1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * builtin-stat.c 4 * 5 * Builtin stat command: Give a precise performance counters summary 6 * overview about any workload, CPU or specific PID. 7 * 8 * Sample output: 9 10 $ perf stat ./hackbench 10 11 12 Time: 0.118 13 14 Performance counter stats for './hackbench 10': 15 16 1708.761321 task-clock # 11.037 CPUs utilized 17 41,190 context-switches # 0.024 M/sec 18 6,735 CPU-migrations # 0.004 M/sec 19 17,318 page-faults # 0.010 M/sec 20 5,205,202,243 cycles # 3.046 GHz 21 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle 22 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle 23 2,603,501,247 instructions # 0.50 insns per cycle 24 # 1.48 stalled cycles per insn 25 484,357,498 branches # 283.455 M/sec 26 6,388,934 branch-misses # 1.32% of all branches 27 28 0.154822978 seconds time elapsed 29 30 * 31 * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com> 32 * 33 * Improvements and fixes by: 34 * 35 * Arjan van de Ven <arjan@linux.intel.com> 36 * Yanmin Zhang <yanmin.zhang@intel.com> 37 * Wu Fengguang <fengguang.wu@intel.com> 38 * Mike Galbraith <efault@gmx.de> 39 * Paul Mackerras <paulus@samba.org> 40 * Jaswinder Singh Rajput <jaswinder@kernel.org> 41 */ 42 43 #include "builtin.h" 44 #include "util/cgroup.h" 45 #include <subcmd/parse-options.h> 46 #include "util/parse-events.h" 47 #include "util/pmus.h" 48 #include "util/pmu.h" 49 #include "util/event.h" 50 #include "util/evlist.h" 51 #include "util/evsel.h" 52 #include "util/debug.h" 53 #include "util/color.h" 54 #include "util/stat.h" 55 #include "util/header.h" 56 #include "util/cpumap.h" 57 #include "util/thread_map.h" 58 #include "util/counts.h" 59 #include "util/topdown.h" 60 #include "util/session.h" 61 #include "util/tool.h" 62 #include "util/string2.h" 63 #include "util/metricgroup.h" 64 #include "util/synthetic-events.h" 65 #include "util/target.h" 66 #include "util/time-utils.h" 67 #include "util/top.h" 68 #include "util/affinity.h" 69 #include "util/pfm.h" 70 #include "util/bpf_counter.h" 71 #include "util/iostat.h" 72 #include "util/util.h" 73 #include "asm/bug.h" 74 75 #include <linux/time64.h> 76 #include <linux/zalloc.h> 77 #include <api/fs/fs.h> 78 #include <errno.h> 79 #include <signal.h> 80 #include <stdlib.h> 81 #include <sys/prctl.h> 82 #include <inttypes.h> 83 #include <locale.h> 84 #include <math.h> 85 #include <sys/types.h> 86 #include <sys/stat.h> 87 #include <sys/wait.h> 88 #include <unistd.h> 89 #include <sys/time.h> 90 #include <sys/resource.h> 91 #include <linux/err.h> 92 93 #include <linux/ctype.h> 94 #include <perf/evlist.h> 95 #include <internal/threadmap.h> 96 97 #define DEFAULT_SEPARATOR " " 98 #define FREEZE_ON_SMI_PATH "devices/cpu/freeze_on_smi" 99 100 static void print_counters(struct timespec *ts, int argc, const char **argv); 101 102 static struct evlist *evsel_list; 103 static struct parse_events_option_args parse_events_option_args = { 104 .evlistp = &evsel_list, 105 }; 106 107 static bool all_counters_use_bpf = true; 108 109 static struct target target = { 110 .uid = UINT_MAX, 111 }; 112 113 #define METRIC_ONLY_LEN 20 114 115 static volatile sig_atomic_t child_pid = -1; 116 static int detailed_run = 0; 117 static bool transaction_run; 118 static bool topdown_run = false; 119 static bool smi_cost = false; 120 static bool smi_reset = false; 121 static int big_num_opt = -1; 122 static const char *pre_cmd = NULL; 123 static const char *post_cmd = NULL; 124 static bool sync_run = false; 125 static bool forever = false; 126 static bool force_metric_only = false; 127 static struct timespec ref_time; 128 static bool append_file; 129 static bool interval_count; 130 static const char *output_name; 131 static int output_fd; 132 static char *metrics; 133 134 struct perf_stat { 135 bool record; 136 struct perf_data data; 137 struct perf_session *session; 138 u64 bytes_written; 139 struct perf_tool tool; 140 bool maps_allocated; 141 struct perf_cpu_map *cpus; 142 struct perf_thread_map *threads; 143 enum aggr_mode aggr_mode; 144 u32 aggr_level; 145 }; 146 147 static struct perf_stat perf_stat; 148 #define STAT_RECORD perf_stat.record 149 150 static volatile sig_atomic_t done = 0; 151 152 static struct perf_stat_config stat_config = { 153 .aggr_mode = AGGR_GLOBAL, 154 .aggr_level = MAX_CACHE_LVL + 1, 155 .scale = true, 156 .unit_width = 4, /* strlen("unit") */ 157 .run_count = 1, 158 .metric_only_len = METRIC_ONLY_LEN, 159 .walltime_nsecs_stats = &walltime_nsecs_stats, 160 .ru_stats = &ru_stats, 161 .big_num = true, 162 .ctl_fd = -1, 163 .ctl_fd_ack = -1, 164 .iostat_run = false, 165 }; 166 167 /* Options set from the command line. */ 168 struct opt_aggr_mode { 169 bool node, socket, die, cluster, cache, core, thread, no_aggr; 170 }; 171 172 /* Turn command line option into most generic aggregation mode setting. */ 173 static enum aggr_mode opt_aggr_mode_to_aggr_mode(struct opt_aggr_mode *opt_mode) 174 { 175 enum aggr_mode mode = AGGR_GLOBAL; 176 177 if (opt_mode->node) 178 mode = AGGR_NODE; 179 if (opt_mode->socket) 180 mode = AGGR_SOCKET; 181 if (opt_mode->die) 182 mode = AGGR_DIE; 183 if (opt_mode->cluster) 184 mode = AGGR_CLUSTER; 185 if (opt_mode->cache) 186 mode = AGGR_CACHE; 187 if (opt_mode->core) 188 mode = AGGR_CORE; 189 if (opt_mode->thread) 190 mode = AGGR_THREAD; 191 if (opt_mode->no_aggr) 192 mode = AGGR_NONE; 193 return mode; 194 } 195 196 static void evlist__check_cpu_maps(struct evlist *evlist) 197 { 198 struct evsel *evsel, *warned_leader = NULL; 199 200 evlist__for_each_entry(evlist, evsel) { 201 struct evsel *leader = evsel__leader(evsel); 202 203 /* Check that leader matches cpus with each member. */ 204 if (leader == evsel) 205 continue; 206 if (perf_cpu_map__equal(leader->core.cpus, evsel->core.cpus)) 207 continue; 208 209 /* If there's mismatch disable the group and warn user. */ 210 if (warned_leader != leader) { 211 char buf[200]; 212 213 pr_warning("WARNING: grouped events cpus do not match.\n" 214 "Events with CPUs not matching the leader will " 215 "be removed from the group.\n"); 216 evsel__group_desc(leader, buf, sizeof(buf)); 217 pr_warning(" %s\n", buf); 218 warned_leader = leader; 219 } 220 if (verbose > 0) { 221 char buf[200]; 222 223 cpu_map__snprint(leader->core.cpus, buf, sizeof(buf)); 224 pr_warning(" %s: %s\n", leader->name, buf); 225 cpu_map__snprint(evsel->core.cpus, buf, sizeof(buf)); 226 pr_warning(" %s: %s\n", evsel->name, buf); 227 } 228 229 evsel__remove_from_group(evsel, leader); 230 } 231 } 232 233 static inline void diff_timespec(struct timespec *r, struct timespec *a, 234 struct timespec *b) 235 { 236 r->tv_sec = a->tv_sec - b->tv_sec; 237 if (a->tv_nsec < b->tv_nsec) { 238 r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec; 239 r->tv_sec--; 240 } else { 241 r->tv_nsec = a->tv_nsec - b->tv_nsec ; 242 } 243 } 244 245 static void perf_stat__reset_stats(void) 246 { 247 evlist__reset_stats(evsel_list); 248 perf_stat__reset_shadow_stats(); 249 } 250 251 static int process_synthesized_event(struct perf_tool *tool __maybe_unused, 252 union perf_event *event, 253 struct perf_sample *sample __maybe_unused, 254 struct machine *machine __maybe_unused) 255 { 256 if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) { 257 pr_err("failed to write perf data, error: %m\n"); 258 return -1; 259 } 260 261 perf_stat.bytes_written += event->header.size; 262 return 0; 263 } 264 265 static int write_stat_round_event(u64 tm, u64 type) 266 { 267 return perf_event__synthesize_stat_round(NULL, tm, type, 268 process_synthesized_event, 269 NULL); 270 } 271 272 #define WRITE_STAT_ROUND_EVENT(time, interval) \ 273 write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval) 274 275 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y) 276 277 static int evsel__write_stat_event(struct evsel *counter, int cpu_map_idx, u32 thread, 278 struct perf_counts_values *count) 279 { 280 struct perf_sample_id *sid = SID(counter, cpu_map_idx, thread); 281 struct perf_cpu cpu = perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx); 282 283 return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count, 284 process_synthesized_event, NULL); 285 } 286 287 static int read_single_counter(struct evsel *counter, int cpu_map_idx, int thread) 288 { 289 int err = evsel__read_counter(counter, cpu_map_idx, thread); 290 291 /* 292 * Reading user and system time