } 2993 2994 vlen = btf_vlen(sec); 2995 for (i = 0; i < vlen; i++) { 2996 err = bpf_object__init_user_btf_map(obj, sec, i, 2997 obj->efile.btf_maps_shndx, 2998 data, strict, 2999 pin_root_path); 3000 if (err) 3001 return err; 3002 } 3003 3004 for (i = 0; i < obj->nr_maps; i++) { 3005 struct bpf_map *map = &obj->maps[i]; 3006 3007 if (map->def.type != BPF_MAP_TYPE_ARENA) 3008 continue; 3009 3010 if (obj->arena_map) { 3011 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 3012 map->name, obj->arena_map->name); 3013 return -EINVAL; 3014 } 3015 obj->arena_map = map; 3016 3017 if (obj->efile.arena_data) { 3018 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 3019 obj->efile.arena_data->d_buf, 3020 obj->efile.arena_data->d_size); 3021 if (err) 3022 return err; 3023 } 3024 } 3025 if (obj->efile.arena_data && !obj->arena_map) { 3026 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 3027 ARENA_SEC); 3028 return -ENOENT; 3029 } 3030 3031 return 0; 3032 } 3033 3034 static int bpf_object__init_maps(struct bpf_object *obj, 3035 const struct bpf_object_open_opts *opts) 3036 { 3037 const char *pin_root_path; 3038 bool strict; 3039 int err = 0; 3040 3041 strict = !OPTS_GET(opts, relaxed_maps, false); 3042 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3043 3044 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3045 err = err ?: bpf_object__init_global_data_maps(obj); 3046 err = err ?: bpf_object__init_kconfig_map(obj); 3047 err = err ?: bpf_object_init_struct_ops(obj); 3048 3049 return err; 3050 } 3051 3052 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3053 { 3054 Elf64_Shdr *sh; 3055 3056 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3057 if (!sh) 3058 return false; 3059 3060 return sh->sh_flags & SHF_EXECINSTR; 3061 } 3062 3063 static bool starts_with_qmark(const char *s) 3064 { 3065 return s && s[0] == '?'; 3066 } 3067 3068 static bool btf_needs_sanitization(struct bpf_object *obj) 3069 { 3070 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3071 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3072 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3073 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3074 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3075 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3076 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3077 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3078 3079 return !has_func || !has_datasec || !has_func_global || !has_float || 3080 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3081 } 3082 3083 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3084 { 3085 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3086 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3087 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3088 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3089 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3090 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3091 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3092 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3093 int enum64_placeholder_id = 0; 3094 struct btf_type *t; 3095 int i, j, vlen; 3096 3097 for (i = 1; i < btf__type_cnt(btf); i++) { 3098 t = (struct btf_type *)btf__type_by_id(btf, i); 3099 3100 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3101 /* replace VAR/DECL_TAG with INT */ 3102 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3103 /* 3104 * using size = 1 is the safest choice, 4 will be too 3105 * big and cause kernel BTF validation failure if 3106 * original variable took less than 4 bytes 3107 */ 3108 t->size = 1; 3109 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3110 } else if (!has_datasec && btf_is_datasec(t)) { 3111 /* replace DATASEC with STRUCT */ 3112 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3113 struct btf_member *m = btf_members(t); 3114 struct btf_type *vt; 3115 char *name; 3116 3117 name = (char *)btf__name_by_offset(btf, t->name_off); 3118 while (*name) { 3119 if (*name == '.' || *name == '?') 3120 *name = '_'; 3121 name++; 3122 } 3123 3124 vlen = btf_vlen(t); 3125 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3126 for (j = 0; j < vlen; j++, v++, m++) { 3127 /* order of field assignments is important */ 3128 m->offset = v->offset * 8; 3129 m->type = v->type; 3130 /* preserve variable name as member name */ 3131 vt = (void *)btf__type_by_id(btf, v->type); 3132 m->name_off = vt->name_off; 3133 } 3134 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3135 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3136 /* replace '?' prefix with '_' for DATASEC names */ 3137 char *name; 3138 3139 name = (char *)btf__name_by_offset(btf, t->name_off); 3140 if (name[0] == '?') 3141 name[0] = '_'; 3142 } else if (!has_func && btf_is_func_proto(t)) { 3143 /* replace FUNC_PROTO with ENUM */ 3144 vlen = btf_vlen(t); 3145 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3146 t->size = sizeof(__u32); /* kernel enforced */ 3147 } else if (!has_func && btf_is_func(t)) { 3148 /* replace FUNC with TYPEDEF */ 3149 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3150 } else if (!has_func_global && btf_is_func(t)) { 3151 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3152 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3153 } else if (!has_float && btf_is_float(t)) { 3154 /* replace FLOAT with an equally-sized empty STRUCT; 3155 * since C compilers do not accept e.g. "float" as a 3156 * valid struct name, make it anonymous 3157 */ 3158 t->name_off = 0; 3159 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3160 } else if (!has_type_tag && btf_is_type_tag(t)) { 3161 /* replace TYPE_TAG with a CONST */ 3162 t->name_off = 0; 3163 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3164 } else if (!has_enum64 && btf_is_enum(t)) { 3165 /* clear the kflag */ 3166 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3167 } else if (!has_enum64 && btf_is_enum64(t)) { 3168 /* replace ENUM64 with a union */ 3169 struct btf_member *m; 3170 3171 if (enum64_placeholder_id == 0) { 3172 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3173 if (enum64_placeholder_id < 0) 3174 return enum64_placeholder_id; 3175 3176 t = (struct btf_type *)btf__type_by_id(btf, i); 3177 } 3178 3179 m = btf_members(t); 3180 vlen = btf_vlen(t); 3181 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3182 for (j = 0; j < vlen; j++, m++) { 3183 m->type = enum64_placeholder_id; 3184 m->offset = 0; 3185 } 3186 } 3187 } 3188 3189 return 0; 3190 } 3191 3192 static bool libbpf_needs_btf(const struct bpf_object *obj) 3193 { 3194 return obj->efile.btf_maps_shndx >= 0 || 3195 obj->efile.has_st_ops || 3196 obj->nr_extern > 0; 3197 } 3198 3199 static bool kernel_needs_btf(const struct bpf_object *obj) 3200 { 3201 return obj->efile.has_st_ops; 3202 } 3203 3204 static int bpf_object__init_btf(struct bpf_object *obj, 3205 Elf_Data *btf_data, 3206 Elf_Data *btf_ext_data) 3207 { 3208 int err = -ENOENT; 3209 3210 if (btf_data) { 3211 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3212 err = libbpf_get_error(obj->btf); 3213 if (err) { 3214 obj->btf = NULL; 3215 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 3216 goto out; 3217 } 3218 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3219 btf__set_pointer_size(obj->btf, 8); 3220 } 3221 if (btf_ext_data) { 3222 struct btf_ext_info *ext_segs[3]; 3223 int seg_num, sec_num; 3224 3225 if (!obj->btf) { 3226 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3227 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3228 goto out; 3229 } 3230 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3231 err = libbpf_get_error(obj->btf_ext); 3232 if (err) { 3233 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 3234 BTF_EXT_ELF_SEC, err); 3235 obj->btf_ext = NULL; 3236 goto out; 3237 } 3238 3239 /* setup .BTF.ext to ELF section mapping */ 3240 ext_segs[0] = &obj->btf_ext->func_info; 3241 ext_segs[1] = &obj->btf_ext->line_info; 3242 ext_segs[2] = &obj->btf_ext->core_relo_info; 3243 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3244 struct btf_ext_info *seg = ext_segs[seg_num]; 3245 const struct btf_ext_info_sec *sec; 3246 const char *sec_name; 3247 Elf_Scn *scn; 3248 3249 if (seg->sec_cnt == 0) 3250 continue; 3251 3252 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3253 if (!seg->sec_idxs) { 3254 err = -ENOMEM; 3255 goto out; 3256 } 3257 3258 sec_num = 0; 3259 for_each_btf_ext_sec(seg, sec) { 3260 /* preventively increment index to avoid doing 3261 * this before every continue below 3262 */ 3263 sec_num++; 3264 3265 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3266 if (str_is_empty(sec_name)) 3267 continue; 3268 scn = elf_sec_by_name(obj, sec_name); 3269 if (!scn) 3270 continue; 3271 3272 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3273 } 3274 } 3275 } 3276 out: 3277 if (err && libbpf_needs_btf(obj)) { 3278 pr_warn("BTF is required, but is missing or corrupted.\n"); 3279 return err; 3280 } 3281 return 0; 3282 } 3283 3284 static int compare_vsi_off(const void *_a, const void *_b) 3285 { 3286 const struct btf_var_secinfo *a = _a; 3287 const struct btf_var_secinfo *b = _b; 3288 3289 return a->offset - b->offset; 3290 } 3291 3292 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3293 struct btf_type *t) 3294 { 3295 __u32 size = 0, i, vars = btf_vlen(t); 3296 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3297 struct btf_var_secinfo *vsi; 3298 bool fixup_offsets = false; 3299 int err; 3300 3301 if (!sec_name) { 3302 pr_debug("No name found in string section for DATASEC kind.\n"); 3303 return -ENOENT; 3304 } 3305 3306 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3307 * variable offsets set at the previous step. Further, not every 3308 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3309 * all fixups altogether for such sections and go straight to sorting 3310 * VARs within their DATASEC. 3311 */ 3312 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3313 goto sort_vars; 3314 3315 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3316 * fix this up. But BPF static linker already fixes this up and fills 3317 * all the sizes and offsets during static linking. So this step has 3318 * to be optional. But the STV_HIDDEN handling is non-optional for any 3319 * non-extern DATASEC, so the variable fixup loop below handles both 3320 * functions at the same time, paying the cost of BTF VAR <-> ELF 3321 * symbol matching just once. 3322 */ 3323 if (t->size == 0) { 3324 err = find_elf_sec_sz(obj, sec_name, &size); 3325 if (err || !size) { 3326 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 3327 sec_name, size, err); 3328 return -ENOENT; 3329 } 3330 3331 t->size = size; 3332 fixup_offsets = true; 3333 } 3334 3335 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3336 const struct btf_type *t_var; 3337 struct btf_var *var; 3338 const char *var_name; 3339 Elf64_Sym *sym; 3340 3341 t_var = btf__type_by_id(btf, vsi->type); 3342 if (!t_var || !btf_is_var(t_var)) { 3343 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3344 return -EINVAL; 3345 } 3346 3347 var = btf_var(t_var); 3348 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3349 continue; 3350 3351 var_name = btf__name_by_offset(btf, t_var->name_off); 3352 if (!var_name) { 3353 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3354 sec_name, i); 3355 return -ENOENT; 3356 } 3357 3358 sym = find_elf_var_sym(obj, var_name); 3359 if (IS_ERR(sym)) { 3360 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3361 sec_name, var_name); 3362 return -ENOENT; 3363 } 3364 3365 if (fixup_offsets) 3366 vsi->offset = sym->st_value; 3367 3368 /* if variable is a global/weak symbol, but has restricted 3369 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3370 * as static. This follows similar logic for functions (BPF 3371 * subprogs) and influences libbpf's further decisions about 3372 * whether to make global data BPF array maps as 3373 * BPF_F_MMAPABLE. 3374 */ 3375 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3376 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3377 var->linkage = BTF_VAR_STATIC; 3378 } 3379 3380 sort_vars: 3381 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3382 return 0; 3383 } 3384 3385 static int bpf_object_fixup_btf(struct bpf_object *obj) 3386 { 3387 int i, n, err = 0; 3388 3389 if (!obj->btf) 3390 return 0; 3391 3392 n = btf__type_cnt(obj->btf); 3393 for (i = 1; i < n; i++) { 3394 struct btf_type *t = btf_type_by_id(obj->btf, i); 3395 3396 /* Loader needs to fix up some of the things compiler 3397 * couldn't get its hands on while emitting BTF. This 3398 * is section size and global variable offset. We use 3399 * the info from the ELF itself for this purpose. 3400 */ 3401 if (btf_is_datasec(t)) { 3402 err = btf_fixup_datasec(obj, obj->btf, t); 3403 if (err) 3404 return err; 3405 } 3406 } 3407 3408 return 0; 3409 } 3410 3411 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3412 { 3413 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3414 prog->type == BPF_PROG_TYPE_LSM) 3415 return true; 3416 3417 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3418 * also need vmlinux BTF 3419 */ 3420 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3421 return true; 3422 3423 return false; 3424 } 3425 3426 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3427 { 3428 return bpf_map__is_struct_ops(map); 3429 } 3430 3431 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3432 { 3433 struct bpf_program *prog; 3434 struct bpf_map *map; 3435 int i; 3436 3437 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3438 * is not specified 3439 */ 3440 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3441 return true; 3442 3443 /* Support for typed ksyms needs kernel BTF */ 3444 for (i = 0; i < obj->nr_extern; i++) { 3445 const struct extern_desc *ext; 3446 3447 ext = &obj->externs[i]; 3448 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3449 return true; 3450 } 3451 3452 bpf_object__for_each_program(prog, obj) { 3453 if (!prog->autoload) 3454 continue; 3455 if (prog_needs_vmlinux_btf(prog)) 3456 return true; 3457 } 3458 3459 bpf_object__for_each_map(map, obj) { 3460 if (map_needs_vmlinux_btf(map)) 3461 return true; 3462 } 3463 3464 return false; 3465 } 3466 3467 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3468 { 3469 int err; 3470 3471 /* btf_vmlinux could be loaded earlier */ 3472 if (obj->btf_vmlinux || obj->gen_loader) 3473 return 0; 3474 3475 if (!force && !obj_needs_vmlinux_btf(obj)) 3476 return 0; 3477 3478 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3479 err = libbpf_get_error(obj->btf_vmlinux); 3480 if (err) { 3481 pr_warn("Error loading vmlinux BTF: %d\n", err); 3482 obj->btf_vmlinux = NULL; 3483 return err; 3484 } 3485 return 0; 3486 } 3487 3488 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3489 { 3490 struct btf *kern_btf = obj->btf; 3491 bool btf_mandatory, sanitize; 3492 int i, err = 0; 3493 3494 if (!obj->btf) 3495 return 0; 3496 3497 if (!kernel_supports(obj, FEAT_BTF)) { 3498 if (kernel_needs_btf(obj)) { 3499 err = -EOPNOTSUPP; 3500 goto report; 3501 } 3502 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3503 return 0; 3504 } 3505 3506 /* Even though some subprogs are global/weak, user might prefer more 3507 * permissive BPF verification process that BPF verifier performs for 3508 * static functions, taking into account more context from the caller 3509 * functions. In such case, they need to mark such subprogs with 3510 * __attribute__((visibility("hidden"))) and libbpf will adjust 3511 * corresponding FUNC BTF type to be marked as static and trigger more 3512 * involved BPF verification process. 3513 */ 3514 for (i = 0; i < obj->nr_programs; i++) { 3515 struct bpf_program *prog = &obj->programs[i]; 3516 struct btf_type *t; 3517 const char *name; 3518 int j, n; 3519 3520 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3521 continue; 3522 3523 n = btf__type_cnt(obj->btf); 3524 for (j = 1; j < n; j++) { 3525 t = btf_type_by_id(obj->btf, j); 3526 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3527 continue; 3528 3529 name = btf__str_by_offset(obj->btf, t->name_off); 3530 if (strcmp(name, prog->name) != 0) 3531 continue; 3532 3533 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3534 break; 3535 } 3536 } 3537 3538 sanitize = btf_needs_sanitization(obj); 3539 if (sanitize) { 3540 const void *raw_data; 3541 __u32 sz; 3542 3543 /* clone BTF to sanitize a copy and leave the original intact */ 3544 raw_data = btf__raw_data(obj->btf, &sz); 3545 kern_btf = btf__new(raw_data, sz); 3546 err = libbpf_get_error(kern_btf); 3547 if (err) 3548 return err; 3549 3550 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3551 btf__set_pointer_size(obj->btf, 8); 3552 err = bpf_object__sanitize_btf(obj, kern_btf); 3553 if (err) 3554 return err; 3555 } 3556 3557 if (obj->gen_loader) { 3558 __u32 raw_size = 0; 3559 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3560 3561 if (!raw_data) 3562 return -ENOMEM; 3563 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3564 /* Pretend to have valid FD to pass various fd >= 0 checks. 3565 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3566 */ 3567 btf__set_fd(kern_btf, 0); 3568 } else { 3569 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3570 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3571 obj->log_level ? 1 : 0, obj->token_fd); 3572 } 3573 if (sanitize) { 3574 if (!err) { 3575 /* move fd to libbpf's BTF */ 3576 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3577 btf__set_fd(kern_btf, -1); 3578 } 3579 btf__free(kern_btf); 3580 } 3581 report: 3582 if (err) { 3583 btf_mandatory = kernel_needs_btf(obj); 3584 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3585 btf_mandatory ? "BTF is mandatory, can't proceed." 3586 : "BTF is optional, ignoring."); 3587 if (!btf_mandatory) 3588 err = 0; 3589 } 3590 return err; 3591 } 3592 3593 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3594 { 3595 const char *name; 3596 3597 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3598 if (!name) { 3599 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3600 off, obj->path, elf_errmsg(-1)); 3601 return NULL; 3602 } 3603 3604 return name; 3605 } 3606 3607 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3608 { 3609 const char *name; 3610 3611 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3612 if (!name) { 3613 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3614 off, obj->path, elf_errmsg(-1)); 3615 return NULL; 3616 } 3617 3618 return name; 3619 } 3620 3621 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3622 { 3623 Elf_Scn *scn; 3624 3625 scn = elf_getscn(obj->efile.elf, idx); 3626 if (!scn) { 3627 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3628 idx, obj->path, elf_errmsg(-1)); 3629 return NULL; 3630 } 3631 return scn; 3632 } 3633 3634 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3635 { 3636 Elf_Scn *scn = NULL; 3637 Elf *elf = obj->efile.elf; 3638 const char *sec_name; 3639 3640 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3641 sec_name = elf_sec_name(obj, scn); 3642 if (!sec_name) 3643 return NULL; 3644 3645 if (strcmp(sec_name, name) != 0) 3646 continue; 3647 3648 return scn; 3649 } 3650 return NULL; 3651 } 3652 3653 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3654 { 3655 Elf64_Shdr *shdr; 3656 3657 if (!scn) 3658 return NULL; 3659 3660 shdr = elf64_getshdr(scn); 3661 if (!shdr) { 3662 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3663 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3664 return NULL; 3665 } 3666 3667 return shdr; 3668 } 3669 3670 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3671 { 3672 const char *name; 3673 Elf64_Shdr *sh; 3674 3675 if (!scn) 3676 return NULL; 3677 3678 sh = elf_sec_hdr(obj, scn); 3679 if (!sh) 3680 return NULL; 3681 3682 name = elf_sec_str(obj, sh->sh_name); 3683 if (!name) { 3684 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3685 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3686 return NULL; 3687 } 3688 3689 return name; 3690 } 3691 3692 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3693 { 3694 Elf_Data *data; 3695 3696 if (!scn) 3697 return NULL; 3698 3699 data = elf_getdata(scn, 0); 3700 if (!data) { 3701 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3702 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3703 obj->path, elf_errmsg(-1)); 3704 return NULL; 3705 } 3706 3707 return data; 3708 } 3709 3710 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3711 { 3712 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3713 return NULL; 3714 3715 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3716 } 3717 3718 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3719 { 3720 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3721 return NULL; 3722 3723 return (Elf64_Rel *)data->d_buf + idx; 3724 } 3725 3726 static bool is_sec_name_dwarf(const char *name) 3727 { 3728 /* approximation, but the actual list is too long */ 3729 return str_has_pfx(name, ".debug_"); 3730 } 3731 3732 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3733 { 3734 /* no special handling of .strtab */ 3735 if (hdr->sh_type == SHT_STRTAB) 3736 return true; 3737 3738 /* ignore .llvm_addrsig section as well */ 3739 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3740 return true; 3741 3742 /* no subprograms will lead to an empty .text section, ignore it */ 3743 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3744 strcmp(name, ".text") == 0) 3745 return true; 3746 3747 /* DWARF sections */ 3748 if (is_sec_name_dwarf(name)) 3749 return true; 3750 3751 if (str_has_pfx(name, ".rel")) { 3752 name += sizeof(".rel") - 1; 3753 /* DWARF section relocations */ 3754 if (is_sec_name_dwarf(name)) 3755 return true; 3756 3757 /* .BTF and .BTF.ext don't need relocations */ 3758 if (strcmp(name, BTF_ELF_SEC) == 0 || 3759 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3760 return true; 3761 } 3762 3763 return false; 3764 } 3765 3766 static int cmp_progs(const void *_a, const void *_b) 3767 { 3768 const struct bpf_program *a = _a; 3769 const struct bpf_program *b = _b; 3770 3771 if (a->sec_idx != b->sec_idx) 3772 return a->sec_idx < b->sec_idx ? -1 : 1; 3773 3774 /* sec_insn_off can't be the same within the section */ 3775 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3776 } 3777 3778 static int bpf_object__elf_collect(struct bpf_object *obj) 3779 { 3780 struct elf_sec_desc *sec_desc; 3781 Elf *elf = obj->efile.elf; 3782 Elf_Data *btf_ext_data = NULL; 3783 Elf_Data *btf_data = NULL; 3784 int idx = 0, err = 0; 3785 const char *name; 3786 Elf_Data *data; 3787 Elf_Scn *scn; 3788 Elf64_Shdr *sh; 3789 3790 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3791 * section. Since section count retrieved by elf_getshdrnum() does 3792 * include sec #0, it is already the necessary size of an array to keep 3793 * all the sections. 3794 */ 3795 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3796 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3797 obj->path, elf_errmsg(-1)); 3798 return -LIBBPF_ERRNO__FORMAT; 3799 } 3800 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3801 if (!obj->efile.secs) 3802 return -ENOMEM; 3803 3804 /* a bunch of ELF parsing functionality depends on processing symbols, 3805 * so do the first pass and find the symbol table 3806 */ 3807 scn = NULL; 3808 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3809 sh = elf_sec_hdr(obj, scn); 3810 if (!sh) 3811 return -LIBBPF_ERRNO__FORMAT; 3812 3813 if (sh->sh_type == SHT_SYMTAB) { 3814 if (obj->efile.symbols) { 3815 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3816 return -LIBBPF_ERRNO__FORMAT; 3817 } 3818 3819 data = elf_sec_data(obj, scn); 3820 if (!data) 3821 return -LIBBPF_ERRNO__FORMAT; 3822 3823 idx = elf_ndxscn(scn); 3824 3825 obj->efile.symbols = data; 3826 obj->efile.symbols_shndx = idx; 3827 obj->efile.strtabidx = sh->sh_link; 3828 } 3829 } 3830 3831 if (!obj->efile.symbols) { 3832 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3833 obj->path); 3834 return -ENOENT; 3835 } 3836 3837 scn = NULL; 3838 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3839 idx = elf_ndxscn(scn); 3840 sec_desc = &obj->efile.secs[idx]; 3841 3842 sh = elf_sec_hdr(obj, scn); 3843 if (!sh) 3844 return -LIBBPF_ERRNO__FORMAT; 3845 3846 name = elf_sec_str(obj, sh->sh_name); 3847 if (!name) 3848 return -LIBBPF_ERRNO__FORMAT; 3849 3850 if (ignore_elf_section(sh, name)) 3851 continue; 3852 3853 data = elf_sec_data(obj, scn); 3854 if (!data) 3855 return -LIBBPF_ERRNO__FORMAT; 3856 3857 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3858 idx, name, (unsigned long)data->d_size, 3859 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3860 (int)sh->sh_type); 3861 3862 if (strcmp(name, "license") == 0) { 3863 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3864 if (err) 3865 return err; 3866 } else if (strcmp(name, "version") == 0) { 3867 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3868 if (err) 3869 return err; 3870 } else if (strcmp(name, "maps") == 0) { 3871 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3872 return -ENOTSUP; 3873 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3874 obj->efile.btf_maps_shndx = idx; 3875 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3876 if (sh->sh_type != SHT_PROGBITS) 3877 return -LIBBPF_ERRNO__FORMAT; 3878 btf_data = data; 3879 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3880 if (sh->sh_type != SHT_PROGBITS) 3881 return -LIBBPF_ERRNO__FORMAT; 3882 btf_ext_data = data; 3883 } else if (sh->sh_type == SHT_SYMTAB) { 3884 /* already processed during the first pass above */ 3885 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3886 if (sh->sh_flags & SHF_EXECINSTR) { 3887 if (strcmp(name, ".text") == 0) 3888 obj->efile.text_shndx = idx; 3889 err = bpf_object__add_programs(obj, data, name, idx); 3890 if (err) 3891 return err; 3892 } else if (strcmp(name, DATA_SEC) == 0 || 3893 str_has_pfx(name, DATA_SEC ".")) { 3894 sec_desc->sec_type = SEC_DATA; 3895 sec_desc->shdr = sh; 3896 sec_desc->data = data; 3897 } else if (strcmp(name, RODATA_SEC) == 0 || 3898 str_has_pfx(name, RODATA_SEC ".")) { 3899 sec_desc->sec_type = SEC_RODATA; 3900 sec_desc->shdr = sh; 3901 sec_desc->data = data; 3902 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3903 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3904 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3905 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3906 sec_desc->sec_type = SEC_ST_OPS; 3907 sec_desc->shdr = sh; 3908 sec_desc->data = data; 3909 obj->efile.has_st_ops = true; 3910 } else if (strcmp(name, ARENA_SEC) == 0) { 3911 obj->efile.arena_data = data; 3912 obj->efile.arena_data_shndx = idx; 3913 } else { 3914 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3915 idx, name); 3916 } 3917 } else if (sh->sh_type == SHT_REL) { 3918 int targ_sec_idx = sh->sh_info; /* points to other section */ 3919 3920 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3921 targ_sec_idx >= obj->efile.sec_cnt) 3922 return -LIBBPF_ERRNO__FORMAT; 3923 3924 /* Only do relo for section with exec instructions */ 3925 if (!section_have_execinstr(obj, targ_sec_idx) && 3926 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3927 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3928 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3929 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3930 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3931 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3932 idx, name, targ_sec_idx, 3933 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3934 continue; 3935 } 3936 3937 sec_desc->sec_type = SEC_RELO; 3938 sec_desc->shdr = sh; 3939 sec_desc->data = data; 3940 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3941 str_has_pfx(name, BSS_SEC "."))) { 3942 sec_desc->sec_type = SEC_BSS; 3943 sec_desc->shdr = sh; 3944 sec_desc->data = data; 3945 } else { 3946 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3947 (size_t)sh->sh_size); 3948 } 3949 } 3950 3951 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3952 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3953 return -LIBBPF_ERRNO__FORMAT; 3954 } 3955 3956 /* sort BPF programs by section name and in-section instruction offset 3957 * for faster search 3958 */ 3959 if (obj->nr_programs) 3960 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3961 3962 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3963 } 3964 3965 static bool sym_is_extern(const Elf64_Sym *sym) 3966 { 3967 int bind = ELF64_ST_BIND(sym->st_info); 3968 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3969 return sym->st_shndx == SHN_UNDEF && 3970 (bind == STB_GLOBAL || bind == STB_WEAK) && 3971 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3972 } 3973 3974 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3975 { 3976 int bind = ELF64_ST_BIND(sym->st_info); 3977 int type = ELF64_ST_TYPE(sym->st_info); 3978 3979 /* in .text section */ 3980 if (sym->st_shndx != text_shndx) 3981 return false; 3982 3983 /* local function */ 3984 if (bind == STB_LOCAL && type == STT_SECTION) 3985 return true; 3986 3987 /* global function */ 3988 return bind == STB_GLOBAL && type == STT_FUNC; 3989 } 3990 3991 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3992 { 3993 const struct btf_type *t; 3994 const char *tname; 3995 int i, n; 3996 3997 if (!btf) 3998 return -ESRCH; 3999 4000 n = btf__type_cnt(btf); 4001 for (i = 1; i < n; i++) { 4002 t = btf__type_by_id(btf, i); 4003 4004 if (!btf_is_var(t) && !btf_is_func(t)) 4005 continue; 4006 4007 tname = btf__name_by_offset(btf, t->name_off); 4008 if (strcmp(tname, ext_name)) 4009 continue; 4010 4011 if (btf_is_var(t) && 4012 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 4013 return -EINVAL; 4014 4015 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 4016 return -EINVAL; 4017 4018 return i; 4019 } 4020 4021 return -ENOENT; 4022 } 4023 4024 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 4025 const struct btf_var_secinfo *vs; 4026 const struct btf_type *t; 4027 int i, j, n; 4028 4029 if (!btf) 4030 return -ESRCH; 4031 4032 n = btf__type_cnt(btf); 4033 for (i = 1; i < n; i++) { 4034 t = btf__type_by_id(btf, i); 4035 4036 if (!btf_is_datasec(t)) 4037 continue; 4038 4039 vs = btf_var_secinfos(t); 4040 for (j = 0; j < btf_vlen(t); j++, vs++) { 4041 if (vs->type == ext_btf_id) 4042 return i; 4043 } 4044 } 4045 4046 return -ENOENT; 4047 } 4048 4049 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4050 bool *is_signed) 4051 { 4052 const struct btf_type *t; 4053 const char *name; 4054 4055 t = skip_mods_and_typedefs(btf, id, NULL); 4056 name = btf__name_by_offset(btf, t->name_off); 4057 4058 if (is_signed) 4059 *is_signed = false; 4060 switch (btf_kind(t)) { 4061 case BTF_KIND_INT: { 4062 int enc = btf_int_encoding(t); 4063 4064 if (enc & BTF_INT_BOOL) 4065 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4066 if (is_signed) 4067 *is_signed = enc & BTF_INT_SIGNED; 4068 if (t->size == 1) 4069 return KCFG_CHAR; 4070 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4071 return KCFG_UNKNOWN; 4072 return KCFG_INT; 4073 } 4074 case BTF_KIND_ENUM: 4075 if (t->size != 4) 4076 return KCFG_UNKNOWN; 4077 if (strcmp(name, "libbpf_tristate")) 4078 return KCFG_UNKNOWN; 4079 return KCFG_TRISTATE; 4080 case BTF_KIND_ENUM64: 4081 if (strcmp(name, "libbpf_tristate")) 4082 return KCFG_UNKNOWN; 4083 return KCFG_TRISTATE; 4084 case BTF_KIND_ARRAY: 4085 if (btf_array(t)->nelems == 0) 4086 return KCFG_UNKNOWN; 4087 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4088 return KCFG_UNKNOWN; 4089 return KCFG_CHAR_ARR; 4090 default: 4091 return KCFG_UNKNOWN; 4092 } 4093 } 4094 4095 static int cmp_externs(const void *_a, const void *_b) 4096 { 4097 const struct extern_desc *a = _a; 4098 const struct extern_desc *b = _b; 4099 4100 if (a->type != b->type) 4101 return a->type < b->type ? -1 : 1; 4102 4103 if (a->type == EXT_KCFG) { 4104 /* descending order by alignment requirements */ 4105 if (a->kcfg.align != b->kcfg.align) 4106 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4107 /* ascending order by size, within same alignment class */ 4108 if (a->kcfg.sz != b->kcfg.sz) 4109 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4110 } 4111 4112 /* resolve ties by name */ 4113 return strcmp(a->name, b->name); 4114 } 4115 4116 static int find_int_btf_id(const struct btf *btf) 4117 { 4118 const struct btf_type *t; 4119 int i, n; 4120 4121 n = btf__type_cnt(btf); 4122 for (i = 1; i < n; i++) { 4123 t = btf__type_by_id(btf, i); 4124 4125 if (btf_is_int(t) && btf_int_bits(t) == 32) 4126 return i; 4127 } 4128 4129 return 0; 4130 } 4131 4132 static int add_dummy_ksym_var(struct btf *btf) 4133 { 4134 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4135 const struct btf_var_secinfo *vs; 4136 const struct btf_type *sec; 4137 4138 if (!btf) 4139 return 0; 4140 4141 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4142 BTF_KIND_DATASEC); 4143 if (sec_btf_id < 0) 4144 return 0; 4145 4146 sec = btf__type_by_id(btf, sec_btf_id); 4147 vs = btf_var_secinfos(sec); 4148 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4149 const struct btf_type *vt; 4150 4151 vt = btf__type_by_id(btf, vs->type); 4152 if (btf_is_func(vt)) 4153 break; 4154 } 4155 4156 /* No func in ksyms sec. No need to add dummy var. */ 4157 if (i == btf_vlen(sec)) 4158 return 0; 4159 4160 int_btf_id = find_int_btf_id(btf); 4161 dummy_var_btf_id = btf__add_var(btf, 4162 "dummy_ksym", 4163 BTF_VAR_GLOBAL_ALLOCATED, 4164 int_btf_id); 4165 if (dummy_var_btf_id < 0) 4166 pr_warn("cannot create a dummy_ksym var\n"); 4167 4168 return dummy_var_btf_id; 4169 } 4170 4171 static int bpf_object__collect_externs(struct bpf_object *obj) 4172 { 4173 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4174 const struct btf_type *t; 4175 struct extern_desc *ext; 4176 int i, n, off, dummy_var_btf_id; 4177 const char *ext_name, *sec_name; 4178 size_t ext_essent_len; 4179 Elf_Scn *scn; 4180 Elf64_Shdr *sh; 4181 4182 if (!obj->efile.symbols) 4183 return 0; 4184 4185 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4186 sh = elf_sec_hdr(obj, scn); 4187 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4188 return -LIBBPF_ERRNO__FORMAT; 4189 4190 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4191 if (dummy_var_btf_id < 0) 4192 return dummy_var_btf_id; 4193 4194 n = sh->sh_size / sh->sh_entsize; 4195 pr_debug("looking for externs among %d symbols...