~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/Documentation/perf.data-file-format.txt

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 perf.data format
  2 
  3 Uptodate as of v4.7
  4 
  5 This document describes the on-disk perf.data format, generated by perf record
  6 or perf inject and consumed by the other perf tools.
  7 
  8 On a high level perf.data contains the events generated by the PMUs, plus metadata.
  9 
 10 All fields are in native-endian of the machine that generated the perf.data.
 11 
 12 When perf is writing to a pipe it uses a special version of the file
 13 format that does not rely on seeking to adjust data offsets.  This
 14 format is described in "Pipe-mode data" section. The pipe data version can be
 15 augmented with additional events using perf inject.
 16 
 17 The file starts with a perf_header:
 18 
 19 struct perf_header {
 20         char magic[8];          /* PERFILE2 */
 21         uint64_t size;          /* size of the header */
 22         uint64_t attr_size;     /* size of an attribute in attrs */
 23         struct perf_file_section attrs;
 24         struct perf_file_section data;
 25         struct perf_file_section event_types;
 26         uint64_t flags;
 27         uint64_t flags1[3];
 28 };
 29 
 30 The magic number identifies the perf file and the version. Current perf versions
 31 use PERFILE2. Old perf versions generated a version 1 format (PERFFILE). Version 1
 32 is not described here. The magic number also identifies the endian. When the
 33 magic value is 64bit byte swapped compared the file is in non-native
 34 endian.
 35 
 36 A perf_file_section contains a pointer to another section of the perf file.
 37 The header contains three such pointers: for attributes, data and event types.
 38 
 39 struct perf_file_section {
 40         uint64_t offset;        /* offset from start of file */
 41         uint64_t size;          /* size of the section */
 42 };
 43 
 44 Flags section:
 45 
 46 For each of the optional features a perf_file_section is placed after the data
 47 section if the feature bit is set in the perf_header flags bitset. The
 48 respective perf_file_section points to the data of the additional header and
 49 defines its size.
 50 
 51 Some headers consist of strings, which are defined like this:
 52 
 53 struct perf_header_string {
 54        uint32_t len;
 55        char string[len]; /* zero terminated */
 56 };
 57 
 58 Some headers consist of a sequence of strings, which start with a
 59 
 60 struct perf_header_string_list {
 61      uint32_t nr;
 62      struct perf_header_string strings[nr]; /* variable length records */
 63 };
 64 
 65 The bits are the flags bits in a 256 bit bitmap starting with
 66 flags. These define the valid bits:
 67 
 68         HEADER_RESERVED         = 0,    /* always cleared */
 69         HEADER_FIRST_FEATURE    = 1,
 70         HEADER_TRACING_DATA     = 1,
 71 
 72 Describe me.
 73 
 74         HEADER_BUILD_ID = 2,
 75 
 76 The header consists of an sequence of build_id_event. The size of each record
 77 is defined by header.size (see perf_event.h). Each event defines a ELF build id
 78 for a executable file name for a pid. An ELF build id is a unique identifier
 79 assigned by the linker to an executable.
 80 
 81 struct build_id_event {
 82         struct perf_event_header header;
 83         pid_t                    pid;
 84         uint8_t                  build_id[24];
 85         char                     filename[header.size - offsetof(struct build_id_event, filename)];
 86 };
 87 
 88         HEADER_HOSTNAME = 3,
 89 
 90 A perf_header_string with the hostname where the data was collected
 91 (uname -n)
 92 
 93         HEADER_OSRELEASE = 4,
 94 
 95 A perf_header_string with the os release where the data was collected
 96 (uname -r)
 97 
 98         HEADER_VERSION = 5,
 99 
100 A perf_header_string with the perf user tool version where the
101 data was collected. This is the same as the version of the source tree
102 the perf tool was built from.
103 
104         HEADER_ARCH = 6,
105 
106 A perf_header_string with the CPU architecture (uname -m)
107 
108         HEADER_NRCPUS = 7,
109 
110 A structure defining the number of CPUs.
111 
112 struct nr_cpus {
113        uint32_t nr_cpus_available; /* CPUs not yet onlined */
114        uint32_t nr_cpus_online;
115 };
116 
117         HEADER_CPUDESC = 8,
118 
119 A perf_header_string with description of the CPU. On x86 this is the model name
120 in /proc/cpuinfo
121 
122         HEADER_CPUID = 9,
123 
124 A perf_header_string with the exact CPU type. On x86 this is
125 vendor,family,model,stepping. For example: GenuineIntel,6,69,1
126 
127         HEADER_TOTAL_MEM = 10,
128 
129 An uint64_t with the total memory in kilobytes.
130 
131         HEADER_CMDLINE = 11,
132 
133 A perf_header_string_list with the perf arg-vector used to collect the data.
134 
135         HEADER_EVENT_DESC = 12,
136 
137 Another description of the perf_event_attrs, more detailed than header.attrs
138 including IDs and names. See perf_event.h or the man page for a description
139 of a struct perf_event_attr.