will fail when the process 293 * terminates. Use the wait4 values in that case. 294 */ 295 if (err && cpu_map_idx == 0 && 296 (counter->tool_event == PERF_TOOL_USER_TIME || 297 counter->tool_event == PERF_TOOL_SYSTEM_TIME)) { 298 u64 val, *start_time; 299 struct perf_counts_values *count = 300 perf_counts(counter->counts, cpu_map_idx, thread); 301 302 start_time = xyarray__entry(counter->start_times, cpu_map_idx, thread); 303 if (counter->tool_event == PERF_TOOL_USER_TIME) 304 val = ru_stats.ru_utime_usec_stat.mean; 305 else 306 val = ru_stats.ru_stime_usec_stat.mean; 307 count->ena = count->run = *start_time + val; 308 count->val = val; 309 return 0; 310 } 311 return err; 312 } 313 314 /* 315 * Read out the results of a single counter: 316 * do not aggregate counts across CPUs in system-wide mode 317 */ 318 static int read_counter_cpu(struct evsel *counter, int cpu_map_idx) 319 { 320 int nthreads = perf_thread_map__nr(evsel_list->core.threads); 321 int thread; 322 323 if (!counter->supported) 324 return -ENOENT; 325 326 for (thread = 0; thread < nthreads; thread++) { 327 struct perf_counts_values *count; 328 329 count = perf_counts(counter->counts, cpu_map_idx, thread); 330 331 /* 332 * The leader's group read loads data into its group members 333 * (via evsel__read_counter()) and sets their count->loaded. 334 */ 335 if (!perf_counts__is_loaded(counter->counts, cpu_map_idx, thread) && 336 read_single_counter(counter, cpu_map_idx, thread)) { 337 counter->counts->scaled = -1; 338 perf_counts(counter->counts, cpu_map_idx, thread)->ena = 0; 339 perf_counts(counter->counts, cpu_map_idx, thread)->run = 0; 340 return -1; 341 } 342 343 perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, false); 344 345 if (STAT_RECORD) { 346 if (evsel__write_stat_event(counter, cpu_map_idx, thread, count)) { 347 pr_err("failed to write stat event\n"); 348 return -1; 349 } 350 } 351 352 if (verbose > 1) { 353 fprintf(stat_config.output, 354 "%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", 355 evsel__name(counter), 356 perf_cpu_map__cpu(evsel__cpus(counter), 357 cpu_map_idx).cpu, 358 count->val, count->ena, count->run); 359 } 360 } 361 362 return 0; 363 } 364 365 static int read_affinity_counters(void) 366 { 367 struct evlist_cpu_iterator evlist_cpu_itr; 368 struct affinity saved_affinity, *affinity; 369 370 if (all_counters_use_bpf) 371 return 0; 372 373 if (!target__has_cpu(&target) || target__has_per_thread(&target)) 374 affinity = NULL; 375 else if (affinity__setup(&saved_affinity) < 0) 376 return -1; 377 else 378 affinity = &saved_affinity; 379 380 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 381 struct evsel *counter = evlist_cpu_itr.evsel; 382 383 if (evsel__is_bpf(counter)) 384 continue; 385 386 if (!counter->err) 387 counter->err = read_counter_cpu(counter, evlist_cpu_itr.cpu_map_idx); 388 } 389 if (affinity) 390 affinity__cleanup(&saved_affinity); 391 392 return 0; 393 } 394 395 static int read_bpf_map_counters(void) 396 { 397 struct evsel *counter; 398 int err; 399 400 evlist__for_each_entry(evsel_list, counter) { 401 if (!evsel__is_bpf(counter)) 402 continue; 403 404 err = bpf_counter__read(counter); 405 if (err) 406 return err; 407 } 408 return 0; 409 } 410 411 static int read_counters(void) 412 { 413 if (!stat_config.stop_read_counter) { 414 if (read_bpf_map_counters() || 415 read_affinity_counters()) 416 return -1; 417 } 418 return 0; 419 } 420 421 static void process_counters(void) 422 { 423 struct evsel *counter; 424 425 evlist__for_each_entry(evsel_list, counter) { 426 if (counter->err) 427 pr_debug("failed to read counter %s\n", counter->name); 428 if (counter->err == 0 && perf_stat_process_counter(&stat_config, counter)) 429 pr_warning("failed to process counter %s\n", counter->name); 430 counter->err = 0; 431 } 432 433 perf_stat_merge_counters(&stat_config, evsel_list); 434 perf_stat_process_percore(&stat_config, evsel_list); 435 } 436 437 static void process_interval(void) 438 { 439 struct timespec ts, rs; 440 441 clock_gettime(CLOCK_MONOTONIC, &ts); 442 diff_timespec(&rs, &ts, &ref_time); 443 444 evlist__reset_aggr_stats(evsel_list); 445 446 if (read_counters() == 0) 447 process_counters(); 448 449 if (STAT_RECORD) { 450 if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL)) 451 pr_err("failed to write stat round event\n"); 452 } 453 454 init_stats(&walltime_nsecs_stats); 455 update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000ULL); 456 print_counters(&rs, 0, NULL); 457 } 458 459 static bool handle_interval(unsigned int interval, int *times) 460 { 461 if (interval) { 462 process_interval(); 463 if (interval_count && !(--(*times))) 464 return true; 465 } 466 return false; 467 } 468 469 static int enable_counters(void) 470 { 471 struct evsel *evsel; 472 int err; 473 474 evlist__for_each_entry(evsel_list, evsel) { 475 if (!evsel__is_bpf(evsel)) 476 continue; 477 478 err = bpf_counter__enable(evsel); 479 if (err) 480 return err; 481 } 482 483 if (!target__enable_on_exec(&target)) { 484 if (!all_counters_use_bpf) 485 evlist__enable(evsel_list); 486 } 487 return 0; 488 } 489 490 static void disable_counters(void) 491 { 492 struct evsel *counter; 493 494 /* 495 * If we don't have tracee (attaching to task or cpu), counters may 496 * still be running. To get accurate group ratios, we must stop groups 497 * from counting before reading their constituent counters. 498 */ 499 if (!target__none(&target)) { 500 evlist__for_each_entry(evsel_list, counter) 501 bpf_counter__disable(counter); 502 if (!all_counters_use_bpf) 503 evlist__disable(evsel_list); 504 } 505 } 506 507 static volatile sig_atomic_t workload_exec_errno; 508 509 /* 510 * evlist__prepare_workload will send a SIGUSR1 511 * if the fork fails, since we asked by setting its 512 * want_signal to true. 513 */ 514 static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info, 515 void *ucontext __maybe_unused) 516 { 517 workload_exec_errno = info->si_value.sival_int; 518 } 519 520 static bool evsel__should_store_id(struct evsel *counter) 521 { 522 return STAT_RECORD || counter->core.attr.read_format & PERF_FORMAT_ID; 523 } 524 525 static bool is_target_alive(struct target *_target, 526 struct perf_thread_map *threads) 527 { 528 struct stat st; 529 int i; 530 531 if (!target__has_task(_target)) 532 return true; 533 534 for (i = 0; i < threads->nr; i++) { 535 char path[PATH_MAX]; 536 537 scnprintf(path, PATH_MAX, "%s/%d", procfs__mountpoint(), 538 threads->map[i].pid); 539 540 if (!stat(path, &st)) 541 return true; 542 } 543 544 return false; 545 } 546 547 static void process_evlist(struct evlist *evlist, unsigned int interval) 548 { 549 enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED; 550 551 if (evlist__ctlfd_process(evlist, &cmd) > 0) { 552 switch (cmd) { 553 case EVLIST_CTL_CMD_ENABLE: 554 fallthrough; 555 case EVLIST_CTL_CMD_DISABLE: 556 if (interval) 557 process_interval(); 558 break; 559 case EVLIST_CTL_CMD_SNAPSHOT: 560 case EVLIST_CTL_CMD_ACK: 561 case EVLIST_CTL_CMD_UNSUPPORTED: 562 case EVLIST_CTL_CMD_EVLIST: 563 case EVLIST_CTL_CMD_STOP: 564 case EVLIST_CTL_CMD_PING: 565 default: 566 break; 567 } 568 } 569 } 570 571 static void compute_tts(struct timespec *time_start, struct timespec *time_stop, 572 int *time_to_sleep) 573 { 574 int tts = *time_to_sleep; 575 struct timespec time_diff; 576 577 diff_timespec(&time_diff, time_stop, time_start); 578 579 tts -= time_diff.tv_sec * MSEC_PER_SEC + 580 time_diff.tv_nsec / NSEC_PER_MSEC; 581 582 if (tts < 0) 583 tts = 0; 584 585 *time_to_sleep = tts; 586 } 587 588 static int dispatch_events(bool forks, int timeout, int interval, int *times) 589 { 590 int child_exited = 0, status = 0; 591 int time_to_sleep, sleep_time; 592 struct timespec time_start, time_stop; 593 594 if (interval) 595 sleep_time = interval; 596 else if (timeout) 597 sleep_time = timeout; 598 else 599 sleep_time = 1000; 600 601 time_to_sleep = sleep_time; 602 603 while (!done) { 604 if (forks) 605 child_exited = waitpid(child_pid, &status, WNOHANG); 606 else 607 child_exited = !is_target_alive(&target, evsel_list->core.threads) ? 1 : 0; 608 609 if (child_exited) 610 break; 611 612 clock_gettime(CLOCK_MONOTONIC, &time_start); 613 if (!