\n", n); 4196 4197 for (i = 0; i < n; i++) { 4198 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4199 4200 if (!sym) 4201 return -LIBBPF_ERRNO__FORMAT; 4202 if (!sym_is_extern(sym)) 4203 continue; 4204 ext_name = elf_sym_str(obj, sym->st_name); 4205 if (!ext_name || !ext_name[0]) 4206 continue; 4207 4208 ext = obj->externs; 4209 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4210 if (!ext) 4211 return -ENOMEM; 4212 obj->externs = ext; 4213 ext = &ext[obj->nr_extern]; 4214 memset(ext, 0, sizeof(*ext)); 4215 obj->nr_extern++; 4216 4217 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4218 if (ext->btf_id <= 0) { 4219 pr_warn("failed to find BTF for extern '%s': %d\n", 4220 ext_name, ext->btf_id); 4221 return ext->btf_id; 4222 } 4223 t = btf__type_by_id(obj->btf, ext->btf_id); 4224 ext->name = btf__name_by_offset(obj->btf, t->name_off); 4225 ext->sym_idx = i; 4226 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4227 4228 ext_essent_len = bpf_core_essential_name_len(ext->name); 4229 ext->essent_name = NULL; 4230 if (ext_essent_len != strlen(ext->name)) { 4231 ext->essent_name = strndup(ext->name, ext_essent_len); 4232 if (!ext->essent_name) 4233 return -ENOMEM; 4234 } 4235 4236 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4237 if (ext->sec_btf_id <= 0) { 4238 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4239 ext_name, ext->btf_id, ext->sec_btf_id); 4240 return ext->sec_btf_id; 4241 } 4242 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4243 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4244 4245 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4246 if (btf_is_func(t)) { 4247 pr_warn("extern function %s is unsupported under %s section\n", 4248 ext->name, KCONFIG_SEC); 4249 return -ENOTSUP; 4250 } 4251 kcfg_sec = sec; 4252 ext->type = EXT_KCFG; 4253 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4254 if (ext->kcfg.sz <= 0) { 4255 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4256 ext_name, ext->kcfg.sz); 4257 return ext->kcfg.sz; 4258 } 4259 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4260 if (ext->kcfg.align <= 0) { 4261 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4262 ext_name, ext->kcfg.align); 4263 return -EINVAL; 4264 } 4265 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4266 &ext->kcfg.is_signed); 4267 if (ext->kcfg.type == KCFG_UNKNOWN) { 4268 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4269 return -ENOTSUP; 4270 } 4271 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4272 ksym_sec = sec; 4273 ext->type = EXT_KSYM; 4274 skip_mods_and_typedefs(obj->btf, t->type, 4275 &ext->ksym.type_id); 4276 } else { 4277 pr_warn("unrecognized extern section '%s'\n", sec_name); 4278 return -ENOTSUP; 4279 } 4280 } 4281 pr_debug("collected %d externs total\n", obj->nr_extern); 4282 4283 if (!obj->nr_extern) 4284 return 0; 4285 4286 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4287 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4288 4289 /* for .ksyms section, we need to turn all externs into allocated 4290 * variables in BTF to pass kernel verification; we do this by 4291 * pretending that each extern is a 8-byte variable 4292 */ 4293 if (ksym_sec) { 4294 /* find existing 4-byte integer type in BTF to use for fake 4295 * extern variables in DATASEC 4296 */ 4297 int int_btf_id = find_int_btf_id(obj->btf); 4298 /* For extern function, a dummy_var added earlier 4299 * will be used to replace the vs->type and 4300 * its name string will be used to refill 4301 * the missing param's name. 4302 */ 4303 const struct btf_type *dummy_var; 4304 4305 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4306 for (i = 0; i < obj->nr_extern; i++) { 4307 ext = &obj->externs[i]; 4308 if (ext->type != EXT_KSYM) 4309 continue; 4310 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4311 i, ext->sym_idx, ext->name); 4312 } 4313 4314 sec = ksym_sec; 4315 n = btf_vlen(sec); 4316 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4317 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4318 struct btf_type *vt; 4319 4320 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4321 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4322 ext = find_extern_by_name(obj, ext_name); 4323 if (!ext) { 4324 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4325 btf_kind_str(vt), ext_name); 4326 return -ESRCH; 4327 } 4328 if (btf_is_func(vt)) { 4329 const struct btf_type *func_proto; 4330 struct btf_param *param; 4331 int j; 4332 4333 func_proto = btf__type_by_id(obj->btf, 4334 vt->type); 4335 param = btf_params(func_proto); 4336 /* Reuse the dummy_var string if the 4337 * func proto does not have param name. 4338 */ 4339 for (j = 0; j < btf_vlen(func_proto); j++) 4340 if (param[j].type && !param[j].name_off) 4341 param[j].name_off = 4342 dummy_var->name_off; 4343 vs->type = dummy_var_btf_id; 4344 vt->info &= ~0xffff; 4345 vt->info |= BTF_FUNC_GLOBAL; 4346 } else { 4347 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4348 vt->type = int_btf_id; 4349 } 4350 vs->offset = off; 4351 vs->size = sizeof(int); 4352 } 4353 sec->size = off; 4354 } 4355 4356 if (kcfg_sec) { 4357 sec = kcfg_sec; 4358 /* for kcfg externs calculate their offsets within a .kconfig map */ 4359 off = 0; 4360 for (i = 0; i < obj->nr_extern; i++) { 4361 ext = &obj->externs[i]; 4362 if (ext->type != EXT_KCFG) 4363 continue; 4364 4365 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4366 off = ext->kcfg.data_off + ext->kcfg.sz; 4367 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4368 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4369 } 4370 sec->size = off; 4371 n = btf_vlen(sec); 4372 for (i = 0; i < n; i++) { 4373 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4374 4375 t = btf__type_by_id(obj->btf, vs->type); 4376 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4377 ext = find_extern_by_name(obj, ext_name); 4378 if (!ext) { 4379 pr_warn("failed to find extern definition for BTF var '%s'\n", 4380 ext_name); 4381 return -ESRCH; 4382 } 4383 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4384 vs->offset = ext->kcfg.data_off; 4385 } 4386 } 4387 return 0; 4388 } 4389 4390 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4391 { 4392 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4393 } 4394 4395 struct bpf_program * 4396 bpf_object__find_program_by_name(const struct bpf_object *obj, 4397 const char *name) 4398 { 4399 struct bpf_program *prog; 4400 4401 bpf_object__for_each_program(prog, obj) { 4402 if (prog_is_subprog(obj, prog)) 4403 continue; 4404 if (!strcmp(prog->name, name)) 4405 return prog; 4406 } 4407 return errno = ENOENT, NULL; 4408 } 4409 4410 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4411 int shndx) 4412 { 4413 switch (obj->efile.secs[shndx].sec_type) { 4414 case SEC_BSS: 4415 case SEC_DATA: 4416 case SEC_RODATA: 4417 return true; 4418 default: 4419 return false; 4420 } 4421 } 4422 4423 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4424 int shndx) 4425 { 4426 return shndx == obj->efile.btf_maps_shndx; 4427 } 4428 4429 static enum libbpf_map_type 4430 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4431 { 4432 if (shndx == obj->efile.symbols_shndx) 4433 return LIBBPF_MAP_KCONFIG; 4434 4435 switch (obj->efile.secs[shndx].sec_type) { 4436 case SEC_BSS: 4437 return LIBBPF_MAP_BSS; 4438 case SEC_DATA: 4439 return LIBBPF_MAP_DATA; 4440 case SEC_RODATA: 4441 return LIBBPF_MAP_RODATA; 4442 default: 4443 return LIBBPF_MAP_UNSPEC; 4444 } 4445 } 4446 4447 static int bpf_program__record_reloc(struct bpf_program *prog, 4448 struct reloc_desc *reloc_desc, 4449 __u32 insn_idx, const char *sym_name, 4450 const Elf64_Sym *sym, const Elf64_Rel *rel) 4451 { 4452 struct bpf_insn *insn = &prog->insns[insn_idx]; 4453 size_t map_idx, nr_maps = prog->obj->nr_maps; 4454 struct bpf_object *obj = prog->obj; 4455 __u32 shdr_idx = sym->st_shndx; 4456 enum libbpf_map_type type; 4457 const char *sym_sec_name; 4458 struct bpf_map *map; 4459 4460 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4461 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4462 prog->name, sym_name, insn_idx, insn->code); 4463 return -LIBBPF_ERRNO__RELOC; 4464 } 4465 4466 if (sym_is_extern(sym)) { 4467 int sym_idx = ELF64_R_SYM(rel->r_info); 4468 int i, n = obj->nr_extern; 4469 struct extern_desc *ext; 4470 4471 for (i = 0; i < n; i++) { 4472 ext = &obj->externs[i]; 4473 if (ext->sym_idx == sym_idx) 4474 break; 4475 } 4476 if (i >= n) { 4477 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4478 prog->name, sym_name, sym_idx); 4479 return -LIBBPF_ERRNO__RELOC; 4480 } 4481 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4482 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4483 if (insn->code == (BPF_JMP | BPF_CALL)) 4484 reloc_desc->type = RELO_EXTERN_CALL; 4485 else 4486 reloc_desc->type = RELO_EXTERN_LD64; 4487 reloc_desc->insn_idx = insn_idx; 4488 reloc_desc->ext_idx = i; 4489 return 0; 4490 } 4491 4492 /* sub-program call relocation */ 4493 if (is_call_insn(insn)) { 4494 if (insn->src_reg != BPF_PSEUDO_CALL) { 4495 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4496 return -LIBBPF_ERRNO__RELOC; 4497 } 4498 /* text_shndx can be 0, if no default "main" program exists */ 4499 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4500 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4501 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4502 prog->name, sym_name, sym_sec_name); 4503 return -LIBBPF_ERRNO__RELOC; 4504 } 4505 if (sym->st_value % BPF_INSN_SZ) { 4506 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4507 prog->name, sym_name, (size_t)sym->st_value); 4508 return -LIBBPF_ERRNO__RELOC; 4509 } 4510 reloc_desc->type = RELO_CALL; 4511 reloc_desc->insn_idx = insn_idx; 4512 reloc_desc->sym_off = sym->st_value; 4513 return 0; 4514 } 4515 4516 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4517 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4518 prog->name, sym_name, shdr_idx); 4519 return -LIBBPF_ERRNO__RELOC; 4520 } 4521 4522 /* loading subprog addresses */ 4523 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4524 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4525 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4526 */ 4527 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4528 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4529 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4530 return -LIBBPF_ERRNO__RELOC; 4531 } 4532 4533 reloc_desc->type = RELO_SUBPROG_ADDR; 4534 reloc_desc->insn_idx = insn_idx; 4535 reloc_desc->sym_off = sym->st_value; 4536 return 0; 4537 } 4538 4539 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4540 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4541 4542 /* arena data relocation */ 4543 if (shdr_idx == obj->efile.arena_data_shndx) { 4544 reloc_desc->type = RELO_DATA; 4545 reloc_desc->insn_idx = insn_idx; 4546 reloc_desc->map_idx = obj->arena_map - obj->maps; 4547 reloc_desc->sym_off = sym->st_value; 4548 return 0; 4549 } 4550 4551 /* generic map reference relocation */ 4552 if (type == LIBBPF_MAP_UNSPEC) { 4553 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4554 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4555 prog->name, sym_name, sym_sec_name); 4556 return -LIBBPF_ERRNO__RELOC; 4557 } 4558 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4559 map = &obj->maps[map_idx]; 4560 if (map->libbpf_type != type || 4561 map->sec_idx != sym->st_shndx || 4562 map->sec_offset != sym->st_value) 4563 continue; 4564 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4565 prog->name, map_idx, map->name, map->sec_idx, 4566 map->sec_offset, insn_idx); 4567 break; 4568 } 4569 if (map_idx >= nr_maps) { 4570 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4571 prog->name, sym_sec_name, (size_t)sym->st_value); 4572 return -LIBBPF_ERRNO__RELOC; 4573 } 4574 reloc_desc->type = RELO_LD64; 4575 reloc_desc->insn_idx = insn_idx; 4576 reloc_desc->map_idx = map_idx; 4577 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4578 return 0; 4579 } 4580 4581 /* global data map relocation */ 4582 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4583 pr_warn("prog '%s': bad data relo against section '%s'\n", 4584 prog->name, sym_sec_name); 4585 return -LIBBPF_ERRNO__RELOC; 4586 } 4587 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4588 map = &obj->maps[map_idx]; 4589 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4590 continue; 4591 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4592 prog->name, map_idx, map->name, map->sec_idx, 4593 map->sec_offset, insn_idx); 4594 break; 4595 } 4596 if (map_idx >= nr_maps) { 4597 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4598 prog->name, sym_sec_name); 4599 return -LIBBPF_ERRNO__RELOC; 4600 } 4601 4602 reloc_desc->type = RELO_DATA; 4603 reloc_desc->insn_idx = insn_idx; 4604 reloc_desc->map_idx = map_idx; 4605 reloc_desc->sym_off = sym->st_value; 4606 return 0; 4607 } 4608 4609 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4610 { 4611 return insn_idx >= prog->sec_insn_off && 4612 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4613 } 4614 4615 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4616 size_t sec_idx, size_t insn_idx) 4617 { 4618 int l = 0, r = obj->nr_programs - 1, m; 4619 struct bpf_program *prog; 4620 4621 if (!obj->nr_programs) 4622 return NULL; 4623 4624 while (l < r) { 4625 m = l + (r - l + 1) / 2; 4626 prog = &obj->programs[m]; 4627 4628 if (prog->sec_idx < sec_idx || 4629 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4630 l = m; 4631 else 4632 r = m - 1; 4633 } 4634 /* matching program could be at index l, but it still might be the 4635 * wrong one, so we need to double check conditions for the last time 4636 */ 4637 prog = &obj->programs[l]; 4638 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4639 return prog; 4640 return NULL; 4641 } 4642 4643 static int 4644 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4645 { 4646 const char *relo_sec_name, *sec_name; 4647 size_t sec_idx = shdr->sh_info, sym_idx; 4648 struct bpf_program *prog; 4649 struct reloc_desc *relos; 4650 int err, i, nrels; 4651 const char *sym_name; 4652 __u32 insn_idx; 4653 Elf_Scn *scn; 4654 Elf_Data *scn_data; 4655 Elf64_Sym *sym; 4656 Elf64_Rel *rel; 4657 4658 if (sec_idx >= obj->efile.sec_cnt) 4659 return -EINVAL; 4660 4661 scn = elf_sec_by_idx(obj, sec_idx); 4662 scn_data = elf_sec_data(obj, scn); 4663 if (!scn_data) 4664 return -LIBBPF_ERRNO__FORMAT; 4665 4666 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4667 sec_name = elf_sec_name(obj, scn); 4668 if (!relo_sec_name || !sec_name) 4669 return -EINVAL; 4670 4671 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4672 relo_sec_name, sec_idx, sec_name); 4673 nrels = shdr->sh_size / shdr->sh_entsize; 4674 4675 for (i = 0; i < nrels; i++) { 4676 rel = elf_rel_by_idx(data, i); 4677 if (!rel) { 4678 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4679 return -LIBBPF_ERRNO__FORMAT; 4680 } 4681 4682 sym_idx = ELF64_R_SYM(rel->r_info); 4683 sym = elf_sym_by_idx(obj, sym_idx); 4684 if (!sym) { 4685 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4686 relo_sec_name, sym_idx, i); 4687 return -LIBBPF_ERRNO__FORMAT; 4688 } 4689 4690 if (sym->st_shndx >= obj->efile.sec_cnt) { 4691 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4692 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4693 return -LIBBPF_ERRNO__FORMAT; 4694 } 4695 4696 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4697 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4698 relo_sec_name, (size_t)rel->r_offset, i); 4699 return -LIBBPF_ERRNO__FORMAT; 4700 } 4701 4702 insn_idx = rel->r_offset / BPF_INSN_SZ; 4703 /* relocations against static functions are recorded as 4704 * relocations against the section that contains a function; 4705 * in such case, symbol will be STT_SECTION and sym.st_name 4706 * will point to empty string (0), so fetch section name 4707 * instead 4708 */ 4709 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4710 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4711 else 4712 sym_name = elf_sym_str(obj, sym->st_name); 4713 sym_name = sym_name ?: "<?"; 4714 4715 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4716 relo_sec_name, i, insn_idx, sym_name); 4717 4718 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4719 if (!prog) { 4720 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4721 relo_sec_name, i, sec_name, insn_idx); 4722 continue; 4723 } 4724 4725 relos = libbpf_reallocarray(prog->reloc_desc, 4726 prog->nr_reloc + 1, sizeof(*relos)); 4727 if (!relos) 4728 return -ENOMEM; 4729 prog->reloc_desc = relos; 4730 4731 /* adjust insn_idx to local BPF program frame of reference */ 4732 insn_idx -= prog->sec_insn_off; 4733 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4734 insn_idx, sym_name, sym, rel); 4735 if (err) 4736 return err; 4737 4738 prog->nr_reloc++; 4739 } 4740 return 0; 4741 } 4742 4743 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4744 { 4745 int id; 4746 4747 if (!obj->btf) 4748 return -ENOENT; 4749 4750 /* if it's BTF-defined map, we don't need to search for type IDs. 4751 * For struct_ops map, it does not need btf_key_type_id and 4752 * btf_value_type_id. 4753 */ 4754 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4755 return 0; 4756 4757 /* 4758 * LLVM annotates global data differently in BTF, that is, 4759 * only as '.data', '.bss' or '.rodata'. 4760 */ 4761 if (!bpf_map__is_internal(map)) 4762 return -ENOENT; 4763 4764 id = btf__find_by_name(obj->btf, map->real_name); 4765 if (id < 0) 4766 return id; 4767 4768 map->btf_key_type_id = 0; 4769 map->btf_value_type_id = id; 4770 return 0; 4771 } 4772 4773 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4774 { 4775 char file[PATH_MAX], buff[4096]; 4776 FILE *fp; 4777 __u32 val; 4778 int err; 4779 4780 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4781 memset(info, 0, sizeof(*info)); 4782 4783 fp = fopen(file, "re"); 4784 if (!fp) { 4785 err = -errno; 4786 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4787 err); 4788 return err; 4789 } 4790 4791 while (fgets(buff, sizeof(buff), fp)) { 4792 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4793 info->type = val; 4794 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4795 info->key_size = val; 4796 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4797 info->value_size = val; 4798 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4799 info->max_entries = val; 4800 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4801 info->map_flags = val; 4802 } 4803 4804 fclose(fp); 4805 4806 return 0; 4807 } 4808 4809 bool bpf_map__autocreate(const struct bpf_map *map) 4810 { 4811 return map->autocreate; 4812 } 4813 4814 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4815 { 4816 if (map->obj->loaded) 4817 return libbpf_err(-EBUSY); 4818 4819 map->autocreate = autocreate; 4820 return 0; 4821 } 4822 4823 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach) 4824 { 4825 if (!bpf_map__is_struct_ops(map)) 4826 return libbpf_err(-EINVAL); 4827 4828 map->autoattach = autoattach; 4829 return 0; 4830 } 4831 4832 bool bpf_map__autoattach(const struct bpf_map *map) 4833 { 4834 return map->autoattach; 4835 } 4836 4837 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4838 { 4839 struct bpf_map_info info; 4840 __u32 len = sizeof(info), name_len; 4841 int new_fd, err; 4842 char *new_name; 4843 4844 memset(&info, 0, len); 4845 err = bpf_map_get_info_by_fd(fd, &info, &len); 4846 if (err && errno == EINVAL) 4847 err = bpf_get_map_info_from_fdinfo(fd, &info); 4848 if (err) 4849 return libbpf_err(err); 4850 4851 name_len = strlen(info.name); 4852 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4853 new_name = strdup(map->name); 4854 else 4855 new_name = strdup(info.name); 4856 4857 if (!new_name) 4858 return libbpf_err(-errno); 4859 4860 /* 4861 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4862 * This is similar to what we do in ensure_good_fd(), but without 4863 * closing original FD. 4864 */ 4865 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4866 if (new_fd < 0) { 4867 err = -errno; 4868 goto err_free_new_name; 4869 } 4870 4871 err = reuse_fd(map->fd, new_fd); 4872 if (err) 4873 goto err_free_new_name; 4874 4875 free(map->name); 4876 4877 map->name = new_name; 4878 map->def.type = info.type; 4879 map->def.key_size = info.key_size; 4880 map->def.value_size = info.value_size; 4881 map->def.max_entries = info.max_entries; 4882 map->def.map_flags = info.map_flags; 4883 map->btf_key_type_id = info.btf_key_type_id; 4884 map->btf_value_type_id = info.btf_value_type_id; 4885 map->reused = true; 4886 map->map_extra = info.map_extra; 4887 4888 return 0; 4889 4890 err_free_new_name: 4891 free(new_name); 4892 return libbpf_err(err); 4893 } 4894 4895 __u32 bpf_map__max_entries(const struct bpf_map *map) 4896 { 4897 return map->def.max_entries; 4898 } 4899 4900 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4901 { 4902 if (!bpf_map_type__is_map_in_map(map->def.type)) 4903 return errno = EINVAL, NULL; 4904 4905 return map->inner_map; 4906 } 4907 4908 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4909 { 4910 if (map->obj->loaded) 4911 return libbpf_err(-EBUSY); 4912 4913 map->def.max_entries = max_entries; 4914 4915 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4916 if (map_is_ringbuf(map)) 4917 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4918 4919 return 0; 4920 } 4921 4922 static int bpf_object_prepare_token(struct bpf_object *obj) 4923 { 4924 const char *bpffs_path; 4925 int bpffs_fd = -1, token_fd, err; 4926 bool mandatory; 4927 enum libbpf_print_level level; 4928 4929 /* token is explicitly prevented */ 4930 if (obj->token_path && obj->token_path[0] == '\0') { 4931 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 4932 return 0; 4933 } 4934 4935 mandatory = obj->token_path != NULL; 4936 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 4937 4938 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 4939 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 4940 if (bpffs_fd < 0) { 4941 err = -errno; 4942 __pr(level, "object '%s': failed (%d) to open BPF FS mount at '%s'%s\n", 4943 obj->name, err, bpffs_path, 4944 mandatory ? "" : ", skipping optional step..."); 4945 return mandatory ? err : 0; 4946 } 4947 4948 token_fd = bpf_token_create(bpffs_fd, 0); 4949 close(bpffs_fd); 4950 if (token_fd < 0) { 4951 if (!mandatory && token_fd == -ENOENT) { 4952 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 4953 obj->name, bpffs_path); 4954 return 0; 4955 } 4956 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 4957 obj->name, token_fd, bpffs_path, 4958 mandatory ? "" : ", skipping optional step..."); 4959 return mandatory ? token_fd : 0; 4960 } 4961 4962 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 4963 if (!obj->feat_cache) { 4964 close(token_fd); 4965 return -ENOMEM; 4966 } 4967 4968 obj->token_fd = token_fd; 4969 obj->feat_cache->token_fd = token_fd; 4970 4971 return 0; 4972 } 4973 4974 static int 4975 bpf_object__probe_loading(struct bpf_object *obj) 4976 { 4977 char *cp, errmsg[STRERR_BUFSIZE]; 4978 struct bpf_insn insns[] = { 4979 BPF_MOV64_IMM(BPF_REG_0, 0), 4980 BPF_EXIT_INSN(), 4981 }; 4982 int ret, insn_cnt = ARRAY_SIZE(insns); 4983 LIBBPF_OPTS(bpf_prog_load_opts, opts, 4984 .token_fd = obj->token_fd, 4985 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 4986 ); 4987 4988 if (obj->gen_loader) 4989 return 0; 4990 4991 ret = bump_rlimit_memlock(); 4992 if (ret) 4993 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4994 4995 /* make sure basic loading works */ 4996 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 4997 if (ret < 0) 4998 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 4999 if (ret < 0) { 5000 ret = errno; 5001 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 5002 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 5003 "program. Make sure your kernel supports BPF " 5004 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 5005 "set to big enough value.\n", __func__, cp, ret); 5006 return -ret; 5007 } 5008 close(ret); 5009 5010 return 0; 5011 } 5012 5013 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5014 { 5015 if (obj->gen_loader) 5016 /* To generate loader program assume the latest kernel 5017 * to avoid doing extra prog_load, map_create syscalls. 5018 */ 5019 return true; 5020 5021 if (obj->token_fd) 5022 return feat_supported(obj->feat_cache, feat_id); 5023 5024 return feat_supported(NULL, feat_id); 5025 } 5026 5027 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5028 { 5029 struct bpf_map_info map_info; 5030 char msg[STRERR_BUFSIZE]; 5031 __u32 map_info_len = sizeof(map_info); 5032 int err; 5033 5034 memset(&map_info, 0, map_info_len); 5035 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5036 if (err && errno == EINVAL) 5037 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5038 if (err) { 5039 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5040 libbpf_strerror_r(errno, msg, sizeof(msg))); 5041 return false; 5042 } 5043 5044 return (map_info.type == map->def.type && 5045 map_info.key_size == map->def.key_size && 5046 map_info.value_size == map->def.value_size && 5047 map_info.max_entries == map->def.max_entries && 5048 map_info.map_flags == map->def.map_flags && 5049 map_info.map_extra == map->map_extra); 5050 } 5051 5052 static int 5053 bpf_object__reuse_map(struct bpf_map *map) 5054 { 5055 char *cp, errmsg[STRERR_BUFSIZE]; 5056 int err, pin_fd; 5057 5058 pin_fd = bpf_obj_get(map->pin_path); 5059 if (pin_fd < 0) { 5060 err = -errno; 5061 if (err == -ENOENT) { 5062 pr_debug("found no pinned map to reuse at '%s'\n", 5063 map->pin_path); 5064 return 0; 5065 } 5066 5067 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5068 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5069 map->pin_path, cp); 5070 return err; 5071 } 5072 5073 if (!map_is_reuse_compat(map, pin_fd)) { 5074 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5075 map->pin_path); 5076 close(pin_fd); 5077 return -EINVAL; 5078 } 5079 5080 err = bpf_map__reuse_fd(map, pin_fd); 5081 close(pin_fd); 5082 if (err) 5083 return err; 5084 5085 map->pinned = true; 5086 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5087 5088 return 0; 5089 } 5090 5091 static int 5092 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5093 { 5094 enum libbpf_map_type map_type = map->libbpf_type; 5095 char *cp, errmsg[STRERR_BUFSIZE]; 5096 int err, zero = 0; 5097 5098 if (obj->gen_loader) { 5099 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5100 map->mmaped, map->def.value_size); 5101 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5102 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5103 return 0; 5104 } 5105 5106 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5107 if (err) { 5108 err = -errno; 5109 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5110 pr_warn("Error setting initial map(%s) contents: %s\n", 5111 map->name, cp); 5112 return err; 5113 } 5114 5115 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5116 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5117 err = bpf_map_freeze(map->fd); 5118 if (err) { 5119 err = -errno; 5120 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5121 pr_warn("Error freezing map(%s) as read-only: %s\n", 5122 map->name, cp); 5123 return err; 5124 } 5125 } 5126 return 0; 5127 } 5128 5129 static void bpf_map__destroy(struct bpf_map *map); 5130 5131 static bool map_is_created(const struct bpf_map *map) 5132 { 5133 return map->obj->loaded || map->reused; 5134 } 5135 5136 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5137 { 5138 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5139 struct bpf_map_def *def = &map->def; 5140 const char *map_name = NULL; 5141 int err = 0, map_fd; 5142 5143 if (kernel_supports(obj, FEAT_PROG_NAME)) 5144 map_name = map->name; 5145 create_attr.map_ifindex = map->map_ifindex; 5146 create_attr.map_flags = def->map_flags; 5147 create_attr.numa_node = map->numa_node; 5148 create_attr.map_extra = map->map_extra; 5149 create_attr.token_fd = obj->token_fd; 5150 if (obj->token_fd) 5151 create_attr.map_flags |= BPF_F_TOKEN_FD; 5152 5153 if (bpf_map__is_struct_ops(map)) { 5154 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5155 if (map->mod_btf_fd >= 0) { 5156 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5157 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5158 } 5159 } 5160 5161 if (obj->btf && btf__fd(obj->btf) >= 0) { 5162 create_attr.btf_fd = btf__fd(obj->btf); 5163 create_attr.btf_key_type_id = map->btf_key_type_id; 5164 create_attr.btf_value_type_id = map->btf_value_type_id; 5165 } 5166 5167 if (bpf_map_type__is_map_in_map(def->type)) { 5168 if (map->inner_map) { 5169 err = map_set_def_max_entries(map->inner_map); 5170 if (err) 5171 return err; 5172 err = bpf_object__create_map(obj, map->inner_map, true); 5173 if (err) { 5174 pr_warn("map '%s': failed to create inner map: %d\n", 5175 map->name, err); 5176 return err; 5177 } 5178 map->inner_map_fd = map->inner_map->fd; 5179 } 5180 if (map->inner_map_fd >= 0) 5181 create_attr.inner_map_fd = map->inner_map_fd; 5182 } 5183 5184 switch (def->type) { 5185 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5186 case BPF_MAP_TYPE_CGROUP_ARRAY: 5187 case BPF_MAP_TYPE_STACK_TRACE: 5188 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5189 case BPF_MAP_TYPE_HASH_OF_MAPS: 5190 case BPF_MAP_TYPE_DEVMAP: 5191 case BPF_MAP_TYPE_DEVMAP_HASH: 5192 case BPF_MAP_TYPE_CPUMAP: 5193 case BPF_MAP_TYPE_XSKMAP: 5194 case BPF_MAP_TYPE_SOCKMAP: 5195 case BPF_MAP_TYPE_SOCKHASH: 5196 case BPF_MAP_TYPE_QUEUE: 5197 case BPF_MAP_TYPE_STACK: 5198 case BPF_MAP_TYPE_ARENA: 5199 create_attr.btf_fd = 0; 5200 create_attr.btf_key_type_id = 0; 5201 create_attr.btf_value_type_id = 0; 5202 map->btf_key_type_id = 0; 5203 map->btf_value_type_id = 0; 5204 break; 5205 case BPF_MAP_TYPE_STRUCT_OPS: 5206 create_attr.btf_value_type_id = 0; 5207 break; 5208 default: 5209 break; 5210 } 5211 5212 if (obj->gen_loader) { 5213 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5214 def->key_size, def->value_size, def->max_entries, 5215 &create_attr, is_inner ? -1 : map - obj->maps); 5216 /* We keep pretenting we have valid FD to pass various fd >= 0 5217 * checks by just keeping original placeholder FDs in place. 5218 * See bpf_object__add_map() comment. 5219 * This placeholder fd will not be used with any syscall and 5220 * will be reset to -1 eventually. 5221 */ 5222 map_fd = map->fd; 5223 } else { 5224 map_fd = bpf_map_create(def->type, map_name, 5225 def->key_size, def->value_size, 5226 def->max_entries, &create_attr); 5227 } 5228 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5229 char *cp, errmsg[STRERR_BUFSIZE]; 5230 5231 err = -errno; 5232 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5233 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5234 map->name, cp, err); 5235 create_attr.btf_fd = 0; 5236 create_attr.btf_key_type_id = 0; 5237 create_attr.btf_value_type_id = 0; 5238 map->btf_key_type_id = 0; 5239 map->btf_value_type_id = 0; 5240 map_fd = bpf_map_create(def->type, map_name, 5241 def->key_size, def->value_size, 5242 def->max_entries, &create_attr); 5243 } 5244 5245 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5246 if (obj->gen_loader) 5247 map->inner_map->fd = -1; 5248 bpf_map__destroy(map->inner_map); 5249 zfree(&map->inner_map); 5250 } 5251 5252 if (map_fd < 0) 5253 return map_fd; 5254 5255 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5256 if (map->fd == map_fd) 5257 return 0; 5258 5259 /* Keep placeholder FD value but now point it to the BPF map object. 5260 * This way everything that relied on this map's FD (e.g., relocated 5261 * ldimm64 instructions) will stay valid and won't need adjustments. 5262 * map->fd stays valid but now point to what map_fd points to. 5263 */ 5264 return reuse_fd(map->fd, map_fd); 5265 } 5266 5267 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5268 { 5269 const struct bpf_map *targ_map; 5270 unsigned int i; 5271 int fd, err = 0; 5272 5273 for (i = 0; i < map->init_slots_sz; i++) { 5274 if (!map->init_slots[i]) 5275 continue; 5276 5277 targ_map = map->init_slots[i]; 5278 fd = targ_map->fd; 5279 5280 if (obj->gen_loader) { 5281 bpf_gen__populate_outer_map(obj->gen_loader, 5282 map - obj->maps, i, 5283 targ_map - obj->maps); 5284 } else { 5285 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5286 } 5287 if (err) { 5288 err = -errno; 5289 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5290 map->name, i, targ_map->name, fd, err); 5291 return err; 5292 } 5293 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5294 map->name, i, targ_map->name, fd); 5295 } 5296 5297 zfree(&map->init_slots); 5298 map->init_slots_sz = 0; 5299 5300 return 0; 5301 } 5302 5303 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5304 { 5305 const struct bpf_program *targ_prog; 5306 unsigned int i; 5307 int fd, err; 5308 5309 if (obj->gen_loader) 5310 return -ENOTSUP; 5311 5312 for (i = 0; i < map->init_slots_sz; i++) { 5313 if (!map->init_slots[i]) 5314 continue; 5315 5316 targ_prog = map->init_slots[i]; 5317 fd = bpf_program__fd(targ_prog); 5318 5319 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5320 if (err) { 5321 err = -errno; 5322 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5323 map->name, i, targ_prog->name, fd, err); 5324 return err; 5325 } 5326 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5327 map->name, i, targ_prog->name, fd); 5328 } 5329 5330 zfree(&map->init_slots); 5331 map->init_slots_sz = 0; 5332 5333 return 0; 5334 } 5335 5336 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5337 { 5338 struct bpf_map *map; 5339 int i, err; 5340 5341 for (i = 0; i < obj->nr_maps; i++) { 5342 map = &obj->maps[i]; 5343 5344 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5345 continue; 5346 5347 err = init_prog_array_slots(obj, map); 5348 if (err < 0) 5349 return err; 5350 } 5351 return 0; 5352 } 5353 5354 static int map_set_def_max_entries(struct bpf_map *map) 5355 { 5356 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5357 int nr_cpus; 5358 5359 nr_cpus = libbpf_num_possible_cpus(); 5360 if (nr_cpus < 0) { 5361 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5362 map->name, nr_cpus); 5363 return nr_cpus; 5364 } 5365 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5366 map->def.max_entries = nr_cpus; 5367 } 5368 5369 return 0; 5370 } 5371 5372 static int 5373 bpf_object__create_maps(struct bpf_object *obj) 5374 { 5375 struct bpf_map *map; 5376 char *cp, errmsg[STRERR_BUFSIZE]; 5377 unsigned int i, j; 5378 int err; 5379 bool retried; 5380 5381 for (i = 0; i < obj->nr_maps; i++) { 5382 map = &obj->maps[i]; 5383 5384 /* To support old kernels, we skip creating global data maps 5385 * (.rodata, .data, .kconfig, etc); later on, during program 5386 * loading, if we detect that at least one of the to-be-loaded 5387 * programs is referencing any global data map, we'll error 5388 * out with program name and relocation index logged. 5389 * This approach allows to accommodate Clang emitting 5390 * unnecessary .rodata.str1.1 sections for string literals, 5391 * but also it allows to have CO-RE applications that use 5392 * global variables in some of BPF programs, but not others. 5393 * If those global variable-using programs are not loaded at 5394 * runtime due to bpf_program__set_autoload(prog, false), 5395 * bpf_object loading will succeed just fine even on old 5396 * kernels. 5397 */ 5398 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5399 map->autocreate = false; 5400 5401 if (!map->autocreate) { 5402 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5403 continue; 5404 } 5405 5406 err = map_set_def_max_entries(map); 5407 if (err) 5408 goto err_out; 5409 5410 retried = false; 5411 retry: 5412 if (map->pin_path) { 5413 err = bpf_object__reuse_map(map); 5414 if (err) { 5415 pr_warn("map '%s': error reusing pinned map\n", 5416 map->name); 5417 goto err_out; 5418 } 5419 if (retried && map->fd < 0) { 5420 pr_warn("map '%s': cannot find pinned map\n", 5421 map->name); 5422 err = -ENOENT; 5423 goto err_out; 5424 } 5425 } 5426 5427 if (map->reused) { 5428 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5429 map->name, map->fd); 5430 } else { 5431 err = bpf_object__create_map(obj, map, false); 5432 if (err) 5433 goto err_out; 5434 5435 pr_debug("map '%s': created successfully, fd=%d\n", 5436 map->name, map->fd); 5437 5438 if (bpf_map__is_internal(map)) { 5439 err = bpf_object__populate_internal_map(obj, map); 5440 if (err < 0) 5441 goto err_out; 5442 } 5443 if (map->def.type == BPF_MAP_TYPE_ARENA) { 5444 map->mmaped = mmap((void *)(long)map->map_extra, 5445 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5446 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5447 map->fd, 0); 5448 if (map->mmaped == MAP_FAILED) { 5449 err = -errno; 5450 map->mmaped = NULL; 5451 pr_warn("map '%s': failed to mmap arena: %d\n", 5452 map->name, err); 5453 return err; 5454 } 5455 if (obj->arena_data) { 5456 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5457 zfree(&obj->arena_data); 5458 } 5459 } 5460 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5461 err = init_map_in_map_slots(obj, map); 5462 if (err < 0) 5463 goto err_out; 5464 } 5465 } 5466 5467 if (map->pin_path && !map->pinned) { 5468 err = bpf_map__pin(map, NULL); 5469 if (err) { 5470 if (!retried && err == -EEXIST) { 5471 retried = true; 5472 goto retry; 5473 } 5474 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5475 map->name, map->pin_path, err); 5476 goto err_out; 5477 } 5478 } 5479 } 5480 5481 return 0; 5482 5483 err_out: 5484 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5485 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5486 pr_perm_msg(err); 5487 for (j = 0; j < i; j++) 5488 zclose(obj->maps[j].fd); 5489 return err; 5490 } 5491 5492 static bool bpf_core_is_flavor_sep(const char *s) 5493 { 5494 /* check X___Y name pattern, where X and Y are not underscores */ 5495 return s[0] != '_' && /* X */ 5496 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5497 s[4] != '_'; /* Y */ 5498 } 5499 5500 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5501 * before last triple underscore. Struct name part after last triple 5502 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5503 */ 5504 size_t bpf_core_essential_name_len(const char *name) 5505 { 5506 size_t n = strlen(name); 5507 int i; 5508 5509 for (i = n - 5; i >= 0; i--) { 5510 if (bpf_core_is_flavor_sep(name + i)) 5511 return i + 1; 5512 } 5513 return n; 5514 } 5515 5516 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5517 { 5518 if (!cands) 5519 return; 5520 5521 free(cands->cands); 5522 free(cands); 5523 } 5524 5525 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5526 size_t local_essent_len, 5527 const struct btf *targ_btf, 5528 const char *targ_btf_name, 5529 int targ_start_id, 5530 struct bpf_core_cand_list *cands) 5531 { 5532 struct bpf_core_cand *new_cands, *cand; 5533 const struct btf_type *t, *local_t; 5534 const char *targ_name, *local_name; 5535 size_t targ_essent_len; 5536 int n, i; 5537 5538 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5539 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5540 5541 n = btf__type_cnt(targ_btf); 5542 for (i = targ_start_id; i < n; i++) { 5543 t = btf__type_by_id(targ_btf, i); 5544 if (!btf_kind_core_compat(t, local_t)) 5545 continue; 5546 5547 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5548 if (str_is_empty(targ_name)) 5549 continue; 5550 5551 targ_essent_len = bpf_core_essential_name_len(targ_name); 5552 if (targ_essent_len != local_essent_len) 5553 continue; 5554 5555 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5556 continue; 5557 5558 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5559 local_cand->id, btf_kind_str(local_t), 5560 local_name, i, btf_kind_str(t), targ_name, 5561 targ_btf_name); 5562 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5563 sizeof(*cands->cands)); 5564 if (!new_cands) 5565 return -ENOMEM; 5566 5567 cand = &new_cands[cands->len]; 5568 cand->btf = targ_btf; 5569 cand->id = i; 5570 5571 cands->cands = new_cands; 5572 cands->len++; 5573 } 5574 return 0; 5575 } 5576 5577 static int load_module_btfs(struct bpf_object *obj) 5578 { 5579 struct bpf_btf_info info; 5580 struct module_btf *mod_btf; 5581 struct btf *btf; 5582 char name[64]; 5583 __u32 id = 0, len; 5584 int err, fd; 5585 5586 if (obj->btf_modules_loaded) 5587 return 0; 5588 5589 if (obj->gen_loader) 5590 return 0; 5591 5592 /* don't do this again, even if we find no module BTFs */ 5593 obj->btf_modules_loaded = true; 5594 5595 /* kernel too old to support module BTFs */ 5596 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5597 return 0; 5598 5599 while (true) { 5600 err = bpf_btf_get_next_id(id, &id); 5601 if (err && errno == ENOENT) 5602 return 0; 5603 if (err && errno == EPERM) { 5604 pr_debug("skipping module BTFs loading, missing privileges\n"); 5605 return 0; 5606 } 5607 if (err) { 5608 err = -errno; 5609 pr_warn("failed to iterate BTF objects: %d\n", err); 5610 return err; 5611 } 5612 5613 fd = bpf_btf_get_fd_by_id(id); 5614 if (fd < 0) { 5615 if (errno == ENOENT) 5616 continue; /* expected race: BTF was unloaded */ 5617 err = -errno; 5618 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5619 return err; 5620 } 5621 5622 len = sizeof(info); 5623 memset(&info, 0, sizeof(info)); 5624 info.name = ptr_to_u64(name); 5625 info.name_len = sizeof(name); 5626 5627 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5628 if (err) { 5629 err = -errno; 5630 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5631 goto err_out; 5632 } 5633 5634 /* ignore non-module BTFs */ 5635 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5636 close(fd); 5637 continue; 5638 } 5639 5640 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5641 err = libbpf_get_error(btf); 5642 if (err) { 5643 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5644 name, id, err); 5645 goto err_out; 5646 } 5647 5648 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5649 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5650 if (err) 5651 goto err_out; 5652 5653 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5654 5655 mod_btf->btf = btf; 5656 mod_btf->id = id; 5657 mod_btf->fd = fd; 5658 mod_btf->name = strdup(name); 5659 if (!mod_btf->name) { 5660 err = -ENOMEM; 5661 goto err_out; 5662 } 5663 continue; 5664 5665 err_out: 5666 close(fd); 5667 return err; 5668 } 5669 5670 return 0; 5671 } 5672 5673 static struct bpf_core_cand_list * 5674 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5675 { 5676 struct bpf_core_cand local_cand = {}; 5677 struct bpf_core_cand_list *cands; 5678 const struct btf *main_btf; 5679 const struct btf_type *local_t; 5680 const char *local_name; 5681 size_t local_essent_len; 5682 int err, i; 5683 5684 local_cand.btf = local_btf; 5685 local_cand.id = local_type_id; 5686 local_t = btf__type_by_id(local_btf, local_type_id); 5687 if (!local_t) 5688 return ERR_PTR(-EINVAL); 5689 5690 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5691 if (str_is_empty(local_name)) 5692 return ERR_PTR(-EINVAL); 5693 local_essent_len = bpf_core_essential_name_len(local_name); 5694 5695 cands = calloc(1, sizeof(*cands)); 5696 if (!cands) 5697 return ERR_PTR(-ENOMEM); 5698 5699 /* Attempt to find target candidates in vmlinux BTF first */ 5700 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5701 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5702 if (err) 5703 goto err_out; 5704 5705 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5706 if (cands->len) 5707 return cands; 5708 5709 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5710 if (obj->btf_vmlinux_override) 5711 return cands; 5712 5713 /* now look through module BTFs, trying to still find candidates */ 5714 err = load_module_btfs(obj); 5715 if (err) 5716 goto err_out; 5717 5718 for (i = 0; i < obj->btf_module_cnt; i++) { 5719 err = bpf_core_add_cands(&local_cand, local_essent_len, 5720 obj->btf_modules[i].btf, 5721 obj->btf_modules[i].name, 5722 btf__type_cnt(obj->btf_vmlinux), 5723 cands); 5724 if (err) 5725 goto err_out; 5726 } 5727 5728 return cands; 5729 err_out: 5730 bpf_core_free_cands(cands); 5731 return ERR_PTR(err); 5732 } 5733 5734 /* Check local and target types for compatibility. This check is used for 5735 * type-based CO-RE relocations and follow slightly different rules than 5736 * field-based relocations. This function assumes that root types were already 5737 * checked for name match. Beyond that initial root-level name check, names 5738 * are completely ignored. Compatibility rules are as follows: 5739 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5740 * kind should match for local and target types (i.e., STRUCT is not 5741 * compatible with UNION); 5742 * - for ENUMs, the size is ignored; 5743 * - for INT, size and signedness are ignored; 5744 * - for ARRAY, dimensionality is ignored, element types are checked for 5745 * compatibility recursively; 5746 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5747 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5748 * - FUNC_PROTOs are compatible if they have compatible signature: same 5749 * number of input args and compatible return and argument types. 5750 * These rules are not set in stone and probably will be adjusted as we get 5751 * more experience with using BPF CO-RE relocations. 