140 
141 struct {
142        uint32_t nr; /* number of events */
143        uint32_t attr_size; /* size of each perf_event_attr */
144        struct {
145               struct perf_event_attr attr;  /* size of attr_size */
146               uint32_t nr_ids;
147               struct perf_header_string event_string;
148               uint64_t ids[nr_ids];
149        } events[nr]; /* Variable length records */
150 };
151 
152         HEADER_CPU_TOPOLOGY = 13,
153 
154 struct {
155         /*
156          * First revision of HEADER_CPU_TOPOLOGY
157          *
158          * See 'struct perf_header_string_list' definition earlier
159          * in this file.
160          */
161 
162        struct perf_header_string_list cores; /* Variable length */
163        struct perf_header_string_list threads; /* Variable length */
164 
165        /*
166         * Second revision of HEADER_CPU_TOPOLOGY, older tools
167         * will not consider what comes next
168         */
169 
170        struct {
171               uint32_t core_id;
172               uint32_t socket_id;
173        } cpus[nr]; /* Variable length records */
174        /* 'nr' comes from previously processed HEADER_NRCPUS's nr_cpu_avail */
175 
176         /*
177          * Third revision of HEADER_CPU_TOPOLOGY, older tools
178          * will not consider what comes next
179          */
180 
181         struct perf_header_string_list dies; /* Variable length */
182         uint32_t die_id[nr_cpus_avail]; /* from previously processed HEADER_NR_CPUS, VLA */
183 };
184 
185 Example:
186         sibling sockets : 0-8
187         sibling dies    : 0-3
188         sibling dies    : 4-7
189         sibling threads : 0-1
190         sibling threads : 2-3
191         sibling threads : 4-5
192         sibling threads : 6-7
193 
194         HEADER_NUMA_TOPOLOGY = 14,
195 
196         A list of NUMA node descriptions
197 
198 struct {
199        uint32_t nr;
200        struct {
201               uint32_t nodenr;
202               uint64_t mem_total;
203               uint64_t mem_free;
204               struct perf_header_string cpus;
205        } nodes[nr]; /* Variable length records */
206 };
207 
208         HEADER_BRANCH_STACK = 15,
209 
210 Not implemented in perf.
211 
212         HEADER_PMU_MAPPINGS = 16,
213 
214         A list of PMU structures, defining the different PMUs supported by perf.
215 
216 struct {
217        uint32_t nr;
218        struct pmu {
219               uint32_t pmu_type;
220               struct perf_header_string pmu_name;
221        } [nr]; /* Variable length records */
222 };
223 
224         HEADER_GROUP_DESC = 17,
225 
226         Description of counter groups ({...} in perf syntax)
227 
228 struct {
229          uint32_t nr;
230          struct {
231                 struct perf_header_string string;
232                 uint32_t leader_idx;
233                 uint32_t nr_members;
234          } [nr]; /* Variable length records */
235 };
236 
237         HEADER_AUXTRACE = 18,
238 
239 Define additional auxtrace areas in the perf.data. auxtrace is used to store
240 undecoded hardware tracing information, such as Intel Processor Trace data.
241 
242 /**
243  * struct auxtrace_index_entry - indexes a AUX area tracing event within a
244  *                               perf.data file.
245  * @file_offset: offset within the perf.data file
246  * @sz: size of the event
247  */
248 struct auxtrace_index_entry {
249         u64                     file_offset;
250         u64                     sz;
251 };
252 
253 #define PERF_AUXTRACE_INDEX_ENTRY_COUNT 256
254 
255 /**
256  * struct auxtrace_index - index of AUX area tracing events within a perf.data
257  *                         file.