(evlist__poll(evsel_list, time_to_sleep) > 0)) { /* poll timeout or EINTR */ 614 if (timeout || handle_interval(interval, times)) 615 break; 616 time_to_sleep = sleep_time; 617 } else { /* fd revent */ 618 process_evlist(evsel_list, interval); 619 clock_gettime(CLOCK_MONOTONIC, &time_stop); 620 compute_tts(&time_start, &time_stop, &time_to_sleep); 621 } 622 } 623 624 return status; 625 } 626 627 enum counter_recovery { 628 COUNTER_SKIP, 629 COUNTER_RETRY, 630 COUNTER_FATAL, 631 }; 632 633 static enum counter_recovery stat_handle_error(struct evsel *counter) 634 { 635 char msg[BUFSIZ]; 636 /* 637 * PPC returns ENXIO for HW counters until 2.6.37 638 * (behavior changed with commit b0a873e). 639 */ 640 if (errno == EINVAL || errno == ENOSYS || 641 errno == ENOENT || errno == EOPNOTSUPP || 642 errno == ENXIO) { 643 if (verbose > 0) 644 ui__warning("%s event is not supported by the kernel.\n", 645 evsel__name(counter)); 646 counter->supported = false; 647 /* 648 * errored is a sticky flag that means one of the counter's 649 * cpu event had a problem and needs to be reexamined. 650 */ 651 counter->errored = true; 652 653 if ((evsel__leader(counter) != counter) || 654 !(counter->core.leader->nr_members > 1)) 655 return COUNTER_SKIP; 656 } else if (evsel__fallback(counter, &target, errno, msg, sizeof(msg))) { 657 if (verbose > 0) 658 ui__warning("%s\n", msg); 659 return COUNTER_RETRY; 660 } else if (target__has_per_thread(&target) && 661 evsel_list->core.threads && 662 evsel_list->core.threads->err_thread != -1) { 663 /* 664 * For global --per-thread case, skip current 665 * error thread. 666 */ 667 if (!thread_map__remove(evsel_list->core.threads, 668 evsel_list->core.threads->err_thread)) { 669 evsel_list->core.threads->err_thread = -1; 670 return COUNTER_RETRY; 671 } 672 } else if (counter->skippable) { 673 if (verbose > 0) 674 ui__warning("skipping event %s that kernel failed to open .\n", 675 evsel__name(counter)); 676 counter->supported = false; 677 counter->errored = true; 678 return COUNTER_SKIP; 679 } 680 681 evsel__open_strerror(counter, &target, errno, msg, sizeof(msg)); 682 ui__error("%s\n", msg); 683 684 if (child_pid != -1) 685 kill(child_pid, SIGTERM); 686 return COUNTER_FATAL; 687 } 688 689 static int __run_perf_stat(int argc, const char **argv, int run_idx) 690 { 691 int interval = stat_config.interval; 692 int times = stat_config.times; 693 int timeout = stat_config.timeout; 694 char msg[BUFSIZ]; 695 unsigned long long t0, t1; 696 struct evsel *counter; 697 size_t l; 698 int status = 0; 699 const bool forks = (argc > 0); 700 bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false; 701 struct evlist_cpu_iterator evlist_cpu_itr; 702 struct affinity saved_affinity, *affinity = NULL; 703 int err; 704 bool second_pass = false; 705 706 if (forks) { 707 if (evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) { 708 perror("failed to prepare workload"); 709 return -1; 710 } 711 child_pid = evsel_list->workload.pid; 712 } 713 714 if (!cpu_map__is_dummy(evsel_list->core.user_requested_cpus)) { 715 if (affinity__setup(&saved_affinity) < 0) 716 return -1; 717 affinity = &saved_affinity; 718 } 719 720 evlist__for_each_entry(evsel_list, counter) { 721 counter->reset_group = false; 722 if (bpf_counter__load(counter, &target)) 723 return -1; 724 if (!(evsel__is_bperf(counter))) 725 all_counters_use_bpf = false; 726 } 727 728 evlist__reset_aggr_stats(evsel_list); 729 730 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 731 counter = evlist_cpu_itr.evsel; 732 733 /* 734 * bperf calls evsel__open_per_cpu() in bperf__load(), so 735 * no need to call it again here. 736 */ 737 if (target.use_bpf) 738 break; 739 740 if (counter->reset_group || counter->errored) 741 continue; 742 if (evsel__is_bperf(counter)) 743 continue; 744 try_again: 745 if (create_perf_stat_counter(counter, &stat_config, &target, 746 evlist_cpu_itr.cpu_map_idx) < 0) { 747 748 /* 749 * Weak group failed. We cannot just undo this here 750 * because earlier CPUs might be in group mode, and the kernel 751 * doesn't support mixing group and non group reads. Defer 752 * it to later. 753 * Don't close here because we're in the wrong affinity. 754 */ 755 if ((errno == EINVAL || errno == EBADF) && 756 evsel__leader(counter) != counter && 757 counter->weak_group) { 758 evlist__reset_weak_group(evsel_list, counter, false); 759 assert(counter->reset_group); 760 second_pass = true; 761 continue; 762 } 763 764 switch (stat_handle_error(counter)) { 765 case COUNTER_FATAL: 766 return -1; 767 case COUNTER_RETRY: 768 goto try_again; 769 case COUNTER_SKIP: 770 continue; 771 default: 772 break; 773 } 774 775 } 776 counter->supported = true; 777 } 778 779 if (second_pass) { 780 /* 781 * Now redo all the weak group after closing them, 782 * and also close errored counters. 783 */ 784 785 /* First close errored or weak retry */ 786 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 787 counter = evlist_cpu_itr.evsel; 788 789 if (!counter->reset_group && !counter->errored) 790 continue; 791 792 perf_evsel__close_cpu(&counter->core, evlist_cpu_itr.cpu_map_idx); 793 } 794 /* Now reopen weak */ 795 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 796 counter = evlist_cpu_itr.evsel; 797 798 if (!counter->reset_group) 799 continue; 800 try_again_reset: 801 pr_debug2("reopening weak %s\n", evsel__name(counter)); 802 if (create_perf_stat_counter(counter, &stat_config, &target, 803 evlist_cpu_itr.cpu_map_idx) < 0) { 804 805 switch (stat_handle_error(counter)) { 806 case COUNTER_FATAL: 807 return -1; 808 case COUNTER_RETRY: 809 goto try_again_reset; 810 case COUNTER_SKIP: 811 continue; 812 default: 813 break; 814 } 815 } 816 counter->supported = true; 817 } 818 } 819 affinity__cleanup(affinity); 820 821 evlist__for_each_entry(evsel_list, counter) { 822 if (!counter->supported) { 823 perf_evsel__free_fd(&counter->core); 824 continue; 825 } 826 827 l = strlen(counter->unit); 828 if (l > stat_config.unit_width) 829 stat_config.unit_width = l; 830 831 if (evsel__should_store_id(counter) && 832 evsel__store_ids(counter, evsel_list)) 833 return -1; 834 } 835 836 if (evlist__apply_filters(evsel_list, &counter)) { 837 pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n", 838 counter->filter, evsel__name(counter), errno, 839 str_error_r(errno, msg, sizeof(msg))); 840 return -1; 841 } 842 843 if (STAT_RECORD) { 844 int fd = perf_data__fd(&perf_stat.data); 845 846 if (is_pipe) { 847 err = perf_header__write_pipe(perf_data__fd(&perf_stat.data)); 848 } else { 849 err = perf_session__write_header(perf_stat.session, evsel_list, 850 fd, false); 851 } 852 853 if (err < 0) 854 return err; 855 856 err = perf_event__synthesize_stat_events(&stat_config, NULL, evsel_list, 857 process_synthesized_event, is_pipe); 858 if (err < 0) 859 return err; 860 } 861 862 if (target.initial_delay) { 863 pr_info(EVLIST_DISABLED_MSG); 864 } else { 865 err = enable_counters(); 866 if (err) 867 return -1; 868 } 869 870 /* Exec the command, if any */ 871 if (forks) 872 evlist__start_workload(evsel_list); 873 874 if (target.initial_delay > 0) { 875 usleep(target.initial_delay * USEC_PER_MSEC); 876 err = enable_counters(); 877 if (err) 878 return -1; 879 880 pr_info(EVLIST_ENABLED_MSG); 881 } 882 883 t0 = rdclock(); 884 clock_gettime(CLOCK_MONOTONIC, &ref_time); 885 886 if (forks) { 887 if (interval || timeout || evlist__ctlfd_initialized(evsel_list)) 888 status = dispatch_events(forks, timeout, interval, ×); 889 if (child_pid != -1) { 890 if (timeout) 891 kill(child_pid, SIGTERM); 892 wait4(child_pid, &status, 0, &stat_config.ru_data); 893 } 894 895 if (workload_exec_errno) { 896 const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg)); 897 pr_err("Workload failed: %s\n", emsg); 898 return -1; 899 } 900 901 if (WIFSIGNALED(status)) 902 psignal(WTERMSIG(status), argv[0]); 903 } else { 904 status = dispatch_events(forks, timeout, interval, ×); 905 } 906 907 disable_counters(); 908 909 t1 = rdclock(); 910 911 if (stat_config.walltime_run_table) 912 stat_config.walltime_run[run_idx] = t1 - t0; 913 914 if (interval && stat_config.summary) { 915 stat_config.interval = 0; 916 stat_config.stop_read_counter = true; 917 init_stats(&walltime_nsecs_stats); 918 update_stats(&walltime_nsecs_stats, t1 - t0); 919 920 evlist__copy_prev_raw_counts(evsel_list); 921 evlist__reset_prev_raw_counts(evsel_list); 922 evlist__reset_aggr_stats(evsel_list); 923 } else { 924 update_stats(&walltime_nsecs_stats, t1 - t0); 925 update_rusage_stats(&ru_stats, &stat_config.ru_data); 926 } 927 928 /* 929 * Closing a group leader splits the group, and as we only disable 930 * group leaders, results in remaining events becoming enabled. To 931 * avoid arbitrary skew, we must read all counters before closing any 932 * group leaders. 