5752 */ 5753 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5754 const struct btf *targ_btf, __u32 targ_id) 5755 { 5756 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5757 } 5758 5759 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5760 const struct btf *targ_btf, __u32 targ_id) 5761 { 5762 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5763 } 5764 5765 static size_t bpf_core_hash_fn(const long key, void *ctx) 5766 { 5767 return key; 5768 } 5769 5770 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5771 { 5772 return k1 == k2; 5773 } 5774 5775 static int record_relo_core(struct bpf_program *prog, 5776 const struct bpf_core_relo *core_relo, int insn_idx) 5777 { 5778 struct reloc_desc *relos, *relo; 5779 5780 relos = libbpf_reallocarray(prog->reloc_desc, 5781 prog->nr_reloc + 1, sizeof(*relos)); 5782 if (!relos) 5783 return -ENOMEM; 5784 relo = &relos[prog->nr_reloc]; 5785 relo->type = RELO_CORE; 5786 relo->insn_idx = insn_idx; 5787 relo->core_relo = core_relo; 5788 prog->reloc_desc = relos; 5789 prog->nr_reloc++; 5790 return 0; 5791 } 5792 5793 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5794 { 5795 struct reloc_desc *relo; 5796 int i; 5797 5798 for (i = 0; i < prog->nr_reloc; i++) { 5799 relo = &prog->reloc_desc[i]; 5800 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5801 continue; 5802 5803 return relo->core_relo; 5804 } 5805 5806 return NULL; 5807 } 5808 5809 static int bpf_core_resolve_relo(struct bpf_program *prog, 5810 const struct bpf_core_relo *relo, 5811 int relo_idx, 5812 const struct btf *local_btf, 5813 struct hashmap *cand_cache, 5814 struct bpf_core_relo_res *targ_res) 5815 { 5816 struct bpf_core_spec specs_scratch[3] = {}; 5817 struct bpf_core_cand_list *cands = NULL; 5818 const char *prog_name = prog->name; 5819 const struct btf_type *local_type; 5820 const char *local_name; 5821 __u32 local_id = relo->type_id; 5822 int err; 5823 5824 local_type = btf__type_by_id(local_btf, local_id); 5825 if (!local_type) 5826 return -EINVAL; 5827 5828 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5829 if (!local_name) 5830 return -EINVAL; 5831 5832 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5833 !hashmap__find(cand_cache, local_id, &cands)) { 5834 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5835 if (IS_ERR(cands)) { 5836 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5837 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5838 local_name, PTR_ERR(cands)); 5839 return PTR_ERR(cands); 5840 } 5841 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5842 if (err) { 5843 bpf_core_free_cands(cands); 5844 return err; 5845 } 5846 } 5847 5848 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5849 targ_res); 5850 } 5851 5852 static int 5853 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5854 { 5855 const struct btf_ext_info_sec *sec; 5856 struct bpf_core_relo_res targ_res; 5857 const struct bpf_core_relo *rec; 5858 const struct btf_ext_info *seg; 5859 struct hashmap_entry *entry; 5860 struct hashmap *cand_cache = NULL; 5861 struct bpf_program *prog; 5862 struct bpf_insn *insn; 5863 const char *sec_name; 5864 int i, err = 0, insn_idx, sec_idx, sec_num; 5865 5866 if (obj->btf_ext->core_relo_info.len == 0) 5867 return 0; 5868 5869 if (targ_btf_path) { 5870 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5871 err = libbpf_get_error(obj->btf_vmlinux_override); 5872 if (err) { 5873 pr_warn("failed to parse target BTF: %d\n", err); 5874 return err; 5875 } 5876 } 5877 5878 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5879 if (IS_ERR(cand_cache)) { 5880 err = PTR_ERR(cand_cache); 5881 goto out; 5882 } 5883 5884 seg = &obj->btf_ext->core_relo_info; 5885 sec_num = 0; 5886 for_each_btf_ext_sec(seg, sec) { 5887 sec_idx = seg->sec_idxs[sec_num]; 5888 sec_num++; 5889 5890 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5891 if (str_is_empty(sec_name)) { 5892 err = -EINVAL; 5893 goto out; 5894 } 5895 5896 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5897 5898 for_each_btf_ext_rec(seg, sec, i, rec) { 5899 if (rec->insn_off % BPF_INSN_SZ) 5900 return -EINVAL; 5901 insn_idx = rec->insn_off / BPF_INSN_SZ; 5902 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5903 if (!prog) { 5904 /* When __weak subprog is "overridden" by another instance 5905 * of the subprog from a different object file, linker still 5906 * appends all the .BTF.ext info that used to belong to that 5907 * eliminated subprogram. 5908 * This is similar to what x86-64 linker does for relocations. 5909 * So just ignore such relocations just like we ignore 5910 * subprog instructions when discovering subprograms. 5911 */ 5912 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5913 sec_name, i, insn_idx); 5914 continue; 5915 } 5916 /* no need to apply CO-RE relocation if the program is 5917 * not going to be loaded 5918 */ 5919 if (!prog->autoload) 5920 continue; 5921 5922 /* adjust insn_idx from section frame of reference to the local 5923 * program's frame of reference; (sub-)program code is not yet 5924 * relocated, so it's enough to just subtract in-section offset 5925 */ 5926 insn_idx = insn_idx - prog->sec_insn_off; 5927 if (insn_idx >= prog->insns_cnt) 5928 return -EINVAL; 5929 insn = &prog->insns[insn_idx]; 5930 5931 err = record_relo_core(prog, rec, insn_idx); 5932 if (err) { 5933 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5934 prog->name, i, err); 5935 goto out; 5936 } 5937 5938 if (prog->obj->gen_loader) 5939 continue; 5940 5941 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5942 if (err) { 5943 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5944 prog->name, i, err); 5945 goto out; 5946 } 5947 5948 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5949 if (err) { 5950 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5951 prog->name, i, insn_idx, err); 5952 goto out; 5953 } 5954 } 5955 } 5956 5957 out: 5958 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5959 btf__free(obj->btf_vmlinux_override); 5960 obj->btf_vmlinux_override = NULL; 5961 5962 if (!IS_ERR_OR_NULL(cand_cache)) { 5963 hashmap__for_each_entry(cand_cache, entry, i) { 5964 bpf_core_free_cands(entry->pvalue); 5965 } 5966 hashmap__free(cand_cache); 5967 } 5968 return err; 5969 } 5970 5971 /* base map load ldimm64 special constant, used also for log fixup logic */ 5972 #define POISON_LDIMM64_MAP_BASE 2001000000 5973 #define POISON_LDIMM64_MAP_PFX "200100" 5974 5975 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5976 int insn_idx, struct bpf_insn *insn, 5977 int map_idx, const struct bpf_map *map) 5978 { 5979 int i; 5980 5981 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5982 prog->name, relo_idx, insn_idx, map_idx, map->name); 5983 5984 /* we turn single ldimm64 into two identical invalid calls */ 5985 for (i = 0; i < 2; i++) { 5986 insn->code = BPF_JMP | BPF_CALL; 5987 insn->dst_reg = 0; 5988 insn->src_reg = 0; 5989 insn->off = 0; 5990 /* if this instruction is reachable (not a dead code), 5991 * verifier will complain with something like: 5992 * invalid func unknown#2001000123 5993 * where lower 123 is map index into obj->maps[] array 5994 */ 5995 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5996 5997 insn++; 5998 } 5999 } 6000 6001 /* unresolved kfunc call special constant, used also for log fixup logic */ 6002 #define POISON_CALL_KFUNC_BASE 2002000000 6003 #define POISON_CALL_KFUNC_PFX "2002" 6004 6005 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6006 int insn_idx, struct bpf_insn *insn, 6007 int ext_idx, const struct extern_desc *ext) 6008 { 6009 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6010 prog->name, relo_idx, insn_idx, ext->name); 6011 6012 /* we turn kfunc call into invalid helper call with identifiable constant */ 6013 insn->code = BPF_JMP | BPF_CALL; 6014 insn->dst_reg = 0; 6015 insn->src_reg = 0; 6016 insn->off = 0; 6017 /* if this instruction is reachable (not a dead code), 6018 * verifier will complain with something like: 6019 * invalid func unknown#2001000123 6020 * where lower 123 is extern index into obj->externs[] array 6021 */ 6022 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6023 } 6024 6025 /* Relocate data references within program code: 6026 * - map references; 6027 * - global variable references; 6028 * - extern references. 6029 */ 6030 static int 6031 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6032 { 6033 int i; 6034 6035 for (i = 0; i < prog->nr_reloc; i++) { 6036 struct reloc_desc *relo = &prog->reloc_desc[i]; 6037 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6038 const struct bpf_map *map; 6039 struct extern_desc *ext; 6040 6041 switch (relo->type) { 6042 case RELO_LD64: 6043 map = &obj->maps[relo->map_idx]; 6044 if (obj->gen_loader) { 6045 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6046 insn[0].imm = relo->map_idx; 6047 } else if (map->autocreate) { 6048 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6049 insn[0].imm = map->fd; 6050 } else { 6051 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6052 relo->map_idx, map); 6053 } 6054 break; 6055 case RELO_DATA: 6056 map = &obj->maps[relo->map_idx]; 6057 insn[1].imm = insn[0].imm + relo->sym_off; 6058 if (obj->gen_loader) { 6059 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6060 insn[0].imm = relo->map_idx; 6061 } else if (map->autocreate) { 6062 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6063 insn[0].imm = map->fd; 6064 } else { 6065 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6066 relo->map_idx, map); 6067 } 6068 break; 6069 case RELO_EXTERN_LD64: 6070 ext = &obj->externs[relo->ext_idx]; 6071 if (ext->type == EXT_KCFG) { 6072 if (obj->gen_loader) { 6073 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6074 insn[0].imm = obj->kconfig_map_idx; 6075 } else { 6076 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6077 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6078 } 6079 insn[1].imm = ext->kcfg.data_off; 6080 } else /* EXT_KSYM */ { 6081 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6082 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6083 insn[0].imm = ext->ksym.kernel_btf_id; 6084 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6085 } else { /* typeless ksyms or unresolved typed ksyms */ 6086 insn[0].imm = (__u32)ext->ksym.addr; 6087 insn[1].imm = ext->ksym.addr >> 32; 6088 } 6089 } 6090 break; 6091 case RELO_EXTERN_CALL: 6092 ext = &obj->externs[relo->ext_idx]; 6093 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6094 if (ext->is_set) { 6095 insn[0].imm = ext->ksym.kernel_btf_id; 6096 insn[0].off = ext->ksym.btf_fd_idx; 6097 } else { /* unresolved weak kfunc call */ 6098 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6099 relo->ext_idx, ext); 6100 } 6101 break; 6102 case RELO_SUBPROG_ADDR: 6103 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6104 pr_warn("prog '%s': relo #%d: bad insn\n", 6105 prog->name, i); 6106 return -EINVAL; 6107 } 6108 /* handled already */ 6109 break; 6110 case RELO_CALL: 6111 /* handled already */ 6112 break; 6113 case RELO_CORE: 6114 /* will be handled by bpf_program_record_relos() */ 6115 break; 6116 default: 6117 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6118 prog->name, i, relo->type); 6119 return -EINVAL; 6120 } 6121 } 6122 6123 return 0; 6124 } 6125 6126 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6127 const struct bpf_program *prog, 6128 const struct btf_ext_info *ext_info, 6129 void **prog_info, __u32 *prog_rec_cnt, 6130 __u32 *prog_rec_sz) 6131 { 6132 void *copy_start = NULL, *copy_end = NULL; 6133 void *rec, *rec_end, *new_prog_info; 6134 const struct btf_ext_info_sec *sec; 6135 size_t old_sz, new_sz; 6136 int i, sec_num, sec_idx, off_adj; 6137 6138 sec_num = 0; 6139 for_each_btf_ext_sec(ext_info, sec) { 6140 sec_idx = ext_info->sec_idxs[sec_num]; 6141 sec_num++; 6142 if (prog->sec_idx != sec_idx) 6143 continue; 6144 6145 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6146 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6147 6148 if (insn_off < prog->sec_insn_off) 6149 continue; 6150 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6151 break; 6152 6153 if (!copy_start) 6154 copy_start = rec; 6155 copy_end = rec + ext_info->rec_size; 6156 } 6157 6158 if (!copy_start) 6159 return -ENOENT; 6160 6161 /* append func/line info of a given (sub-)program to the main 6162 * program func/line info 6163 */ 6164 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6165 new_sz = old_sz + (copy_end - copy_start); 6166 new_prog_info = realloc(*prog_info, new_sz); 6167 if (!new_prog_info) 6168 return -ENOMEM; 6169 *prog_info = new_prog_info; 6170 *prog_rec_cnt = new_sz / ext_info->rec_size; 6171 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6172 6173 /* Kernel instruction offsets are in units of 8-byte 6174 * instructions, while .BTF.ext instruction offsets generated 6175 * by Clang are in units of bytes. So convert Clang offsets 6176 * into kernel offsets and adjust offset according to program 6177 * relocated position. 6178 */ 6179 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6180 rec = new_prog_info + old_sz; 6181 rec_end = new_prog_info + new_sz; 6182 for (; rec < rec_end; rec += ext_info->rec_size) { 6183 __u32 *insn_off = rec; 6184 6185 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6186 } 6187 *prog_rec_sz = ext_info->rec_size; 6188 return 0; 6189 } 6190 6191 return -ENOENT; 6192 } 6193 6194 static int 6195 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6196 struct bpf_program *main_prog, 6197 const struct bpf_program *prog) 6198 { 6199 int err; 6200 6201 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6202 * support func/line info 6203 */ 6204 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6205 return 0; 6206 6207 /* only attempt func info relocation if main program's func_info 6208 * relocation was successful 6209 */ 6210 if (main_prog != prog && !main_prog->func_info) 6211 goto line_info; 6212 6213 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6214 &main_prog->func_info, 6215 &main_prog->func_info_cnt, 6216 &main_prog->func_info_rec_size); 6217 if (err) { 6218 if (err != -ENOENT) { 6219 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6220 prog->name, err); 6221 return err; 6222 } 6223 if (main_prog->func_info) { 6224 /* 6225 * Some info has already been found but has problem 6226 * in the last btf_ext reloc. Must have to error out. 6227 */ 6228 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6229 return err; 6230 } 6231 /* Have problem loading the very first info. Ignore the rest. */ 6232 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6233 prog->name); 6234 } 6235 6236 line_info: 6237 /* don't relocate line info if main program's relocation failed */ 6238 if (main_prog != prog && !main_prog->line_info) 6239 return 0; 6240 6241 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6242 &main_prog->line_info, 6243 &main_prog->line_info_cnt, 6244 &main_prog->line_info_rec_size); 6245 if (err) { 6246 if (err != -ENOENT) { 6247 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6248 prog->name, err); 6249 return err; 6250 } 6251 if (main_prog->line_info) { 6252 /* 6253 * Some info has already been found but has problem 6254 * in the last btf_ext reloc. Must have to error out. 6255 */ 6256 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6257 return err; 6258 } 6259 /* Have problem loading the very first info. Ignore the rest. */ 6260 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6261 prog->name); 6262 } 6263 return 0; 6264 } 6265 6266 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6267 { 6268 size_t insn_idx = *(const size_t *)key; 6269 const struct reloc_desc *relo = elem; 6270 6271 if (insn_idx == relo->insn_idx) 6272 return 0; 6273 return insn_idx < relo->insn_idx ? -1 : 1; 6274 } 6275 6276 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6277 { 6278 if (!prog->nr_reloc) 6279 return NULL; 6280 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6281 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6282 } 6283 6284 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6285 { 6286 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6287 struct reloc_desc *relos; 6288 int i; 6289 6290 if (main_prog == subprog) 6291 return 0; 6292 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6293 /* if new count is zero, reallocarray can return a valid NULL result; 6294 * in this case the previous pointer will be freed, so we *have to* 6295 * reassign old pointer to the new value (even if it's NULL) 6296 */ 6297 if (!relos && new_cnt) 6298 return -ENOMEM; 6299 if (subprog->nr_reloc) 6300 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6301 sizeof(*relos) * subprog->nr_reloc); 6302 6303 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6304 relos[i].insn_idx += subprog->sub_insn_off; 6305 /* After insn_idx adjustment the 'relos' array is still sorted 6306 * by insn_idx and doesn't break bsearch. 6307 */ 6308 main_prog->reloc_desc = relos; 6309 main_prog->nr_reloc = new_cnt; 6310 return 0; 6311 } 6312 6313 static int 6314 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6315 struct bpf_program *subprog) 6316 { 6317 struct bpf_insn *insns; 6318 size_t new_cnt; 6319 int err; 6320 6321 subprog->sub_insn_off = main_prog->insns_cnt; 6322 6323 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6324 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6325 if (!insns) { 6326 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6327 return -ENOMEM; 6328 } 6329 main_prog->insns = insns; 6330 main_prog->insns_cnt = new_cnt; 6331 6332 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6333 subprog->insns_cnt * sizeof(*insns)); 6334 6335 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6336 main_prog->name, subprog->insns_cnt, subprog->name); 6337 6338 /* The subprog insns are now appended. Append its relos too. */ 6339 err = append_subprog_relos(main_prog, subprog); 6340 if (err) 6341 return err; 6342 return 0; 6343 } 6344 6345 static int 6346 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6347 struct bpf_program *prog) 6348 { 6349 size_t sub_insn_idx, insn_idx; 6350 struct bpf_program *subprog; 6351 struct reloc_desc *relo; 6352 struct bpf_insn *insn; 6353 int err; 6354 6355 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6356 if (err) 6357 return err; 6358 6359 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6360 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6361 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6362 continue; 6363 6364 relo = find_prog_insn_relo(prog, insn_idx); 6365 if (relo && relo->type == RELO_EXTERN_CALL) 6366 /* kfunc relocations will be handled later 6367 * in bpf_object__relocate_data() 6368 */ 6369 continue; 6370 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6371 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6372 prog->name, insn_idx, relo->type); 6373 return -LIBBPF_ERRNO__RELOC; 6374 } 6375 if (relo) { 6376 /* sub-program instruction index is a combination of 6377 * an offset of a symbol pointed to by relocation and 6378 * call instruction's imm field; for global functions, 6379 * call always has imm = -1, but for static functions 6380 * relocation is against STT_SECTION and insn->imm 6381 * points to a start of a static function 6382 * 6383 * for subprog addr relocation, the relo->sym_off + insn->imm is 6384 * the byte offset in the corresponding section. 6385 */ 6386 if (relo->type == RELO_CALL) 6387 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6388 else 6389 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6390 } else if (insn_is_pseudo_func(insn)) { 6391 /* 6392 * RELO_SUBPROG_ADDR relo is always emitted even if both 6393 * functions are in the same section, so it shouldn't reach here. 6394 */ 6395 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6396 prog->name, insn_idx); 6397 return -LIBBPF_ERRNO__RELOC; 6398 } else { 6399 /* if subprogram call is to a static function within 6400 * the same ELF section, there won't be any relocation 6401 * emitted, but it also means there is no additional 6402 * offset necessary, insns->imm is relative to 6403 * instruction's original position within the section 6404 */ 6405 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6406 } 6407 6408 /* we enforce that sub-programs should be in .text section */ 6409 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6410 if (!subprog) { 6411 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6412 prog->name); 6413 return -LIBBPF_ERRNO__RELOC; 6414 } 6415 6416 /* if it's the first call instruction calling into this 6417 * subprogram (meaning this subprog hasn't been processed 6418 * yet) within the context of current main program: 6419 * - append it at the end of main program's instructions blog; 6420 * - process is recursively, while current program is put on hold; 6421 * - if that subprogram calls some other not yet processes 6422 * subprogram, same thing will happen recursively until 6423 * there are no more unprocesses subprograms left to append 6424 * and relocate. 6425 */ 6426 if (subprog->sub_insn_off == 0) { 6427 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6428 if (err) 6429 return err; 6430 err = bpf_object__reloc_code(obj, main_prog, subprog); 6431 if (err) 6432 return err; 6433 } 6434 6435 /* main_prog->insns memory could have been re-allocated, so 6436 * calculate pointer again 6437 */ 6438 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6439 /* calculate correct instruction position within current main 6440 * prog; each main prog can have a different set of 6441 * subprograms appended (potentially in different order as 6442 * well), so position of any subprog can be different for 6443 * different main programs 6444 */ 6445 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6446 6447 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6448 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6449 } 6450 6451 return 0; 6452 } 6453 6454 /* 6455 * Relocate sub-program calls. 6456 * 6457 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6458 * main prog) is processed separately. For each subprog (non-entry functions, 6459 * that can be called from either entry progs or other subprogs) gets their 6460 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6461 * hasn't been yet appended and relocated within current main prog. Once its 6462 * relocated, sub_insn_off will point at the position within current main prog 6463 * where given subprog was appended. This will further be used to relocate all 6464 * the call instructions jumping into this subprog. 6465 * 6466 * We start with main program and process all call instructions. If the call 6467 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6468 * is zero), subprog instructions are appended at the end of main program's 6469 * instruction array. Then main program is "put on hold" while we recursively 6470 * process newly appended subprogram. If that subprogram calls into another 6471 * subprogram that hasn't been appended, new subprogram is appended again to 6472 * the *main* prog's instructions (subprog's instructions are always left 6473 * untouched, as they need to be in unmodified state for subsequent main progs 6474 * and subprog instructions are always sent only as part of a main prog) and 6475 * the process continues recursively. Once all the subprogs called from a main 6476 * prog or any of its subprogs are appended (and relocated), all their 6477 * positions within finalized instructions array are known, so it's easy to 6478 * rewrite call instructions with correct relative offsets, corresponding to 6479 * desired target subprog. 6480 * 6481 * Its important to realize that some subprogs might not be called from some 6482 * main prog and any of its called/used subprogs. Those will keep their 6483 * subprog->sub_insn_off as zero at all times and won't be appended to current 6484 * main prog and won't be relocated within the context of current main prog. 6485 * They might still be used from other main progs later. 6486 * 6487 * Visually this process can be shown as below. Suppose we have two main 6488 * programs mainA and mainB and BPF object contains three subprogs: subA, 6489 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6490 * subC both call subB: 6491 * 6492 * +--------+ +-------+ 6493 * | v v | 6494 * +--+---+ +--+-+-+ +---+--+ 6495 * | subA | | subB | | subC | 6496 * +--+---+ +------+ +---+--+ 6497 * ^ ^ 6498 * | | 6499 * +---+-------+ +------+----+ 6500 * | mainA | | mainB | 6501 * +-----------+ +-----------+ 6502 * 6503 * We'll start relocating mainA, will find subA, append it and start 6504 * processing sub A recursively: 6505 * 6506 * +-----------+------+ 6507 * | mainA | subA | 6508 * +-----------+------+ 6509 * 6510 * At this point we notice that subB is used from subA, so we append it and 6511 * relocate (there are no further subcalls from subB): 6512 * 6513 * +-----------+------+------+ 6514 * | mainA | subA | subB | 6515 * +-----------+------+------+ 6516 * 6517 * At this point, we relocate subA calls, then go one level up and finish with 6518 * relocatin mainA calls. mainA is done. 6519 * 6520 * For mainB process is similar but results in different order. We start with 6521 * mainB and skip subA and subB, as mainB never calls them (at least 6522 * directly), but we see subC is needed, so we append and start processing it: 6523 * 6524 * +-----------+------+ 6525 * | mainB | subC | 6526 * +-----------+------+ 6527 * Now we see subC needs subB, so we go back to it, append and relocate it: 6528 * 6529 * +-----------+------+------+ 6530 * | mainB | subC | subB | 6531 * +-----------+------+------+ 6532 * 6533 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6534 */ 6535 static int 6536 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6537 { 6538 struct bpf_program *subprog; 6539 int i, err; 6540 6541 /* mark all subprogs as not relocated (yet) within the context of 6542 * current main program 6543 */ 6544 for (i = 0; i < obj->nr_programs; i++) { 6545 subprog = &obj->programs[i]; 6546 if (!prog_is_subprog(obj, subprog)) 6547 continue; 6548 6549 subprog->sub_insn_off = 0; 6550 } 6551 6552 err = bpf_object__reloc_code(obj, prog, prog); 6553 if (err) 6554 return err; 6555 6556 return 0; 6557 } 6558 6559 static void 6560 bpf_object__free_relocs(struct bpf_object *obj) 6561 { 6562 struct bpf_program *prog; 6563 int i; 6564 6565 /* free up relocation descriptors */ 6566 for (i = 0; i < obj->nr_programs; i++) { 6567 prog = &obj->programs[i]; 6568 zfree(&prog->reloc_desc); 6569 prog->nr_reloc = 0; 6570 } 6571 } 6572 6573 static int cmp_relocs(const void *_a, const void *_b) 6574 { 6575 const struct reloc_desc *a = _a; 6576 const struct reloc_desc *b = _b; 6577 6578 if (a->insn_idx != b->insn_idx) 6579 return a->insn_idx < b->insn_idx ? -1 : 1; 6580 6581 /* no two relocations should have the same insn_idx, but ... */ 6582 if (a->type != b->type) 6583 return a->type < b->type ? -1 : 1; 6584 6585 return 0; 6586 } 6587 6588 static void bpf_object__sort_relos(struct bpf_object *obj) 6589 { 6590 int i; 6591 6592 for (i = 0; i < obj->nr_programs; i++) { 6593 struct bpf_program *p = &obj->programs[i]; 6594 6595 if (!p->nr_reloc) 6596 continue; 6597 6598 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6599 } 6600 } 6601 6602 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6603 { 6604 const char *str = "exception_callback:"; 6605 size_t pfx_len = strlen(str); 6606 int i, j, n; 6607 6608 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6609 return 0; 6610 6611 n = btf__type_cnt(obj->btf); 6612 for (i = 1; i < n; i++) { 6613 const char *name; 6614 struct btf_type *t; 6615 6616 t = btf_type_by_id(obj->btf, i); 6617 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6618 continue; 6619 6620 name = btf__str_by_offset(obj->btf, t->name_off); 6621 if (strncmp(name, str, pfx_len) != 0) 6622 continue; 6623 6624 t = btf_type_by_id(obj->btf, t->type); 6625 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6626 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6627 prog->name); 6628 return -EINVAL; 6629 } 6630 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6631 continue; 6632 /* Multiple callbacks are specified for the same prog, 6633 * the verifier will eventually return an error for this 6634 * case, hence simply skip appending a subprog. 6635 */ 6636 if (prog->exception_cb_idx >= 0) { 6637 prog->exception_cb_idx = -1; 6638 break; 6639 } 6640 6641 name += pfx_len; 6642 if (str_is_empty(name)) { 6643 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6644 prog->name); 6645 return -EINVAL; 6646 } 6647 6648 for (j = 0; j < obj->nr_programs; j++) { 6649 struct bpf_program *subprog = &obj->programs[j]; 6650 6651 if (!prog_is_subprog(obj, subprog)) 6652 continue; 6653 if (strcmp(name, subprog->name) != 0) 6654 continue; 6655 /* Enforce non-hidden, as from verifier point of 6656 * view it expects global functions, whereas the 6657 * mark_btf_static fixes up linkage as static. 6658 */ 6659 if (!subprog->sym_global || subprog->mark_btf_static) { 6660 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6661 prog->name, subprog->name); 6662 return -EINVAL; 6663 } 6664 /* Let's see if we already saw a static exception callback with the same name */ 6665 if (prog->exception_cb_idx >= 0) { 6666 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6667 prog->name, subprog->name); 6668 return -EINVAL; 6669 } 6670 prog->exception_cb_idx = j; 6671 break; 6672 } 6673 6674 if (prog->exception_cb_idx >= 0) 6675 continue; 6676 6677 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6678 return -ENOENT; 6679 } 6680 6681 return 0; 6682 } 6683 6684 static struct { 6685 enum bpf_prog_type prog_type; 6686 const char *ctx_name; 6687 } global_ctx_map[] = { 6688 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6689 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6690 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6691 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6692 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6693 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6694 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6695 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6696 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6697 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6698 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6699 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6700 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6701 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6702 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6703 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6704 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6705 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6706 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6707 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6708 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6709 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6710 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6711 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6712 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6713 /* all other program types don't have "named" context structs */ 6714 }; 6715 6716 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6717 * for below __builtin_types_compatible_p() checks; 6718 * with this approach we don't need any extra arch-specific #ifdef guards 6719 */ 6720 struct pt_regs; 6721 struct user_pt_regs; 6722 struct user_regs_struct; 6723 6724 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6725 const char *subprog_name, int arg_idx, 6726 int arg_type_id, const char *ctx_name) 6727 { 6728 const struct btf_type *t; 6729 const char *tname; 6730 6731 /* check if existing parameter already matches verifier expectations */ 6732 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6733 if (!btf_is_ptr(t)) 6734 goto out_warn; 6735 6736 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6737 * and perf_event programs, so check this case early on and forget 6738 * about it for subsequent checks 6739 */ 6740 while (btf_is_mod(t)) 6741 t = btf__type_by_id(btf, t->type); 6742 if (btf_is_typedef(t) && 6743 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6744 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6745 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6746 return false; /* canonical type for kprobe/perf_event */ 6747 } 6748 6749 /* now we can ignore typedefs moving forward */ 6750 t = skip_mods_and_typedefs(btf, t->type, NULL); 6751 6752 /* if it's `void *`, definitely fix up BTF info */ 6753 if (btf_is_void(t)) 6754 return true; 6755 6756 /* if it's already proper canonical type, no need to fix up */ 6757 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6758 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6759 return false; 6760 6761 /* special cases */ 6762 switch (prog->type) { 6763 case BPF_PROG_TYPE_KPROBE: 6764 /* `struct pt_regs *` is expected, but we need to fix up */ 6765 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6766 return true; 6767 break; 6768 case BPF_PROG_TYPE_PERF_EVENT: 6769 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6770 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6771 return true; 6772 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6773 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6774 return true; 6775 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6776 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6777 return true; 6778 break; 6779 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6780 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6781 /* allow u64* as ctx */ 6782 if (btf_is_int(t) && t->size == 8) 6783 return true; 6784 break; 6785 default: 6786 break; 6787 } 6788 6789 out_warn: 6790 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6791 prog->name, subprog_name, arg_idx, ctx_name); 6792 return false; 6793 } 6794 6795 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6796 { 6797 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6798 int i, err, arg_cnt, fn_name_off, linkage; 6799 struct btf_type *fn_t, *fn_proto_t, *t; 6800 struct btf_param *p; 6801 6802 /* caller already validated FUNC -> FUNC_PROTO validity */ 6803 fn_t = btf_type_by_id(btf, orig_fn_id); 6804 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6805 6806 /* Note that each btf__add_xxx() operation invalidates 6807 * all btf_type and string pointers, so we need to be 6808 * very careful when cloning BTF types. BTF type 6809 * pointers have to be always refetched. And to avoid 6810 * problems with invalidated string pointers, we 6811 * add empty strings initially, then just fix up 6812 * name_off offsets in place. Offsets are stable for 6813 * existing strings, so that works out. 6814 */ 6815 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6816 linkage = btf_func_linkage(fn_t); 6817 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6818 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6819 arg_cnt = btf_vlen(fn_proto_t); 6820 6821 /* clone FUNC_PROTO and its params */ 6822 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6823 if (fn_proto_id < 0) 6824 return -EINVAL; 6825 6826 for (i = 0; i < arg_cnt; i++) { 6827 int name_off; 6828 6829 /* copy original parameter data */ 6830 t = btf_type_by_id(btf, orig_proto_id); 6831 p = &btf_params(t)[i]; 6832 name_off = p->name_off; 6833 6834 err = btf__add_func_param(btf, "", p->type); 6835 if (err) 6836 return err; 6837 6838 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6839 p = &btf_params(fn_proto_t)[i]; 6840 p->name_off = name_off; /* use remembered str offset */ 6841 } 6842 6843 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6844 * entry program's name as a placeholder, which we replace immediately 6845 * with original name_off 6846 */ 6847 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6848 if (fn_id < 0) 6849 return -EINVAL; 6850 6851 fn_t = btf_type_by_id(btf, fn_id); 6852 fn_t->name_off = fn_name_off; /* reuse original string */ 6853 6854 return fn_id; 6855 } 6856 6857 /* Check if main program or global subprog's function prototype has `arg:ctx` 6858 * argument tags, and, if necessary, substitute correct type to match what BPF 6859 * verifier would expect, taking into account specific program type. This 6860 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6861 * have a native support for it in the verifier, making user's life much 6862 * easier. 6863 */ 6864 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6865 { 6866 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6867 struct bpf_func_info_min *func_rec; 6868 struct btf_type *fn_t, *fn_proto_t; 6869 struct btf *btf = obj->btf; 6870 const struct btf_type *t; 6871 struct btf_param *p; 6872 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6873 int i, n, arg_idx, arg_cnt, err, rec_idx; 6874 int *orig_ids; 6875 6876 /* no .BTF.ext, no problem */ 6877 if (!obj->btf_ext || !prog->func_info) 6878 return 0; 6879 6880 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6881 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 6882 return 0; 6883 6884 /* some BPF program types just don't have named context structs, so 6885 * this fallback mechanism doesn't work for them 6886 */ 6887 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6888 if (global_ctx_map[i].prog_type != prog->type) 6889 continue; 6890 ctx_name = global_ctx_map[i].ctx_name; 6891 break; 6892 } 6893 if (!ctx_name) 6894 return 0; 6895 6896 /* remember original func BTF IDs to detect if we already cloned them */ 6897 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6898 if (!orig_ids) 6899 return -ENOMEM; 6900 for (i = 0; i < prog->func_info_cnt; i++) { 6901 func_rec = prog->func_info + prog->func_info_rec_size * i; 6902 orig_ids[i] = func_rec->type_id; 6903 } 6904 6905 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6906 * of our subprogs; if yes and subprog is global and needs adjustment, 6907 * clone and adjust FUNC -> FUNC_PROTO combo 6908 */ 6909 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6910 /* only DECL_TAG with "arg:ctx" value are interesting */ 6911 t = btf__type_by_id(btf, i); 6912 if (!btf_is_decl_tag(t)) 6913 continue; 6914 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6915 continue; 6916 6917 /* only global funcs need adjustment, if at all */ 6918 orig_fn_id = t->type; 6919 fn_t = btf_type_by_id(btf, orig_fn_id); 6920 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6921 continue; 6922 6923 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6924 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6925 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6926 continue; 6927 6928 /* find corresponding func_info record */ 6929 func_rec = NULL; 6930 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6931 if (orig_ids[rec_idx] == t->type) { 6932 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6933 break; 6934 } 6935 } 6936 /* current main program doesn't call into this subprog */ 6937 if (!func_rec) 6938 continue; 6939 6940 /* some more sanity checking of DECL_TAG */ 6941 arg_cnt = btf_vlen(fn_proto_t); 6942 arg_idx = btf_decl_tag(t)->component_idx; 6943 if (arg_idx < 0 || arg_idx >= arg_cnt) 6944 continue; 6945 6946 /* check if we should fix up argument type */ 6947 p = &btf_params(fn_proto_t)[arg_idx]; 6948 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 6949 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 6950 continue; 6951 6952 /* clone fn/fn_proto, unless we already did it for another arg */ 6953 if (func_rec->type_id == orig_fn_id) { 6954 int fn_id; 6955 6956 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 6957 if (fn_id < 0) { 6958 err = fn_id; 6959 goto err_out; 6960 } 6961 6962 /* point func_info record to a cloned FUNC type */ 6963 func_rec->type_id = fn_id; 6964 } 6965 6966 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 6967 * we do it just once per main BPF program, as all global 6968 * funcs share the same program type, so need only PTR -> 6969 * STRUCT type chain 6970 */ 6971 if (ptr_id == 0) { 6972 struct_id = btf__add_struct(btf, ctx_name, 0); 6973 ptr_id = btf__add_ptr(btf, struct_id); 6974 if (ptr_id < 0 || struct_id < 0) { 6975 err = -EINVAL; 6976 goto err_out; 6977 } 6978 } 6979 6980 /* for completeness, clone DECL_TAG and point it to cloned param */ 6981 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 6982 if (tag_id < 0) { 6983 err = -EINVAL; 6984 goto err_out; 6985 } 6986 6987 /* all the BTF manipulations invalidated pointers, refetch them */ 6988 fn_t = btf_type_by_id(btf, func_rec->type_id); 6989 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6990 6991 /* fix up type ID pointed to by param */ 6992 p = &btf_params(fn_proto_t)[arg_idx]; 6993 p->type = ptr_id; 6994 } 6995 6996 free(orig_ids); 6997 return 0; 6998 err_out: 6999 free(orig_ids); 7000 return err; 7001 } 7002 7003 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7004 { 7005 struct bpf_program *prog; 7006 size_t i, j; 7007 int err; 7008 7009 if (obj->btf_ext) { 7010 err = bpf_object__relocate_core(obj, targ_btf_path); 7011 if (err) { 7012 pr_warn("failed to perform CO-RE relocations: %d\n", 7013 err); 7014 return err; 7015 } 7016 bpf_object__sort_relos(obj); 7017 } 7018 7019 /* Before relocating calls pre-process relocations and mark 7020 * few ld_imm64 instructions that points to subprogs. 