258  * @list: linking a number of arrays of entries
259  * @nr: number of entries
260  * @entries: array of entries
261  */
262 struct auxtrace_index {
263         struct list_head        list;
264         size_t                  nr;
265         struct auxtrace_index_entry entries[PERF_AUXTRACE_INDEX_ENTRY_COUNT];
266 };
267 
268         HEADER_STAT = 19,
269 
270 This is merely a flag signifying that the data section contains data
271 recorded from perf stat record.
272 
273         HEADER_CACHE = 20,
274 
275 Description of the cache hierarchy. Based on the Linux sysfs format
276 in /sys/devices/system/cpu/cpu*/cache/
277 
278         u32 version     Currently always 1
279         u32 number_of_cache_levels
280 
281 struct {
282         u32     level;
283         u32     line_size;
284         u32     sets;
285         u32     ways;
286         struct perf_header_string type;
287         struct perf_header_string size;
288         struct perf_header_string map;
289 }[number_of_cache_levels];
290 
291         HEADER_SAMPLE_TIME = 21,
292 
293 Two uint64_t for the time of first sample and the time of last sample.
294 
295         HEADER_SAMPLE_TOPOLOGY = 22,
296 
297 Physical memory map and its node assignments.
298 
299 The format of data in MEM_TOPOLOGY is as follows:
300 
301         u64 version;            // Currently 1
302         u64 block_size_bytes;   // /sys/devices/system/memory/block_size_bytes
303         u64 count;              // number of nodes
304 
305 struct memory_node {
306         u64 node_id;            // node index
307         u64 size;               // size of bitmap
308         struct bitmap {
309                 /* size of bitmap again */
310                 u64 bitmapsize;
311                 /* bitmap of memory indexes that belongs to node     */
312                 /* /sys/devices/system/node/node<NODE>/memory<INDEX> */
313                 u64 entries[(bitmapsize/64)+1];
314         }
315 }[count];
316 
317 The MEM_TOPOLOGY can be displayed with following command:
318 
319 $ perf report --header-only -I
320 ...
321 # memory nodes (nr 1, block size 0x8000000):
322 #    0 [7G]: 0-23,32-69
323 
324         HEADER_CLOCKID = 23,
325 
326 One uint64_t for the clockid frequency, specified, for instance, via 'perf
327 record -k' (see clock_gettime()), to enable timestamps derived metrics
328 conversion into wall clock time on the reporting stage.
329 
330         HEADER_DIR_FORMAT = 24,
331 
332 The data files layout is described by HEADER_DIR_FORMAT feature.  Currently it
333 holds only version number (1):
334 
335   uint64_t version;
336 
337 The current version holds only version value (1) means that data files:
338 
339 - Follow the 'data.*' name format.
340 
341 - Contain raw events data in standard perf format as read from kernel (and need
342   to be sorted)
343 
344 Future versions are expected to describe different data files layout according
345 to special needs.
346 
347         HEADER_BPF_PROG_INFO = 25,
348 
349 struct perf_bpil, which contains detailed information about
350 a BPF program, including type, id, tag, jited/xlated instructions, etc.
351 
352         HEADER_BPF_BTF = 26,
353 
354 Contains BPF Type Format (BTF). For more information about BTF, please
355 refer to Documentation/bpf/btf.rst.
356 
357 struct {
358         u32     id;
359         u32     data_size;
360         char    data[];
361 };
362 
363         HEADER_COMPRESSED = 27,
364 
365 struct {
366         u32     version;
367         u32     type;
368         u32     level;
369         u32     ratio;
370         u32     mmap_len;
371 };
372 
373 Indicates that trace contains records of PERF_RECORD_COMPRESSED type
374 that have perf_events records in compressed form.
375 
376         HEADER_CPU_PMU_CAPS = 28,
377 
378         A list of cpu PMU capabilities. The format of data is as below.
379 
380 struct {
381         u32 nr_cpu_pmu_caps;
382         {
383                 char    name[];
384                 char    value[];
385         } [nr_cpu_pmu_caps]
386 };
387 
388 
389 Example:
390  cpu pmu capabilities: branches=32, max_precise=3, pmu_name=icelake
391 
392         HEADER_CLOCK_DATA = 29,
393 
394         Contains clock id and its reference time together with wall clock
395         time taken at the 'same time', both values are in nanoseconds.