933 */ 934 if (read_counters() == 0) 935 process_counters(); 936 937 /* 938 * We need to keep evsel_list alive, because it's processed 939 * later the evsel_list will be closed after. 940 */ 941 if (!STAT_RECORD) 942 evlist__close(evsel_list); 943 944 return WEXITSTATUS(status); 945 } 946 947 static int run_perf_stat(int argc, const char **argv, int run_idx) 948 { 949 int ret; 950 951 if (pre_cmd) { 952 ret = system(pre_cmd); 953 if (ret) 954 return ret; 955 } 956 957 if (sync_run) 958 sync(); 959 960 ret = __run_perf_stat(argc, argv, run_idx); 961 if (ret) 962 return ret; 963 964 if (post_cmd) { 965 ret = system(post_cmd); 966 if (ret) 967 return ret; 968 } 969 970 return ret; 971 } 972 973 static void print_counters(struct timespec *ts, int argc, const char **argv) 974 { 975 /* Do not print anything if we record to the pipe. */ 976 if (STAT_RECORD && perf_stat.data.is_pipe) 977 return; 978 if (quiet) 979 return; 980 981 evlist__print_counters(evsel_list, &stat_config, &target, ts, argc, argv); 982 } 983 984 static volatile sig_atomic_t signr = -1; 985 986 static void skip_signal(int signo) 987 { 988 if ((child_pid == -1) || stat_config.interval) 989 done = 1; 990 991 signr = signo; 992 /* 993 * render child_pid harmless 994 * won't send SIGTERM to a random 995 * process in case of race condition 996 * and fast PID recycling 997 */ 998 child_pid = -1; 999 } 1000 1001 static void sig_atexit(void) 1002 { 1003 sigset_t set, oset; 1004 1005 /* 1006 * avoid race condition with SIGCHLD handler 1007 * in skip_signal() which is modifying child_pid 1008 * goal is to avoid send SIGTERM to a random 1009 * process 1010 */ 1011 sigemptyset(&set); 1012 sigaddset(&set, SIGCHLD); 1013 sigprocmask(SIG_BLOCK, &set, &oset); 1014 1015 if (child_pid != -1) 1016 kill(child_pid, SIGTERM); 1017 1018 sigprocmask(SIG_SETMASK, &oset, NULL); 1019 1020 if (signr == -1) 1021 return; 1022 1023 signal(signr, SIG_DFL); 1024 kill(getpid(), signr); 1025 } 1026 1027 void perf_stat__set_big_num(int set) 1028 { 1029 stat_config.big_num = (set != 0); 1030 } 1031 1032 void perf_stat__set_no_csv_summary(int set) 1033 { 1034 stat_config.no_csv_summary = (set != 0); 1035 } 1036 1037 static int stat__set_big_num(const struct option *opt __maybe_unused, 1038 const char *s __maybe_unused, int unset) 1039 { 1040 big_num_opt = unset ? 0 : 1; 1041 perf_stat__set_big_num(!unset); 1042 return 0; 1043 } 1044 1045 static int enable_metric_only(const struct option *opt __maybe_unused, 1046 const char *s __maybe_unused, int unset) 1047 { 1048 force_metric_only = true; 1049 stat_config.metric_only = !unset; 1050 return 0; 1051 } 1052 1053 static int append_metric_groups(const struct option *opt __maybe_unused, 1054 const char *str, 1055 int unset __maybe_unused) 1056 { 1057 if (metrics) { 1058 char *tmp; 1059 1060 if (asprintf(&tmp, "%s,%s", metrics, str) < 0) 1061 return -ENOMEM; 1062 free(metrics); 1063 metrics = tmp; 1064 } else { 1065 metrics = strdup(str); 1066 if (!metrics) 1067 return -ENOMEM; 1068 } 1069 return 0; 1070 } 1071 1072 static int parse_control_option(const struct option *opt, 1073 const char *str, 1074 int unset __maybe_unused) 1075 { 1076 struct perf_stat_config *config = opt->value; 1077 1078 return evlist__parse_control(str, &config->ctl_fd, &config->ctl_fd_ack, &config->ctl_fd_close); 1079 } 1080 1081 static int parse_stat_cgroups(const struct option *opt, 1082 const char *str, int unset) 1083 { 1084 if (stat_config.cgroup_list) { 1085 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 1086 return -1; 1087 } 1088 1089 return parse_cgroups(opt, str, unset); 1090 } 1091 1092 static int parse_cputype(const struct option *opt, 1093 const char *str, 1094 int unset __maybe_unused) 1095 { 1096 const struct perf_pmu *pmu; 1097 struct evlist *evlist = *(struct evlist **)opt->value; 1098 1099 if (!list_empty(&evlist->core.entries)) { 1100 fprintf(stderr, "Must define cputype before events/metrics\n"); 1101 return -1; 1102 } 1103 1104 pmu = perf_pmus__pmu_for_pmu_filter(str); 1105 if (!pmu) { 1106 fprintf(stderr, "--cputype %s is not supported!\n", str); 1107 return -1; 1108 } 1109 parse_events_option_args.pmu_filter = pmu->name; 1110 1111 return 0; 1112 } 1113 1114 static int parse_cache_level(const struct option *opt, 1115 const char *str, 1116 int unset __maybe_unused) 1117 { 1118 int level; 1119 struct opt_aggr_mode *opt_aggr_mode = (struct opt_aggr_mode *)opt->value; 1120 u32 *aggr_level = (u32 *)opt->data; 1121 1122 /* 1123 * If no string is specified, aggregate based on the topology of 1124 * Last Level Cache (LLC). Since the LLC level can change from 1125 * architecture to architecture, set level greater than 1126 * MAX_CACHE_LVL which will be interpreted as LLC. 1127 */ 1128 if (str == NULL) { 1129 level = MAX_CACHE_LVL + 1; 1130 goto out; 1131 } 1132 1133 /* 1134 * The format to specify cache level is LX or lX where X is the 1135 * cache level. 1136 */ 1137 if (strlen(str) != 2 || (str[0] != 'l' && str[0] != 'L')) { 1138 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1139 MAX_CACHE_LVL, 1140 MAX_CACHE_LVL); 1141 return -EINVAL; 1142 } 1143 1144 level = atoi(&str[1]); 1145 if (level < 1) { 1146 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1147 MAX_CACHE_LVL, 1148 MAX_CACHE_LVL); 1149 return -EINVAL; 1150 } 1151 1152 if (level > MAX_CACHE_LVL) { 1153 pr_err("perf only supports max cache level of %d.\n" 1154 "Consider increasing MAX_CACHE_LVL\n", MAX_CACHE_LVL); 1155 return -EINVAL; 1156 } 1157 out: 1158 opt_aggr_mode->cache = true; 1159 *aggr_level = level; 1160 return 0; 1161 } 1162 1163 /** 1164 * Calculate the cache instance ID from the map in 1165 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1166 * Cache instance ID is the first CPU reported in the shared_cpu_list file. 1167 */ 1168 static int cpu__get_cache_id_from_map(struct perf_cpu cpu, char *map) 1169 { 1170 int id; 1171 struct perf_cpu_map *cpu_map = perf_cpu_map__new(map); 1172 1173 /* 1174 * If the map contains no CPU, consider the current CPU to 1175 * be the first online CPU in the cache domain else use the 1176 * first online CPU of the cache domain as the ID. 1177 */ 1178 id = perf_cpu_map__min(cpu_map).cpu; 1179 if (id == -1) 1180 id = cpu.cpu; 1181 1182 /* Free the perf_cpu_map used to find the cache ID */ 1183 perf_cpu_map__put(cpu_map); 1184 1185 return id; 1186 } 1187 1188 /** 1189 * cpu__get_cache_id - Returns 0 if successful in populating the 1190 * cache level and cache id. Cache level is read from 1191 * /sys/devices/system/cpu/cpuX/cache/indexY/level where as cache instance ID 1192 * is the first CPU reported by 1193 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1194 */ 1195 static int cpu__get_cache_details(struct perf_cpu cpu, struct perf_cache *cache) 1196 { 1197 int ret = 0; 1198 u32 cache_level = stat_config.aggr_level; 1199 struct cpu_cache_level caches[MAX_CACHE_LVL]; 1200 u32 i = 0, caches_cnt = 0; 1201 1202 cache->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1203 cache->cache = -1; 1204 1205 ret = build_caches_for_cpu(cpu.cpu, caches, &caches_cnt); 1206 if (ret) { 1207 /* 1208 * If caches_cnt is not 0, cpu_cache_level data 1209 * was allocated when building the topology. 1210 * Free the allocated data before returning. 