7021 * Otherwise bpf_object__reloc_code() later would have to consider 7022 * all ld_imm64 insns as relocation candidates. That would 7023 * reduce relocation speed, since amount of find_prog_insn_relo() 7024 * would increase and most of them will fail to find a relo. 7025 */ 7026 for (i = 0; i < obj->nr_programs; i++) { 7027 prog = &obj->programs[i]; 7028 for (j = 0; j < prog->nr_reloc; j++) { 7029 struct reloc_desc *relo = &prog->reloc_desc[j]; 7030 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7031 7032 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7033 if (relo->type == RELO_SUBPROG_ADDR) 7034 insn[0].src_reg = BPF_PSEUDO_FUNC; 7035 } 7036 } 7037 7038 /* relocate subprogram calls and append used subprograms to main 7039 * programs; each copy of subprogram code needs to be relocated 7040 * differently for each main program, because its code location might 7041 * have changed. 7042 * Append subprog relos to main programs to allow data relos to be 7043 * processed after text is completely relocated. 7044 */ 7045 for (i = 0; i < obj->nr_programs; i++) { 7046 prog = &obj->programs[i]; 7047 /* sub-program's sub-calls are relocated within the context of 7048 * its main program only 7049 */ 7050 if (prog_is_subprog(obj, prog)) 7051 continue; 7052 if (!prog->autoload) 7053 continue; 7054 7055 err = bpf_object__relocate_calls(obj, prog); 7056 if (err) { 7057 pr_warn("prog '%s': failed to relocate calls: %d\n", 7058 prog->name, err); 7059 return err; 7060 } 7061 7062 err = bpf_prog_assign_exc_cb(obj, prog); 7063 if (err) 7064 return err; 7065 /* Now, also append exception callback if it has not been done already. */ 7066 if (prog->exception_cb_idx >= 0) { 7067 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7068 7069 /* Calling exception callback directly is disallowed, which the 7070 * verifier will reject later. In case it was processed already, 7071 * we can skip this step, otherwise for all other valid cases we 7072 * have to append exception callback now. 7073 */ 7074 if (subprog->sub_insn_off == 0) { 7075 err = bpf_object__append_subprog_code(obj, prog, subprog); 7076 if (err) 7077 return err; 7078 err = bpf_object__reloc_code(obj, prog, subprog); 7079 if (err) 7080 return err; 7081 } 7082 } 7083 } 7084 for (i = 0; i < obj->nr_programs; i++) { 7085 prog = &obj->programs[i]; 7086 if (prog_is_subprog(obj, prog)) 7087 continue; 7088 if (!prog->autoload) 7089 continue; 7090 7091 /* Process data relos for main programs */ 7092 err = bpf_object__relocate_data(obj, prog); 7093 if (err) { 7094 pr_warn("prog '%s': failed to relocate data references: %d\n", 7095 prog->name, err); 7096 return err; 7097 } 7098 7099 /* Fix up .BTF.ext information, if necessary */ 7100 err = bpf_program_fixup_func_info(obj, prog); 7101 if (err) { 7102 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n", 7103 prog->name, err); 7104 return err; 7105 } 7106 } 7107 7108 return 0; 7109 } 7110 7111 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7112 Elf64_Shdr *shdr, Elf_Data *data); 7113 7114 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7115 Elf64_Shdr *shdr, Elf_Data *data) 7116 { 7117 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7118 int i, j, nrels, new_sz; 7119 const struct btf_var_secinfo *vi = NULL; 7120 const struct btf_type *sec, *var, *def; 7121 struct bpf_map *map = NULL, *targ_map = NULL; 7122 struct bpf_program *targ_prog = NULL; 7123 bool is_prog_array, is_map_in_map; 7124 const struct btf_member *member; 7125 const char *name, *mname, *type; 7126 unsigned int moff; 7127 Elf64_Sym *sym; 7128 Elf64_Rel *rel; 7129 void *tmp; 7130 7131 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7132 return -EINVAL; 7133 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7134 if (!sec) 7135 return -EINVAL; 7136 7137 nrels = shdr->sh_size / shdr->sh_entsize; 7138 for (i = 0; i < nrels; i++) { 7139 rel = elf_rel_by_idx(data, i); 7140 if (!rel) { 7141 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7142 return -LIBBPF_ERRNO__FORMAT; 7143 } 7144 7145 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7146 if (!sym) { 7147 pr_warn(".maps relo #%d: symbol %zx not found\n", 7148 i, (size_t)ELF64_R_SYM(rel->r_info)); 7149 return -LIBBPF_ERRNO__FORMAT; 7150 } 7151 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7152 7153 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7154 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7155 (size_t)rel->r_offset, sym->st_name, name); 7156 7157 for (j = 0; j < obj->nr_maps; j++) { 7158 map = &obj->maps[j]; 7159 if (map->sec_idx != obj->efile.btf_maps_shndx) 7160 continue; 7161 7162 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7163 if (vi->offset <= rel->r_offset && 7164 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7165 break; 7166 } 7167 if (j == obj->nr_maps) { 7168 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7169 i, name, (size_t)rel->r_offset); 7170 return -EINVAL; 7171 } 7172 7173 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7174 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7175 type = is_map_in_map ? "map" : "prog"; 7176 if (is_map_in_map) { 7177 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7178 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7179 i, name); 7180 return -LIBBPF_ERRNO__RELOC; 7181 } 7182 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7183 map->def.key_size != sizeof(int)) { 7184 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7185 i, map->name, sizeof(int)); 7186 return -EINVAL; 7187 } 7188 targ_map = bpf_object__find_map_by_name(obj, name); 7189 if (!targ_map) { 7190 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7191 i, name); 7192 return -ESRCH; 7193 } 7194 } else if (is_prog_array) { 7195 targ_prog = bpf_object__find_program_by_name(obj, name); 7196 if (!targ_prog) { 7197 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7198 i, name); 7199 return -ESRCH; 7200 } 7201 if (targ_prog->sec_idx != sym->st_shndx || 7202 targ_prog->sec_insn_off * 8 != sym->st_value || 7203 prog_is_subprog(obj, targ_prog)) { 7204 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7205 i, name); 7206 return -LIBBPF_ERRNO__RELOC; 7207 } 7208 } else { 7209 return -EINVAL; 7210 } 7211 7212 var = btf__type_by_id(obj->btf, vi->type); 7213 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7214 if (btf_vlen(def) == 0) 7215 return -EINVAL; 7216 member = btf_members(def) + btf_vlen(def) - 1; 7217 mname = btf__name_by_offset(obj->btf, member->name_off); 7218 if (strcmp(mname, "values")) 7219 return -EINVAL; 7220 7221 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7222 if (rel->r_offset - vi->offset < moff) 7223 return -EINVAL; 7224 7225 moff = rel->r_offset - vi->offset - moff; 7226 /* here we use BPF pointer size, which is always 64 bit, as we 7227 * are parsing ELF that was built for BPF target 7228 */ 7229 if (moff % bpf_ptr_sz) 7230 return -EINVAL; 7231 moff /= bpf_ptr_sz; 7232 if (moff >= map->init_slots_sz) { 7233 new_sz = moff + 1; 7234 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7235 if (!tmp) 7236 return -ENOMEM; 7237 map->init_slots = tmp; 7238 memset(map->init_slots + map->init_slots_sz, 0, 7239 (new_sz - map->init_slots_sz) * host_ptr_sz); 7240 map->init_slots_sz = new_sz; 7241 } 7242 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7243 7244 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7245 i, map->name, moff, type, name); 7246 } 7247 7248 return 0; 7249 } 7250 7251 static int bpf_object__collect_relos(struct bpf_object *obj) 7252 { 7253 int i, err; 7254 7255 for (i = 0; i < obj->efile.sec_cnt; i++) { 7256 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7257 Elf64_Shdr *shdr; 7258 Elf_Data *data; 7259 int idx; 7260 7261 if (sec_desc->sec_type != SEC_RELO) 7262 continue; 7263 7264 shdr = sec_desc->shdr; 7265 data = sec_desc->data; 7266 idx = shdr->sh_info; 7267 7268 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7269 pr_warn("internal error at %d\n", __LINE__); 7270 return -LIBBPF_ERRNO__INTERNAL; 7271 } 7272 7273 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7274 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7275 else if (idx == obj->efile.btf_maps_shndx) 7276 err = bpf_object__collect_map_relos(obj, shdr, data); 7277 else 7278 err = bpf_object__collect_prog_relos(obj, shdr, data); 7279 if (err) 7280 return err; 7281 } 7282 7283 bpf_object__sort_relos(obj); 7284 return 0; 7285 } 7286 7287 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7288 { 7289 if (BPF_CLASS(insn->code) == BPF_JMP && 7290 BPF_OP(insn->code) == BPF_CALL && 7291 BPF_SRC(insn->code) == BPF_K && 7292 insn->src_reg == 0 && 7293 insn->dst_reg == 0) { 7294 *func_id = insn->imm; 7295 return true; 7296 } 7297 return false; 7298 } 7299 7300 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7301 { 7302 struct bpf_insn *insn = prog->insns; 7303 enum bpf_func_id func_id; 7304 int i; 7305 7306 if (obj->gen_loader) 7307 return 0; 7308 7309 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7310 if (!insn_is_helper_call(insn, &func_id)) 7311 continue; 7312 7313 /* on kernels that don't yet support 7314 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7315 * to bpf_probe_read() which works well for old kernels 7316 */ 7317 switch (func_id) { 7318 case BPF_FUNC_probe_read_kernel: 7319 case BPF_FUNC_probe_read_user: 7320 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7321 insn->imm = BPF_FUNC_probe_read; 7322 break; 7323 case BPF_FUNC_probe_read_kernel_str: 7324 case BPF_FUNC_probe_read_user_str: 7325 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7326 insn->imm = BPF_FUNC_probe_read_str; 7327 break; 7328 default: 7329 break; 7330 } 7331 } 7332 return 0; 7333 } 7334 7335 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7336 int *btf_obj_fd, int *btf_type_id); 7337 7338 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7339 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7340 struct bpf_prog_load_opts *opts, long cookie) 7341 { 7342 enum sec_def_flags def = cookie; 7343 7344 /* old kernels might not support specifying expected_attach_type */ 7345 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7346 opts->expected_attach_type = 0; 7347 7348 if (def & SEC_SLEEPABLE) 7349 opts->prog_flags |= BPF_F_SLEEPABLE; 7350 7351 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7352 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7353 7354 /* special check for usdt to use uprobe_multi link */ 7355 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 7356 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7357 7358 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7359 int btf_obj_fd = 0, btf_type_id = 0, err; 7360 const char *attach_name; 7361 7362 attach_name = strchr(prog->sec_name, '/'); 7363 if (!attach_name) { 7364 /* if BPF program is annotated with just SEC("fentry") 7365 * (or similar) without declaratively specifying 7366 * target, then it is expected that target will be 7367 * specified with bpf_program__set_attach_target() at 7368 * runtime before BPF object load step. If not, then 7369 * there is nothing to load into the kernel as BPF 7370 * verifier won't be able to validate BPF program 7371 * correctness anyways. 7372 */ 7373 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7374 prog->name); 7375 return -EINVAL; 7376 } 7377 attach_name++; /* skip over / */ 7378 7379 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7380 if (err) 7381 return err; 7382 7383 /* cache resolved BTF FD and BTF type ID in the prog */ 7384 prog->attach_btf_obj_fd = btf_obj_fd; 7385 prog->attach_btf_id = btf_type_id; 7386 7387 /* but by now libbpf common logic is not utilizing 7388 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7389 * this callback is called after opts were populated by 7390 * libbpf, so this callback has to update opts explicitly here 7391 */ 7392 opts->attach_btf_obj_fd = btf_obj_fd; 7393 opts->attach_btf_id = btf_type_id; 7394 } 7395 return 0; 7396 } 7397 7398 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7399 7400 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7401 struct bpf_insn *insns, int insns_cnt, 7402 const char *license, __u32 kern_version, int *prog_fd) 7403 { 7404 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7405 const char *prog_name = NULL; 7406 char *cp, errmsg[STRERR_BUFSIZE]; 7407 size_t log_buf_size = 0; 7408 char *log_buf = NULL, *tmp; 7409 bool own_log_buf = true; 7410 __u32 log_level = prog->log_level; 7411 int ret, err; 7412 7413 /* Be more helpful by rejecting programs that can't be validated early 7414 * with more meaningful and actionable error message. 7415 */ 7416 switch (prog->type) { 7417 case BPF_PROG_TYPE_UNSPEC: 7418 /* 7419 * The program type must be set. Most likely we couldn't find a proper 7420 * section definition at load time, and thus we didn't infer the type. 7421 */ 7422 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7423 prog->name, prog->sec_name); 7424 return -EINVAL; 7425 case BPF_PROG_TYPE_STRUCT_OPS: 7426 if (prog->attach_btf_id == 0) { 7427 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n", 7428 prog->name); 7429 return -EINVAL; 7430 } 7431 break; 7432 default: 7433 break; 7434 } 7435 7436 if (!insns || !insns_cnt) 7437 return -EINVAL; 7438 7439 if (kernel_supports(obj, FEAT_PROG_NAME)) 7440 prog_name = prog->name; 7441 load_attr.attach_prog_fd = prog->attach_prog_fd; 7442 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7443 load_attr.attach_btf_id = prog->attach_btf_id; 7444 load_attr.kern_version = kern_version; 7445 load_attr.prog_ifindex = prog->prog_ifindex; 7446 7447 /* specify func_info/line_info only if kernel supports them */ 7448 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7449 load_attr.prog_btf_fd = btf__fd(obj->btf); 7450 load_attr.func_info = prog->func_info; 7451 load_attr.func_info_rec_size = prog->func_info_rec_size; 7452 load_attr.func_info_cnt = prog->func_info_cnt; 7453 load_attr.line_info = prog->line_info; 7454 load_attr.line_info_rec_size = prog->line_info_rec_size; 7455 load_attr.line_info_cnt = prog->line_info_cnt; 7456 } 7457 load_attr.log_level = log_level; 7458 load_attr.prog_flags = prog->prog_flags; 7459 load_attr.fd_array = obj->fd_array; 7460 7461 load_attr.token_fd = obj->token_fd; 7462 if (obj->token_fd) 7463 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7464 7465 /* adjust load_attr if sec_def provides custom preload callback */ 7466 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7467 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7468 if (err < 0) { 7469 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7470 prog->name, err); 7471 return err; 7472 } 7473 insns = prog->insns; 7474 insns_cnt = prog->insns_cnt; 7475 } 7476 7477 /* allow prog_prepare_load_fn to change expected_attach_type */ 7478 load_attr.expected_attach_type = prog->expected_attach_type; 7479 7480 if (obj->gen_loader) { 7481 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7482 license, insns, insns_cnt, &load_attr, 7483 prog - obj->programs); 7484 *prog_fd = -1; 7485 return 0; 7486 } 7487 7488 retry_load: 7489 /* if log_level is zero, we don't request logs initially even if 7490 * custom log_buf is specified; if the program load fails, then we'll 7491 * bump log_level to 1 and use either custom log_buf or we'll allocate 7492 * our own and retry the load to get details on what failed 7493 */ 7494 if (log_level) { 7495 if (prog->log_buf) { 7496 log_buf = prog->log_buf; 7497 log_buf_size = prog->log_size; 7498 own_log_buf = false; 7499 } else if (obj->log_buf) { 7500 log_buf = obj->log_buf; 7501 log_buf_size = obj->log_size; 7502 own_log_buf = false; 7503 } else { 7504 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7505 tmp = realloc(log_buf, log_buf_size); 7506 if (!tmp) { 7507 ret = -ENOMEM; 7508 goto out; 7509 } 7510 log_buf = tmp; 7511 log_buf[0] = '\0'; 7512 own_log_buf = true; 7513 } 7514 } 7515 7516 load_attr.log_buf = log_buf; 7517 load_attr.log_size = log_buf_size; 7518 load_attr.log_level = log_level; 7519 7520 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7521 if (ret >= 0) { 7522 if (log_level && own_log_buf) { 7523 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7524 prog->name, log_buf); 7525 } 7526 7527 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7528 struct bpf_map *map; 7529 int i; 7530 7531 for (i = 0; i < obj->nr_maps; i++) { 7532 map = &prog->obj->maps[i]; 7533 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7534 continue; 7535 7536 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7537 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7538 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7539 prog->name, map->real_name, cp); 7540 /* Don't fail hard if can't bind rodata. */ 7541 } 7542 } 7543 } 7544 7545 *prog_fd = ret; 7546 ret = 0; 7547 goto out; 7548 } 7549 7550 if (log_level == 0) { 7551 log_level = 1; 7552 goto retry_load; 7553 } 7554 /* On ENOSPC, increase log buffer size and retry, unless custom 7555 * log_buf is specified. 7556 * Be careful to not overflow u32, though. Kernel's log buf size limit 7557 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7558 * multiply by 2 unless we are sure we'll fit within 32 bits. 7559 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7560 */ 7561 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7562 goto retry_load; 7563 7564 ret = -errno; 7565 7566 /* post-process verifier log to improve error descriptions */ 7567 fixup_verifier_log(prog, log_buf, log_buf_size); 7568 7569 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7570 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7571 pr_perm_msg(ret); 7572 7573 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7574 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7575 prog->name, log_buf); 7576 } 7577 7578 out: 7579 if (own_log_buf) 7580 free(log_buf); 7581 return ret; 7582 } 7583 7584 static char *find_prev_line(char *buf, char *cur) 7585 { 7586 char *p; 7587 7588 if (cur == buf) /* end of a log buf */ 7589 return NULL; 7590 7591 p = cur - 1; 7592 while (p - 1 >= buf && *(p - 1) != '\n') 7593 p--; 7594 7595 return p; 7596 } 7597 7598 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7599 char *orig, size_t orig_sz, const char *patch) 7600 { 7601 /* size of the remaining log content to the right from the to-be-replaced part */ 7602 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7603 size_t patch_sz = strlen(patch); 7604 7605 if (patch_sz != orig_sz) { 7606 /* If patch line(s) are longer than original piece of verifier log, 7607 * shift log contents by (patch_sz - orig_sz) bytes to the right 7608 * starting from after to-be-replaced part of the log. 7609 * 7610 * If patch line(s) are shorter than original piece of verifier log, 7611 * shift log contents by (orig_sz - patch_sz) bytes to the left 7612 * starting from after to-be-replaced part of the log 7613 * 7614 * We need to be careful about not overflowing available 7615 * buf_sz capacity. If that's the case, we'll truncate the end 7616 * of the original log, as necessary. 7617 */ 7618 if (patch_sz > orig_sz) { 7619 if (orig + patch_sz >= buf + buf_sz) { 7620 /* patch is big enough to cover remaining space completely */ 7621 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7622 rem_sz = 0; 7623 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7624 /* patch causes part of remaining log to be truncated */ 7625 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7626 } 7627 } 7628 /* shift remaining log to the right by calculated amount */ 7629 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7630 } 7631 7632 memcpy(orig, patch, patch_sz); 7633 } 7634 7635 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7636 char *buf, size_t buf_sz, size_t log_sz, 7637 char *line1, char *line2, char *line3) 7638 { 7639 /* Expected log for failed and not properly guarded CO-RE relocation: 7640 * line1 -> 123: (85) call unknown#195896080 7641 * line2 -> invalid func unknown#195896080 7642 * line3 -> <anything else or end of buffer> 7643 * 7644 * "123" is the index of the instruction that was poisoned. We extract 7645 * instruction index to find corresponding CO-RE relocation and 7646 * replace this part of the log with more relevant information about 7647 * failed CO-RE relocation. 7648 */ 7649 const struct bpf_core_relo *relo; 7650 struct bpf_core_spec spec; 7651 char patch[512], spec_buf[256]; 7652 int insn_idx, err, spec_len; 7653 7654 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7655 return; 7656 7657 relo = find_relo_core(prog, insn_idx); 7658 if (!relo) 7659 return; 7660 7661 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7662 if (err) 7663 return; 7664 7665 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7666 snprintf(patch, sizeof(patch), 7667 "%d: <invalid CO-RE relocation>\n" 7668 "failed to resolve CO-RE relocation %s%s\n", 7669 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7670 7671 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7672 } 7673 7674 static void fixup_log_missing_map_load(struct bpf_program *prog, 7675 char *buf, size_t buf_sz, size_t log_sz, 7676 char *line1, char *line2, char *line3) 7677 { 7678 /* Expected log for failed and not properly guarded map reference: 7679 * line1 -> 123: (85) call unknown#2001000345 7680 * line2 -> invalid func unknown#2001000345 7681 * line3 -> <anything else or end of buffer> 7682 * 7683 * "123" is the index of the instruction that was poisoned. 7684 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7685 */ 7686 struct bpf_object *obj = prog->obj; 7687 const struct bpf_map *map; 7688 int insn_idx, map_idx; 7689 char patch[128]; 7690 7691 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7692 return; 7693 7694 map_idx -= POISON_LDIMM64_MAP_BASE; 7695 if (map_idx < 0 || map_idx >= obj->nr_maps) 7696 return; 7697 map = &obj->maps[map_idx]; 7698 7699 snprintf(patch, sizeof(patch), 7700 "%d: <invalid BPF map reference>\n" 7701 "BPF map '%s' is referenced but wasn't created\n", 7702 insn_idx, map->name); 7703 7704 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7705 } 7706 7707 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7708 char *buf, size_t buf_sz, size_t log_sz, 7709 char *line1, char *line2, char *line3) 7710 { 7711 /* Expected log for failed and not properly guarded kfunc call: 7712 * line1 -> 123: (85) call unknown#2002000345 7713 * line2 -> invalid func unknown#2002000345 7714 * line3 -> <anything else or end of buffer> 7715 * 7716 * "123" is the index of the instruction that was poisoned. 7717 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7718 */ 7719 struct bpf_object *obj = prog->obj; 7720 const struct extern_desc *ext; 7721 int insn_idx, ext_idx; 7722 char patch[128]; 7723 7724 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7725 return; 7726 7727 ext_idx -= POISON_CALL_KFUNC_BASE; 7728 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7729 return; 7730 ext = &obj->externs[ext_idx]; 7731 7732 snprintf(patch, sizeof(patch), 7733 "%d: <invalid kfunc call>\n" 7734 "kfunc '%s' is referenced but wasn't resolved\n", 7735 insn_idx, ext->name); 7736 7737 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7738 } 7739 7740 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7741 { 7742 /* look for familiar error patterns in last N lines of the log */ 7743 const size_t max_last_line_cnt = 10; 7744 char *prev_line, *cur_line, *next_line; 7745 size_t log_sz; 7746 int i; 7747 7748 if (!buf) 7749 return; 7750 7751 log_sz = strlen(buf) + 1; 7752 next_line = buf + log_sz - 1; 7753 7754 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7755 cur_line = find_prev_line(buf, next_line); 7756 if (!cur_line) 7757 return; 7758 7759 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7760 prev_line = find_prev_line(buf, cur_line); 7761 if (!prev_line) 7762 continue; 7763 7764 /* failed CO-RE relocation case */ 7765 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7766 prev_line, cur_line, next_line); 7767 return; 7768 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7769 prev_line = find_prev_line(buf, cur_line); 7770 if (!prev_line) 7771 continue; 7772 7773 /* reference to uncreated BPF map */ 7774 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7775 prev_line, cur_line, next_line); 7776 return; 7777 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7778 prev_line = find_prev_line(buf, cur_line); 7779 if (!prev_line) 7780 continue; 7781 7782 /* reference to unresolved kfunc */ 7783 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7784 prev_line, cur_line, next_line); 7785 return; 7786 } 7787 } 7788 } 7789 7790 static int bpf_program_record_relos(struct bpf_program *prog) 7791 { 7792 struct bpf_object *obj = prog->obj; 7793 int i; 7794 7795 for (i = 0; i < prog->nr_reloc; i++) { 7796 struct reloc_desc *relo = &prog->reloc_desc[i]; 7797 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7798 int kind; 7799 7800 switch (relo->type) { 7801 case RELO_EXTERN_LD64: 7802 if (ext->type != EXT_KSYM) 7803 continue; 7804 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7805 BTF_KIND_VAR : BTF_KIND_FUNC; 7806 bpf_gen__record_extern(obj->gen_loader, ext->name, 7807 ext->is_weak, !ext->ksym.type_id, 7808 true, kind, relo->insn_idx); 7809 break; 7810 case RELO_EXTERN_CALL: 7811 bpf_gen__record_extern(obj->gen_loader, ext->name, 7812 ext->is_weak, false, false, BTF_KIND_FUNC, 7813 relo->insn_idx); 7814 break; 7815 case RELO_CORE: { 7816 struct bpf_core_relo cr = { 7817 .insn_off = relo->insn_idx * 8, 7818 .type_id = relo->core_relo->type_id, 7819 .access_str_off = relo->core_relo->access_str_off, 7820 .kind = relo->core_relo->kind, 7821 }; 7822 7823 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7824 break; 7825 } 7826 default: 7827 continue; 7828 } 7829 } 7830 return 0; 7831 } 7832 7833 static int 7834 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7835 { 7836 struct bpf_program *prog; 7837 size_t i; 7838 int err; 7839 7840 for (i = 0; i < obj->nr_programs; i++) { 7841 prog = &obj->programs[i]; 7842 err = bpf_object__sanitize_prog(obj, prog); 7843 if (err) 7844 return err; 7845 } 7846 7847 for (i = 0; i < obj->nr_programs; i++) { 7848 prog = &obj->programs[i]; 7849 if (prog_is_subprog(obj, prog)) 7850 continue; 7851 if (!prog->autoload) { 7852 pr_debug("prog '%s': skipped loading\n", prog->name); 7853 continue; 7854 } 7855 prog->log_level |= log_level; 7856 7857 if (obj->gen_loader) 7858 bpf_program_record_relos(prog); 7859 7860 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7861 obj->license, obj->kern_version, &prog->fd); 7862 if (err) { 7863 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7864 return err; 7865 } 7866 } 7867 7868 bpf_object__free_relocs(obj); 7869 return 0; 7870 } 7871 7872 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7873 7874 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7875 { 7876 struct bpf_program *prog; 7877 int err; 7878 7879 bpf_object__for_each_program(prog, obj) { 7880 prog->sec_def = find_sec_def(prog->sec_name); 7881 if (!prog->sec_def) { 7882 /* couldn't guess, but user might manually specify */ 7883 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7884 prog->name, prog->sec_name); 7885 continue; 7886 } 7887 7888 prog->type = prog->sec_def->prog_type; 7889 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7890 7891 /* sec_def can have custom callback which should be called 7892 * after bpf_program is initialized to adjust its properties 7893 */ 7894 if (prog->sec_def->prog_setup_fn) { 7895 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7896 if (err < 0) { 7897 pr_warn("prog '%s': failed to initialize: %d\n", 7898 prog->name, err); 7899 return err; 7900 } 7901 } 7902 } 7903 7904 return 0; 7905 } 7906 7907 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7908 const char *obj_name, 7909 const struct bpf_object_open_opts *opts) 7910 { 7911 const char *kconfig, *btf_tmp_path, *token_path; 7912 struct bpf_object *obj; 7913 int err; 7914 char *log_buf; 7915 size_t log_size; 7916 __u32 log_level; 7917 7918 if (obj_buf && !obj_name) 7919 return ERR_PTR(-EINVAL); 7920 7921 if (elf_version(EV_CURRENT) == EV_NONE) { 7922 pr_warn("failed to init libelf for %s\n", 7923 path ? : "(mem buf)"); 7924 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7925 } 7926 7927 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7928 return ERR_PTR(-EINVAL); 7929 7930 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name; 7931 if (obj_buf) { 7932 path = obj_name; 7933 pr_debug("loading object '%s' from buffer\n", obj_name); 7934 } else { 7935 pr_debug("loading object from %s\n", path); 7936 } 7937 7938 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7939 log_size = OPTS_GET(opts, kernel_log_size, 0); 7940 log_level = OPTS_GET(opts, kernel_log_level, 0); 7941 if (log_size > UINT_MAX) 7942 return ERR_PTR(-EINVAL); 7943 if (log_size && !log_buf) 7944 return ERR_PTR(-EINVAL); 7945 7946 token_path = OPTS_GET(opts, bpf_token_path, NULL); 7947 /* if user didn't specify bpf_token_path explicitly, check if 7948 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 7949 * option 7950 */ 7951 if (!token_path) 7952 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 7953 if (token_path && strlen(token_path) >= PATH_MAX) 7954 return ERR_PTR(-ENAMETOOLONG); 7955 7956 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7957 if (IS_ERR(obj)) 7958 return obj; 7959 7960 obj->log_buf = log_buf; 7961 obj->log_size = log_size; 7962 obj->log_level = log_level; 7963 7964 if (token_path) { 7965 obj->token_path = strdup(token_path); 7966 if (!obj->token_path) { 7967 err = -ENOMEM; 7968 goto out; 7969 } 7970 } 7971 7972 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7973 if (btf_tmp_path) { 7974 if (strlen(btf_tmp_path) >= PATH_MAX) { 7975 err = -ENAMETOOLONG; 7976 goto out; 7977 } 7978 obj->btf_custom_path = strdup(btf_tmp_path); 7979 if (!obj->btf_custom_path) { 7980 err = -ENOMEM; 7981 goto out; 7982 } 7983 } 7984 7985 kconfig = OPTS_GET(opts, kconfig, NULL); 7986 if (kconfig) { 7987 obj->kconfig = strdup(kconfig); 7988 if (!obj->kconfig) { 7989 err = -ENOMEM; 7990 goto out; 7991 } 7992 } 7993 7994 err = bpf_object__elf_init(obj); 7995 err = err ? : bpf_object__check_endianness(obj); 7996 err = err ? : bpf_object__elf_collect(obj); 7997 err = err ? : bpf_object__collect_externs(obj); 7998 err = err ? : bpf_object_fixup_btf(obj); 7999 err = err ? : bpf_object__init_maps(obj, opts); 8000 err = err ? : bpf_object_init_progs(obj, opts); 8001 err = err ? : bpf_object__collect_relos(obj); 8002 if (err) 8003 goto out; 8004 8005 bpf_object__elf_finish(obj); 8006 8007 return obj; 8008 out: 8009 bpf_object__close(obj); 8010 return ERR_PTR(err); 8011 } 8012 8013 struct bpf_object * 8014 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8015 { 8016 if (!path) 8017 return libbpf_err_ptr(-EINVAL); 8018 8019 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts)); 8020 } 8021 8022 struct bpf_object *bpf_object__open(const char *path) 8023 { 8024 return bpf_object__open_file(path, NULL); 8025 } 8026 8027 struct bpf_object * 8028 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8029 const struct bpf_object_open_opts *opts) 8030 { 8031 char tmp_name[64]; 8032 8033 if (!obj_buf || obj_buf_sz == 0) 8034 return libbpf_err_ptr(-EINVAL); 8035 8036 /* create a (quite useless) default "name" for this memory buffer object */ 8037 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz); 8038 8039 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts)); 8040 } 8041 8042 static int bpf_object_unload(struct bpf_object *obj) 8043 { 8044 size_t i; 8045 8046 if (!obj) 8047 return libbpf_err(-EINVAL); 8048 8049 for (i = 0; i < obj->nr_maps; i++) { 8050 zclose(obj->maps[i].fd); 8051 if (obj->maps[i].st_ops) 8052 zfree(&obj->maps[i].st_ops->kern_vdata); 8053 } 8054 8055 for (i = 0; i < obj->nr_programs; i++) 8056 bpf_program__unload(&obj->programs[i]); 8057 8058 return 0; 8059 } 8060 8061 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8062 { 8063 struct bpf_map *m; 8064 8065 bpf_object__for_each_map(m, obj) { 8066 if (!bpf_map__is_internal(m)) 8067 continue; 8068 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8069 m->def.map_flags &= ~BPF_F_MMAPABLE; 8070 } 8071 8072 return 0; 8073 } 8074 8075 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8076 const char *sym_name, void *ctx); 8077 8078 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8079 { 8080 char sym_type, sym_name[500]; 8081 unsigned long long sym_addr; 8082 int ret, err = 0; 8083 FILE *f; 8084 8085 f = fopen("/proc/kallsyms", "re"); 8086 if (!f) { 8087 err = -errno; 8088 pr_warn("failed to open /proc/kallsyms: %d\n", err); 8089 return err; 8090 } 8091 8092 while (true) { 8093 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8094 &sym_addr, &sym_type, sym_name); 8095 if (ret == EOF && feof(f)) 8096 break; 8097 if (ret != 3) { 8098 pr_warn("failed to read kallsyms entry: %d\n", ret); 8099 err = -EINVAL; 8100 break; 8101 } 8102 8103 err = cb(sym_addr, sym_type, sym_name, ctx); 8104 if (err) 8105 break; 8106 } 8107 8108 fclose(f); 8109 return err; 8110 } 8111 8112 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8113 const char *sym_name, void *ctx) 8114 { 8115 struct bpf_object *obj = ctx; 8116 const struct btf_type *t; 8117 struct extern_desc *ext; 8118 char *res; 8119 8120 res = strstr(sym_name, ".llvm."); 8121 if (sym_type == 'd' && res) 8122 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8123 else 8124 ext = find_extern_by_name(obj, sym_name); 8125 if (!ext || ext->type != EXT_KSYM) 8126 return 0; 8127 8128 t = btf__type_by_id(obj->btf, ext->btf_id); 8129 if (!btf_is_var(t)) 8130 return 0; 8131 8132 if (ext->is_set && ext->ksym.addr != sym_addr) { 8133 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8134 sym_name, ext->ksym.addr, sym_addr); 8135 return -EINVAL; 8136 } 8137 if (!ext->is_set) { 8138 ext->is_set = true; 8139 ext->ksym.addr = sym_addr; 8140 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8141 } 8142 return 0; 8143 } 8144 8145 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8146 { 8147 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8148 } 8149 8150 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8151 __u16 kind, struct btf **res_btf, 8152 struct module_btf **res_mod_btf) 8153 { 8154 struct module_btf *mod_btf; 8155 struct btf *btf; 8156 int i, id, err; 8157 8158 btf = obj->btf_vmlinux; 8159 mod_btf = NULL; 8160 id = btf__find_by_name_kind(btf, ksym_name, kind); 8161 8162 if (id == -ENOENT) { 8163 err = load_module_btfs(obj); 8164 if (err) 8165 return err; 8166 8167 for (i = 0; i < obj->btf_module_cnt; i++) { 8168 /* we assume module_btf's BTF FD is always >0 */ 8169 mod_btf = &obj->btf_modules[i]; 8170 btf = mod_btf->btf; 8171 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8172 if (id != -ENOENT) 8173 break; 8174 } 8175 } 8176 if (id <= 0) 8177 return -ESRCH; 8178 8179 *res_btf = btf; 8180 *res_mod_btf = mod_btf; 8181 return id; 8182 } 8183 8184 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8185 struct extern_desc *ext) 8186 { 8187 const struct btf_type *targ_var, *targ_type; 8188 __u32 targ_type_id, local_type_id; 8189 struct module_btf *mod_btf = NULL; 8190 const char *targ_var_name; 8191 struct btf *btf = NULL; 8192 int id, err; 8193 8194 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8195 if (id < 0) { 8196 if (id == -ESRCH && ext->is_weak) 8197 return 0; 8198 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8199 ext->name); 8200 return id; 8201 } 8202 8203 /* find local type_id */ 8204 local_type_id = ext->ksym.type_id; 8205 8206 /* find target type_id */ 8207 targ_var = btf__type_by_id(btf, id); 8208 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8209 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8210 8211 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8212 btf, targ_type_id); 8213 if (err <= 0) { 8214 const struct btf_type *local_type; 8215 const char *targ_name, *local_name; 8216 8217 local_type = btf__type_by_id(obj->btf, local_type_id); 8218 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8219 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8220 8221 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8222 ext->name, local_type_id, 8223 btf_kind_str(local_type), local_name, targ_type_id, 8224 btf_kind_str(targ_type), targ_name); 8225 return -EINVAL; 8226 } 8227 8228 ext->is_set = true; 8229 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8230 ext->ksym.kernel_btf_id = id; 8231 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8232 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8233 8234 return 0; 8235 } 8236 8237 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8238 struct extern_desc *ext) 8239 { 8240 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8241 struct module_btf *mod_btf = NULL; 8242 const struct btf_type *kern_func; 8243 struct btf *kern_btf = NULL; 8244 int ret; 8245 8246 local_func_proto_id = ext->ksym.type_id; 8247 8248 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8249 &mod_btf); 8250 if (kfunc_id < 0) { 8251 if (kfunc_id == -ESRCH && ext->is_weak) 8252 return 0; 8253 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8254 ext->name); 8255 return kfunc_id; 8256 } 8257 8258 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8259 kfunc_proto_id = kern_func->type; 8260 8261 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8262 kern_btf, kfunc_proto_id); 8263 if (ret <= 0) { 8264 if (ext->is_weak) 8265 return 0; 8266 8267 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8268 ext->name, local_func_proto_id, 8269 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8270 return -EINVAL; 8271 } 8272 8273 /* set index for module BTF fd in fd_array, if unset */ 8274 if (mod_btf && !mod_btf->fd_array_idx) { 8275 /* insn->off is s16 */ 8276 if (obj->fd_array_cnt == INT16_MAX) { 8277 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8278 ext->name, mod_btf->fd_array_idx); 8279 return -E2BIG; 8280 } 8281 /* Cannot use index 0 for module BTF fd */ 8282 if (!obj->fd_array_cnt) 8283 obj->fd_array_cnt = 1; 8284 8285 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8286 obj->fd_array_cnt + 1); 8287 if (ret) 8288 return ret; 8289 mod_btf->fd_array_idx = obj->fd_array_cnt; 8290 /* we assume module BTF FD is always >0 */ 8291 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8292 } 8293 8294 ext->is_set = true; 8295 ext->ksym.kernel_btf_id = kfunc_id; 8296 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8297 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8298 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8299 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8300 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8301 */ 8302 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8303 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8304 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8305 8306 return 0; 8307 } 8308 8309 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8310 { 8311 const struct btf_type *t; 8312 struct extern_desc *ext; 8313 int i, err; 8314 8315 for (i = 0; i < obj->nr_extern; i++) { 8316 ext = &obj->externs[i]; 8317 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8318 continue; 8319 8320 if (obj->gen_loader) { 8321 ext->is_set = true; 8322 ext->ksym.kernel_btf_obj_fd = 0; 8323 ext->ksym.kernel_btf_id = 0; 8324 continue; 8325 } 8326 t = btf__type_by_id(obj->btf, ext->btf_id); 8327 if (btf_is_var(t)) 8328 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8329 else 8330 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8331 if (err) 8332 return err; 8333 } 8334 return 0; 8335 } 8336 8337 static int bpf_object__resolve_externs(struct bpf_object *obj, 8338 const char *extra_kconfig) 8339 { 8340 bool need_config = false, need_kallsyms = false; 8341 bool need_vmlinux_btf = false; 8342 struct extern_desc *ext; 8343 void *kcfg_data = NULL; 8344 int err, i; 8345 8346 if (obj->nr_extern == 0) 8347 return 0; 8348 8349 if (obj->kconfig_map_idx >= 0) 8350 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8351 8352 for (i = 0; i < obj->nr_extern; i++) { 8353 ext = &obj->externs[i]; 8354 8355 if (ext->type == EXT_KSYM) { 8356 if (ext->ksym.type_id) 8357 need_vmlinux_btf = true; 8358 else 8359 need_kallsyms = true; 8360 continue; 8361 } else if (ext->type == EXT_KCFG) { 8362 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8363 __u64 value = 0; 8364 8365 /* Kconfig externs need actual /proc/config.gz */ 8366 if (str_has_pfx(ext->name, "CONFIG_")) { 8367 need_config = true; 8368 continue; 8369 } 8370 8371 /* Virtual kcfg externs are customly handled by libbpf */ 8372 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8373 value = get_kernel_version(); 8374 if (!value) { 8375 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8376 return -EINVAL; 8377 } 8378 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8379 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8380 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8381 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8382 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8383 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8384 * __kconfig externs, where LINUX_ ones are virtual and filled out 8385 * customly by libbpf (their values don't come from Kconfig). 