396         The format of data is as below.
397 
398 struct {
399         u32 version;  /* version = 1 */
400         u32 clockid;
401         u64 wall_clock_ns;
402         u64 clockid_time_ns;
403 };
404 
405         HEADER_HYBRID_TOPOLOGY = 30,
406 
407 Indicate the hybrid CPUs. The format of data is as below.
408 
409 struct {
410         u32 nr;
411         struct {
412                 char pmu_name[];
413                 char cpus[];
414         } [nr]; /* Variable length records */
415 };
416 
417 Example:
418   hybrid cpu system:
419   cpu_core cpu list : 0-15
420   cpu_atom cpu list : 16-23
421 
422         HEADER_PMU_CAPS = 31,
423 
424         List of pmu capabilities (except cpu pmu which is already
425         covered by HEADER_CPU_PMU_CAPS). Note that hybrid cpu pmu
426         capabilities are also stored here.
427 
428 struct {
429         u32 nr_pmu;
430         struct {
431                 u32 nr_caps;
432                 {
433                         char    name[];
434                         char    value[];
435                 } [nr_caps];
436                 char pmu_name[];
437         } [nr_pmu];
438 };
439 
440         other bits are reserved and should ignored for now
441         HEADER_FEAT_BITS        = 256,
442 
443 Attributes
444 
445 This is an array of perf_event_attrs, each attr_size bytes long, which defines
446 each event collected. See perf_event.h or the man page for a detailed
447 description.
448 
449 Data
450 
451 This section is the bulk of the file. It consist of a stream of perf_events
452 describing events. This matches the format generated by the kernel.
453 See perf_event.h or the manpage for a detailed description.
454 
455 Some notes on parsing:
456 
457 Ordering
458 
459 The events are not necessarily in time stamp order, as they can be
460 collected in parallel on different CPUs. If the events should be
461 processed in time order they need to be sorted first. It is possible
462 to only do a partial sort using the FINISHED_ROUND event header (see
463 below). perf record guarantees that there is no reordering over a
464 FINISHED_ROUND.
465 
466 ID vs IDENTIFIER
467 
468 When the event stream contains multiple events each event is identified
469 by an ID. This can be either through the PERF_SAMPLE_ID or the
470 PERF_SAMPLE_IDENTIFIER header. The PERF_SAMPLE_IDENTIFIER header is
471 at a fixed offset from the event header, which allows reliable
472 parsing of the header. Relying on ID may be ambiguous.
473 IDENTIFIER is only supported by newer Linux kernels.
474 
475 Perf record specific events:
476 
477 In addition to the kernel generated event types perf record adds its
478 own event types (in addition it also synthesizes some kernel events,
479 for example MMAP events)
480 
481         PERF_RECORD_USER_TYPE_START             = 64,
482         PERF_RECORD_HEADER_ATTR                 = 64,
483 
484 struct attr_event {
485         struct perf_event_header header;
486         struct perf_event_attr attr;
487         uint64_t id[];
488 };
489 
490         PERF_RECORD_HEADER_EVENT_TYPE           = 65, /* deprecated */
491 
492 #define MAX_EVENT_NAME 64
493 
494 struct perf_trace_event_type {
495         uint64_t        event_id;
496         char    name[MAX_EVENT_NAME];
497 };
498 
499 struct event_type_event {
500         struct perf_event_header header;
501         struct perf_trace_event_type event_type;
502 };
503 
504 
505         PERF_RECORD_HEADER_TRACING_DATA         = 66,
506 
507 Describe me
508 
509 struct tracing_data_event {
510         struct perf_event_header header;
511         uint32_t size;
512 };
513 
514         PERF_RECORD_HEADER_BUILD_ID             = 67,
515 
516 Define a ELF build ID for a referenced executable.
517 
518        struct build_id_event;   /* See above */
519 
520         PERF_RECORD_FINISHED_ROUND              = 68,
521 
522 No event reordering over this header. No payload.
523 
524         PERF_RECORD_ID_INDEX                    = 69,
525 
526 Map event ids to CPUs and TIDs.
527 
528 struct id_index_entry {
529         uint64_t id;
530         uint64_t idx;
531         uint64_t cpu;
532         uint64_t tid;
533 };
534 
535 struct id_index_event {
536         struct perf_event_header header;
537         uint64_t nr;
538         struct id_index_entry entries[nr];
539 };
540 
541         PERF_RECORD_AUXTRACE_INFO               = 70,
542 
543 Auxtrace type specific information. Describe me
544 
545 struct auxtrace_info_event {
546         struct perf_event_header header;
547         uint32_t type;
548         uint32_t reserved__; /* For alignment */
549         uint64_t priv[];
550 };
551 
552         PERF_RECORD_AUXTRACE                    = 71,
553 
554 Defines auxtrace data. Followed by the actual data. The contents of
555 the auxtrace data is dependent on the event and the CPU. For example
556 for Intel Processor Trace it contains Processor Trace data generated
557 by the CPU.