1211 */ 1212 if (caches_cnt) 1213 goto free_caches; 1214 1215 return ret; 1216 } 1217 1218 if (!caches_cnt) 1219 return -1; 1220 1221 /* 1222 * Save the data for the highest level if no 1223 * level was specified by the user. 1224 */ 1225 if (cache_level > MAX_CACHE_LVL) { 1226 int max_level_index = 0; 1227 1228 for (i = 1; i < caches_cnt; ++i) { 1229 if (caches[i].level > caches[max_level_index].level) 1230 max_level_index = i; 1231 } 1232 1233 cache->cache_lvl = caches[max_level_index].level; 1234 cache->cache = cpu__get_cache_id_from_map(cpu, caches[max_level_index].map); 1235 1236 /* Reset i to 0 to free entire caches[] */ 1237 i = 0; 1238 goto free_caches; 1239 } 1240 1241 for (i = 0; i < caches_cnt; ++i) { 1242 if (caches[i].level == cache_level) { 1243 cache->cache_lvl = cache_level; 1244 cache->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1245 } 1246 1247 cpu_cache_level__free(&caches[i]); 1248 } 1249 1250 free_caches: 1251 /* 1252 * Free all the allocated cpu_cache_level data. 1253 */ 1254 while (i < caches_cnt) 1255 cpu_cache_level__free(&caches[i++]); 1256 1257 return ret; 1258 } 1259 1260 /** 1261 * aggr_cpu_id__cache - Create an aggr_cpu_id with cache instache ID, cache 1262 * level, die and socket populated with the cache instache ID, cache level, 1263 * die and socket for cpu. The function signature is compatible with 1264 * aggr_cpu_id_get_t. 1265 */ 1266 static struct aggr_cpu_id aggr_cpu_id__cache(struct perf_cpu cpu, void *data) 1267 { 1268 int ret; 1269 struct aggr_cpu_id id; 1270 struct perf_cache cache; 1271 1272 id = aggr_cpu_id__die(cpu, data); 1273 if (aggr_cpu_id__is_empty(&id)) 1274 return id; 1275 1276 ret = cpu__get_cache_details(cpu, &cache); 1277 if (ret) 1278 return id; 1279 1280 id.cache_lvl = cache.cache_lvl; 1281 id.cache = cache.cache; 1282 return id; 1283 } 1284 1285 static const char *const aggr_mode__string[] = { 1286 [AGGR_CORE] = "core", 1287 [AGGR_CACHE] = "cache", 1288 [AGGR_CLUSTER] = "cluster", 1289 [AGGR_DIE] = "die", 1290 [AGGR_GLOBAL] = "global", 1291 [AGGR_NODE] = "node", 1292 [AGGR_NONE] = "none", 1293 [AGGR_SOCKET] = "socket", 1294 [AGGR_THREAD] = "thread", 1295 [AGGR_UNSET] = "unset", 1296 }; 1297 1298 static struct aggr_cpu_id perf_stat__get_socket(struct perf_stat_config *config __maybe_unused, 1299 struct perf_cpu cpu) 1300 { 1301 return aggr_cpu_id__socket(cpu, /*data=*/NULL); 1302 } 1303 1304 static struct aggr_cpu_id perf_stat__get_die(struct perf_stat_config *config __maybe_unused, 1305 struct perf_cpu cpu) 1306 { 1307 return aggr_cpu_id__die(cpu, /*data=*/NULL); 1308 } 1309 1310 static struct aggr_cpu_id perf_stat__get_cache_id(struct perf_stat_config *config __maybe_unused, 1311 struct perf_cpu cpu) 1312 { 1313 return aggr_cpu_id__cache(cpu, /*data=*/NULL); 1314 } 1315 1316 static struct aggr_cpu_id perf_stat__get_cluster(struct perf_stat_config *config __maybe_unused, 1317 struct perf_cpu cpu) 1318 { 1319 return aggr_cpu_id__cluster(cpu, /*data=*/NULL); 1320 } 1321 1322 static struct aggr_cpu_id perf_stat__get_core(struct perf_stat_config *config __maybe_unused, 1323 struct perf_cpu cpu) 1324 { 1325 return aggr_cpu_id__core(cpu, /*data=*/NULL); 1326 } 1327 1328 static struct aggr_cpu_id perf_stat__get_node(struct perf_stat_config *config __maybe_unused, 1329 struct perf_cpu cpu) 1330 { 1331 return aggr_cpu_id__node(cpu, /*data=*/NULL); 1332 } 1333 1334 static struct aggr_cpu_id perf_stat__get_global(struct perf_stat_config *config __maybe_unused, 1335 struct perf_cpu cpu) 1336 { 1337 return aggr_cpu_id__global(cpu, /*data=*/NULL); 1338 } 1339 1340 static struct aggr_cpu_id perf_stat__get_cpu(struct perf_stat_config *config __maybe_unused, 1341 struct perf_cpu cpu) 1342 { 1343 return aggr_cpu_id__cpu(cpu, /*data=*/NULL); 1344 } 1345 1346 static struct aggr_cpu_id perf_stat__get_aggr(struct perf_stat_config *config, 1347 aggr_get_id_t get_id, struct perf_cpu cpu) 1348 { 1349 struct aggr_cpu_id id; 1350 1351 /* per-process mode - should use global aggr mode */ 1352 if (cpu.cpu == -1) 1353 return get_id(config, cpu); 1354 1355 if (aggr_cpu_id__is_empty(&config->cpus_aggr_map->map[cpu.cpu])) 1356 config->cpus_aggr_map->map[cpu.cpu] = get_id(config, cpu); 1357 1358 id = config->cpus_aggr_map->map[cpu.cpu]; 1359 return id; 1360 } 1361 1362 static struct aggr_cpu_id perf_stat__get_socket_cached(struct perf_stat_config *config, 1363 struct perf_cpu cpu) 1364 { 1365 return perf_stat__get_aggr(config, perf_stat__get_socket, cpu); 1366 } 1367 1368 static struct aggr_cpu_id perf_stat__get_die_cached(struct perf_stat_config *config, 1369 struct perf_cpu cpu) 1370 { 1371 return perf_stat__get_aggr(config, perf_stat__get_die, cpu); 1372 } 1373 1374 static struct aggr_cpu_id perf_stat__get_cluster_cached(struct perf_stat_config *config, 1375 struct perf_cpu cpu) 1376 { 1377 return perf_stat__get_aggr(config, perf_stat__get_cluster, cpu); 1378 } 1379 1380 static struct aggr_cpu_id perf_stat__get_cache_id_cached(struct perf_stat_config *config, 1381 struct perf_cpu cpu) 1382 { 1383 return perf_stat__get_aggr(config, perf_stat__get_cache_id, cpu); 1384 } 1385 1386 static struct aggr_cpu_id perf_stat__get_core_cached(struct perf_stat_config *config, 1387 struct perf_cpu cpu) 1388 { 1389 return perf_stat__get_aggr(config, perf_stat__get_core, cpu); 1390 } 1391 1392 static struct aggr_cpu_id perf_stat__get_node_cached(struct perf_stat_config *config, 1393 struct perf_cpu cpu) 1394 { 1395 return perf_stat__get_aggr(config, perf_stat__get_node, cpu); 1396 } 1397 1398 static struct aggr_cpu_id perf_stat__get_global_cached(struct perf_stat_config *config, 1399 struct perf_cpu cpu) 1400 { 1401 return perf_stat__get_aggr(config, perf_stat__get_global, cpu); 1402 } 1403 1404 static struct aggr_cpu_id perf_stat__get_cpu_cached(struct perf_stat_config *config, 1405 struct perf_cpu cpu) 1406 { 1407 return perf_stat__get_aggr(config, perf_stat__get_cpu, cpu); 1408 } 1409 1410 static aggr_cpu_id_get_t aggr_mode__get_aggr(enum aggr_mode aggr_mode) 1411 { 1412 switch (aggr_mode) { 1413 case AGGR_SOCKET: 1414 return aggr_cpu_id__socket; 1415 case AGGR_DIE: 1416 return aggr_cpu_id__die; 1417 case AGGR_CLUSTER: 1418 return aggr_cpu_id__cluster; 1419 case AGGR_CACHE: 1420 return aggr_cpu_id__cache; 1421 case AGGR_CORE: 1422 return aggr_cpu_id__core; 1423 case AGGR_NODE: 1424 return aggr_cpu_id__node; 1425 case AGGR_NONE: 1426 return aggr_cpu_id__cpu; 1427 case AGGR_GLOBAL: 1428 return aggr_cpu_id__global; 1429 case AGGR_THREAD: 1430 case AGGR_UNSET: 1431 case AGGR_MAX: 1432 default: 1433 return NULL; 1434 } 1435 } 1436 1437 static aggr_get_id_t aggr_mode__get_id(enum aggr_mode aggr_mode) 1438 { 1439 switch (aggr_mode) { 1440 case AGGR_SOCKET: 1441 return perf_stat__get_socket_cached; 1442 case AGGR_DIE: 1443 return perf_stat__get_die_cached; 1444 case AGGR_CLUSTER: 1445 return perf_stat__get_cluster_cached; 1446 case AGGR_CACHE: 1447 return perf_stat__get_cache_id_cached; 1448 case AGGR_CORE: 1449 return perf_stat__get_core_cached; 1450 case AGGR_NODE: 1451 return perf_stat__get_node_cached; 1452 case AGGR_NONE: 1453 return perf_stat__get_cpu_cached; 1454 case AGGR_GLOBAL: 1455 return perf_stat__get_global_cached; 1456 case AGGR_THREAD: 1457 case AGGR_UNSET: 1458 case AGGR_MAX: 1459 default: 1460 return NULL; 1461 } 1462 } 1463 1464 static int perf_stat_init_aggr_mode(void) 1465 { 1466 int nr; 1467 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr(stat_config.aggr_mode); 1468 1469 if (get_id) { 1470 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1471 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1472 get_id, /*data=*/NULL, needs_sort); 1473 if (!stat_config.aggr_map) { 1474 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1475 return -1; 1476 } 1477 stat_config.aggr_get_id = aggr_mode__get_id(stat_config.aggr_mode); 1478 } 1479 1480 if (stat_config.aggr_mode == AGGR_THREAD) { 1481 nr = perf_thread_map__nr(evsel_list->core.threads); 1482 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1483 if (stat_config.aggr_map == NULL) 1484 return -ENOMEM; 1485 1486 for (int s = 0; s < nr; s++) { 1487 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1488 1489 id.thread_idx = s; 1490 stat_config.aggr_map->map[s] = id; 1491 } 1492 return 0; 1493 } 1494 1495 /* 1496 * The evsel_list->cpus is the base we operate on, 1497 * taking the highest cpu number to be the size of 1498 * the aggregation translate cpumap. 1499 */ 1500 if (!perf_cpu_map__is_any_cpu_or_is_empty(evsel_list->core.user_requested_cpus)) 1501 nr = perf_cpu_map__max(evsel_list->core.user_requested_cpus).cpu; 1502 else 1503 nr = 0; 1504 stat_config.cpus_aggr_map = cpu_aggr_map__empty_new(nr + 1); 1505 return stat_config.cpus_aggr_map ? 