8386 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8387 * __weak, it defaults to zero value, just like for CONFIG_xxx 8388 * externs. 8389 */ 8390 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8391 return -EINVAL; 8392 } 8393 8394 err = set_kcfg_value_num(ext, ext_ptr, value); 8395 if (err) 8396 return err; 8397 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8398 ext->name, (long long)value); 8399 } else { 8400 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8401 return -EINVAL; 8402 } 8403 } 8404 if (need_config && extra_kconfig) { 8405 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8406 if (err) 8407 return -EINVAL; 8408 need_config = false; 8409 for (i = 0; i < obj->nr_extern; i++) { 8410 ext = &obj->externs[i]; 8411 if (ext->type == EXT_KCFG && !ext->is_set) { 8412 need_config = true; 8413 break; 8414 } 8415 } 8416 } 8417 if (need_config) { 8418 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8419 if (err) 8420 return -EINVAL; 8421 } 8422 if (need_kallsyms) { 8423 err = bpf_object__read_kallsyms_file(obj); 8424 if (err) 8425 return -EINVAL; 8426 } 8427 if (need_vmlinux_btf) { 8428 err = bpf_object__resolve_ksyms_btf_id(obj); 8429 if (err) 8430 return -EINVAL; 8431 } 8432 for (i = 0; i < obj->nr_extern; i++) { 8433 ext = &obj->externs[i]; 8434 8435 if (!ext->is_set && !ext->is_weak) { 8436 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8437 return -ESRCH; 8438 } else if (!ext->is_set) { 8439 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8440 ext->name); 8441 } 8442 } 8443 8444 return 0; 8445 } 8446 8447 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8448 { 8449 const struct btf_type *type; 8450 struct bpf_struct_ops *st_ops; 8451 __u32 i; 8452 8453 st_ops = map->st_ops; 8454 type = btf__type_by_id(map->obj->btf, st_ops->type_id); 8455 for (i = 0; i < btf_vlen(type); i++) { 8456 struct bpf_program *prog = st_ops->progs[i]; 8457 void *kern_data; 8458 int prog_fd; 8459 8460 if (!prog) 8461 continue; 8462 8463 prog_fd = bpf_program__fd(prog); 8464 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8465 *(unsigned long *)kern_data = prog_fd; 8466 } 8467 } 8468 8469 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8470 { 8471 struct bpf_map *map; 8472 int i; 8473 8474 for (i = 0; i < obj->nr_maps; i++) { 8475 map = &obj->maps[i]; 8476 8477 if (!bpf_map__is_struct_ops(map)) 8478 continue; 8479 8480 if (!map->autocreate) 8481 continue; 8482 8483 bpf_map_prepare_vdata(map); 8484 } 8485 8486 return 0; 8487 } 8488 8489 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8490 { 8491 int err, i; 8492 8493 if (!obj) 8494 return libbpf_err(-EINVAL); 8495 8496 if (obj->loaded) { 8497 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8498 return libbpf_err(-EINVAL); 8499 } 8500 8501 if (obj->gen_loader) 8502 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8503 8504 err = bpf_object_prepare_token(obj); 8505 err = err ? : bpf_object__probe_loading(obj); 8506 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8507 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8508 err = err ? : bpf_object__sanitize_maps(obj); 8509 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8510 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8511 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8512 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8513 err = err ? : bpf_object__create_maps(obj); 8514 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8515 err = err ? : bpf_object_init_prog_arrays(obj); 8516 err = err ? : bpf_object_prepare_struct_ops(obj); 8517 8518 if (obj->gen_loader) { 8519 /* reset FDs */ 8520 if (obj->btf) 8521 btf__set_fd(obj->btf, -1); 8522 if (!err) 8523 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8524 } 8525 8526 /* clean up fd_array */ 8527 zfree(&obj->fd_array); 8528 8529 /* clean up module BTFs */ 8530 for (i = 0; i < obj->btf_module_cnt; i++) { 8531 close(obj->btf_modules[i].fd); 8532 btf__free(obj->btf_modules[i].btf); 8533 free(obj->btf_modules[i].name); 8534 } 8535 free(obj->btf_modules); 8536 8537 /* clean up vmlinux BTF */ 8538 btf__free(obj->btf_vmlinux); 8539 obj->btf_vmlinux = NULL; 8540 8541 obj->loaded = true; /* doesn't matter if successfully or not */ 8542 8543 if (err) 8544 goto out; 8545 8546 return 0; 8547 out: 8548 /* unpin any maps that were auto-pinned during load */ 8549 for (i = 0; i < obj->nr_maps; i++) 8550 if (obj->maps[i].pinned && !obj->maps[i].reused) 8551 bpf_map__unpin(&obj->maps[i], NULL); 8552 8553 bpf_object_unload(obj); 8554 pr_warn("failed to load object '%s'\n", obj->path); 8555 return libbpf_err(err); 8556 } 8557 8558 int bpf_object__load(struct bpf_object *obj) 8559 { 8560 return bpf_object_load(obj, 0, NULL); 8561 } 8562 8563 static int make_parent_dir(const char *path) 8564 { 8565 char *cp, errmsg[STRERR_BUFSIZE]; 8566 char *dname, *dir; 8567 int err = 0; 8568 8569 dname = strdup(path); 8570 if (dname == NULL) 8571 return -ENOMEM; 8572 8573 dir = dirname(dname); 8574 if (mkdir(dir, 0700) && errno != EEXIST) 8575 err = -errno; 8576 8577 free(dname); 8578 if (err) { 8579 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8580 pr_warn("failed to mkdir %s: %s\n", path, cp); 8581 } 8582 return err; 8583 } 8584 8585 static int check_path(const char *path) 8586 { 8587 char *cp, errmsg[STRERR_BUFSIZE]; 8588 struct statfs st_fs; 8589 char *dname, *dir; 8590 int err = 0; 8591 8592 if (path == NULL) 8593 return -EINVAL; 8594 8595 dname = strdup(path); 8596 if (dname == NULL) 8597 return -ENOMEM; 8598 8599 dir = dirname(dname); 8600 if (statfs(dir, &st_fs)) { 8601 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8602 pr_warn("failed to statfs %s: %s\n", dir, cp); 8603 err = -errno; 8604 } 8605 free(dname); 8606 8607 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8608 pr_warn("specified path %s is not on BPF FS\n", path); 8609 err = -EINVAL; 8610 } 8611 8612 return err; 8613 } 8614 8615 int bpf_program__pin(struct bpf_program *prog, const char *path) 8616 { 8617 char *cp, errmsg[STRERR_BUFSIZE]; 8618 int err; 8619 8620 if (prog->fd < 0) { 8621 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8622 return libbpf_err(-EINVAL); 8623 } 8624 8625 err = make_parent_dir(path); 8626 if (err) 8627 return libbpf_err(err); 8628 8629 err = check_path(path); 8630 if (err) 8631 return libbpf_err(err); 8632 8633 if (bpf_obj_pin(prog->fd, path)) { 8634 err = -errno; 8635 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8636 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8637 return libbpf_err(err); 8638 } 8639 8640 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8641 return 0; 8642 } 8643 8644 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8645 { 8646 int err; 8647 8648 if (prog->fd < 0) { 8649 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8650 return libbpf_err(-EINVAL); 8651 } 8652 8653 err = check_path(path); 8654 if (err) 8655 return libbpf_err(err); 8656 8657 err = unlink(path); 8658 if (err) 8659 return libbpf_err(-errno); 8660 8661 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8662 return 0; 8663 } 8664 8665 int bpf_map__pin(struct bpf_map *map, const char *path) 8666 { 8667 char *cp, errmsg[STRERR_BUFSIZE]; 8668 int err; 8669 8670 if (map == NULL) { 8671 pr_warn("invalid map pointer\n"); 8672 return libbpf_err(-EINVAL); 8673 } 8674 8675 if (map->fd < 0) { 8676 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 8677 return libbpf_err(-EINVAL); 8678 } 8679 8680 if (map->pin_path) { 8681 if (path && strcmp(path, map->pin_path)) { 8682 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8683 bpf_map__name(map), map->pin_path, path); 8684 return libbpf_err(-EINVAL); 8685 } else if (map->pinned) { 8686 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8687 bpf_map__name(map), map->pin_path); 8688 return 0; 8689 } 8690 } else { 8691 if (!path) { 8692 pr_warn("missing a path to pin map '%s' at\n", 8693 bpf_map__name(map)); 8694 return libbpf_err(-EINVAL); 8695 } else if (map->pinned) { 8696 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8697 return libbpf_err(-EEXIST); 8698 } 8699 8700 map->pin_path = strdup(path); 8701 if (!map->pin_path) { 8702 err = -errno; 8703 goto out_err; 8704 } 8705 } 8706 8707 err = make_parent_dir(map->pin_path); 8708 if (err) 8709 return libbpf_err(err); 8710 8711 err = check_path(map->pin_path); 8712 if (err) 8713 return libbpf_err(err); 8714 8715 if (bpf_obj_pin(map->fd, map->pin_path)) { 8716 err = -errno; 8717 goto out_err; 8718 } 8719 8720 map->pinned = true; 8721 pr_debug("pinned map '%s'\n", map->pin_path); 8722 8723 return 0; 8724 8725 out_err: 8726 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8727 pr_warn("failed to pin map: %s\n", cp); 8728 return libbpf_err(err); 8729 } 8730 8731 int bpf_map__unpin(struct bpf_map *map, const char *path) 8732 { 8733 int err; 8734 8735 if (map == NULL) { 8736 pr_warn("invalid map pointer\n"); 8737 return libbpf_err(-EINVAL); 8738 } 8739 8740 if (map->pin_path) { 8741 if (path && strcmp(path, map->pin_path)) { 8742 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8743 bpf_map__name(map), map->pin_path, path); 8744 return libbpf_err(-EINVAL); 8745 } 8746 path = map->pin_path; 8747 } else if (!path) { 8748 pr_warn("no path to unpin map '%s' from\n", 8749 bpf_map__name(map)); 8750 return libbpf_err(-EINVAL); 8751 } 8752 8753 err = check_path(path); 8754 if (err) 8755 return libbpf_err(err); 8756 8757 err = unlink(path); 8758 if (err != 0) 8759 return libbpf_err(-errno); 8760 8761 map->pinned = false; 8762 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8763 8764 return 0; 8765 } 8766 8767 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8768 { 8769 char *new = NULL; 8770 8771 if (path) { 8772 new = strdup(path); 8773 if (!new) 8774 return libbpf_err(-errno); 8775 } 8776 8777 free(map->pin_path); 8778 map->pin_path = new; 8779 return 0; 8780 } 8781 8782 __alias(bpf_map__pin_path) 8783 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8784 8785 const char *bpf_map__pin_path(const struct bpf_map *map) 8786 { 8787 return map->pin_path; 8788 } 8789 8790 bool bpf_map__is_pinned(const struct bpf_map *map) 8791 { 8792 return map->pinned; 8793 } 8794 8795 static void sanitize_pin_path(char *s) 8796 { 8797 /* bpffs disallows periods in path names */ 8798 while (*s) { 8799 if (*s == '.') 8800 *s = '_'; 8801 s++; 8802 } 8803 } 8804 8805 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8806 { 8807 struct bpf_map *map; 8808 int err; 8809 8810 if (!obj) 8811 return libbpf_err(-ENOENT); 8812 8813 if (!obj->loaded) { 8814 pr_warn("object not yet loaded; load it first\n"); 8815 return libbpf_err(-ENOENT); 8816 } 8817 8818 bpf_object__for_each_map(map, obj) { 8819 char *pin_path = NULL; 8820 char buf[PATH_MAX]; 8821 8822 if (!map->autocreate) 8823 continue; 8824 8825 if (path) { 8826 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8827 if (err) 8828 goto err_unpin_maps; 8829 sanitize_pin_path(buf); 8830 pin_path = buf; 8831 } else if (!map->pin_path) { 8832 continue; 8833 } 8834 8835 err = bpf_map__pin(map, pin_path); 8836 if (err) 8837 goto err_unpin_maps; 8838 } 8839 8840 return 0; 8841 8842 err_unpin_maps: 8843 while ((map = bpf_object__prev_map(obj, map))) { 8844 if (!map->pin_path) 8845 continue; 8846 8847 bpf_map__unpin(map, NULL); 8848 } 8849 8850 return libbpf_err(err); 8851 } 8852 8853 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8854 { 8855 struct bpf_map *map; 8856 int err; 8857 8858 if (!obj) 8859 return libbpf_err(-ENOENT); 8860 8861 bpf_object__for_each_map(map, obj) { 8862 char *pin_path = NULL; 8863 char buf[PATH_MAX]; 8864 8865 if (path) { 8866 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8867 if (err) 8868 return libbpf_err(err); 8869 sanitize_pin_path(buf); 8870 pin_path = buf; 8871 } else if (!map->pin_path) { 8872 continue; 8873 } 8874 8875 err = bpf_map__unpin(map, pin_path); 8876 if (err) 8877 return libbpf_err(err); 8878 } 8879 8880 return 0; 8881 } 8882 8883 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8884 { 8885 struct bpf_program *prog; 8886 char buf[PATH_MAX]; 8887 int err; 8888 8889 if (!obj) 8890 return libbpf_err(-ENOENT); 8891 8892 if (!obj->loaded) { 8893 pr_warn("object not yet loaded; load it first\n"); 8894 return libbpf_err(-ENOENT); 8895 } 8896 8897 bpf_object__for_each_program(prog, obj) { 8898 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8899 if (err) 8900 goto err_unpin_programs; 8901 8902 err = bpf_program__pin(prog, buf); 8903 if (err) 8904 goto err_unpin_programs; 8905 } 8906 8907 return 0; 8908 8909 err_unpin_programs: 8910 while ((prog = bpf_object__prev_program(obj, prog))) { 8911 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8912 continue; 8913 8914 bpf_program__unpin(prog, buf); 8915 } 8916 8917 return libbpf_err(err); 8918 } 8919 8920 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8921 { 8922 struct bpf_program *prog; 8923 int err; 8924 8925 if (!obj) 8926 return libbpf_err(-ENOENT); 8927 8928 bpf_object__for_each_program(prog, obj) { 8929 char buf[PATH_MAX]; 8930 8931 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8932 if (err) 8933 return libbpf_err(err); 8934 8935 err = bpf_program__unpin(prog, buf); 8936 if (err) 8937 return libbpf_err(err); 8938 } 8939 8940 return 0; 8941 } 8942 8943 int bpf_object__pin(struct bpf_object *obj, const char *path) 8944 { 8945 int err; 8946 8947 err = bpf_object__pin_maps(obj, path); 8948 if (err) 8949 return libbpf_err(err); 8950 8951 err = bpf_object__pin_programs(obj, path); 8952 if (err) { 8953 bpf_object__unpin_maps(obj, path); 8954 return libbpf_err(err); 8955 } 8956 8957 return 0; 8958 } 8959 8960 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8961 { 8962 int err; 8963 8964 err = bpf_object__unpin_programs(obj, path); 8965 if (err) 8966 return libbpf_err(err); 8967 8968 err = bpf_object__unpin_maps(obj, path); 8969 if (err) 8970 return libbpf_err(err); 8971 8972 return 0; 8973 } 8974 8975 static void bpf_map__destroy(struct bpf_map *map) 8976 { 8977 if (map->inner_map) { 8978 bpf_map__destroy(map->inner_map); 8979 zfree(&map->inner_map); 8980 } 8981 8982 zfree(&map->init_slots); 8983 map->init_slots_sz = 0; 8984 8985 if (map->mmaped && map->mmaped != map->obj->arena_data) 8986 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8987 map->mmaped = NULL; 8988 8989 if (map->st_ops) { 8990 zfree(&map->st_ops->data); 8991 zfree(&map->st_ops->progs); 8992 zfree(&map->st_ops->kern_func_off); 8993 zfree(&map->st_ops); 8994 } 8995 8996 zfree(&map->name); 8997 zfree(&map->real_name); 8998 zfree(&map->pin_path); 8999 9000 if (map->fd >= 0) 9001 zclose(map->fd); 9002 } 9003 9004 void bpf_object__close(struct bpf_object *obj) 9005 { 9006 size_t i; 9007 9008 if (IS_ERR_OR_NULL(obj)) 9009 return; 9010 9011 usdt_manager_free(obj->usdt_man); 9012 obj->usdt_man = NULL; 9013 9014 bpf_gen__free(obj->gen_loader); 9015 bpf_object__elf_finish(obj); 9016 bpf_object_unload(obj); 9017 btf__free(obj->btf); 9018 btf__free(obj->btf_vmlinux); 9019 btf_ext__free(obj->btf_ext); 9020 9021 for (i = 0; i < obj->nr_maps; i++) 9022 bpf_map__destroy(&obj->maps[i]); 9023 9024 zfree(&obj->btf_custom_path); 9025 zfree(&obj->kconfig); 9026 9027 for (i = 0; i < obj->nr_extern; i++) 9028 zfree(&obj->externs[i].essent_name); 9029 9030 zfree(&obj->externs); 9031 obj->nr_extern = 0; 9032 9033 zfree(&obj->maps); 9034 obj->nr_maps = 0; 9035 9036 if (obj->programs && obj->nr_programs) { 9037 for (i = 0; i < obj->nr_programs; i++) 9038 bpf_program__exit(&obj->programs[i]); 9039 } 9040 zfree(&obj->programs); 9041 9042 zfree(&obj->feat_cache); 9043 zfree(&obj->token_path); 9044 if (obj->token_fd > 0) 9045 close(obj->token_fd); 9046 9047 zfree(&obj->arena_data); 9048 9049 free(obj); 9050 } 9051 9052 const char *bpf_object__name(const struct bpf_object *obj) 9053 { 9054 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9055 } 9056 9057 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9058 { 9059 return obj ? obj->kern_version : 0; 9060 } 9061 9062 struct btf *bpf_object__btf(const struct bpf_object *obj) 9063 { 9064 return obj ? obj->btf : NULL; 9065 } 9066 9067 int bpf_object__btf_fd(const struct bpf_object *obj) 9068 { 9069 return obj->btf ? btf__fd(obj->btf) : -1; 9070 } 9071 9072 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9073 { 9074 if (obj->loaded) 9075 return libbpf_err(-EINVAL); 9076 9077 obj->kern_version = kern_version; 9078 9079 return 0; 9080 } 9081 9082 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9083 { 9084 struct bpf_gen *gen; 9085 9086 if (!opts) 9087 return -EFAULT; 9088 if (!OPTS_VALID(opts, gen_loader_opts)) 9089 return -EINVAL; 9090 gen = calloc(sizeof(*gen), 1); 9091 if (!gen) 9092 return -ENOMEM; 9093 gen->opts = opts; 9094 obj->gen_loader = gen; 9095 return 0; 9096 } 9097 9098 static struct bpf_program * 9099 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9100 bool forward) 9101 { 9102 size_t nr_programs = obj->nr_programs; 9103 ssize_t idx; 9104 9105 if (!nr_programs) 9106 return NULL; 9107 9108 if (!p) 9109 /* Iter from the beginning */ 9110 return forward ? &obj->programs[0] : 9111 &obj->programs[nr_programs - 1]; 9112 9113 if (p->obj != obj) { 9114 pr_warn("error: program handler doesn't match object\n"); 9115 return errno = EINVAL, NULL; 9116 } 9117 9118 idx = (p - obj->programs) + (forward ? 1 : -1); 9119 if (idx >= obj->nr_programs || idx < 0) 9120 return NULL; 9121 return &obj->programs[idx]; 9122 } 9123 9124 struct bpf_program * 9125 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9126 { 9127 struct bpf_program *prog = prev; 9128 9129 do { 9130 prog = __bpf_program__iter(prog, obj, true); 9131 } while (prog && prog_is_subprog(obj, prog)); 9132 9133 return prog; 9134 } 9135 9136 struct bpf_program * 9137 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9138 { 9139 struct bpf_program *prog = next; 9140 9141 do { 9142 prog = __bpf_program__iter(prog, obj, false); 9143 } while (prog && prog_is_subprog(obj, prog)); 9144 9145 return prog; 9146 } 9147 9148 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9149 { 9150 prog->prog_ifindex = ifindex; 9151 } 9152 9153 const char *bpf_program__name(const struct bpf_program *prog) 9154 { 9155 return prog->name; 9156 } 9157 9158 const char *bpf_program__section_name(const struct bpf_program *prog) 9159 { 9160 return prog->sec_name; 9161 } 9162 9163 bool bpf_program__autoload(const struct bpf_program *prog) 9164 { 9165 return prog->autoload; 9166 } 9167 9168 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9169 { 9170 if (prog->obj->loaded) 9171 return libbpf_err(-EINVAL); 9172 9173 prog->autoload = autoload; 9174 return 0; 9175 } 9176 9177 bool bpf_program__autoattach(const struct bpf_program *prog) 9178 { 9179 return prog->autoattach; 9180 } 9181 9182 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9183 { 9184 prog->autoattach = autoattach; 9185 } 9186 9187 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9188 { 9189 return prog->insns; 9190 } 9191 9192 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9193 { 9194 return prog->insns_cnt; 9195 } 9196 9197 int bpf_program__set_insns(struct bpf_program *prog, 9198 struct bpf_insn *new_insns, size_t new_insn_cnt) 9199 { 9200 struct bpf_insn *insns; 9201 9202 if (prog->obj->loaded) 9203 return -EBUSY; 9204 9205 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9206 /* NULL is a valid return from reallocarray if the new count is zero */ 9207 if (!insns && new_insn_cnt) { 9208 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9209 return -ENOMEM; 9210 } 9211 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9212 9213 prog->insns = insns; 9214 prog->insns_cnt = new_insn_cnt; 9215 return 0; 9216 } 9217 9218 int bpf_program__fd(const struct bpf_program *prog) 9219 { 9220 if (!prog) 9221 return libbpf_err(-EINVAL); 9222 9223 if (prog->fd < 0) 9224 return libbpf_err(-ENOENT); 9225 9226 return prog->fd; 9227 } 9228 9229 __alias(bpf_program__type) 9230 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9231 9232 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9233 { 9234 return prog->type; 9235 } 9236 9237 static size_t custom_sec_def_cnt; 9238 static struct bpf_sec_def *custom_sec_defs; 9239 static struct bpf_sec_def custom_fallback_def; 9240 static bool has_custom_fallback_def; 9241 static int last_custom_sec_def_handler_id; 9242 9243 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9244 { 9245 if (prog->obj->loaded) 9246 return libbpf_err(-EBUSY); 9247 9248 /* if type is not changed, do nothing */ 9249 if (prog->type == type) 9250 return 0; 9251 9252 prog->type = type; 9253 9254 /* If a program type was changed, we need to reset associated SEC() 9255 * handler, as it will be invalid now. The only exception is a generic 9256 * fallback handler, which by definition is program type-agnostic and 9257 * is a catch-all custom handler, optionally set by the application, 9258 * so should be able to handle any type of BPF program. 9259 */ 9260 if (prog->sec_def != &custom_fallback_def) 9261 prog->sec_def = NULL; 9262 return 0; 9263 } 9264 9265 __alias(bpf_program__expected_attach_type) 9266 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9267 9268 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9269 { 9270 return prog->expected_attach_type; 9271 } 9272 9273 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9274 enum bpf_attach_type type) 9275 { 9276 if (prog->obj->loaded) 9277 return libbpf_err(-EBUSY); 9278 9279 prog->expected_attach_type = type; 9280 return 0; 9281 } 9282 9283 __u32 bpf_program__flags(const struct bpf_program *prog) 9284 { 9285 return prog->prog_flags; 9286 } 9287 9288 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9289 { 9290 if (prog->obj->loaded) 9291 return libbpf_err(-EBUSY); 9292 9293 prog->prog_flags = flags; 9294 return 0; 9295 } 9296 9297 __u32 bpf_program__log_level(const struct bpf_program *prog) 9298 { 9299 return prog->log_level; 9300 } 9301 9302 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9303 { 9304 if (prog->obj->loaded) 9305 return libbpf_err(-EBUSY); 9306 9307 prog->log_level = log_level; 9308 return 0; 9309 } 9310 9311 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9312 { 9313 *log_size = prog->log_size; 9314 return prog->log_buf; 9315 } 9316 9317 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9318 { 9319 if (log_size && !log_buf) 9320 return -EINVAL; 9321 if (prog->log_size > UINT_MAX) 9322 return -EINVAL; 9323 if (prog->obj->loaded) 9324 return -EBUSY; 9325 9326 prog->log_buf = log_buf; 9327 prog->log_size = log_size; 9328 return 0; 9329 } 9330 9331 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9332 .sec = (char *)sec_pfx, \ 9333 .prog_type = BPF_PROG_TYPE_##ptype, \ 9334 .expected_attach_type = atype, \ 9335 .cookie = (long)(flags), \ 9336 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9337 __VA_ARGS__ \ 9338 } 9339 9340 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9341 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9342 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9343 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9344 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9345 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9346 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9347 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9348 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9349 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9350 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9351 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9352 9353 static const struct bpf_sec_def section_defs[] = { 9354 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9355 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9356 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9357 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9358 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9359 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9360 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9361 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9362 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9363 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9364 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9365 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session), 9366 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9367 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9368 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9369 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9370 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9371 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9372 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9373 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9374 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9375 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9376 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9377 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9378 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9379 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9380 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9381 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9382 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9383 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9384 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9385 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9386 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9387 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9388 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9389 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9390 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9391 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9392 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9393 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9394 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9395 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9396 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9397 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9398 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9399 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9400 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9401 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9402 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9403 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9404 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9405 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9406 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9407 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9408 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9409 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9410 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9411 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9412 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9413 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9414 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9415 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9416 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9417 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9418 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9419 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9420 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9421 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9422 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9423 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9424 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9425 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9426 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9427 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9428 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9429 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9430 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9431 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9432 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9433 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9434 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9435 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9436 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9437 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9438 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9439 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9440 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9441 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9442 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9443 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9444 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9445 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9446 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9447 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9448 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9449 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9450 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9451 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9452 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9453 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9454 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9455 }; 9456 9457 int libbpf_register_prog_handler(const char *sec, 9458 enum bpf_prog_type prog_type, 9459 enum bpf_attach_type exp_attach_type, 9460 const struct libbpf_prog_handler_opts *opts) 9461 { 9462 struct bpf_sec_def *sec_def; 9463 9464 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9465 return libbpf_err(-EINVAL); 9466 9467 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9468 return libbpf_err(-E2BIG); 9469 9470 if (sec) { 9471 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9472 sizeof(*sec_def)); 9473 if (!sec_def) 9474 return libbpf_err(-ENOMEM); 9475 9476 custom_sec_defs = sec_def; 9477 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9478 } else { 9479 if (has_custom_fallback_def) 9480 return libbpf_err(-EBUSY); 9481 9482 sec_def = &custom_fallback_def; 9483 } 9484 9485 sec_def->sec = sec ? strdup(sec) : NULL; 9486 if (sec && !sec_def->sec) 9487 return libbpf_err(-ENOMEM); 9488 9489 sec_def->prog_type = prog_type; 9490 sec_def->expected_attach_type = exp_attach_type; 9491 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9492 9493 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9494 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9495 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9496 9497 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9498 9499 if (sec) 9500 custom_sec_def_cnt++; 9501 else 9502 has_custom_fallback_def = true; 9503 9504 return sec_def->handler_id; 9505 } 9506 9507 int libbpf_unregister_prog_handler(int handler_id) 9508 { 9509 struct bpf_sec_def *sec_defs; 9510 int i; 9511 9512 if (handler_id <= 0) 9513 return libbpf_err(-EINVAL); 9514 9515 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9516 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9517 has_custom_fallback_def = false; 9518 return 0; 9519 } 9520 9521 for (i = 0; i < custom_sec_def_cnt; i++) { 9522 if (custom_sec_defs[i].handler_id == handler_id) 9523 break; 9524 } 9525 9526 if (i == custom_sec_def_cnt) 9527 return libbpf_err(-ENOENT); 9528 9529 free(custom_sec_defs[i].sec); 9530 for (i = i + 1; i < custom_sec_def_cnt; i++) 9531 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9532 custom_sec_def_cnt--; 9533 9534 /* try to shrink the array, but it's ok if we couldn't */ 9535 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9536 /* if new count is zero, reallocarray can return a valid NULL result; 9537 * in this case the previous pointer will be freed, so we *have to* 9538 * reassign old pointer to the new value (even if it's NULL) 9539 */ 9540 if (sec_defs || custom_sec_def_cnt == 0) 9541 custom_sec_defs = sec_defs; 9542 9543 return 0; 9544 } 9545 9546 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9547 { 9548 size_t len = strlen(sec_def->sec); 9549 9550 /* "type/" always has to have proper SEC("type/extras") form */ 9551 if (sec_def->sec[len - 1] == '/') { 9552 if (str_has_pfx(sec_name, sec_def->sec)) 9553 return true; 9554 return false; 9555 } 9556 9557 /* "type+" means it can be either exact SEC("type") or 9558 * well-formed SEC("type/extras") with proper '/' separator 9559 */ 9560 if (sec_def->sec[len - 1] == '+') { 9561 len--; 9562 /* not even a prefix */ 9563 if (strncmp(sec_name, sec_def->sec, len) != 0) 9564 return false; 9565 /* exact match or has '/' separator */ 9566 if (sec_name[len] == '\0' || sec_name[len] == '/') 9567 return true; 9568 return false; 9569 } 9570 9571 return strcmp(sec_name, sec_def->sec) == 0; 9572 } 9573 9574 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9575 { 9576 const struct bpf_sec_def *sec_def; 9577 int i, n; 9578 9579 n = custom_sec_def_cnt; 9580 for (i = 0; i < n; i++) { 9581 sec_def = &custom_sec_defs[i]; 9582 if (sec_def_matches(sec_def, sec_name)) 9583 return sec_def; 9584 } 9585 9586 n = ARRAY_SIZE(section_defs); 9587 for (i = 0; i < n; i++) { 9588 sec_def = §ion_defs[i]; 9589 if (sec_def_matches(sec_def, sec_name)) 9590 return sec_def; 9591 } 9592 9593 if (has_custom_fallback_def) 9594 return &custom_fallback_def; 9595 9596 return NULL; 9597 } 9598 9599 #define MAX_TYPE_NAME_SIZE 32 9600 9601 static char *libbpf_get_type_names(bool attach_type) 9602 { 9603 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9604 char *buf; 9605 9606 buf = malloc(len); 9607 if (!buf) 9608 return NULL; 9609 9610 buf[0] = '\0'; 9611 /* Forge string buf with all available names */ 9612 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9613 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9614 9615 if (attach_type) { 9616 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9617 continue; 9618 9619 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9620 continue; 9621 } 9622 9623 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9624 free(buf); 9625 return NULL; 9626 } 9627 strcat(buf, " "); 9628 strcat(buf, section_defs[i].sec); 9629 } 9630 9631 return buf; 9632 } 9633 9634 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9635 enum bpf_attach_type *expected_attach_type) 9636 { 9637 const struct bpf_sec_def *sec_def; 9638 char *type_names; 9639 9640 if (!name) 9641 return libbpf_err(-EINVAL); 9642 9643 sec_def = find_sec_def(name); 9644 if (sec_def) { 9645 *prog_type = sec_def->prog_type; 9646 *expected_attach_type = sec_def->expected_attach_type; 9647 return 0; 9648 } 9649 9650 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9651 type_names = libbpf_get_type_names(false); 9652 if (type_names != NULL) { 9653 pr_debug("supported section(type) names are:%s\n", type_names); 9654 free(type_names); 9655 } 9656 9657 return libbpf_err(-ESRCH); 9658 } 9659 9660 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9661 { 9662 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9663 return NULL; 9664 9665 return attach_type_name[t]; 9666 } 9667 9668 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9669 { 9670 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9671 return NULL; 9672 9673 return link_type_name[t]; 9674 } 9675 9676 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9677 { 9678 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9679 return NULL; 9680 9681 return map_type_name[t]; 9682 } 9683 9684 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9685 { 9686 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9687 return NULL; 9688 9689 return prog_type_name[t]; 9690 } 9691 9692 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9693 int sec_idx, 9694 size_t offset) 9695 { 9696 struct bpf_map *map; 9697 size_t i; 9698 9699 for (i = 0; i < obj->nr_maps; i++) { 9700 map = &obj->maps[i]; 9701 if (!bpf_map__is_struct_ops(map)) 9702 continue; 9703 if (map->sec_idx == sec_idx && 9704 map->sec_offset <= offset && 9705 offset - map->sec_offset < map->def.value_size) 9706 return map; 9707 } 9708 9709 return NULL; 9710 } 9711 9712 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9713 * st_ops->data for shadow type. 9714 */ 9715 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9716 Elf64_Shdr *shdr, Elf_Data *data) 9717 { 9718 const struct btf_type *type; 9719 const struct btf_member *member; 9720 struct bpf_struct_ops *st_ops; 9721 struct bpf_program *prog; 9722 unsigned int shdr_idx; 9723 const struct btf *btf; 9724 struct bpf_map *map; 9725 unsigned int moff, insn_idx; 9726 const char *name; 9727 __u32 member_idx; 9728 Elf64_Sym *sym; 9729 Elf64_Rel *rel; 9730 int i, nrels; 9731 9732 btf = obj->btf; 9733 nrels = shdr->sh_size / shdr->sh_entsize; 9734 for (i = 0; i < nrels; i++) { 9735 rel = elf_rel_by_idx(data, i); 9736 if (!rel) { 9737 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9738 return -LIBBPF_ERRNO__FORMAT; 9739 } 9740 9741 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9742 if (!sym) { 9743 pr_warn("struct_ops reloc: symbol %zx not found\n", 9744 (size_t)ELF64_R_SYM(rel->r_info)); 9745 return -LIBBPF_ERRNO__FORMAT; 9746 } 9747 9748 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9749 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9750 if (!map) { 9751 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9752 (size_t)rel->r_offset); 9753 return -EINVAL; 9754 } 9755 9756 moff = rel->r_offset - map->sec_offset; 9757 shdr_idx = sym->st_shndx; 9758 st_ops = map->st_ops; 9759 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9760 map->name, 9761 (long long)(rel->r_info >> 32), 9762 (long long)sym->st_value, 9763 shdr_idx, (size_t)rel->r_offset, 9764 map->sec_offset, sym->st_name, name); 9765 9766 if (shdr_idx >= SHN_LORESERVE) { 9767 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9768 map->name, (size_t)rel->r_offset, shdr_idx); 9769 return -LIBBPF_ERRNO__RELOC; 9770 } 9771 if (sym->st_value % BPF_INSN_SZ) { 9772 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9773 map->name, (unsigned long long)sym->st_value); 9774 return -LIBBPF_ERRNO__FORMAT; 9775 } 9776 insn_idx = sym->st_value / BPF_INSN_SZ; 9777 9778 type = btf__type_by_id(btf, st_ops->type_id); 9779 member = find_member_by_offset(type, moff * 8); 9780 if (!member) { 9781 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9782 map->name, moff); 9783 return -EINVAL; 9784 } 9785 member_idx = member - btf_members(type); 9786 name = btf__name_by_offset(btf, member->name_off); 9787 9788 if (!resolve_func_ptr(btf, member->type, NULL)) { 9789 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9790 map->name, name); 9791 return -EINVAL; 9792 } 9793 9794 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9795 if (!prog) { 9796 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9797 map->name, shdr_idx, name); 9798 return -EINVAL; 9799 } 9800 9801 /* prevent the use of BPF prog with invalid type */ 9802 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9803 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9804 map->name, prog->name); 9805 return -EINVAL; 9806 } 9807 9808 st_ops->progs[member_idx] = prog; 9809 9810 /* st_ops->data will be exposed to users, being returned by 9811 * bpf_map__initial_value() as a pointer to the shadow 9812 * type. All function pointers in the original struct type 9813 * should be converted to a pointer to struct bpf_program 9814 * in the shadow type. 9815 */ 9816 *((struct bpf_program **)(st_ops->data + moff)) = prog; 9817 } 9818 9819 return 0; 9820 } 9821 9822 #define BTF_TRACE_PREFIX "btf_trace_" 9823 #define BTF_LSM_PREFIX "bpf_lsm_" 9824 #define BTF_ITER_PREFIX "bpf_iter_" 9825 #define BTF_MAX_NAME_SIZE 128 9826 9827 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9828 const char **prefix, int *kind) 9829 { 9830 switch (attach_type) { 9831 case BPF_TRACE_RAW_TP: 9832 *prefix = BTF_TRACE_PREFIX; 9833 *kind = BTF_KIND_TYPEDEF; 9834 break; 9835 case BPF_LSM_MAC: 9836 case BPF_LSM_CGROUP: 9837 *prefix = BTF_LSM_PREFIX; 9838 *kind = BTF_KIND_FUNC; 9839 break; 9840 case BPF_TRACE_ITER: 9841 *prefix = BTF_ITER_PREFIX; 9842 *kind = BTF_KIND_FUNC; 9843 break; 9844 default: 9845 *prefix = ""; 9846 *kind = BTF_KIND_FUNC; 9847 } 9848 } 9849 9850 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9851 const char *name, __u32 kind) 9852 { 9853 char btf_type_name[BTF_MAX_NAME_SIZE]; 9854 int ret; 9855 9856 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9857 "%s%s", prefix, name); 9858 /* snprintf returns the number of characters written excluding the 9859 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9860 * indicates truncation. 