558 
559 struct auxtrace_event {
560         struct perf_event_header header;
561         uint64_t size;
562         uint64_t offset;
563         uint64_t reference;
564         uint32_t idx;
565         uint32_t tid;
566         uint32_t cpu;
567         uint32_t reserved__; /* For alignment */
568 };
569 
570 struct aux_event {
571         struct perf_event_header header;
572         uint64_t        aux_offset;
573         uint64_t        aux_size;
574         uint64_t        flags;
575 };
576 
577         PERF_RECORD_AUXTRACE_ERROR              = 72,
578 
579 Describes an error in hardware tracing
580 
581 enum auxtrace_error_type {
582         PERF_AUXTRACE_ERROR_ITRACE  = 1,
583         PERF_AUXTRACE_ERROR_MAX
584 };
585 
586 #define MAX_AUXTRACE_ERROR_MSG 64
587 
588 struct auxtrace_error_event {
589         struct perf_event_header header;
590         uint32_t type;
591         uint32_t code;
592         uint32_t cpu;
593         uint32_t pid;
594         uint32_t tid;
595         uint32_t reserved__; /* For alignment */
596         uint64_t ip;
597         char msg[MAX_AUXTRACE_ERROR_MSG];
598 };
599 
600         PERF_RECORD_HEADER_FEATURE              = 80,
601 
602 Describes a header feature. These are records used in pipe-mode that
603 contain information that otherwise would be in perf.data file's header.
604 
605         PERF_RECORD_COMPRESSED                  = 81,
606 
607 struct compressed_event {
608         struct perf_event_header        header;
609         char                            data[];
610 };
611 
612         PERF_RECORD_FINISHED_INIT                       = 82,
613 
614 Marks the end of records for the system, pre-existing threads in system wide
615 sessions, etc. Those are the ones prefixed PERF_RECORD_USER_*.
616 
617 This is used, for instance, to 'perf inject' events after init and before
618 regular events, those emitted by the kernel, to support combining guest and
619 host records.
620 
621 
622 The header is followed by compressed data frame that can be decompressed
623 into array of perf trace records. The size of the entire compressed event
624 record including the header is limited by the max value of header.size.
625 
626 Event types
627 
628 Define the event attributes with their IDs.
629 
630 An array bound by the perf_file_section size.
631 
632         struct {
633                 struct perf_event_attr attr;   /* Size defined by header.attr_size */
634                 struct perf_file_section ids;
635         }
636 
637 ids points to a array of uint64_t defining the ids for event attr attr.
638 
639 Pipe-mode data
640 
641 Pipe-mode avoid seeks in the file by removing the perf_file_section and flags
642 from the struct perf_header. The trimmed header is:
643 
644 struct perf_pipe_file_header {
645         u64                             magic;
646         u64                             size;
647 };
648 
649 The information about attrs, data, and event_types is instead in the
650 synthesized events PERF_RECORD_ATTR, PERF_RECORD_HEADER_TRACING_DATA,
651 PERF_RECORD_HEADER_EVENT_TYPE, and PERF_RECORD_HEADER_FEATURE
652 that are generated by perf record in pipe-mode.
653 
654 
655 References:
656 
657 include/uapi/linux/perf_event.h
658 
659 This is the canonical description of the kernel generated perf_events
660 and the perf_event_attrs.
661 
662 perf_events manpage
663 
664 A manpage describing perf_event and perf_event_attr is here:
665 http://web.eece.maine.edu/~vweaver/projects/perf_events/programming.html
666 This tends to be slightly behind the kernel include, but has better
667 descriptions.  An (typically older) version of the man page may be
668 included with the standard Linux man pages, available with "man
669 perf_events"
670 
671 pmu-tools
672 
673 https://github.com/andikleen/pmu-tools/tree/master/parser
674 
675 A definition of the perf.data format in python "construct" format is available
676 in pmu-tools parser. This allows to read perf.data from python and dump it.
677 
678 quipper
679 
680 The quipper C++ parser is available at
681 http://github.com/google/perf_data_converter/tree/master/src/quipper
682 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php