0 : -ENOMEM; 1506 } 1507 1508 static void cpu_aggr_map__delete(struct cpu_aggr_map *map) 1509 { 1510 free(map); 1511 } 1512 1513 static void perf_stat__exit_aggr_mode(void) 1514 { 1515 cpu_aggr_map__delete(stat_config.aggr_map); 1516 cpu_aggr_map__delete(stat_config.cpus_aggr_map); 1517 stat_config.aggr_map = NULL; 1518 stat_config.cpus_aggr_map = NULL; 1519 } 1520 1521 static struct aggr_cpu_id perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu, void *data) 1522 { 1523 struct perf_env *env = data; 1524 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1525 1526 if (cpu.cpu != -1) 1527 id.socket = env->cpu[cpu.cpu].socket_id; 1528 1529 return id; 1530 } 1531 1532 static struct aggr_cpu_id perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu, void *data) 1533 { 1534 struct perf_env *env = data; 1535 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1536 1537 if (cpu.cpu != -1) { 1538 /* 1539 * die_id is relative to socket, so start 1540 * with the socket ID and then add die to 1541 * make a unique ID. 1542 */ 1543 id.socket = env->cpu[cpu.cpu].socket_id; 1544 id.die = env->cpu[cpu.cpu].die_id; 1545 } 1546 1547 return id; 1548 } 1549 1550 static void perf_env__get_cache_id_for_cpu(struct perf_cpu cpu, struct perf_env *env, 1551 u32 cache_level, struct aggr_cpu_id *id) 1552 { 1553 int i; 1554 int caches_cnt = env->caches_cnt; 1555 struct cpu_cache_level *caches = env->caches; 1556 1557 id->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1558 id->cache = -1; 1559 1560 if (!caches_cnt) 1561 return; 1562 1563 for (i = caches_cnt - 1; i > -1; --i) { 1564 struct perf_cpu_map *cpu_map; 1565 int map_contains_cpu; 1566 1567 /* 1568 * If user has not specified a level, find the fist level with 1569 * the cpu in the map. Since building the map is expensive, do 1570 * this only if levels match. 1571 */ 1572 if (cache_level <= MAX_CACHE_LVL && caches[i].level != cache_level) 1573 continue; 1574 1575 cpu_map = perf_cpu_map__new(caches[i].map); 1576 map_contains_cpu = perf_cpu_map__idx(cpu_map, cpu); 1577 perf_cpu_map__put(cpu_map); 1578 1579 if (map_contains_cpu != -1) { 1580 id->cache_lvl = caches[i].level; 1581 id->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1582 return; 1583 } 1584 } 1585 } 1586 1587 static struct aggr_cpu_id perf_env__get_cache_aggr_by_cpu(struct perf_cpu cpu, 1588 void *data) 1589 { 1590 struct perf_env *env = data; 1591 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1592 1593 if (cpu.cpu != -1) { 1594 u32 cache_level = (perf_stat.aggr_level) ?: stat_config.aggr_level; 1595 1596 id.socket = env->cpu[cpu.cpu].socket_id; 1597 id.die = env->cpu[cpu.cpu].die_id; 1598 perf_env__get_cache_id_for_cpu(cpu, env, cache_level, &id); 1599 } 1600 1601 return id; 1602 } 1603 1604 static struct aggr_cpu_id perf_env__get_cluster_aggr_by_cpu(struct perf_cpu cpu, 1605 void *data) 1606 { 1607 struct perf_env *env = data; 1608 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1609 1610 if (cpu.cpu != -1) { 1611 id.socket = env->cpu[cpu.cpu].socket_id; 1612 id.die = env->cpu[cpu.cpu].die_id; 1613 id.cluster = env->cpu[cpu.cpu].cluster_id; 1614 } 1615 1616 return id; 1617 } 1618 1619 static struct aggr_cpu_id perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu, void *data) 1620 { 1621 struct perf_env *env = data; 1622 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1623 1624 if (cpu.cpu != -1) { 1625 /* 1626 * core_id is relative to socket, die and cluster, we need a 1627 * global id. So we set socket, die id, cluster id and core id. 1628 */ 1629 id.socket = env->cpu[cpu.cpu].socket_id; 1630 id.die = env->cpu[cpu.cpu].die_id; 1631 id.cluster = env->cpu[cpu.cpu].cluster_id; 1632 id.core = env->cpu[cpu.cpu].core_id; 1633 } 1634 1635 return id; 1636 } 1637 1638 static struct aggr_cpu_id perf_env__get_cpu_aggr_by_cpu(struct perf_cpu cpu, void *data) 1639 { 1640 struct perf_env *env = data; 1641 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1642 1643 if (cpu.cpu != -1) { 1644 /* 1645 * core_id is relative to socket and die, 1646 * we need a global id. So we set 1647 * socket, die id and core id 1648 */ 1649 id.socket = env->cpu[cpu.cpu].socket_id; 1650 id.die = env->cpu[cpu.cpu].die_id; 1651 id.core = env->cpu[cpu.cpu].core_id; 1652 id.cpu = cpu; 1653 } 1654 1655 return id; 1656 } 1657 1658 static struct aggr_cpu_id perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu, void *data) 1659 { 1660 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1661 1662 id.node = perf_env__numa_node(data, cpu); 1663 return id; 1664 } 1665 1666 static struct aggr_cpu_id perf_env__get_global_aggr_by_cpu(struct perf_cpu cpu __maybe_unused, 1667 void *data __maybe_unused) 1668 { 1669 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1670 1671 /* it always aggregates to the cpu 0 */ 1672 id.cpu = (struct perf_cpu){ .cpu = 0 }; 1673 return id; 1674 } 1675 1676 static struct aggr_cpu_id perf_stat__get_socket_file(struct perf_stat_config *config __maybe_unused, 1677 struct perf_cpu cpu) 1678 { 1679 return perf_env__get_socket_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1680 } 1681 static struct aggr_cpu_id perf_stat__get_die_file(struct perf_stat_config *config __maybe_unused, 1682 struct perf_cpu cpu) 1683 { 1684 return perf_env__get_die_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1685 } 1686 1687 static struct aggr_cpu_id perf_stat__get_cluster_file(struct perf_stat_config *config __maybe_unused, 1688 struct perf_cpu cpu) 1689 { 1690 return perf_env__get_cluster_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1691 } 1692 1693 static struct aggr_cpu_id perf_stat__get_cache_file(struct perf_stat_config *config __maybe_unused, 1694 struct perf_cpu cpu) 1695 { 1696 return perf_env__get_cache_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1697 } 1698 1699 static struct aggr_cpu_id perf_stat__get_core_file(struct perf_stat_config *config __maybe_unused, 1700 struct perf_cpu cpu) 1701 { 1702 return perf_env__get_core_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1703 } 1704 1705 static struct aggr_cpu_id perf_stat__get_cpu_file(struct perf_stat_config *config __maybe_unused, 1706 struct perf_cpu cpu) 1707 { 1708 return perf_env__get_cpu_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1709 } 1710 1711 static struct aggr_cpu_id perf_stat__get_node_file(struct perf_stat_config *config __maybe_unused, 1712 struct perf_cpu cpu) 1713 { 1714 return perf_env__get_node_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1715 } 1716 1717 static struct aggr_cpu_id perf_stat__get_global_file(struct perf_stat_config *config __maybe_unused, 1718 struct perf_cpu cpu) 1719 { 1720 return perf_env__get_global_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1721 } 1722 1723 static aggr_cpu_id_get_t aggr_mode__get_aggr_file(enum aggr_mode aggr_mode) 1724 { 1725 switch (aggr_mode) { 1726 case AGGR_SOCKET: 1727 return perf_env__get_socket_aggr_by_cpu; 1728 case AGGR_DIE: 1729 return perf_env__get_die_aggr_by_cpu; 1730 case AGGR_CLUSTER: 1731 return perf_env__get_cluster_aggr_by_cpu; 1732 case AGGR_CACHE: 1733 return perf_env__get_cache_aggr_by_cpu; 1734 case AGGR_CORE: 1735 return perf_env__get_core_aggr_by_cpu; 1736 case AGGR_NODE: 1737 return perf_env__get_node_aggr_by_cpu; 1738 case AGGR_GLOBAL: 1739 return perf_env__get_global_aggr_by_cpu; 1740 case AGGR_NONE: 1741 return perf_env__get_cpu_aggr_by_cpu; 1742 case AGGR_THREAD: 1743 case AGGR_UNSET: 1744 case AGGR_MAX: 1745 default: 1746 return NULL; 1747 } 1748 } 1749 1750 static aggr_get_id_t aggr_mode__get_id_file(enum aggr_mode aggr_mode) 1751 { 1752 switch (aggr_mode) { 1753 case AGGR_SOCKET: 1754 return perf_stat__get_socket_file; 1755 case AGGR_DIE: 1756 return perf_stat__get_die_file; 1757 case AGGR_CLUSTER: 1758 return perf_stat__get_cluster_file; 1759 case AGGR_CACHE: 1760 return perf_stat__get_cache_file; 1761 case AGGR_CORE: 1762 return perf_stat__get_core_file; 1763 case AGGR_NODE: 1764 return perf_stat__get_node_file; 1765 case AGGR_GLOBAL: 1766 return perf_stat__get_global_file; 1767 case AGGR_NONE: 1768 return perf_stat__get_cpu_file; 1769 case AGGR_THREAD: 1770 case AGGR_UNSET: 1771 case AGGR_MAX: 1772 default: 1773 return NULL; 1774 } 1775 } 1776 1777 static int perf_stat_init_aggr_mode_file(struct perf_stat *st) 1778 { 1779 struct perf_env *env = &st->session->header.env; 1780 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr_file(stat_config.aggr_mode); 1781 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1782 1783 if (stat_config.aggr_mode == AGGR_THREAD) { 1784 int nr = perf_thread_map__nr(evsel_list->core.threads); 1785 1786 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1787 if (stat_config.aggr_map == NULL) 1788 return -ENOMEM; 1789 1790 for (int s = 0; s < nr; s++) { 1791 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1792 1793 id.thread_idx = s; 1794 stat_config.aggr_map->map[s] = id; 1795 } 1796 return 0; 1797 } 1798 1799 if (!get_id) 1800 return 0; 1801 