9861 */ 9862 if (ret < 0 || ret >= sizeof(btf_type_name)) 9863 return -ENAMETOOLONG; 9864 return btf__find_by_name_kind(btf, btf_type_name, kind); 9865 } 9866 9867 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9868 enum bpf_attach_type attach_type) 9869 { 9870 const char *prefix; 9871 int kind; 9872 9873 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9874 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9875 } 9876 9877 int libbpf_find_vmlinux_btf_id(const char *name, 9878 enum bpf_attach_type attach_type) 9879 { 9880 struct btf *btf; 9881 int err; 9882 9883 btf = btf__load_vmlinux_btf(); 9884 err = libbpf_get_error(btf); 9885 if (err) { 9886 pr_warn("vmlinux BTF is not found\n"); 9887 return libbpf_err(err); 9888 } 9889 9890 err = find_attach_btf_id(btf, name, attach_type); 9891 if (err <= 0) 9892 pr_warn("%s is not found in vmlinux BTF\n", name); 9893 9894 btf__free(btf); 9895 return libbpf_err(err); 9896 } 9897 9898 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9899 { 9900 struct bpf_prog_info info; 9901 __u32 info_len = sizeof(info); 9902 struct btf *btf; 9903 int err; 9904 9905 memset(&info, 0, info_len); 9906 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9907 if (err) { 9908 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9909 attach_prog_fd, err); 9910 return err; 9911 } 9912 9913 err = -EINVAL; 9914 if (!info.btf_id) { 9915 pr_warn("The target program doesn't have BTF\n"); 9916 goto out; 9917 } 9918 btf = btf__load_from_kernel_by_id(info.btf_id); 9919 err = libbpf_get_error(btf); 9920 if (err) { 9921 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9922 goto out; 9923 } 9924 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9925 btf__free(btf); 9926 if (err <= 0) { 9927 pr_warn("%s is not found in prog's BTF\n", name); 9928 goto out; 9929 } 9930 out: 9931 return err; 9932 } 9933 9934 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9935 enum bpf_attach_type attach_type, 9936 int *btf_obj_fd, int *btf_type_id) 9937 { 9938 int ret, i, mod_len; 9939 const char *fn_name, *mod_name = NULL; 9940 9941 fn_name = strchr(attach_name, ':'); 9942 if (fn_name) { 9943 mod_name = attach_name; 9944 mod_len = fn_name - mod_name; 9945 fn_name++; 9946 } 9947 9948 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) { 9949 ret = find_attach_btf_id(obj->btf_vmlinux, 9950 mod_name ? fn_name : attach_name, 9951 attach_type); 9952 if (ret > 0) { 9953 *btf_obj_fd = 0; /* vmlinux BTF */ 9954 *btf_type_id = ret; 9955 return 0; 9956 } 9957 if (ret != -ENOENT) 9958 return ret; 9959 } 9960 9961 ret = load_module_btfs(obj); 9962 if (ret) 9963 return ret; 9964 9965 for (i = 0; i < obj->btf_module_cnt; i++) { 9966 const struct module_btf *mod = &obj->btf_modules[i]; 9967 9968 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0) 9969 continue; 9970 9971 ret = find_attach_btf_id(mod->btf, 9972 mod_name ? fn_name : attach_name, 9973 attach_type); 9974 if (ret > 0) { 9975 *btf_obj_fd = mod->fd; 9976 *btf_type_id = ret; 9977 return 0; 9978 } 9979 if (ret == -ENOENT) 9980 continue; 9981 9982 return ret; 9983 } 9984 9985 return -ESRCH; 9986 } 9987 9988 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9989 int *btf_obj_fd, int *btf_type_id) 9990 { 9991 enum bpf_attach_type attach_type = prog->expected_attach_type; 9992 __u32 attach_prog_fd = prog->attach_prog_fd; 9993 int err = 0; 9994 9995 /* BPF program's BTF ID */ 9996 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9997 if (!attach_prog_fd) { 9998 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9999 return -EINVAL; 10000 } 10001 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 10002 if (err < 0) { 10003 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 10004 prog->name, attach_prog_fd, attach_name, err); 10005 return err; 10006 } 10007 *btf_obj_fd = 0; 10008 *btf_type_id = err; 10009 return 0; 10010 } 10011 10012 /* kernel/module BTF ID */ 10013 if (prog->obj->gen_loader) { 10014 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 10015 *btf_obj_fd = 0; 10016 *btf_type_id = 1; 10017 } else { 10018 err = find_kernel_btf_id(prog->obj, attach_name, 10019 attach_type, btf_obj_fd, 10020 btf_type_id); 10021 } 10022 if (err) { 10023 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 10024 prog->name, attach_name, err); 10025 return err; 10026 } 10027 return 0; 10028 } 10029 10030 int libbpf_attach_type_by_name(const char *name, 10031 enum bpf_attach_type *attach_type) 10032 { 10033 char *type_names; 10034 const struct bpf_sec_def *sec_def; 10035 10036 if (!name) 10037 return libbpf_err(-EINVAL); 10038 10039 sec_def = find_sec_def(name); 10040 if (!sec_def) { 10041 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 10042 type_names = libbpf_get_type_names(true); 10043 if (type_names != NULL) { 10044 pr_debug("attachable section(type) names are:%s\n", type_names); 10045 free(type_names); 10046 } 10047 10048 return libbpf_err(-EINVAL); 10049 } 10050 10051 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10052 return libbpf_err(-EINVAL); 10053 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10054 return libbpf_err(-EINVAL); 10055 10056 *attach_type = sec_def->expected_attach_type; 10057 return 0; 10058 } 10059 10060 int bpf_map__fd(const struct bpf_map *map) 10061 { 10062 if (!map) 10063 return libbpf_err(-EINVAL); 10064 if (!map_is_created(map)) 10065 return -1; 10066 return map->fd; 10067 } 10068 10069 static bool map_uses_real_name(const struct bpf_map *map) 10070 { 10071 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10072 * their user-visible name differs from kernel-visible name. Users see 10073 * such map's corresponding ELF section name as a map name. 10074 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10075 * maps to know which name has to be returned to the user. 10076 */ 10077 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10078 return true; 10079 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10080 return true; 10081 return false; 10082 } 10083 10084 const char *bpf_map__name(const struct bpf_map *map) 10085 { 10086 if (!map) 10087 return NULL; 10088 10089 if (map_uses_real_name(map)) 10090 return map->real_name; 10091 10092 return map->name; 10093 } 10094 10095 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10096 { 10097 return map->def.type; 10098 } 10099 10100 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10101 { 10102 if (map_is_created(map)) 10103 return libbpf_err(-EBUSY); 10104 map->def.type = type; 10105 return 0; 10106 } 10107 10108 __u32 bpf_map__map_flags(const struct bpf_map *map) 10109 { 10110 return map->def.map_flags; 10111 } 10112 10113 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10114 { 10115 if (map_is_created(map)) 10116 return libbpf_err(-EBUSY); 10117 map->def.map_flags = flags; 10118 return 0; 10119 } 10120 10121 __u64 bpf_map__map_extra(const struct bpf_map *map) 10122 { 10123 return map->map_extra; 10124 } 10125 10126 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10127 { 10128 if (map_is_created(map)) 10129 return libbpf_err(-EBUSY); 10130 map->map_extra = map_extra; 10131 return 0; 10132 } 10133 10134 __u32 bpf_map__numa_node(const struct bpf_map *map) 10135 { 10136 return map->numa_node; 10137 } 10138 10139 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10140 { 10141 if (map_is_created(map)) 10142 return libbpf_err(-EBUSY); 10143 map->numa_node = numa_node; 10144 return 0; 10145 } 10146 10147 __u32 bpf_map__key_size(const struct bpf_map *map) 10148 { 10149 return map->def.key_size; 10150 } 10151 10152 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10153 { 10154 if (map_is_created(map)) 10155 return libbpf_err(-EBUSY); 10156 map->def.key_size = size; 10157 return 0; 10158 } 10159 10160 __u32 bpf_map__value_size(const struct bpf_map *map) 10161 { 10162 return map->def.value_size; 10163 } 10164 10165 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10166 { 10167 struct btf *btf; 10168 struct btf_type *datasec_type, *var_type; 10169 struct btf_var_secinfo *var; 10170 const struct btf_type *array_type; 10171 const struct btf_array *array; 10172 int vlen, element_sz, new_array_id; 10173 __u32 nr_elements; 10174 10175 /* check btf existence */ 10176 btf = bpf_object__btf(map->obj); 10177 if (!btf) 10178 return -ENOENT; 10179 10180 /* verify map is datasec */ 10181 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10182 if (!btf_is_datasec(datasec_type)) { 10183 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10184 bpf_map__name(map)); 10185 return -EINVAL; 10186 } 10187 10188 /* verify datasec has at least one var */ 10189 vlen = btf_vlen(datasec_type); 10190 if (vlen == 0) { 10191 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10192 bpf_map__name(map)); 10193 return -EINVAL; 10194 } 10195 10196 /* verify last var in the datasec is an array */ 10197 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10198 var_type = btf_type_by_id(btf, var->type); 10199 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10200 if (!btf_is_array(array_type)) { 10201 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10202 bpf_map__name(map)); 10203 return -EINVAL; 10204 } 10205 10206 /* verify request size aligns with array */ 10207 array = btf_array(array_type); 10208 element_sz = btf__resolve_size(btf, array->type); 10209 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10210 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10211 bpf_map__name(map), element_sz, size); 10212 return -EINVAL; 10213 } 10214 10215 /* create a new array based on the existing array, but with new length */ 10216 nr_elements = (size - var->offset) / element_sz; 10217 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10218 if (new_array_id < 0) 10219 return new_array_id; 10220 10221 /* adding a new btf type invalidates existing pointers to btf objects, 10222 * so refresh pointers before proceeding 10223 */ 10224 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10225 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10226 var_type = btf_type_by_id(btf, var->type); 10227 10228 /* finally update btf info */ 10229 datasec_type->size = size; 10230 var->size = size - var->offset; 10231 var_type->type = new_array_id; 10232 10233 return 0; 10234 } 10235 10236 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10237 { 10238 if (map->obj->loaded || map->reused) 10239 return libbpf_err(-EBUSY); 10240 10241 if (map->mmaped) { 10242 size_t mmap_old_sz, mmap_new_sz; 10243 int err; 10244 10245 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10246 return -EOPNOTSUPP; 10247 10248 mmap_old_sz = bpf_map_mmap_sz(map); 10249 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10250 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10251 if (err) { 10252 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 10253 bpf_map__name(map), err); 10254 return err; 10255 } 10256 err = map_btf_datasec_resize(map, size); 10257 if (err && err != -ENOENT) { 10258 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 10259 bpf_map__name(map), err); 10260 map->btf_value_type_id = 0; 10261 map->btf_key_type_id = 0; 10262 } 10263 } 10264 10265 map->def.value_size = size; 10266 return 0; 10267 } 10268 10269 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10270 { 10271 return map ? map->btf_key_type_id : 0; 10272 } 10273 10274 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10275 { 10276 return map ? map->btf_value_type_id : 0; 10277 } 10278 10279 int bpf_map__set_initial_value(struct bpf_map *map, 10280 const void *data, size_t size) 10281 { 10282 size_t actual_sz; 10283 10284 if (map->obj->loaded || map->reused) 10285 return libbpf_err(-EBUSY); 10286 10287 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10288 return libbpf_err(-EINVAL); 10289 10290 if (map->def.type == BPF_MAP_TYPE_ARENA) 10291 actual_sz = map->obj->arena_data_sz; 10292 else 10293 actual_sz = map->def.value_size; 10294 if (size != actual_sz) 10295 return libbpf_err(-EINVAL); 10296 10297 memcpy(map->mmaped, data, size); 10298 return 0; 10299 } 10300 10301 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10302 { 10303 if (bpf_map__is_struct_ops(map)) { 10304 if (psize) 10305 *psize = map->def.value_size; 10306 return map->st_ops->data; 10307 } 10308 10309 if (!map->mmaped) 10310 return NULL; 10311 10312 if (map->def.type == BPF_MAP_TYPE_ARENA) 10313 *psize = map->obj->arena_data_sz; 10314 else 10315 *psize = map->def.value_size; 10316 10317 return map->mmaped; 10318 } 10319 10320 bool bpf_map__is_internal(const struct bpf_map *map) 10321 { 10322 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10323 } 10324 10325 __u32 bpf_map__ifindex(const struct bpf_map *map) 10326 { 10327 return map->map_ifindex; 10328 } 10329 10330 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10331 { 10332 if (map_is_created(map)) 10333 return libbpf_err(-EBUSY); 10334 map->map_ifindex = ifindex; 10335 return 0; 10336 } 10337 10338 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10339 { 10340 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10341 pr_warn("error: unsupported map type\n"); 10342 return libbpf_err(-EINVAL); 10343 } 10344 if (map->inner_map_fd != -1) { 10345 pr_warn("error: inner_map_fd already specified\n"); 10346 return libbpf_err(-EINVAL); 10347 } 10348 if (map->inner_map) { 10349 bpf_map__destroy(map->inner_map); 10350 zfree(&map->inner_map); 10351 } 10352 map->inner_map_fd = fd; 10353 return 0; 10354 } 10355 10356 static struct bpf_map * 10357 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10358 { 10359 ssize_t idx; 10360 struct bpf_map *s, *e; 10361 10362 if (!obj || !obj->maps) 10363 return errno = EINVAL, NULL; 10364 10365 s = obj->maps; 10366 e = obj->maps + obj->nr_maps; 10367 10368 if ((m < s) || (m >= e)) { 10369 pr_warn("error in %s: map handler doesn't belong to object\n", 10370 __func__); 10371 return errno = EINVAL, NULL; 10372 } 10373 10374 idx = (m - obj->maps) + i; 10375 if (idx >= obj->nr_maps || idx < 0) 10376 return NULL; 10377 return &obj->maps[idx]; 10378 } 10379 10380 struct bpf_map * 10381 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10382 { 10383 if (prev == NULL && obj != NULL) 10384 return obj->maps; 10385 10386 return __bpf_map__iter(prev, obj, 1); 10387 } 10388 10389 struct bpf_map * 10390 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10391 { 10392 if (next == NULL && obj != NULL) { 10393 if (!obj->nr_maps) 10394 return NULL; 10395 return obj->maps + obj->nr_maps - 1; 10396 } 10397 10398 return __bpf_map__iter(next, obj, -1); 10399 } 10400 10401 struct bpf_map * 10402 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10403 { 10404 struct bpf_map *pos; 10405 10406 bpf_object__for_each_map(pos, obj) { 10407 /* if it's a special internal map name (which always starts 10408 * with dot) then check if that special name matches the 10409 * real map name (ELF section name) 10410 */ 10411 if (name[0] == '.') { 10412 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10413 return pos; 10414 continue; 10415 } 10416 /* otherwise map name has to be an exact match */ 10417 if (map_uses_real_name(pos)) { 10418 if (strcmp(pos->real_name, name) == 0) 10419 return pos; 10420 continue; 10421 } 10422 if (strcmp(pos->name, name) == 0) 10423 return pos; 10424 } 10425 return errno = ENOENT, NULL; 10426 } 10427 10428 int 10429 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10430 { 10431 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10432 } 10433 10434 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10435 size_t value_sz, bool check_value_sz) 10436 { 10437 if (!map_is_created(map)) /* map is not yet created */ 10438 return -ENOENT; 10439 10440 if (map->def.key_size != key_sz) { 10441 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10442 map->name, key_sz, map->def.key_size); 10443 return -EINVAL; 10444 } 10445 10446 if (map->fd < 0) { 10447 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10448 return -EINVAL; 10449 } 10450 10451 if (!check_value_sz) 10452 return 0; 10453 10454 switch (map->def.type) { 10455 case BPF_MAP_TYPE_PERCPU_ARRAY: 10456 case BPF_MAP_TYPE_PERCPU_HASH: 10457 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10458 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10459 int num_cpu = libbpf_num_possible_cpus(); 10460 size_t elem_sz = roundup(map->def.value_size, 8); 10461 10462 if (value_sz != num_cpu * elem_sz) { 10463 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10464 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10465 return -EINVAL; 10466 } 10467 break; 10468 } 10469 default: 10470 if (map->def.value_size != value_sz) { 10471 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10472 map->name, value_sz, map->def.value_size); 10473 return -EINVAL; 10474 } 10475 break; 10476 } 10477 return 0; 10478 } 10479 10480 int bpf_map__lookup_elem(const struct bpf_map *map, 10481 const void *key, size_t key_sz, 10482 void *value, size_t value_sz, __u64 flags) 10483 { 10484 int err; 10485 10486 err = validate_map_op(map, key_sz, value_sz, true); 10487 if (err) 10488 return libbpf_err(err); 10489 10490 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10491 } 10492 10493 int bpf_map__update_elem(const struct bpf_map *map, 10494 const void *key, size_t key_sz, 10495 const void *value, size_t value_sz, __u64 flags) 10496 { 10497 int err; 10498 10499 err = validate_map_op(map, key_sz, value_sz, true); 10500 if (err) 10501 return libbpf_err(err); 10502 10503 return bpf_map_update_elem(map->fd, key, value, flags); 10504 } 10505 10506 int bpf_map__delete_elem(const struct bpf_map *map, 10507 const void *key, size_t key_sz, __u64 flags) 10508 { 10509 int err; 10510 10511 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10512 if (err) 10513 return libbpf_err(err); 10514 10515 return bpf_map_delete_elem_flags(map->fd, key, flags); 10516 } 10517 10518 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10519 const void *key, size_t key_sz, 10520 void *value, size_t value_sz, __u64 flags) 10521 { 10522 int err; 10523 10524 err = validate_map_op(map, key_sz, value_sz, true); 10525 if (err) 10526 return libbpf_err(err); 10527 10528 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10529 } 10530 10531 int bpf_map__get_next_key(const struct bpf_map *map, 10532 const void *cur_key, void *next_key, size_t key_sz) 10533 { 10534 int err; 10535 10536 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10537 if (err) 10538 return libbpf_err(err); 10539 10540 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10541 } 10542 10543 long libbpf_get_error(const void *ptr) 10544 { 10545 if (!IS_ERR_OR_NULL(ptr)) 10546 return 0; 10547 10548 if (IS_ERR(ptr)) 10549 errno = -PTR_ERR(ptr); 10550 10551 /* If ptr == NULL, then errno should be already set by the failing 10552 * API, because libbpf never returns NULL on success and it now always 10553 * sets errno on error. So no extra errno handling for ptr == NULL 10554 * case. 10555 */ 10556 return -errno; 10557 } 10558 10559 /* Replace link's underlying BPF program with the new one */ 10560 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10561 { 10562 int ret; 10563 int prog_fd = bpf_program__fd(prog); 10564 10565 if (prog_fd < 0) { 10566 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 10567 prog->name); 10568 return libbpf_err(-EINVAL); 10569 } 10570 10571 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 10572 return libbpf_err_errno(ret); 10573 } 10574 10575 /* Release "ownership" of underlying BPF resource (typically, BPF program 10576 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10577 * link, when destructed through bpf_link__destroy() call won't attempt to 10578 * detach/unregisted that BPF resource. This is useful in situations where, 10579 * say, attached BPF program has to outlive userspace program that attached it 10580 * in the system. Depending on type of BPF program, though, there might be 10581 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10582 * exit of userspace program doesn't trigger automatic detachment and clean up 10583 * inside the kernel. 10584 */ 10585 void bpf_link__disconnect(struct bpf_link *link) 10586 { 10587 link->disconnected = true; 10588 } 10589 10590 int bpf_link__destroy(struct bpf_link *link) 10591 { 10592 int err = 0; 10593 10594 if (IS_ERR_OR_NULL(link)) 10595 return 0; 10596 10597 if (!link->disconnected && link->detach) 10598 err = link->detach(link); 10599 if (link->pin_path) 10600 free(link->pin_path); 10601 if (link->dealloc) 10602 link->dealloc(link); 10603 else 10604 free(link); 10605 10606 return libbpf_err(err); 10607 } 10608 10609 int bpf_link__fd(const struct bpf_link *link) 10610 { 10611 return link->fd; 10612 } 10613 10614 const char *bpf_link__pin_path(const struct bpf_link *link) 10615 { 10616 return link->pin_path; 10617 } 10618 10619 static int bpf_link__detach_fd(struct bpf_link *link) 10620 { 10621 return libbpf_err_errno(close(link->fd)); 10622 } 10623 10624 struct bpf_link *bpf_link__open(const char *path) 10625 { 10626 struct bpf_link *link; 10627 int fd; 10628 10629 fd = bpf_obj_get(path); 10630 if (fd < 0) { 10631 fd = -errno; 10632 pr_warn("failed to open link at %s: %d\n", path, fd); 10633 return libbpf_err_ptr(fd); 10634 } 10635 10636 link = calloc(1, sizeof(*link)); 10637 if (!link) { 10638 close(fd); 10639 return libbpf_err_ptr(-ENOMEM); 10640 } 10641 link->detach = &bpf_link__detach_fd; 10642 link->fd = fd; 10643 10644 link->pin_path = strdup(path); 10645 if (!link->pin_path) { 10646 bpf_link__destroy(link); 10647 return libbpf_err_ptr(-ENOMEM); 10648 } 10649 10650 return link; 10651 } 10652 10653 int bpf_link__detach(struct bpf_link *link) 10654 { 10655 return bpf_link_detach(link->fd) ? -errno : 0; 10656 } 10657 10658 int bpf_link__pin(struct bpf_link *link, const char *path) 10659 { 10660 int err; 10661 10662 if (link->pin_path) 10663 return libbpf_err(-EBUSY); 10664 err = make_parent_dir(path); 10665 if (err) 10666 return libbpf_err(err); 10667 err = check_path(path); 10668 if (err) 10669 return libbpf_err(err); 10670 10671 link->pin_path = strdup(path); 10672 if (!link->pin_path) 10673 return libbpf_err(-ENOMEM); 10674 10675 if (bpf_obj_pin(link->fd, link->pin_path)) { 10676 err = -errno; 10677 zfree(&link->pin_path); 10678 return libbpf_err(err); 10679 } 10680 10681 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10682 return 0; 10683 } 10684 10685 int bpf_link__unpin(struct bpf_link *link) 10686 { 10687 int err; 10688 10689 if (!link->pin_path) 10690 return libbpf_err(-EINVAL); 10691 10692 err = unlink(link->pin_path); 10693 if (err != 0) 10694 return -errno; 10695 10696 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10697 zfree(&link->pin_path); 10698 return 0; 10699 } 10700 10701 struct bpf_link_perf { 10702 struct bpf_link link; 10703 int perf_event_fd; 10704 /* legacy kprobe support: keep track of probe identifier and type */ 10705 char *legacy_probe_name; 10706 bool legacy_is_kprobe; 10707 bool legacy_is_retprobe; 10708 }; 10709 10710 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10711 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10712 10713 static int bpf_link_perf_detach(struct bpf_link *link) 10714 { 10715 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10716 int err = 0; 10717 10718 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10719 err = -errno; 10720 10721 if (perf_link->perf_event_fd != link->fd) 10722 close(perf_link->perf_event_fd); 10723 close(link->fd); 10724 10725 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10726 if (perf_link->legacy_probe_name) { 10727 if (perf_link->legacy_is_kprobe) { 10728 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10729 perf_link->legacy_is_retprobe); 10730 } else { 10731 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10732 perf_link->legacy_is_retprobe); 10733 } 10734 } 10735 10736 return err; 10737 } 10738 10739 static void bpf_link_perf_dealloc(struct bpf_link *link) 10740 { 10741 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10742 10743 free(perf_link->legacy_probe_name); 10744 free(perf_link); 10745 } 10746 10747 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10748 const struct bpf_perf_event_opts *opts) 10749 { 10750 char errmsg[STRERR_BUFSIZE]; 10751 struct bpf_link_perf *link; 10752 int prog_fd, link_fd = -1, err; 10753 bool force_ioctl_attach; 10754 10755 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10756 return libbpf_err_ptr(-EINVAL); 10757 10758 if (pfd < 0) { 10759 pr_warn("prog '%s': invalid perf event FD %d\n", 10760 prog->name, pfd); 10761 return libbpf_err_ptr(-EINVAL); 10762 } 10763 prog_fd = bpf_program__fd(prog); 10764 if (prog_fd < 0) { 10765 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 10766 prog->name); 10767 return libbpf_err_ptr(-EINVAL); 10768 } 10769 10770 link = calloc(1, sizeof(*link)); 10771 if (!link) 10772 return libbpf_err_ptr(-ENOMEM); 10773 link->link.detach = &bpf_link_perf_detach; 10774 link->link.dealloc = &bpf_link_perf_dealloc; 10775 link->perf_event_fd = pfd; 10776 10777 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10778 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10779 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10780 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10781 10782 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10783 if (link_fd < 0) { 10784 err = -errno; 10785 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10786 prog->name, pfd, 10787 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10788 goto err_out; 10789 } 10790 link->link.fd = link_fd; 10791 } else { 10792 if (OPTS_GET(opts, bpf_cookie, 0)) { 10793 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10794 err = -EOPNOTSUPP; 10795 goto err_out; 10796 } 10797 10798 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10799 err = -errno; 10800 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10801 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10802 if (err == -EPROTO) 10803 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10804 prog->name, pfd); 10805 goto err_out; 10806 } 10807 link->link.fd = pfd; 10808 } 10809 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10810 err = -errno; 10811 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10812 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10813 goto err_out; 10814 } 10815 10816 return &link->link; 10817 err_out: 10818 if (link_fd >= 0) 10819 close(link_fd); 10820 free(link); 10821 return libbpf_err_ptr(err); 10822 } 10823 10824 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10825 { 10826 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10827 } 10828 10829 /* 10830 * this function is expected to parse integer in the range of [0, 2^31-1] from 10831 * given file using scanf format string fmt. If actual parsed value is 10832 * negative, the result might be indistinguishable from error 10833 */ 10834 static int parse_uint_from_file(const char *file, const char *fmt) 10835 { 10836 char buf[STRERR_BUFSIZE]; 10837 int err, ret; 10838 FILE *f; 10839 10840 f = fopen(file, "re"); 10841 if (!f) { 10842 err = -errno; 10843 pr_debug("failed to open '%s': %s\n", file, 10844 libbpf_strerror_r(err, buf, sizeof(buf))); 10845 return err; 10846 } 10847 err = fscanf(f, fmt, &ret); 10848 if (err != 1) { 10849 err = err == EOF ? -EIO : -errno; 10850 pr_debug("failed to parse '%s': %s\n", file, 10851 libbpf_strerror_r(err, buf, sizeof(buf))); 10852 fclose(f); 10853 return err; 10854 } 10855 fclose(f); 10856 return ret; 10857 } 10858 10859 static int determine_kprobe_perf_type(void) 10860 { 10861 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10862 10863 return parse_uint_from_file(file, "%d\n"); 10864 } 10865 10866 static int determine_uprobe_perf_type(void) 10867 { 10868 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10869 10870 return parse_uint_from_file(file, "%d\n"); 10871 } 10872 10873 static int determine_kprobe_retprobe_bit(void) 10874 { 10875 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10876 10877 return parse_uint_from_file(file, "config:%d\n"); 10878 } 10879 10880 static int determine_uprobe_retprobe_bit(void) 10881 { 10882 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10883 10884 return parse_uint_from_file(file, "config:%d\n"); 10885 } 10886 10887 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10888 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10889 10890 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10891 uint64_t offset, int pid, size_t ref_ctr_off) 10892 { 10893 const size_t attr_sz = sizeof(struct perf_event_attr); 10894 struct perf_event_attr attr; 10895 char errmsg[STRERR_BUFSIZE]; 10896 int type, pfd; 10897 10898 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10899 return -EINVAL; 10900 10901 memset(&attr, 0, attr_sz); 10902 10903 type = uprobe ? determine_uprobe_perf_type() 10904 : determine_kprobe_perf_type(); 10905 if (type < 0) { 10906 pr_warn("failed to determine %s perf type: %s\n", 10907 uprobe ? "uprobe" : "kprobe", 10908 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10909 return type; 10910 } 10911 if (retprobe) { 10912 int bit = uprobe ? determine_uprobe_retprobe_bit() 10913 : determine_kprobe_retprobe_bit(); 10914 10915 if (bit < 0) { 10916 pr_warn("failed to determine %s retprobe bit: %s\n", 10917 uprobe ? "uprobe" : "kprobe", 10918 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10919 return bit; 10920 } 10921 attr.config |= 1 << bit; 10922 } 10923 attr.size = attr_sz; 10924 attr.type = type; 10925 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10926 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10927 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10928 10929 /* pid filter is meaningful only for uprobes */ 10930 pfd = syscall(__NR_perf_event_open, &attr, 10931 pid < 0 ? -1 : pid /* pid */, 10932 pid == -1 ? 0 : -1 /* cpu */, 10933 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10934 return pfd >= 0 ? pfd : -errno; 10935 } 10936 10937 static int append_to_file(const char *file, const char *fmt, ...) 10938 { 10939 int fd, n, err = 0; 10940 va_list ap; 10941 char buf[1024]; 10942 10943 va_start(ap, fmt); 10944 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10945 va_end(ap); 10946 10947 if (n < 0 || n >= sizeof(buf)) 10948 return -EINVAL; 10949 10950 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10951 if (fd < 0) 10952 return -errno; 10953 10954 if (write(fd, buf, n) < 0) 10955 err = -errno; 10956 10957 close(fd); 10958 return err; 10959 } 10960 10961 #define DEBUGFS "/sys/kernel/debug/tracing" 10962 #define TRACEFS "/sys/kernel/tracing" 10963 10964 static bool use_debugfs(void) 10965 { 10966 static int has_debugfs = -1; 10967 10968 if (has_debugfs < 0) 10969 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10970 10971 return has_debugfs == 1; 10972 } 10973 10974 static const char *tracefs_path(void) 10975 { 10976 return use_debugfs() ? DEBUGFS : TRACEFS; 10977 } 10978 10979 static const char *tracefs_kprobe_events(void) 10980 { 10981 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10982 } 10983 10984 static const char *tracefs_uprobe_events(void) 10985 { 10986 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10987 } 10988 10989 static const char *tracefs_available_filter_functions(void) 10990 { 10991 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10992 : TRACEFS"/available_filter_functions"; 10993 } 10994 10995 static const char *tracefs_available_filter_functions_addrs(void) 10996 { 10997 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10998 : TRACEFS"/available_filter_functions_addrs"; 10999 } 11000 11001 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 11002 const char *kfunc_name, size_t offset) 11003 { 11004 static int index = 0; 11005 int i; 11006 11007 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 11008 __sync_fetch_and_add(&index, 1)); 11009 11010 /* sanitize binary_path in the probe name */ 11011 for (i = 0; buf[i]; i++) { 11012 if (!isalnum(buf[i])) 11013 buf[i] = '_'; 11014 } 11015 } 11016 11017 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 11018 const char *kfunc_name, size_t offset) 11019 { 11020 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 11021 retprobe ? 'r' : 'p', 11022 retprobe ? "kretprobes" : "kprobes", 11023 probe_name, kfunc_name, offset); 11024 } 11025 11026 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 11027 { 11028 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 11029 retprobe ? "kretprobes" : "kprobes", probe_name); 11030 } 11031 11032 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11033 { 11034 char file[256]; 11035 11036 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11037 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 11038 11039 return parse_uint_from_file(file, "%d\n"); 11040 } 11041 11042 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 11043 const char *kfunc_name, size_t offset, int pid) 11044 { 11045 const size_t attr_sz = sizeof(struct perf_event_attr); 11046 struct perf_event_attr attr; 11047 char errmsg[STRERR_BUFSIZE]; 11048 int type, pfd, err; 11049 11050 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 11051 if (err < 0) { 11052 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 11053 kfunc_name, offset, 11054 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11055 return err; 11056 } 11057 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 11058 if (type < 0) { 11059 err = type; 11060 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 11061 kfunc_name, offset, 11062 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11063 goto err_clean_legacy; 11064 } 11065 11066 memset(&attr, 0, attr_sz); 11067 attr.size = attr_sz; 11068 attr.config = type; 11069 attr.type = PERF_TYPE_TRACEPOINT; 11070 11071 pfd = syscall(__NR_perf_event_open, &attr, 11072 pid < 0 ? -1 : pid, /* pid */ 11073 pid == -1 ? 0 : -1, /* cpu */ 11074 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11075 if (pfd < 0) { 11076 err = -errno; 11077 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 11078 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11079 goto err_clean_legacy; 11080 } 11081 return pfd; 11082 11083 err_clean_legacy: 11084 /* Clear the newly added legacy kprobe_event */ 11085 remove_kprobe_event_legacy(probe_name, retprobe); 11086 return err; 11087 } 11088 11089 static const char *arch_specific_syscall_pfx(void) 11090 { 11091 #if defined(__x86_64__) 11092 return "x64"; 11093 #elif defined(__i386__) 11094 return "ia32"; 11095 #elif defined(__s390x__) 11096 return "s390x"; 11097 #elif defined(__s390__) 11098 return "s390"; 11099 #elif defined(__arm__) 11100 return "arm"; 11101 #elif defined(__aarch64__) 11102 return "arm64"; 11103 #elif defined(__mips__) 11104 return "mips"; 11105 #elif defined(__riscv) 11106 return "riscv"; 11107 #elif defined(__powerpc__) 11108 return "powerpc"; 11109 #elif defined(__powerpc64__) 11110 return "powerpc64"; 11111 #else 11112 return NULL; 11113 #endif 11114 } 11115 11116 int probe_kern_syscall_wrapper(int token_fd) 11117 { 11118 char syscall_name[64]; 11119 const char *ksys_pfx; 11120 11121 ksys_pfx = arch_specific_syscall_pfx(); 11122 if (!ksys_pfx) 11123 return 0; 11124 11125 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11126 11127 if (determine_kprobe_perf_type() >= 0) { 11128 int pfd; 11129 11130 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11131 if (pfd >= 0) 11132 close(pfd); 11133 11134 return pfd >= 0 ? 1 : 0; 11135 } else { /* legacy mode */ 11136 char probe_name[128]; 11137 11138 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11139 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11140 return 0; 11141 11142 (void)remove_kprobe_event_legacy(probe_name, false); 11143 return 1; 11144 } 11145 } 11146 11147 struct bpf_link * 11148 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11149 const char *func_name, 11150 const struct bpf_kprobe_opts *opts) 11151 { 11152 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11153 enum probe_attach_mode attach_mode; 11154 char errmsg[STRERR_BUFSIZE]; 11155 char *legacy_probe = NULL; 11156 struct bpf_link *link; 11157 size_t offset; 11158 bool retprobe, legacy; 11159 int pfd, err; 11160 11161 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11162 return libbpf_err_ptr(-EINVAL); 11163 11164 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11165 retprobe = OPTS_GET(opts, retprobe, false); 11166 offset = OPTS_GET(opts, offset, 0); 11167 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11168 11169 legacy = determine_kprobe_perf_type() < 0; 11170 switch (attach_mode) { 11171 case PROBE_ATTACH_MODE_LEGACY: 11172 legacy = true; 11173 pe_opts.force_ioctl_attach = true; 11174 break; 11175 case PROBE_ATTACH_MODE_PERF: 11176 if (legacy) 11177 return libbpf_err_ptr(-ENOTSUP); 11178 pe_opts.force_ioctl_attach = true; 11179 break; 11180 case PROBE_ATTACH_MODE_LINK: 11181 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11182 return libbpf_err_ptr(-ENOTSUP); 11183 break; 11184 case PROBE_ATTACH_MODE_DEFAULT: 11185 break; 11186 default: 11187 return libbpf_err_ptr(-EINVAL); 11188 } 11189 11190 if (!legacy) { 11191 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11192 func_name, offset, 11193 -1 /* pid */, 0 /* ref_ctr_off */); 11194 } else { 11195 char probe_name[256]; 11196 11197 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 11198 func_name, offset); 11199 11200 legacy_probe = strdup(probe_name); 11201 if (!legacy_probe) 11202 return libbpf_err_ptr(-ENOMEM); 11203 11204 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11205 offset, -1 /* pid */); 11206 } 11207 if (pfd < 0) { 11208 err = -errno; 11209 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11210 prog->name, retprobe ? "kretprobe" : "kprobe", 11211 func_name, offset, 11212 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11213 goto err_out; 11214 } 11215 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11216 err = libbpf_get_error(link); 11217 if (err) { 11218 close(pfd); 11219 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11220 prog->name, retprobe ? "kretprobe" : "kprobe", 11221 func_name, offset, 11222 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11223 goto err_clean_legacy; 11224 } 11225 if (legacy) { 11226 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11227 11228 perf_link->legacy_probe_name = legacy_probe; 11229 perf_link->legacy_is_kprobe = true; 11230 perf_link->legacy_is_retprobe = retprobe; 11231 } 11232 11233 return link; 11234 11235 err_clean_legacy: 11236 if (legacy) 11237 remove_kprobe_event_legacy(legacy_probe, retprobe); 11238 err_out: 11239 free(legacy_probe); 11240 return libbpf_err_ptr(err); 11241 } 11242 11243 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11244 bool retprobe, 11245 const char *func_name) 11246 { 11247 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11248 .retprobe = retprobe, 11249 ); 11250 11251 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11252 } 11253 11254 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11255 const char *syscall_name, 11256 const struct bpf_ksyscall_opts *opts) 11257 { 11258 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11259 char func_name[128]; 11260 11261 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11262 return libbpf_err_ptr(-EINVAL); 11263 11264 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11265 /* arch_specific_syscall_pfx() should never return NULL here 11266 * because it is guarded by kernel_supports(). However, since 11267 * compiler does not know that we have an explicit conditional 11268 * as well. 11269 */ 11270 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11271 arch_specific_syscall_pfx() ? : "", syscall_name); 11272 } else { 11273 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11274 } 11275 11276 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11277 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11278 11279 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11280 } 11281 11282 /* Adapted from perf/util/string.c */ 11283 bool glob_match(const char *str, const char *pat) 11284 { 11285 while (*str && *pat && *pat != '*') { 11286 if (*pat == '?') { /* Matches any single character */ 11287 str++; 11288 pat++; 11289 continue; 11290 } 11291 if (*str != *pat) 11292 return false; 11293 str++; 11294 pat++; 11295 } 11296 /* Check wild card */ 11297 if (*pat == '*') { 11298 while (*pat == '*') 11299 pat++; 11300 if (!