1802 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1803 get_id, env, needs_sort); 1804 if (!stat_config.aggr_map) { 1805 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1806 return -1; 1807 } 1808 stat_config.aggr_get_id = aggr_mode__get_id_file(stat_config.aggr_mode); 1809 return 0; 1810 } 1811 1812 /* 1813 * Add default attributes, if there were no attributes specified or 1814 * if -d/--detailed, -d -d or -d -d -d is used: 1815 */ 1816 static int add_default_attributes(void) 1817 { 1818 struct perf_event_attr default_attrs0[] = { 1819 1820 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK }, 1821 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES }, 1822 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS }, 1823 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS }, 1824 1825 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES }, 1826 }; 1827 struct perf_event_attr frontend_attrs[] = { 1828 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND }, 1829 }; 1830 struct perf_event_attr backend_attrs[] = { 1831 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND }, 1832 }; 1833 struct perf_event_attr default_attrs1[] = { 1834 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS }, 1835 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS }, 1836 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES }, 1837 1838 }; 1839 1840 /* 1841 * Detailed stats (-d), covering the L1 and last level data caches: 1842 */ 1843 struct perf_event_attr detailed_attrs[] = { 1844 1845 { .type = PERF_TYPE_HW_CACHE, 1846 .config = 1847 PERF_COUNT_HW_CACHE_L1D << 0 | 1848 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1849 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1850 1851 { .type = PERF_TYPE_HW_CACHE, 1852 .config = 1853 PERF_COUNT_HW_CACHE_L1D << 0 | 1854 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1855 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1856 1857 { .type = PERF_TYPE_HW_CACHE, 1858 .config = 1859 PERF_COUNT_HW_CACHE_LL << 0 | 1860 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1861 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1862 1863 { .type = PERF_TYPE_HW_CACHE, 1864 .config = 1865 PERF_COUNT_HW_CACHE_LL << 0 | 1866 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1867 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1868 }; 1869 1870 /* 1871 * Very detailed stats (-d -d), covering the instruction cache and the TLB caches: 1872 */ 1873 struct perf_event_attr very_detailed_attrs[] = { 1874 1875 { .type = PERF_TYPE_HW_CACHE, 1876 .config = 1877 PERF_COUNT_HW_CACHE_L1I << 0 | 1878 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1879 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1880 1881 { .type = PERF_TYPE_HW_CACHE, 1882 .config = 1883 PERF_COUNT_HW_CACHE_L1I << 0 | 1884 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1885 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1886 1887 { .type = PERF_TYPE_HW_CACHE, 1888 .config = 1889 PERF_COUNT_HW_CACHE_DTLB << 0 | 1890 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1891 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1892 1893 { .type = PERF_TYPE_HW_CACHE, 1894 .config = 1895 PERF_COUNT_HW_CACHE_DTLB << 0 | 1896 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1897 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1898 1899 { .type = PERF_TYPE_HW_CACHE, 1900 .config = 1901 PERF_COUNT_HW_CACHE_ITLB << 0 | 1902 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1903 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1904 1905 { .type = PERF_TYPE_HW_CACHE, 1906 .config = 1907 PERF_COUNT_HW_CACHE_ITLB << 0 | 1908 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1909 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1910 1911 }; 1912 1913 /* 1914 * Very, very detailed stats (-d -d -d), adding prefetch events: 1915 */ 1916 struct perf_event_attr very_very_detailed_attrs[] = { 1917 1918 { .type = PERF_TYPE_HW_CACHE, 1919 .config = 1920 PERF_COUNT_HW_CACHE_L1D << 0 | 1921 (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | 1922 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1923 1924 { .type = PERF_TYPE_HW_CACHE, 1925 .config = 1926 PERF_COUNT_HW_CACHE_L1D << 0 | 1927 (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | 1928 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1929 }; 1930 1931 struct perf_event_attr default_null_attrs[] = {}; 1932 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 1933 1934 /* Set attrs if no event is selected and !null_run: */ 1935 if (stat_config.null_run) 1936 return 0; 1937 1938 if (transaction_run) { 1939 /* Handle -T as -M transaction. Once platform specific metrics 1940 * support has been added to the json files, all architectures 1941 * will use this approach. To determine transaction support 1942 * on an architecture test for such a metric name. 1943 */ 1944 if (!metricgroup__has_metric(pmu, "transaction")) { 1945 pr_err("Missing transaction metrics\n"); 1946 return -1; 1947 } 1948 return metricgroup__parse_groups(evsel_list, pmu, "transaction", 1949 stat_config.metric_no_group, 1950 stat_config.metric_no_merge, 1951 stat_config.metric_no_threshold, 1952 stat_config.user_requested_cpu_list, 1953 stat_config.system_wide, 1954 stat_config.hardware_aware_grouping, 1955 &stat_config.metric_events); 1956 } 1957 1958 if (smi_cost) { 1959 int smi; 1960 1961 if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) { 1962 pr_err("freeze_on_smi is not supported.\n"); 1963 return -1; 1964 } 1965 1966 if (!smi) { 1967 if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) { 1968 fprintf(stderr, "Failed to set freeze_on_smi.\n"); 1969 return -1; 1970 } 1971 smi_reset = true; 1972 } 1973 1974 if (!metricgroup__has_metric(pmu, "smi")) { 1975 pr_err("Missing smi metrics\n"); 1976 return -1; 1977 } 1978 1979 if (!force_metric_only) 1980 stat_config.metric_only = true; 1981 1982 return metricgroup__parse_groups(evsel_list, pmu, "smi", 1983 stat_config.metric_no_group, 1984 stat_config.metric_no_merge, 1985 stat_config.metric_no_threshold, 1986 stat_config.user_requested_cpu_list, 1987 stat_config.system_wide, 1988 stat_config.hardware_aware_grouping, 1989 &stat_config.metric_events); 1990 } 1991 1992 if (topdown_run) { 1993 unsigned int max_level = metricgroups__topdown_max_level(); 1994 char str[] = "TopdownL1"; 1995 1996 if (!force_metric_only) 1997 stat_config.metric_only = true; 1998 1999 if (!max_level) { 2000 pr_err("Topdown requested but the topdown metric groups aren't present.\n" 2001 "(See perf list the metric groups have names like TopdownL1)\n"); 2002 return -1; 2003 } 2004 if (stat_config.topdown_level > max_level) { 2005 pr_err("Invalid top-down metrics level. The max level is %u.\n", max_level); 2006 return -1; 2007 } else if (!stat_config.topdown_level) 2008 stat_config.topdown_level = 1; 2009 2010 if (!stat_config.interval && !stat_config.metric_only) { 2011 fprintf(stat_config.output, 2012 "Topdown accuracy may decrease when measuring long periods.\n" 2013 "Please print the result regularly, e.g. -I1000\n"); 2014 } 2015 str[8] = stat_config.topdown_level + ''; 2016 if (metricgroup__parse_groups(evsel_list, 2017 pmu, str, 2018 /*metric_no_group=*/false, 2019 /*metric_no_merge=*/false, 2020 /*metric_no_threshold=*/true, 2021 stat_config.user_requested_cpu_list, 2022 stat_config.system_wide, 2023 stat_config.hardware_aware_grouping, 2024 &stat_config.metric_events) < 0) 2025 return -1; 2026 } 2027 2028 if (!stat_config.topdown_level) 2029 stat_config.topdown_level = 1; 2030 2031 if (!evsel_list->core.nr_entries) { 2032 /* No events so add defaults. */ 2033 if (target__has_cpu(&target)) 2034 default_attrs0[0].config = PERF_COUNT_SW_CPU_CLOCK; 2035 2036 if (evlist__add_default_attrs(evsel_list, default_attrs0) < 0) 2037 return -1; 2038 if (perf_pmus__have_event("cpu", "stalled-cycles-frontend")) { 2039 if (evlist__add_default_attrs(evsel_list, frontend_attrs) < 0) 2040 return -1; 2041 } 2042 if (perf_pmus__have_event("cpu", "stalled-cycles-backend")) { 2043 if (evlist__add_default_attrs(evsel_list, backend_attrs) < 0) 2044 return -1; 2045 } 2046 if (evlist__add_default_attrs(evsel_list, default_attrs1) < 0) 2047 return -1; 2048 /* 2049 * Add TopdownL1 metrics if they exist. To minimize 2050 * multiplexing, don't request threshold computation. 