*pat) /* Tail wild card matches all */ 11301 return true; 11302 while (*str) 11303 if (glob_match(str++, pat)) 11304 return true; 11305 } 11306 return !*str && !*pat; 11307 } 11308 11309 struct kprobe_multi_resolve { 11310 const char *pattern; 11311 unsigned long *addrs; 11312 size_t cap; 11313 size_t cnt; 11314 }; 11315 11316 struct avail_kallsyms_data { 11317 char **syms; 11318 size_t cnt; 11319 struct kprobe_multi_resolve *res; 11320 }; 11321 11322 static int avail_func_cmp(const void *a, const void *b) 11323 { 11324 return strcmp(*(const char **)a, *(const char **)b); 11325 } 11326 11327 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11328 const char *sym_name, void *ctx) 11329 { 11330 struct avail_kallsyms_data *data = ctx; 11331 struct kprobe_multi_resolve *res = data->res; 11332 int err; 11333 11334 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11335 return 0; 11336 11337 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11338 if (err) 11339 return err; 11340 11341 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11342 return 0; 11343 } 11344 11345 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11346 { 11347 const char *available_functions_file = tracefs_available_filter_functions(); 11348 struct avail_kallsyms_data data; 11349 char sym_name[500]; 11350 FILE *f; 11351 int err = 0, ret, i; 11352 char **syms = NULL; 11353 size_t cap = 0, cnt = 0; 11354 11355 f = fopen(available_functions_file, "re"); 11356 if (!f) { 11357 err = -errno; 11358 pr_warn("failed to open %s: %d\n", available_functions_file, err); 11359 return err; 11360 } 11361 11362 while (true) { 11363 char *name; 11364 11365 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11366 if (ret == EOF && feof(f)) 11367 break; 11368 11369 if (ret != 1) { 11370 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11371 err = -EINVAL; 11372 goto cleanup; 11373 } 11374 11375 if (!glob_match(sym_name, res->pattern)) 11376 continue; 11377 11378 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11379 if (err) 11380 goto cleanup; 11381 11382 name = strdup(sym_name); 11383 if (!name) { 11384 err = -errno; 11385 goto cleanup; 11386 } 11387 11388 syms[cnt++] = name; 11389 } 11390 11391 /* no entries found, bail out */ 11392 if (cnt == 0) { 11393 err = -ENOENT; 11394 goto cleanup; 11395 } 11396 11397 /* sort available functions */ 11398 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11399 11400 data.syms = syms; 11401 data.res = res; 11402 data.cnt = cnt; 11403 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11404 11405 if (res->cnt == 0) 11406 err = -ENOENT; 11407 11408 cleanup: 11409 for (i = 0; i < cnt; i++) 11410 free((char *)syms[i]); 11411 free(syms); 11412 11413 fclose(f); 11414 return err; 11415 } 11416 11417 static bool has_available_filter_functions_addrs(void) 11418 { 11419 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11420 } 11421 11422 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11423 { 11424 const char *available_path = tracefs_available_filter_functions_addrs(); 11425 char sym_name[500]; 11426 FILE *f; 11427 int ret, err = 0; 11428 unsigned long long sym_addr; 11429 11430 f = fopen(available_path, "re"); 11431 if (!f) { 11432 err = -errno; 11433 pr_warn("failed to open %s: %d\n", available_path, err); 11434 return err; 11435 } 11436 11437 while (true) { 11438 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11439 if (ret == EOF && feof(f)) 11440 break; 11441 11442 if (ret != 2) { 11443 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11444 ret); 11445 err = -EINVAL; 11446 goto cleanup; 11447 } 11448 11449 if (!glob_match(sym_name, res->pattern)) 11450 continue; 11451 11452 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11453 sizeof(*res->addrs), res->cnt + 1); 11454 if (err) 11455 goto cleanup; 11456 11457 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11458 } 11459 11460 if (res->cnt == 0) 11461 err = -ENOENT; 11462 11463 cleanup: 11464 fclose(f); 11465 return err; 11466 } 11467 11468 struct bpf_link * 11469 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11470 const char *pattern, 11471 const struct bpf_kprobe_multi_opts *opts) 11472 { 11473 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11474 struct kprobe_multi_resolve res = { 11475 .pattern = pattern, 11476 }; 11477 enum bpf_attach_type attach_type; 11478 struct bpf_link *link = NULL; 11479 char errmsg[STRERR_BUFSIZE]; 11480 const unsigned long *addrs; 11481 int err, link_fd, prog_fd; 11482 bool retprobe, session; 11483 const __u64 *cookies; 11484 const char **syms; 11485 size_t cnt; 11486 11487 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11488 return libbpf_err_ptr(-EINVAL); 11489 11490 prog_fd = bpf_program__fd(prog); 11491 if (prog_fd < 0) { 11492 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11493 prog->name); 11494 return libbpf_err_ptr(-EINVAL); 11495 } 11496 11497 syms = OPTS_GET(opts, syms, false); 11498 addrs = OPTS_GET(opts, addrs, false); 11499 cnt = OPTS_GET(opts, cnt, false); 11500 cookies = OPTS_GET(opts, cookies, false); 11501 11502 if (!pattern && !addrs && !syms) 11503 return libbpf_err_ptr(-EINVAL); 11504 if (pattern && (addrs || syms || cookies || cnt)) 11505 return libbpf_err_ptr(-EINVAL); 11506 if (!pattern && !cnt) 11507 return libbpf_err_ptr(-EINVAL); 11508 if (addrs && syms) 11509 return libbpf_err_ptr(-EINVAL); 11510 11511 if (pattern) { 11512 if (has_available_filter_functions_addrs()) 11513 err = libbpf_available_kprobes_parse(&res); 11514 else 11515 err = libbpf_available_kallsyms_parse(&res); 11516 if (err) 11517 goto error; 11518 addrs = res.addrs; 11519 cnt = res.cnt; 11520 } 11521 11522 retprobe = OPTS_GET(opts, retprobe, false); 11523 session = OPTS_GET(opts, session, false); 11524 11525 if (retprobe && session) 11526 return libbpf_err_ptr(-EINVAL); 11527 11528 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI; 11529 11530 lopts.kprobe_multi.syms = syms; 11531 lopts.kprobe_multi.addrs = addrs; 11532 lopts.kprobe_multi.cookies = cookies; 11533 lopts.kprobe_multi.cnt = cnt; 11534 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11535 11536 link = calloc(1, sizeof(*link)); 11537 if (!link) { 11538 err = -ENOMEM; 11539 goto error; 11540 } 11541 link->detach = &bpf_link__detach_fd; 11542 11543 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 11544 if (link_fd < 0) { 11545 err = -errno; 11546 pr_warn("prog '%s': failed to attach: %s\n", 11547 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11548 goto error; 11549 } 11550 link->fd = link_fd; 11551 free(res.addrs); 11552 return link; 11553 11554 error: 11555 free(link); 11556 free(res.addrs); 11557 return libbpf_err_ptr(err); 11558 } 11559 11560 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11561 { 11562 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11563 unsigned long offset = 0; 11564 const char *func_name; 11565 char *func; 11566 int n; 11567 11568 *link = NULL; 11569 11570 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11571 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11572 return 0; 11573 11574 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11575 if (opts.retprobe) 11576 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11577 else 11578 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11579 11580 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11581 if (n < 1) { 11582 pr_warn("kprobe name is invalid: %s\n", func_name); 11583 return -EINVAL; 11584 } 11585 if (opts.retprobe && offset != 0) { 11586 free(func); 11587 pr_warn("kretprobes do not support offset specification\n"); 11588 return -EINVAL; 11589 } 11590 11591 opts.offset = offset; 11592 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11593 free(func); 11594 return libbpf_get_error(*link); 11595 } 11596 11597 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11598 { 11599 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11600 const char *syscall_name; 11601 11602 *link = NULL; 11603 11604 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11605 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11606 return 0; 11607 11608 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11609 if (opts.retprobe) 11610 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11611 else 11612 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11613 11614 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11615 return *link ? 0 : -errno; 11616 } 11617 11618 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11619 { 11620 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11621 const char *spec; 11622 char *pattern; 11623 int n; 11624 11625 *link = NULL; 11626 11627 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11628 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11629 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11630 return 0; 11631 11632 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11633 if (opts.retprobe) 11634 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11635 else 11636 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11637 11638 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11639 if (n < 1) { 11640 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 11641 return -EINVAL; 11642 } 11643 11644 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11645 free(pattern); 11646 return libbpf_get_error(*link); 11647 } 11648 11649 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, 11650 struct bpf_link **link) 11651 { 11652 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true); 11653 const char *spec; 11654 char *pattern; 11655 int n; 11656 11657 *link = NULL; 11658 11659 /* no auto-attach for SEC("kprobe.session") */ 11660 if (strcmp(prog->sec_name, "kprobe.session") == 0) 11661 return 0; 11662 11663 spec = prog->sec_name + sizeof("kprobe.session/") - 1; 11664 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11665 if (n < 1) { 11666 pr_warn("kprobe session pattern is invalid: %s\n", spec); 11667 return -EINVAL; 11668 } 11669 11670 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11671 free(pattern); 11672 return *link ? 0 : -errno; 11673 } 11674 11675 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11676 { 11677 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11678 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11679 int n, ret = -EINVAL; 11680 11681 *link = NULL; 11682 11683 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11684 &probe_type, &binary_path, &func_name); 11685 switch (n) { 11686 case 1: 11687 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11688 ret = 0; 11689 break; 11690 case 3: 11691 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11692 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11693 ret = libbpf_get_error(*link); 11694 break; 11695 default: 11696 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11697 prog->sec_name); 11698 break; 11699 } 11700 free(probe_type); 11701 free(binary_path); 11702 free(func_name); 11703 return ret; 11704 } 11705 11706 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11707 const char *binary_path, uint64_t offset) 11708 { 11709 int i; 11710 11711 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11712 11713 /* sanitize binary_path in the probe name */ 11714 for (i = 0; buf[i]; i++) { 11715 if (!isalnum(buf[i])) 11716 buf[i] = '_'; 11717 } 11718 } 11719 11720 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11721 const char *binary_path, size_t offset) 11722 { 11723 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11724 retprobe ? 'r' : 'p', 11725 retprobe ? "uretprobes" : "uprobes", 11726 probe_name, binary_path, offset); 11727 } 11728 11729 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11730 { 11731 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11732 retprobe ? "uretprobes" : "uprobes", probe_name); 11733 } 11734 11735 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11736 { 11737 char file[512]; 11738 11739 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11740 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11741 11742 return parse_uint_from_file(file, "%d\n"); 11743 } 11744 11745 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11746 const char *binary_path, size_t offset, int pid) 11747 { 11748 const size_t attr_sz = sizeof(struct perf_event_attr); 11749 struct perf_event_attr attr; 11750 int type, pfd, err; 11751 11752 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11753 if (err < 0) { 11754 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11755 binary_path, (size_t)offset, err); 11756 return err; 11757 } 11758 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11759 if (type < 0) { 11760 err = type; 11761 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11762 binary_path, offset, err); 11763 goto err_clean_legacy; 11764 } 11765 11766 memset(&attr, 0, attr_sz); 11767 attr.size = attr_sz; 11768 attr.config = type; 11769 attr.type = PERF_TYPE_TRACEPOINT; 11770 11771 pfd = syscall(__NR_perf_event_open, &attr, 11772 pid < 0 ? -1 : pid, /* pid */ 11773 pid == -1 ? 0 : -1, /* cpu */ 11774 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11775 if (pfd < 0) { 11776 err = -errno; 11777 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11778 goto err_clean_legacy; 11779 } 11780 return pfd; 11781 11782 err_clean_legacy: 11783 /* Clear the newly added legacy uprobe_event */ 11784 remove_uprobe_event_legacy(probe_name, retprobe); 11785 return err; 11786 } 11787 11788 /* Find offset of function name in archive specified by path. Currently 11789 * supported are .zip files that do not compress their contents, as used on 11790 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11791 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11792 * library functions. 11793 * 11794 * An overview of the APK format specifically provided here: 11795 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11796 */ 11797 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11798 const char *func_name) 11799 { 11800 struct zip_archive *archive; 11801 struct zip_entry entry; 11802 long ret; 11803 Elf *elf; 11804 11805 archive = zip_archive_open(archive_path); 11806 if (IS_ERR(archive)) { 11807 ret = PTR_ERR(archive); 11808 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11809 return ret; 11810 } 11811 11812 ret = zip_archive_find_entry(archive, file_name, &entry); 11813 if (ret) { 11814 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11815 archive_path, ret); 11816 goto out; 11817 } 11818 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11819 (unsigned long)entry.data_offset); 11820 11821 if (entry.compression) { 11822 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11823 archive_path); 11824 ret = -LIBBPF_ERRNO__FORMAT; 11825 goto out; 11826 } 11827 11828 elf = elf_memory((void *)entry.data, entry.data_length); 11829 if (!elf) { 11830 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11831 elf_errmsg(-1)); 11832 ret = -LIBBPF_ERRNO__LIBELF; 11833 goto out; 11834 } 11835 11836 ret = elf_find_func_offset(elf, file_name, func_name); 11837 if (ret > 0) { 11838 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11839 func_name, file_name, archive_path, entry.data_offset, ret, 11840 ret + entry.data_offset); 11841 ret += entry.data_offset; 11842 } 11843 elf_end(elf); 11844 11845 out: 11846 zip_archive_close(archive); 11847 return ret; 11848 } 11849 11850 static const char *arch_specific_lib_paths(void) 11851 { 11852 /* 11853 * Based on https://packages.debian.org/sid/libc6. 11854 * 11855 * Assume that the traced program is built for the same architecture 11856 * as libbpf, which should cover the vast majority of cases. 11857 */ 11858 #if defined(__x86_64__) 11859 return "/lib/x86_64-linux-gnu"; 11860 #elif defined(__i386__) 11861 return "/lib/i386-linux-gnu"; 11862 #elif defined(__s390x__) 11863 return "/lib/s390x-linux-gnu"; 11864 #elif defined(__s390__) 11865 return "/lib/s390-linux-gnu"; 11866 #elif defined(__arm__) && defined(__SOFTFP__) 11867 return "/lib/arm-linux-gnueabi"; 11868 #elif defined(__arm__) && !defined(__SOFTFP__) 11869 return "/lib/arm-linux-gnueabihf"; 11870 #elif defined(__aarch64__) 11871 return "/lib/aarch64-linux-gnu"; 11872 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11873 return "/lib/mips64el-linux-gnuabi64"; 11874 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11875 return "/lib/mipsel-linux-gnu"; 11876 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11877 return "/lib/powerpc64le-linux-gnu"; 11878 #elif defined(__sparc__) && defined(__arch64__) 11879 return "/lib/sparc64-linux-gnu"; 11880 #elif defined(__riscv) && __riscv_xlen == 64 11881 return "/lib/riscv64-linux-gnu"; 11882 #else 11883 return NULL; 11884 #endif 11885 } 11886 11887 /* Get full path to program/shared library. */ 11888 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11889 { 11890 const char *search_paths[3] = {}; 11891 int i, perm; 11892 11893 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11894 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11895 search_paths[1] = "/usr/lib64:/usr/lib"; 11896 search_paths[2] = arch_specific_lib_paths(); 11897 perm = R_OK; 11898 } else { 11899 search_paths[0] = getenv("PATH"); 11900 search_paths[1] = "/usr/bin:/usr/sbin"; 11901 perm = R_OK | X_OK; 11902 } 11903 11904 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11905 const char *s; 11906 11907 if (!search_paths[i]) 11908 continue; 11909 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11910 char *next_path; 11911 int seg_len; 11912 11913 if (s[0] == ':') 11914 s++; 11915 next_path = strchr(s, ':'); 11916 seg_len = next_path ? next_path - s : strlen(s); 11917 if (!seg_len) 11918 continue; 11919 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11920 /* ensure it has required permissions */ 11921 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11922 continue; 11923 pr_debug("resolved '%s' to '%s'\n", file, result); 11924 return 0; 11925 } 11926 } 11927 return -ENOENT; 11928 } 11929 11930 struct bpf_link * 11931 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11932 pid_t pid, 11933 const char *path, 11934 const char *func_pattern, 11935 const struct bpf_uprobe_multi_opts *opts) 11936 { 11937 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11938 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11939 unsigned long *resolved_offsets = NULL; 11940 int err = 0, link_fd, prog_fd; 11941 struct bpf_link *link = NULL; 11942 char errmsg[STRERR_BUFSIZE]; 11943 char full_path[PATH_MAX]; 11944 const __u64 *cookies; 11945 const char **syms; 11946 size_t cnt; 11947 11948 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11949 return libbpf_err_ptr(-EINVAL); 11950 11951 prog_fd = bpf_program__fd(prog); 11952 if (prog_fd < 0) { 11953 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11954 prog->name); 11955 return libbpf_err_ptr(-EINVAL); 11956 } 11957 11958 syms = OPTS_GET(opts, syms, NULL); 11959 offsets = OPTS_GET(opts, offsets, NULL); 11960 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11961 cookies = OPTS_GET(opts, cookies, NULL); 11962 cnt = OPTS_GET(opts, cnt, 0); 11963 11964 /* 11965 * User can specify 2 mutually exclusive set of inputs: 11966 * 11967 * 1) use only path/func_pattern/pid arguments 11968 * 11969 * 2) use path/pid with allowed combinations of: 11970 * syms/offsets/ref_ctr_offsets/cookies/cnt 11971 * 11972 * - syms and offsets are mutually exclusive 11973 * - ref_ctr_offsets and cookies are optional 11974 * 11975 * Any other usage results in error. 11976 */ 11977 11978 if (!path) 11979 return libbpf_err_ptr(-EINVAL); 11980 if (!func_pattern && cnt == 0) 11981 return libbpf_err_ptr(-EINVAL); 11982 11983 if (func_pattern) { 11984 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11985 return libbpf_err_ptr(-EINVAL); 11986 } else { 11987 if (!!syms == !!offsets) 11988 return libbpf_err_ptr(-EINVAL); 11989 } 11990 11991 if (func_pattern) { 11992 if (!strchr(path, '/')) { 11993 err = resolve_full_path(path, full_path, sizeof(full_path)); 11994 if (err) { 11995 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11996 prog->name, path, err); 11997 return libbpf_err_ptr(err); 11998 } 11999 path = full_path; 12000 } 12001 12002 err = elf_resolve_pattern_offsets(path, func_pattern, 12003 &resolved_offsets, &cnt); 12004 if (err < 0) 12005 return libbpf_err_ptr(err); 12006 offsets = resolved_offsets; 12007 } else if (syms) { 12008 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 12009 if (err < 0) 12010 return libbpf_err_ptr(err); 12011 offsets = resolved_offsets; 12012 } 12013 12014 lopts.uprobe_multi.path = path; 12015 lopts.uprobe_multi.offsets = offsets; 12016 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 12017 lopts.uprobe_multi.cookies = cookies; 12018 lopts.uprobe_multi.cnt = cnt; 12019 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 12020 12021 if (pid == 0) 12022 pid = getpid(); 12023 if (pid > 0) 12024 lopts.uprobe_multi.pid = pid; 12025 12026 link = calloc(1, sizeof(*link)); 12027 if (!link) { 12028 err = -ENOMEM; 12029 goto error; 12030 } 12031 link->detach = &bpf_link__detach_fd; 12032 12033 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 12034 if (link_fd < 0) { 12035 err = -errno; 12036 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 12037 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12038 goto error; 12039 } 12040 link->fd = link_fd; 12041 free(resolved_offsets); 12042 return link; 12043 12044 error: 12045 free(resolved_offsets); 12046 free(link); 12047 return libbpf_err_ptr(err); 12048 } 12049 12050 LIBBPF_API struct bpf_link * 12051 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 12052 const char *binary_path, size_t func_offset, 12053 const struct bpf_uprobe_opts *opts) 12054 { 12055 const char *archive_path = NULL, *archive_sep = NULL; 12056 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 12057 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12058 enum probe_attach_mode attach_mode; 12059 char full_path[PATH_MAX]; 12060 struct bpf_link *link; 12061 size_t ref_ctr_off; 12062 int pfd, err; 12063 bool retprobe, legacy; 12064 const char *func_name; 12065 12066 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12067 return libbpf_err_ptr(-EINVAL); 12068 12069 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 12070 retprobe = OPTS_GET(opts, retprobe, false); 12071 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 12072 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12073 12074 if (!binary_path) 12075 return libbpf_err_ptr(-EINVAL); 12076 12077 /* Check if "binary_path" refers to an archive. */ 12078 archive_sep = strstr(binary_path, "!/"); 12079 if (archive_sep) { 12080 full_path[0] = '\0'; 12081 libbpf_strlcpy(full_path, binary_path, 12082 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 12083 archive_path = full_path; 12084 binary_path = archive_sep + 2; 12085 } else if (!strchr(binary_path, '/')) { 12086 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 12087 if (err) { 12088 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 12089 prog->name, binary_path, err); 12090 return libbpf_err_ptr(err); 12091 } 12092 binary_path = full_path; 12093 } 12094 func_name = OPTS_GET(opts, func_name, NULL); 12095 if (func_name) { 12096 long sym_off; 12097 12098 if (archive_path) { 12099 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 12100 func_name); 12101 binary_path = archive_path; 12102 } else { 12103 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 12104 } 12105 if (sym_off < 0) 12106 return libbpf_err_ptr(sym_off); 12107 func_offset += sym_off; 12108 } 12109 12110 legacy = determine_uprobe_perf_type() < 0; 12111 switch (attach_mode) { 12112 case PROBE_ATTACH_MODE_LEGACY: 12113 legacy = true; 12114 pe_opts.force_ioctl_attach = true; 12115 break; 12116 case PROBE_ATTACH_MODE_PERF: 12117 if (legacy) 12118 return libbpf_err_ptr(-ENOTSUP); 12119 pe_opts.force_ioctl_attach = true; 12120 break; 12121 case PROBE_ATTACH_MODE_LINK: 12122 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 12123 return libbpf_err_ptr(-ENOTSUP); 12124 break; 12125 case PROBE_ATTACH_MODE_DEFAULT: 12126 break; 12127 default: 12128 return libbpf_err_ptr(-EINVAL); 12129 } 12130 12131 if (!legacy) { 12132 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12133 func_offset, pid, ref_ctr_off); 12134 } else { 12135 char probe_name[PATH_MAX + 64]; 12136 12137 if (ref_ctr_off) 12138 return libbpf_err_ptr(-EINVAL); 12139 12140 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 12141 binary_path, func_offset); 12142 12143 legacy_probe = strdup(probe_name); 12144 if (!legacy_probe) 12145 return libbpf_err_ptr(-ENOMEM); 12146 12147 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12148 binary_path, func_offset, pid); 12149 } 12150 if (pfd < 0) { 12151 err = -errno; 12152 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12153 prog->name, retprobe ? "uretprobe" : "uprobe", 12154 binary_path, func_offset, 12155 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12156 goto err_out; 12157 } 12158 12159 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12160 err = libbpf_get_error(link); 12161 if (err) { 12162 close(pfd); 12163 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12164 prog->name, retprobe ? "uretprobe" : "uprobe", 12165 binary_path, func_offset, 12166 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12167 goto err_clean_legacy; 12168 } 12169 if (legacy) { 12170 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12171 12172 perf_link->legacy_probe_name = legacy_probe; 12173 perf_link->legacy_is_kprobe = false; 12174 perf_link->legacy_is_retprobe = retprobe; 12175 } 12176 return link; 12177 12178 err_clean_legacy: 12179 if (legacy) 12180 remove_uprobe_event_legacy(legacy_probe, retprobe); 12181 err_out: 12182 free(legacy_probe); 12183 return libbpf_err_ptr(err); 12184 } 12185 12186 /* Format of u[ret]probe section definition supporting auto-attach: 12187 * u[ret]probe/binary:function[+offset] 12188 * 12189 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12190 * full binary path via bpf_program__attach_uprobe_opts. 12191 * 12192 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12193 * specified (and auto-attach is not possible) or the above format is specified for 12194 * auto-attach. 12195 */ 12196 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12197 { 12198 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12199 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12200 int n, c, ret = -EINVAL; 12201 long offset = 0; 12202 12203 *link = NULL; 12204 12205 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12206 &probe_type, &binary_path, &func_name); 12207 switch (n) { 12208 case 1: 12209 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12210 ret = 0; 12211 break; 12212 case 2: 12213 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12214 prog->name, prog->sec_name); 12215 break; 12216 case 3: 12217 /* check if user specifies `+offset`, if yes, this should be 12218 * the last part of the string, make sure sscanf read to EOL 12219 */ 12220 func_off = strrchr(func_name, '+'); 12221 if (func_off) { 12222 n = sscanf(func_off, "+%li%n", &offset, &c); 12223 if (n == 1 && *(func_off + c) == '\0') 12224 func_off[0] = '\0'; 12225 else 12226 offset = 0; 12227 } 12228 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12229 strcmp(probe_type, "uretprobe.s") == 0; 12230 if (opts.retprobe && offset != 0) { 12231 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12232 prog->name); 12233 break; 12234 } 12235 opts.func_name = func_name; 12236 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12237 ret = libbpf_get_error(*link); 12238 break; 12239 default: 12240 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12241 prog->sec_name); 12242 break; 12243 } 12244 free(probe_type); 12245 free(binary_path); 12246 free(func_name); 12247 12248 return ret; 12249 } 12250 12251 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12252 bool retprobe, pid_t pid, 12253 const char *binary_path, 12254 size_t func_offset) 12255 { 12256 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12257 12258 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12259 } 12260 12261 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12262 pid_t pid, const char *binary_path, 12263 const char *usdt_provider, const char *usdt_name, 12264 const struct bpf_usdt_opts *opts) 12265 { 12266 char resolved_path[512]; 12267 struct bpf_object *obj = prog->obj; 12268 struct bpf_link *link; 12269 __u64 usdt_cookie; 12270 int err; 12271 12272 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12273 return libbpf_err_ptr(-EINVAL); 12274 12275 if (bpf_program__fd(prog) < 0) { 12276 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12277 prog->name); 12278 return libbpf_err_ptr(-EINVAL); 12279 } 12280 12281 if (!binary_path) 12282 return libbpf_err_ptr(-EINVAL); 12283 12284 if (!strchr(binary_path, '/')) { 12285 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12286 if (err) { 12287 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 12288 prog->name, binary_path, err); 12289 return libbpf_err_ptr(err); 12290 } 12291 binary_path = resolved_path; 12292 } 12293 12294 /* USDT manager is instantiated lazily on first USDT attach. It will 12295 * be destroyed together with BPF object in bpf_object__close(). 12296 */ 12297 if (IS_ERR(obj->usdt_man)) 12298 return libbpf_ptr(obj->usdt_man); 12299 if (!obj->usdt_man) { 12300 obj->usdt_man = usdt_manager_new(obj); 12301 if (IS_ERR(obj->usdt_man)) 12302 return libbpf_ptr(obj->usdt_man); 12303 } 12304 12305 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12306 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12307 usdt_provider, usdt_name, usdt_cookie); 12308 err = libbpf_get_error(link); 12309 if (err) 12310 return libbpf_err_ptr(err); 12311 return link; 12312 } 12313 12314 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12315 { 12316 char *path = NULL, *provider = NULL, *name = NULL; 12317 const char *sec_name; 12318 int n, err; 12319 12320 sec_name = bpf_program__section_name(prog); 12321 if (strcmp(sec_name, "usdt") == 0) { 12322 /* no auto-attach for just SEC("usdt") */ 12323 *link = NULL; 12324 return 0; 12325 } 12326 12327 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12328 if (n != 3) { 12329 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12330 sec_name); 12331 err = -EINVAL; 12332 } else { 12333 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12334 provider, name, NULL); 12335 err = libbpf_get_error(*link); 12336 } 12337 free(path); 12338 free(provider); 12339 free(name); 12340 return err; 12341 } 12342 12343 static int determine_tracepoint_id(const char *tp_category, 12344 const char *tp_name) 12345 { 12346 char file[PATH_MAX]; 12347 int ret; 12348 12349 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12350 tracefs_path(), tp_category, tp_name); 12351 if (ret < 0) 12352 return -errno; 12353 if (ret >= sizeof(file)) { 12354 pr_debug("tracepoint %s/%s path is too long\n", 12355 tp_category, tp_name); 12356 return -E2BIG; 12357 } 12358 return parse_uint_from_file(file, "%d\n"); 12359 } 12360 12361 static int perf_event_open_tracepoint(const char *tp_category, 12362 const char *tp_name) 12363 { 12364 const size_t attr_sz = sizeof(struct perf_event_attr); 12365 struct perf_event_attr attr; 12366 char errmsg[STRERR_BUFSIZE]; 12367 int tp_id, pfd, err; 12368 12369 tp_id = determine_tracepoint_id(tp_category, tp_name); 12370 if (tp_id < 0) { 12371 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12372 tp_category, tp_name, 12373 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 12374 return tp_id; 12375 } 12376 12377 memset(&attr, 0, attr_sz); 12378 attr.type = PERF_TYPE_TRACEPOINT; 12379 attr.size = attr_sz; 12380 attr.config = tp_id; 12381 12382 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12383 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12384 if (pfd < 0) { 12385 err = -errno; 12386 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12387 tp_category, tp_name, 12388 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12389 return err; 12390 } 12391 return pfd; 12392 } 12393 12394 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12395 const char *tp_category, 12396 const char *tp_name, 12397 const struct bpf_tracepoint_opts *opts) 12398 { 12399 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12400 char errmsg[STRERR_BUFSIZE]; 12401 struct bpf_link *link; 12402 int pfd, err; 12403 12404 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12405 return libbpf_err_ptr(-EINVAL); 12406 12407 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12408 12409 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12410 if (pfd < 0) { 12411 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12412 prog->name, tp_category, tp_name, 12413 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12414 return libbpf_err_ptr(pfd); 12415 } 12416 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12417 err = libbpf_get_error(link); 12418 if (err) { 12419 close(pfd); 12420 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12421 prog->name, tp_category, tp_name, 12422 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12423 return libbpf_err_ptr(err); 12424 } 12425 return link; 12426 } 12427 12428 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12429 const char *tp_category, 12430 const char *tp_name) 12431 { 12432 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12433 } 12434 12435 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12436 { 12437 char *sec_name, *tp_cat, *tp_name; 12438 12439 *link = NULL; 12440 12441 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12442 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12443 return 0; 12444 12445 sec_name = strdup(prog->sec_name); 12446 if (!sec_name) 12447 return -ENOMEM; 12448 12449 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12450 if (str_has_pfx(prog->sec_name, "tp/")) 12451 tp_cat = sec_name + sizeof("tp/") - 1; 12452 else 12453 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12454 tp_name = strchr(tp_cat, '/'); 12455 if (!tp_name) { 12456 free(sec_name); 12457 return -EINVAL; 12458 } 12459 *tp_name = '\0'; 12460 tp_name++; 12461 12462 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12463 free(sec_name); 12464 return libbpf_get_error(*link); 12465 } 12466 12467 struct bpf_link * 12468 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12469 const char *tp_name, 12470 struct bpf_raw_tracepoint_opts *opts) 12471 { 12472 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12473 char errmsg[STRERR_BUFSIZE]; 12474 struct bpf_link *link; 12475 int prog_fd, pfd; 12476 12477 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12478 return libbpf_err_ptr(-EINVAL); 12479 12480 prog_fd = bpf_program__fd(prog); 12481 if (prog_fd < 0) { 12482 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12483 return libbpf_err_ptr(-EINVAL); 12484 } 12485 12486 link = calloc(1, sizeof(*link)); 12487 if (!link) 12488 return libbpf_err_ptr(-ENOMEM); 12489 link->detach = &bpf_link__detach_fd; 12490 12491 raw_opts.tp_name = tp_name; 12492 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12493 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12494 if (pfd < 0) { 12495 pfd = -errno; 12496 free(link); 12497 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12498 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12499 return libbpf_err_ptr(pfd); 12500 } 12501 link->fd = pfd; 12502 return link; 12503 } 12504 12505 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12506 const char *tp_name) 12507 { 12508 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 12509 } 12510 12511 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12512 { 12513 static const char *const prefixes[] = { 12514 "raw_tp", 12515 "raw_tracepoint", 12516 "raw_tp.w", 12517 "raw_tracepoint.w", 12518 }; 12519 size_t i; 12520 const char *tp_name = NULL; 12521 12522 *link = NULL; 12523 12524 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12525 size_t pfx_len; 12526 12527 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12528 continue; 12529 12530 pfx_len = strlen(prefixes[i]); 12531 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12532 if (prog->sec_name[pfx_len] == '\0') 12533 return 0; 12534 12535 if (prog->sec_name[pfx_len] != '/') 12536 continue; 12537 12538 tp_name = prog->sec_name + pfx_len + 1; 12539 break; 12540 } 12541 12542 if (!tp_name) { 12543 pr_warn("prog '%s': invalid section name '%s'\n", 12544 prog->name, prog->sec_name); 12545 return -EINVAL; 12546 } 12547 12548 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12549 return libbpf_get_error(*link); 12550 } 12551 12552 /* Common logic for all BPF program types that attach to a btf_id */ 12553 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12554 const struct bpf_trace_opts *opts) 12555 { 12556 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12557 char errmsg[STRERR_BUFSIZE]; 12558 struct bpf_link *link; 12559 int prog_fd, pfd; 12560 12561 if (!OPTS_VALID(opts, bpf_trace_opts)) 12562 return libbpf_err_ptr(-EINVAL); 12563 12564 prog_fd = bpf_program__fd(prog); 12565 if (prog_fd < 0) { 12566 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12567 return libbpf_err_ptr(-EINVAL); 12568 } 12569 12570 link = calloc(1, sizeof(*link)); 12571 if (!link) 12572 return libbpf_err_ptr(-ENOMEM); 12573 link->detach = &bpf_link__detach_fd; 12574 12575 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12576 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12577 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12578 if (pfd < 0) { 12579 pfd = -errno; 12580 free(link); 12581 pr_warn("prog '%s': failed to attach: %s\n", 12582 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12583 return libbpf_err_ptr(pfd); 12584 } 12585 link->fd = pfd; 12586 return link; 12587 } 12588 12589 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12590 { 12591 return bpf_program__attach_btf_id(prog, NULL); 12592 } 12593 12594 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12595 const struct bpf_trace_opts *opts) 12596 { 12597 return bpf_program__attach_btf_id(prog, opts); 12598 } 12599 12600 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12601 { 12602 return bpf_program__attach_btf_id(prog, NULL); 12603 } 12604 12605 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12606 { 12607 *link = bpf_program__attach_trace(prog); 12608 return libbpf_get_error(*link); 12609 } 12610 12611 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12612 { 12613 *link = bpf_program__attach_lsm(prog); 12614 return libbpf_get_error(*link); 12615 } 12616 12617 static struct bpf_link * 12618 bpf_program_attach_fd(const struct bpf_program *prog, 12619 int target_fd, const char *target_name, 12620 const struct bpf_link_create_opts *opts) 12621 { 12622 enum bpf_attach_type attach_type; 12623 char errmsg[STRERR_BUFSIZE]; 12624 struct bpf_link *link; 12625 int prog_fd, link_fd; 12626 12627 prog_fd = bpf_program__fd(prog); 12628 if (prog_fd < 0) { 12629 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12630 return libbpf_err_ptr(-EINVAL); 12631 } 12632 12633 link = calloc(1, sizeof(*link)); 12634 if (!link) 12635 return libbpf_err_ptr(-ENOMEM); 12636 link->detach = &bpf_link__detach_fd; 12637 12638 attach_type = bpf_program__expected_attach_type(prog); 12639 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12640 if (link_fd < 0) { 12641 link_fd = -errno; 12642 free(link); 12643 pr_warn("prog '%s': failed to attach to %s: %s\n", 12644 prog->name, target_name, 12645 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12646 return libbpf_err_ptr(link_fd); 12647 } 12648 link->fd = link_fd; 12649 return link; 12650 } 12651 12652 struct bpf_link * 12653 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12654 { 12655 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12656 } 12657 12658 struct bpf_link * 12659 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12660 { 12661 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12662 } 12663 12664 struct bpf_link * 12665 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 12666 { 12667 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 12668 } 12669 12670 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12671 { 12672 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12673 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12674 } 12675 12676 struct bpf_link * 12677 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12678 const struct bpf_tcx_opts *opts) 12679 { 12680 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12681 __u32 relative_id; 12682 int relative_fd; 12683 12684 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12685 return libbpf_err_ptr(-EINVAL); 12686 12687 relative_id = OPTS_GET(opts, relative_id, 0); 12688 relative_fd = OPTS_GET(opts, relative_fd, 0); 12689 12690 /* validate we don't have unexpected combinations of non-zero fields */ 12691 if (!ifindex) { 12692 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12693 prog->name); 12694 return libbpf_err_ptr(-EINVAL); 12695 } 12696 if (relative_fd && relative_id) { 12697 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12698 prog->name); 12699 return libbpf_err_ptr(-EINVAL); 12700 } 12701 12702 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12703 link_create_opts.tcx.relative_fd = relative_fd; 12704 link_create_opts.tcx.relative_id = relative_id; 12705 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12706 12707 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12708 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12709 } 12710 12711 struct bpf_link * 12712 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12713 const struct bpf_netkit_opts *opts) 12714 { 12715 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12716 __u32 relative_id; 12717 int relative_fd; 12718 12719 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12720 return libbpf_err_ptr(-EINVAL); 12721 12722 relative_id = OPTS_GET(opts, relative_id, 0); 12723 relative_fd = OPTS_GET(opts, relative_fd, 0); 12724 12725 /* validate we don't have unexpected combinations of non-zero fields */ 12726 if (!ifindex) { 12727 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12728 prog->name); 12729 return libbpf_err_ptr(-EINVAL); 12730 } 12731 if (relative_fd && relative_id) { 12732 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12733 prog->name); 12734 return libbpf_err_ptr(-EINVAL); 12735 } 12736 12737 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12738 link_create_opts.netkit.relative_fd = relative_fd; 12739 link_create_opts.netkit.relative_id = relative_id; 12740 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12741 12742 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12743 } 12744 12745 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12746 int target_fd, 12747 const char *attach_func_name) 12748 { 12749 int btf_id; 12750 12751 if (!!target_fd != !!attach_func_name) { 12752 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12753 prog->name); 12754 return libbpf_err_ptr(-EINVAL); 12755 } 12756 12757 if (prog->type != BPF_PROG_TYPE_EXT) { 12758 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12759 prog->name); 12760 return libbpf_err_ptr(-EINVAL); 12761 } 12762 12763 if (target_fd) { 12764 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12765 12766 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12767 if (btf_id < 0) 12768 return libbpf_err_ptr(btf_id); 12769 12770 target_opts.target_btf_id = btf_id; 12771 12772 return bpf_program_attach_fd(prog, target_fd, "freplace", 12773 &target_opts); 12774 } else { 12775 /* no target, so use raw_tracepoint_open for compatibility 12776 * with old kernels 12777 */ 12778 return bpf_program__attach_trace(prog); 12779 } 12780 } 12781 12782 struct bpf_link * 12783 bpf_program__attach_iter(const struct bpf_program *prog, 12784 const struct bpf_iter_attach_opts *opts) 12785 { 12786 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12787 char errmsg[STRERR_BUFSIZE]; 12788 struct bpf_link *link; 12789 int prog_fd, link_fd; 12790 __u32 target_fd = 0; 12791 12792 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12793 return libbpf_err_ptr(-EINVAL); 12794 12795 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12796 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12797 12798 prog_fd = bpf_program__fd(prog); 12799 if (prog_fd < 0) { 12800 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12801 return libbpf_err_ptr(-EINVAL); 12802 } 12803 12804 link = calloc(1, sizeof(*link)); 12805 if (!link) 12806 return libbpf_err_ptr(-ENOMEM); 12807 link->detach = &bpf_link__detach_fd; 12808 12809 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12810 &link_create_opts); 12811 if (link_fd < 0) { 12812 link_fd = -errno; 12813 free(link); 12814 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12815 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12816 return libbpf_err_ptr(link_fd); 12817 } 12818 link->fd = link_fd; 12819 return link; 12820 } 12821 12822 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12823 { 12824 *link = bpf_program__attach_iter(prog, NULL); 12825 return libbpf_get_error(*link); 12826 } 12827 12828 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12829 const struct bpf_netfilter_opts *opts) 12830 { 12831 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12832 struct bpf_link *link; 12833 int prog_fd, link_fd; 12834 12835 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12836 return libbpf_err_ptr(-EINVAL); 12837 12838 prog_fd = bpf_program__fd(prog); 12839 if (prog_fd < 0) { 12840 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12841 return libbpf_err_ptr(-EINVAL); 12842 } 12843 12844 link = calloc(1, sizeof(*link)); 12845 if (!link) 12846 return libbpf_err_ptr(-ENOMEM); 12847 12848 link->detach = &bpf_link__detach_fd; 12849 12850 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12851 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12852 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12853 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12854 12855 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12856 if (link_fd < 0) { 12857 char errmsg[STRERR_BUFSIZE]; 12858 12859 link_fd = -errno; 12860 free(link); 12861 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12862 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12863 return libbpf_err_ptr(link_fd); 12864 } 12865 link->fd = link_fd; 12866 12867 return link; 12868 } 12869 12870 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12871 { 12872 struct bpf_link *link = NULL; 12873 int err; 12874 12875 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12876 return libbpf_err_ptr(-EOPNOTSUPP); 12877 12878 if (bpf_program__fd(prog) < 0) { 12879 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12880 prog->name); 12881 return libbpf_err_ptr(-EINVAL); 12882 } 12883 12884 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12885 if (err) 12886 return libbpf_err_ptr(err); 12887 12888 /* When calling bpf_program__attach() explicitly, auto-attach support 12889 * is expected to work, so NULL returned link is considered an error. 12890 * This is different for skeleton's attach, see comment in 12891 * bpf_object__attach_skeleton(). 12892 */ 12893 if (!link) 12894 return libbpf_err_ptr(-EOPNOTSUPP); 12895 12896 return link; 12897 } 12898 12899 struct bpf_link_struct_ops { 12900 struct bpf_link link; 12901 int map_fd; 12902 }; 12903 12904 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12905 { 12906 struct bpf_link_struct_ops *st_link; 12907 __u32 zero = 0; 12908 12909 st_link = container_of(link, struct bpf_link_struct_ops, link); 12910 12911 if (st_link->map_fd < 0) 12912 /* w/o a real link */ 12913 return bpf_map_delete_elem(link->fd, &zero); 12914 12915 return close(link->fd); 12916 } 12917 12918 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12919 { 12920 struct bpf_link_struct_ops *link; 12921 __u32 zero = 0; 12922 int err, fd; 12923 12924 if (!bpf_map__is_struct_ops(map)) { 12925 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name); 12926 return libbpf_err_ptr(-EINVAL); 12927 } 12928 12929 if (map->fd < 0) { 12930 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 12931 return libbpf_err_ptr(-EINVAL); 12932 } 12933 12934 link = calloc(1, sizeof(*link)); 12935 if (!link) 12936 return libbpf_err_ptr(-EINVAL); 12937 12938 /* kern_vdata should be prepared during the loading phase. */ 12939 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12940 /* It can be EBUSY if the map has been used to create or 12941 * update a link before. We don't allow updating the value of 12942 * a struct_ops once it is set. That ensures that the value 12943 * never changed. So, it is safe to skip EBUSY. 12944 */ 12945 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12946 free(link); 12947 return libbpf_err_ptr(err); 12948 } 12949 12950 link->link.detach = bpf_link__detach_struct_ops; 12951 12952 if (!(map->def.map_flags & BPF_F_LINK)) { 12953 /* w/o a real link */ 12954 link->link.fd = map->fd; 12955 link->map_fd = -1; 12956 return &link->link; 12957 } 12958 12959 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12960 if (fd < 0) { 12961 free(link); 12962 return libbpf_err_ptr(fd); 12963 } 12964 12965 link->link.fd = fd; 12966 link->map_fd = map->fd; 12967 12968 return &link->link; 12969 } 12970 12971 /* 12972 * Swap the back struct_ops of a link with a new struct_ops map. 12973 */ 12974 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12975 { 12976 struct bpf_link_struct_ops *st_ops_link; 12977 __u32 zero = 0; 12978 int err; 12979 12980 if (!bpf_map__is_struct_ops(map)) 12981 return -EINVAL; 12982 12983 if (map->fd < 0) { 12984 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 12985 return -EINVAL; 12986 } 12987 12988 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12989 /* Ensure the type of a link is correct */ 12990 if (st_ops_link->map_fd < 0) 12991 return -EINVAL; 12992 12993 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12994 /* It can be EBUSY if the map has been used to create or 12995 * update a link before. We don't allow updating the value of 12996 * a struct_ops once it is set. That ensures that the value 12997 * never changed. So, it is safe to skip EBUSY. 12998 */ 12999 if (err && err != -EBUSY) 13000 return err; 13001 13002 err = bpf_link_update(link->fd, map->fd, NULL); 13003 if (err < 0) 13004 return err; 13005 13006 st_ops_link->map_fd = map->fd; 13007 13008 return 0; 13009 } 13010 13011 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 13012 void *private_data); 13013 13014 static enum bpf_perf_event_ret 13015 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 13016 void **copy_mem, size_t *copy_size, 13017 bpf_perf_event_print_t fn, void *private_data) 13018 { 13019 struct perf_event_mmap_page *header = mmap_mem; 13020 __u64 data_head = ring_buffer_read_head(header); 13021 __u64 data_tail = header->data_tail; 13022 void *base = ((__u8 *)header) + page_size; 13023 int ret = LIBBPF_PERF_EVENT_CONT; 13024 struct perf_event_header *ehdr; 13025 size_t ehdr_size; 13026 13027 while (data_head != data_tail) { 13028 ehdr = base + (data_tail & (mmap_size - 1)); 13029 ehdr_size = ehdr->size; 13030 13031 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 13032 void *copy_start = ehdr; 13033 size_t len_first = base + mmap_size - copy_start; 13034 size_t len_secnd = ehdr_size - len_first; 13035 13036 if (*copy_size < ehdr_size) { 13037 free(*copy_mem); 13038 *copy_mem = malloc(ehdr_size); 13039 if (!*copy_mem) { 13040 *copy_size = 0; 13041 ret = LIBBPF_PERF_EVENT_ERROR; 13042 break; 13043 } 13044 *copy_size = ehdr_size; 13045 } 13046 13047 memcpy(*copy_mem, copy_start, len_first); 13048 memcpy(*copy_mem + len_first, base, len_secnd); 13049 ehdr = *copy_mem; 13050 } 13051 13052 ret = fn(ehdr, private_data); 13053 data_tail += ehdr_size; 13054 if (ret != LIBBPF_PERF_EVENT_CONT) 13055 break; 13056 } 13057 13058 ring_buffer_write_tail(header, data_tail); 13059 return libbpf_err(ret); 13060 } 13061 13062 struct perf_buffer; 13063 13064 struct perf_buffer_params { 13065 struct perf_event_attr *attr; 13066 /* if event_cb is specified, it takes precendence */ 13067 perf_buffer_event_fn event_cb; 13068 /* sample_cb and lost_cb are higher-level common-case callbacks */ 13069 perf_buffer_sample_fn sample_cb; 13070 perf_buffer_lost_fn lost_cb; 13071 void *ctx; 13072 int cpu_cnt; 13073 int *cpus; 13074 int *map_keys; 13075 }; 13076 13077 struct perf_cpu_buf { 13078 struct perf_buffer *pb; 13079 void *base; /* mmap()'ed memory */ 13080 void *buf; /* for reconstructing segmented data */ 13081 size_t buf_size; 13082 int fd; 13083 int cpu; 13084 int map_key; 13085 }; 13086 13087 struct perf_buffer { 13088 perf_buffer_event_fn event_cb; 13089 perf_buffer_sample_fn sample_cb; 13090 perf_buffer_lost_fn lost_cb; 13091 void *ctx; /* passed into callbacks */ 13092 13093 size_t page_size; 13094 size_t mmap_size; 13095 struct perf_cpu_buf **cpu_bufs; 13096 struct epoll_event *events; 13097 int cpu_cnt; /* number of allocated CPU buffers */ 13098 int epoll_fd; /* perf event FD */ 13099 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 13100 }; 13101 13102 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 13103 struct perf_cpu_buf *cpu_buf) 13104 { 13105 if (!cpu_buf) 13106 return; 13107 if (cpu_buf->base && 13108 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 13109 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 13110 if (cpu_buf->fd >= 0) { 13111 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 13112 close(cpu_buf->fd); 13113 } 13114 free(cpu_buf->buf); 13115 free(cpu_buf); 13116 } 13117 13118 void perf_buffer__free(struct perf_buffer *pb) 13119 { 13120 int i; 13121 13122 if (IS_ERR_OR_NULL(pb)) 13123 return; 13124 if (pb->cpu_bufs) { 13125 for (i = 0; i < pb->cpu_cnt; i++) { 13126 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13127 13128 if (!cpu_buf) 13129 continue; 13130 13131 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13132 perf_buffer__free_cpu_buf(pb, cpu_buf); 13133 } 13134 free(pb->cpu_bufs); 13135 } 13136 if (pb->epoll_fd >= 0) 13137 close(pb->epoll_fd); 13138 free(pb->events); 13139 free(pb); 13140 } 13141 13142 static struct perf_cpu_buf * 13143 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13144 int cpu, int map_key) 13145 { 13146 struct perf_cpu_buf *cpu_buf; 13147 char msg[STRERR_BUFSIZE]; 13148 int err; 13149 13150 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13151 if (!cpu_buf) 13152 return ERR_PTR(-ENOMEM); 13153 13154 cpu_buf->pb = pb; 13155 cpu_buf->cpu = cpu; 13156 cpu_buf->map_key = map_key; 13157 13158 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13159 -1, PERF_FLAG_FD_CLOEXEC); 13160 if (cpu_buf->fd < 0) { 13161 err = -errno; 13162 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13163 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13164 goto error; 13165 } 13166 13167 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13168 PROT_READ | PROT_WRITE, MAP_SHARED, 13169 cpu_buf->fd, 0); 13170 if (cpu_buf->base == MAP_FAILED) { 13171 cpu_buf->base = NULL; 13172 err = -errno; 13173 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13174 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13175 goto error; 13176 } 13177 13178 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13179 err = -errno; 13180 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13181 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13182 goto error; 13183 } 13184 13185 return cpu_buf; 13186 13187 error: 13188 perf_buffer__free_cpu_buf(pb, cpu_buf); 13189 return (struct perf_cpu_buf *)ERR_PTR(err); 13190 } 13191 13192 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13193 struct perf_buffer_params *p); 13194 13195 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13196 perf_buffer_sample_fn sample_cb, 13197 perf_buffer_lost_fn lost_cb, 13198 void *ctx, 13199 const struct perf_buffer_opts *opts) 13200 { 13201 const size_t attr_sz = sizeof(struct perf_event_attr); 13202 struct perf_buffer_params p = {}; 13203 struct perf_event_attr attr; 13204 __u32 sample_period; 13205 13206 if (!OPTS_VALID(opts, perf_buffer_opts)) 13207 return libbpf_err_ptr(-EINVAL); 13208 13209 sample_period = OPTS_GET(opts, sample_period, 1); 13210 if (!sample_period) 13211 sample_period = 1; 13212 13213 memset(&attr, 0, attr_sz); 13214 attr.size = attr_sz; 13215 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13216 attr.type = PERF_TYPE_SOFTWARE; 13217 attr.sample_type = PERF_SAMPLE_RAW; 13218 attr.sample_period = sample_period; 13219 attr.wakeup_events = sample_period; 13220 13221 p.attr = &attr; 13222 p.sample_cb = sample_cb; 13223 p.lost_cb = lost_cb; 13224 p.ctx = ctx; 13225 13226 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13227 } 13228 13229 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13230 struct perf_event_attr *attr, 13231 perf_buffer_event_fn event_cb, void *ctx, 13232 const struct perf_buffer_raw_opts *opts) 13233 { 13234 struct perf_buffer_params p = {}; 13235 13236 if (!attr) 13237 return libbpf_err_ptr(-EINVAL); 13238 13239 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13240 return libbpf_err_ptr(-EINVAL); 13241 13242 p.attr = attr; 13243 p.event_cb = event_cb; 13244 p.ctx = ctx; 13245 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13246 p.cpus = OPTS_GET(opts, cpus, NULL); 13247 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13248 13249 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13250 } 13251 13252 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13253 struct perf_buffer_params *p) 13254 { 13255 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13256 struct bpf_map_info map; 13257 char msg[STRERR_BUFSIZE]; 13258 struct perf_buffer *pb; 13259 bool *online = NULL; 13260 __u32 map_info_len; 13261 int err, i, j, n; 13262 13263 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13264 pr_warn("page count should be power of two, but is %zu\n", 13265 page_cnt); 13266 return ERR_PTR(-EINVAL); 13267 } 13268 13269 /* best-effort sanity checks */ 13270 memset(&map, 0, sizeof(map)); 13271 map_info_len = sizeof(map); 13272 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13273 if (err) { 13274 err = -errno; 13275 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13276 * -EBADFD, -EFAULT, or -E2BIG on real error 13277 */ 13278 if (err != -EINVAL) { 13279 pr_warn("failed to get map info for map FD %d: %s\n", 13280 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 13281 return ERR_PTR(err); 13282 } 13283 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13284 map_fd); 13285 } else { 13286 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13287 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13288 map.name); 13289 return ERR_PTR(-EINVAL); 13290 } 13291 } 13292 13293 pb = calloc(1, sizeof(*pb)); 13294 if (!pb) 13295 return ERR_PTR(-ENOMEM); 13296 13297 pb->event_cb = p->event_cb; 13298 pb->sample_cb = p->sample_cb; 13299 pb->lost_cb = p->lost_cb; 13300 pb->ctx = p->ctx; 13301 13302 pb->page_size = getpagesize(); 13303 pb->mmap_size = pb->page_size * page_cnt; 13304 pb->map_fd = map_fd; 13305 13306 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13307 if (pb->epoll_fd < 0) { 13308 err = -errno; 13309 pr_warn("failed to create epoll instance: %s\n", 13310 libbpf_strerror_r(err, msg, sizeof(msg))); 13311 goto error; 13312 } 13313 13314 if (p->cpu_cnt > 0) { 13315 pb->cpu_cnt = p->cpu_cnt; 13316 } else { 13317 pb->cpu_cnt = libbpf_num_possible_cpus(); 13318 if (pb->cpu_cnt < 0) { 13319 err = pb->cpu_cnt; 13320 goto error; 13321 } 13322 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13323 pb->cpu_cnt = map.max_entries; 13324 } 13325 13326 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13327 if (!pb->events) { 13328 err = -ENOMEM; 13329 pr_warn("failed to allocate events: out of memory\n"); 13330 goto error; 13331 } 13332 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13333 if (!pb->cpu_bufs) { 13334 err = -ENOMEM; 13335 pr_warn("failed to allocate buffers: out of memory\n"); 13336 goto error; 13337 } 13338 13339 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13340 if (err) { 13341 pr_warn("failed to get online CPU mask: %d\n", err); 13342 goto error; 13343 } 13344 13345 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13346 struct perf_cpu_buf *cpu_buf; 13347 int cpu, map_key; 13348 13349 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13350 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13351 13352 /* in case user didn't explicitly requested particular CPUs to 13353 * be attached to, skip offline/not present CPUs 13354 */ 13355 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13356 continue; 13357 13358 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13359 if (IS_ERR(cpu_buf)) { 13360 err = PTR_ERR(cpu_buf); 13361 goto error; 13362 } 13363 13364 pb->cpu_bufs[j] = cpu_buf; 13365 13366 err = bpf_map_update_elem(pb->map_fd, &map_key, 13367 &cpu_buf->fd, 0); 13368 if (err) { 13369 err = -errno; 13370 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13371 cpu, map_key, cpu_buf->fd, 13372 libbpf_strerror_r(err, msg, sizeof(msg))); 13373 goto error; 13374 } 13375 13376 pb->events[j].events = EPOLLIN; 13377 pb->events[j].data.ptr = cpu_buf; 13378 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13379 &pb->events[j]) < 0) { 13380 err = -errno; 13381 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13382 cpu, cpu_buf->fd, 13383 libbpf_strerror_r(err, msg, sizeof(msg))); 13384 goto error; 13385 } 13386 j++; 13387 } 13388 pb->cpu_cnt = j; 13389 free(online); 13390 13391 return pb; 13392 13393 error: 13394 free(online); 13395 if (pb) 13396 perf_buffer__free(pb); 13397 return ERR_PTR(err); 13398 } 13399 13400 struct perf_sample_raw { 13401 struct perf_event_header header; 13402 uint32_t size; 13403 char data[]; 13404 }; 13405 13406 struct perf_sample_lost { 13407 struct perf_event_header header; 13408 uint64_t id; 13409 uint64_t lost; 13410 uint64_t sample_id; 13411 }; 13412 13413 static enum bpf_perf_event_ret 13414 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13415 { 13416 struct perf_cpu_buf *cpu_buf = ctx; 13417 struct perf_buffer *pb = cpu_buf->pb; 13418 void *data = e; 13419 13420 /* user wants full control over parsing perf event */ 13421 if (pb->event_cb) 13422 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13423 13424 switch (e->type) { 13425 case PERF_RECORD_SAMPLE: { 13426 struct perf_sample_raw *s = data; 13427 13428 if (pb->sample_cb) 13429 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13430 break; 13431 } 13432 case PERF_RECORD_LOST: { 13433 struct perf_sample_lost *s = data; 13434 13435 if (pb->lost_cb) 13436 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13437 break; 13438 } 13439 default: 13440 pr_warn("unknown perf sample type %d\n", e->type); 13441 return LIBBPF_PERF_EVENT_ERROR; 13442 } 13443 return LIBBPF_PERF_EVENT_CONT; 13444 } 13445 13446 static int perf_buffer__process_records(struct perf_buffer *pb, 13447 struct perf_cpu_buf *cpu_buf) 13448 { 13449 enum bpf_perf_event_ret ret; 13450 13451 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13452 pb->page_size, &cpu_buf->buf, 13453 &cpu_buf->buf_size, 13454 perf_buffer__process_record, cpu_buf); 13455 if (ret != LIBBPF_PERF_EVENT_CONT) 13456 return ret; 13457 return 0; 13458 } 13459 13460 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13461 { 13462 return pb->epoll_fd; 13463 } 13464 13465 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13466 { 13467 int i, cnt, err; 13468 13469 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13470 if (cnt < 0) 13471 return -errno; 13472 13473 for (i = 0; i < cnt; i++) { 13474 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13475 13476 err = perf_buffer__process_records(pb, cpu_buf); 13477 if (err) { 13478 pr_warn("error while processing records: %d\n", err); 13479 return libbpf_err(err); 13480 } 13481 } 13482 return cnt; 13483 } 13484 13485 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13486 * manager. 13487 */ 13488 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13489 { 13490 return pb->cpu_cnt; 13491 } 13492 13493 /* 13494 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13495 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13496 * select()/poll()/epoll() Linux syscalls. 13497 */ 13498 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13499 { 13500 struct perf_cpu_buf *cpu_buf; 13501 13502 if (buf_idx >= pb->cpu_cnt) 13503 return libbpf_err(-EINVAL); 13504 13505 cpu_buf = pb->cpu_bufs[buf_idx]; 13506 if (!cpu_buf) 13507 return libbpf_err(-ENOENT); 13508 13509 return cpu_buf->fd; 13510 } 13511 13512 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13513 { 13514 struct perf_cpu_buf *cpu_buf; 13515 13516 if (buf_idx >= pb->cpu_cnt) 13517 return libbpf_err(-EINVAL); 13518 13519 cpu_buf = pb->cpu_bufs[buf_idx]; 13520 if (!cpu_buf) 13521 return libbpf_err(-ENOENT); 13522 13523 *buf = cpu_buf->base; 13524 *buf_size = pb->mmap_size; 13525 return 0; 13526 } 13527 13528 /* 13529 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13530 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13531 * consume, do nothing and return success. 13532 * Returns: 13533 * - 0 on success; 13534 * - <0 on failure. 13535 */ 13536 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13537 { 13538 struct perf_cpu_buf *cpu_buf; 13539 13540 if (buf_idx >= pb->cpu_cnt) 13541 return libbpf_err(-EINVAL); 13542 13543 cpu_buf = pb->cpu_bufs[buf_idx]; 13544 if (!cpu_buf) 13545 return libbpf_err(-ENOENT); 13546 13547 return perf_buffer__process_records(pb, cpu_buf); 13548 } 13549 13550 int perf_buffer__consume(struct perf_buffer *pb) 13551 { 13552 int i, err; 13553 13554 for (i = 0; i < pb->cpu_cnt; i++) { 13555 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13556 13557 if (!cpu_buf) 13558 continue; 13559 13560 err = perf_buffer__process_records(pb, cpu_buf); 13561 if (err) { 13562 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 13563 return libbpf_err(err); 13564 } 13565 } 13566 return 0; 13567 } 13568 13569 int bpf_program__set_attach_target(struct bpf_program *prog, 13570 int attach_prog_fd, 13571 const char *attach_func_name) 13572 { 13573 int btf_obj_fd = 0, btf_id = 0, err; 13574 13575 if (!prog || attach_prog_fd < 0) 13576 return libbpf_err(-EINVAL); 13577 13578 if (prog->obj->loaded) 13579 return libbpf_err(-EINVAL); 13580 13581 if (attach_prog_fd && !attach_func_name) { 13582 /* remember attach_prog_fd and let bpf_program__load() find 13583 * BTF ID during the program load 13584 */ 13585 prog->attach_prog_fd = attach_prog_fd; 13586 return 0; 13587 } 13588 13589 if (attach_prog_fd) { 13590 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13591 attach_prog_fd); 13592 if (btf_id < 0) 13593 return libbpf_err(btf_id); 13594 } else { 13595 if (!attach_func_name) 13596 return libbpf_err(-EINVAL); 13597 13598 /* load btf_vmlinux, if not yet */ 13599 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13600 if (err) 13601 return libbpf_err(err); 13602 err = find_kernel_btf_id(prog->obj, attach_func_name, 13603 prog->expected_attach_type, 13604 &btf_obj_fd, &btf_id); 13605 if (err) 13606 return libbpf_err(err); 13607 } 13608 13609 prog->attach_btf_id = btf_id; 13610 prog->attach_btf_obj_fd = btf_obj_fd; 13611 prog->attach_prog_fd = attach_prog_fd; 13612 return 0; 13613 } 13614 13615 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13616 { 13617 int err = 0, n, len, start, end = -1; 13618 bool *tmp; 13619 13620 *mask = NULL; 13621 *mask_sz = 0; 13622 13623 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13624 while (*s) { 13625 if (*s == ',' || *s == '\n') { 13626 s++; 13627 continue; 13628 } 13629 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13630 if (n <= 0 || n > 2) { 13631 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13632 err = -EINVAL; 13633 goto cleanup; 13634 } else if (n == 1) { 13635 end = start; 13636 } 13637 if (start < 0 || start > end) { 13638 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13639 start, end, s); 13640 err = -EINVAL; 13641 goto cleanup; 13642 } 13643 tmp = realloc(*mask, end + 1); 13644 if (!tmp) { 13645 err = -ENOMEM; 13646 goto cleanup; 13647 } 13648 *mask = tmp; 13649 memset(tmp + *mask_sz, 0, start - *mask_sz); 13650 memset(tmp + start, 1, end - start + 1); 13651 *mask_sz = end + 1; 13652 s += len; 13653 } 13654 if (!*mask_sz) { 13655 pr_warn("Empty CPU range\n"); 13656 return -EINVAL; 13657 } 13658 return 0; 13659 cleanup: 13660 free(*mask); 13661 *mask = NULL; 13662 return err; 13663 } 13664 13665 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13666 { 13667 int fd, err = 0, len; 13668 char buf[128]; 13669 13670 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13671 if (fd < 0) { 13672 err = -errno; 13673 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13674 return err; 13675 } 13676 len = read(fd, buf, sizeof(buf)); 13677 close(fd); 13678 if (len <= 0) { 13679 err = len ? -errno : -EINVAL; 13680 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13681 return err; 13682 } 13683 if (len >= sizeof(buf)) { 13684 pr_warn("CPU mask is too big in file %s\n", fcpu); 13685 return -E2BIG; 13686 } 13687 buf[len] = '\0'; 13688 13689 return parse_cpu_mask_str(buf, mask, mask_sz); 13690 } 13691 13692 int libbpf_num_possible_cpus(void) 13693 { 13694 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13695 static int cpus; 13696 int err, n, i, tmp_cpus; 13697 bool *mask; 13698 13699 tmp_cpus = READ_ONCE(cpus); 13700 if (tmp_cpus > 0) 13701 return tmp_cpus; 13702 13703 err = parse_cpu_mask_file(fcpu, &mask, &n); 13704 if (err) 13705 return libbpf_err(err); 13706 13707 tmp_cpus = 0; 13708 for (i = 0; i < n; i++) { 13709 if (mask[i]) 13710 tmp_cpus++; 13711 } 13712 free(mask); 13713 13714 WRITE_ONCE(cpus, tmp_cpus); 13715 return tmp_cpus; 13716 } 13717 13718 static int populate_skeleton_maps(const struct bpf_object *obj, 13719 struct bpf_map_skeleton *maps, 13720 size_t map_cnt, size_t map_skel_sz) 13721 { 13722 int i; 13723 13724 for (i = 0; i < map_cnt; i++) { 13725 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz; 13726 struct bpf_map **map = map_skel->map; 13727 const char *name = map_skel->name; 13728 void **mmaped = map_skel->mmaped; 13729 13730 *map = bpf_object__find_map_by_name(obj, name); 13731 if (!*map) { 13732 pr_warn("failed to find skeleton map '%s'\n", name); 13733 return -ESRCH; 13734 } 13735 13736 /* externs shouldn't be pre-setup from user code */ 13737 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13738 *mmaped = (*map)->mmaped; 13739 } 13740 return 0; 13741 } 13742 13743 static int populate_skeleton_progs(const struct bpf_object *obj, 13744 struct bpf_prog_skeleton *progs, 13745 size_t prog_cnt, size_t prog_skel_sz) 13746 { 13747 int i; 13748 13749 for (i = 0; i < prog_cnt; i++) { 13750 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz; 13751 struct bpf_program **prog = prog_skel->prog; 13752 const char *name = prog_skel->name; 13753 13754 *prog = bpf_object__find_program_by_name(obj, name); 13755 if (!*prog) { 13756 pr_warn("failed to find skeleton program '%s'\n", name); 13757 return -ESRCH; 13758 } 13759 } 13760 return 0; 13761 } 13762 13763 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13764 const struct bpf_object_open_opts *opts) 13765 { 13766 struct bpf_object *obj; 13767 int err; 13768 13769 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts); 13770 if (IS_ERR(obj)) { 13771 err = PTR_ERR(obj); 13772 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", s->name, err); 13773 return libbpf_err(err); 13774 } 13775 13776 *s->obj = obj; 13777 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz); 13778 if (err) { 13779 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13780 return libbpf_err(err); 13781 } 13782 13783 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13784 if (err) { 13785 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13786 return libbpf_err(err); 13787 } 13788 13789 return 0; 13790 } 13791 13792 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13793 { 13794 int err, len, var_idx, i; 13795 const char *var_name; 13796 const struct bpf_map *map; 13797 struct btf *btf; 13798 __u32 map_type_id; 13799 const struct btf_type *map_type, *var_type; 13800 const struct bpf_var_skeleton *var_skel; 13801 struct btf_var_secinfo *var; 13802 13803 if (!s->obj) 13804 return libbpf_err(-EINVAL); 13805 13806 btf = bpf_object__btf(s->obj); 13807 if (!btf) { 13808 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13809 bpf_object__name(s->obj)); 13810 return libbpf_err(-errno); 13811 } 13812 13813 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz); 13814 if (err) { 13815 pr_warn("failed to populate subskeleton maps: %d\n", err); 13816 return libbpf_err(err); 13817 } 13818 13819 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13820 if (err) { 13821 pr_warn("failed to populate subskeleton maps: %d\n", err); 13822 return libbpf_err(err); 13823 } 13824 13825 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13826 var_skel = (void *)s->vars + var_idx * s->var_skel_sz; 13827 map = *var_skel->map; 13828 map_type_id = bpf_map__btf_value_type_id(map); 13829 map_type = btf__type_by_id(btf, map_type_id); 13830 13831 if (!btf_is_datasec(map_type)) { 13832 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13833 bpf_map__name(map), 13834 __btf_kind_str(btf_kind(map_type))); 13835 return libbpf_err(-EINVAL); 13836 } 13837 13838 len = btf_vlen(map_type); 13839 var = btf_var_secinfos(map_type); 13840 for (i = 0; i < len; i++, var++) { 13841 var_type = btf__type_by_id(btf, var->type); 13842 var_name = btf__name_by_offset(btf, var_type->name_off); 13843 if (strcmp(var_name, var_skel->name) == 0) { 13844 *var_skel->addr = map->mmaped + var->offset; 13845 break; 13846 } 13847 } 13848 } 13849 return 0; 13850 } 13851 13852 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13853 { 13854 if (!s) 13855 return; 13856 free(s->maps); 13857 free(s->progs); 13858 free(s->vars); 13859 free(s); 13860 } 13861 13862 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13863 { 13864 int i, err; 13865 13866 err = bpf_object__load(*s->obj); 13867 if (err) { 13868 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13869 return libbpf_err(err); 13870 } 13871 13872 for (i = 0; i < s->map_cnt; i++) { 13873 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 13874 struct bpf_map *map = *map_skel->map; 13875 size_t mmap_sz = bpf_map_mmap_sz(map); 13876 int prot, map_fd = map->fd; 13877 void **mmaped = map_skel->mmaped; 13878 13879 if (!mmaped) 13880 continue; 13881 13882 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13883 *mmaped = NULL; 13884 continue; 13885 } 13886 13887 if (map->def.type == BPF_MAP_TYPE_ARENA) { 13888 *mmaped = map->mmaped; 13889 continue; 13890 } 13891 13892 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13893 prot = PROT_READ; 13894 else 13895 prot = PROT_READ | PROT_WRITE; 13896 13897 /* Remap anonymous mmap()-ed "map initialization image" as 13898 * a BPF map-backed mmap()-ed memory, but preserving the same 13899 * memory address. This will cause kernel to change process' 13900 * page table to point to a different piece of kernel memory, 13901 * but from userspace point of view memory address (and its 13902 * contents, being identical at this point) will stay the 13903 * same. This mapping will be released by bpf_object__close() 13904 * as per normal clean up procedure, so we don't need to worry 13905 * about it from skeleton's clean up perspective. 13906 */ 13907 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13908 if (*mmaped == MAP_FAILED) { 13909 err = -errno; 13910 *mmaped = NULL; 13911 pr_warn("failed to re-mmap() map '%s': %d\n", 13912 bpf_map__name(map), err); 13913 return libbpf_err(err); 13914 } 13915 } 13916 13917 return 0; 13918 } 13919 13920 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13921 { 13922 int i, err; 13923 13924 for (i = 0; i < s->prog_cnt; i++) { 13925 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 13926 struct bpf_program *prog = *prog_skel->prog; 13927 struct bpf_link **link = prog_skel->link; 13928 13929 if (!prog->autoload || !prog->autoattach) 13930 continue; 13931 13932 /* auto-attaching not supported for this program */ 13933 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13934 continue; 13935 13936 /* if user already set the link manually, don't attempt auto-attach */ 13937 if (*link) 13938 continue; 13939 13940 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13941 if (err) { 13942 pr_warn("prog '%s': failed to auto-attach: %d\n", 13943 bpf_program__name(prog), err); 13944 return libbpf_err(err); 13945 } 13946 13947 /* It's possible that for some SEC() definitions auto-attach 13948 * is supported in some cases (e.g., if definition completely 13949 * specifies target information), but is not in other cases. 13950 * SEC("uprobe") is one such case. If user specified target 13951 * binary and function name, such BPF program can be 13952 * auto-attached. But if not, it shouldn't trigger skeleton's 13953 * attach to fail. It should just be skipped. 13954 * attach_fn signals such case with returning 0 (no error) and 13955 * setting link to NULL. 13956 */ 13957 } 13958 13959 13960 for (i = 0; i < s->map_cnt; i++) { 13961 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 13962 struct bpf_map *map = *map_skel->map; 13963 struct bpf_link **link; 13964 13965 if (!map->autocreate || !map->autoattach) 13966 continue; 13967 13968 /* only struct_ops maps can be attached */ 13969 if (!bpf_map__is_struct_ops(map)) 13970 continue; 13971 13972 /* skeleton is created with earlier version of bpftool, notify user */ 13973 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) { 13974 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n", 13975 bpf_map__name(map)); 13976 continue; 13977 } 13978 13979 link = map_skel->link; 13980 if (*link) 13981 continue; 13982 13983 *link = bpf_map__attach_struct_ops(map); 13984 if (!*link) { 13985 err = -errno; 13986 pr_warn("map '%s': failed to auto-attach: %d\n", bpf_map__name(map), err); 13987 return libbpf_err(err); 13988 } 13989 } 13990 13991 return 0; 13992 } 13993 13994 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13995 { 13996 int i; 13997 13998 for (i = 0; i < s->prog_cnt; i++) { 13999 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14000 struct bpf_link **link = prog_skel->link; 14001 14002 bpf_link__destroy(*link); 14003 *link = NULL; 14004 } 14005 14006 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton)) 14007 return; 14008 14009 for (i = 0; i < s->map_cnt; i++) { 14010 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14011 struct bpf_link **link = map_skel->link; 14012 14013 if (link) { 14014 bpf_link__destroy(*link); 14015 *link = NULL; 14016 } 14017 } 14018 } 14019 14020 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 14021 { 14022 if (!s) 14023 return; 14024 14025 bpf_object__detach_skeleton(s); 14026 if (s->obj) 14027 bpf_object__close(*s->obj); 14028 free(s->maps); 14029 free(s->progs); 14030 free(s); 14031 } 14032
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.