2051 */ 2052 if (metricgroup__has_metric(pmu, "Default")) { 2053 struct evlist *metric_evlist = evlist__new(); 2054 struct evsel *metric_evsel; 2055 2056 if (!metric_evlist) 2057 return -1; 2058 2059 if (metricgroup__parse_groups(metric_evlist, pmu, "Default", 2060 /*metric_no_group=*/false, 2061 /*metric_no_merge=*/false, 2062 /*metric_no_threshold=*/true, 2063 stat_config.user_requested_cpu_list, 2064 stat_config.system_wide, 2065 stat_config.hardware_aware_grouping, 2066 &stat_config.metric_events) < 0) 2067 return -1; 2068 2069 evlist__for_each_entry(metric_evlist, metric_evsel) { 2070 metric_evsel->skippable = true; 2071 metric_evsel->default_metricgroup = true; 2072 } 2073 evlist__splice_list_tail(evsel_list, &metric_evlist->core.entries); 2074 evlist__delete(metric_evlist); 2075 } 2076 2077 /* Platform specific attrs */ 2078 if (evlist__add_default_attrs(evsel_list, default_null_attrs) < 0) 2079 return -1; 2080 } 2081 2082 /* Detailed events get appended to the event list: */ 2083 2084 if (detailed_run < 1) 2085 return 0; 2086 2087 /* Append detailed run extra attributes: */ 2088 if (evlist__add_default_attrs(evsel_list, detailed_attrs) < 0) 2089 return -1; 2090 2091 if (detailed_run < 2) 2092 return 0; 2093 2094 /* Append very detailed run extra attributes: */ 2095 if (evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0) 2096 return -1; 2097 2098 if (detailed_run < 3) 2099 return 0; 2100 2101 /* Append very, very detailed run extra attributes: */ 2102 return evlist__add_default_attrs(evsel_list, very_very_detailed_attrs); 2103 } 2104 2105 static const char * const stat_record_usage[] = { 2106 "perf stat record [<options>]", 2107 NULL, 2108 }; 2109 2110 static void init_features(struct perf_session *session) 2111 { 2112 int feat; 2113 2114 for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++) 2115 perf_header__set_feat(&session->header, feat); 2116 2117 perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT); 2118 perf_header__clear_feat(&session->header, HEADER_BUILD_ID); 2119 perf_header__clear_feat(&session->header, HEADER_TRACING_DATA); 2120 perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK); 2121 perf_header__clear_feat(&session->header, HEADER_AUXTRACE); 2122 } 2123 2124 static int __cmd_record(const struct option stat_options[], struct opt_aggr_mode *opt_mode, 2125 int argc, const char **argv) 2126 { 2127 struct perf_session *session; 2128 struct perf_data *data = &perf_stat.data; 2129 2130 argc = parse_options(argc, argv, stat_options, stat_record_usage, 2131 PARSE_OPT_STOP_AT_NON_OPTION); 2132 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(opt_mode); 2133 2134 if (output_name) 2135 data->path = output_name; 2136 2137 if (stat_config.run_count != 1 || forever) { 2138 pr_err("Cannot use -r option with perf stat record.\n"); 2139 return -1; 2140 } 2141 2142 session = perf_session__new(data, NULL); 2143 if (IS_ERR(session)) { 2144 pr_err("Perf session creation failed\n"); 2145 return PTR_ERR(session); 2146 } 2147 2148 init_features(session); 2149 2150 session->evlist = evsel_list; 2151 perf_stat.session = session; 2152 perf_stat.record = true; 2153 return argc; 2154 } 2155 2156 static int process_stat_round_event(struct perf_session *session, 2157 union perf_event *event) 2158 { 2159 struct perf_record_stat_round *stat_round = &event->stat_round; 2160 struct timespec tsh, *ts = NULL; 2161 const char **argv = session->header.env.cmdline_argv; 2162 int argc = session->header.env.nr_cmdline; 2163 2164 process_counters(); 2165 2166 if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL) 2167 update_stats(&walltime_nsecs_stats, stat_round->time); 2168 2169 if (stat_config.interval && stat_round->time) { 2170 tsh.tv_sec = stat_round->time / NSEC_PER_SEC; 2171 tsh.tv_nsec = stat_round->time % NSEC_PER_SEC; 2172 ts = &tsh; 2173 } 2174 2175 print_counters(ts, argc, argv); 2176 return 0; 2177 } 2178 2179 static 2180 int process_stat_config_event(struct perf_session *session, 2181 union perf_event *event) 2182 { 2183 struct perf_tool *tool = session->tool; 2184 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2185 2186 perf_event__read_stat_config(&stat_config, &event->stat_config); 2187 2188 if (perf_cpu_map__is_empty(st->cpus)) { 2189 if (st->aggr_mode != AGGR_UNSET) 2190 pr_warning("warning: processing task data, aggregation mode not set\n"); 2191 } else if (st->aggr_mode != AGGR_UNSET) { 2192 stat_config.aggr_mode = st->aggr_mode; 2193 } 2194 2195 if (perf_stat.data.is_pipe) 2196 perf_stat_init_aggr_mode(); 2197 else 2198 perf_stat_init_aggr_mode_file(st); 2199 2200 if (stat_config.aggr_map) { 2201 int nr_aggr = stat_config.aggr_map->nr; 2202 2203 if (evlist__alloc_aggr_stats(session->evlist, nr_aggr) < 0) { 2204 pr_err("cannot allocate aggr counts\n"); 2205 return -1; 2206 } 2207 } 2208 return 0; 2209 } 2210 2211 static int set_maps(struct perf_stat *st) 2212 { 2213 if (!st->cpus || !st->threads) 2214 return 0; 2215 2216 if (WARN_ONCE(st->maps_allocated, "stats double allocation\n")) 2217 return -EINVAL; 2218 2219 perf_evlist__set_maps(&evsel_list->core, st->cpus, st->threads); 2220 2221 if (evlist__alloc_stats(&stat_config, evsel_list, /*alloc_raw=*/true)) 2222 return -ENOMEM; 2223 2224 st->maps_allocated = true; 2225 return 0; 2226 } 2227 2228 static 2229 int process_thread_map_event(struct perf_session *session, 2230 union perf_event *event) 2231 { 2232 struct perf_tool *tool = session->tool; 2233 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2234 2235 if (st->threads) { 2236 pr_warning("Extra thread map event, ignoring.\n"); 2237 return 0; 2238 } 2239 2240 st->threads = thread_map__new_event(&event->thread_map); 2241 if (!st->threads) 2242 return -ENOMEM; 2243 2244 return set_maps(st); 2245 } 2246 2247 static 2248 int process_cpu_map_event(struct perf_session *session, 2249 union perf_event *event) 2250 { 2251 struct perf_tool *tool = session->tool; 2252 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2253 struct perf_cpu_map *cpus; 2254 2255 if (st->cpus) { 2256 pr_warning("Extra cpu map event, ignoring.\n"); 2257 return 0; 2258 } 2259 2260 cpus = cpu_map__new_data(&event->cpu_map.data); 2261 if (!cpus) 2262 return -ENOMEM; 2263 2264 st->cpus = cpus; 2265 return set_maps(st); 2266 } 2267 2268 static const char * const stat_report_usage[] = { 2269 "perf stat report [<options>]", 2270 NULL, 2271 }; 2272 2273 static struct perf_stat perf_stat = { 2274 .tool = { 2275 .attr = perf_event__process_attr, 2276 .event_update = perf_event__process_event_update, 2277 .thread_map = process_thread_map_event, 2278 .cpu_map = process_cpu_map_event, 2279 .stat_config = process_stat_config_event, 2280 .stat = perf_event__process_stat_event, 2281 .stat_round = process_stat_round_event, 2282 }, 2283 .aggr_mode = AGGR_UNSET, 2284 .aggr_level = 0, 2285 }; 2286 2287 static int __cmd_report(int argc, const char **argv) 2288 { 2289 struct perf_session *session; 2290 const struct option options[] = { 2291 OPT_STRING('i', "input", &input_name, "file", "input file name"), 2292 OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode, 2293 "aggregate counts per processor socket", AGGR_SOCKET), 2294 OPT_SET_UINT(0, "per-die", &perf_stat.aggr_mode, 2295 "aggregate counts per processor die", AGGR_DIE), 2296 OPT_SET_UINT(0, "per-cluster", &perf_stat.aggr_mode, 2297 "aggregate counts perf processor cluster", AGGR_CLUSTER), 2298 OPT_CALLBACK_OPTARG(0, "per-cache", &perf_stat.aggr_mode, &perf_stat.aggr_level, 2299 "cache level", 2300 "aggregate count at this cache level (Default: LLC)", 2301 parse_cache_level), 2302 OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode, 2303 "aggregate counts per physical processor core", AGGR_CORE), 2304 OPT_SET_UINT(0, "per-node", &perf_stat.aggr_mode, 2305 "aggregate counts per numa node", AGGR_NODE), 2306 OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode, 2307 "disable CPU count aggregation", AGGR_NONE), 2308 OPT_END() 2309 }; 2310 struct stat st; 2311 int ret; 2312 2313 argc = parse_options(argc, argv, options, stat_report_usage, 0); 2314 2315 if (!input_name || !strlen(input_name)) { 2316 if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode)) 2317 input_name = "-"; 2318 else 2319 input_name = "perf.data"; 2320 } 2321 2322 perf_stat.data.path = input_name; 2323 perf_stat.data.mode = PERF_DATA_MODE_READ; 2324 2325 session = perf_session__new(&perf_stat.data, &perf_stat.tool); 2326 if (IS_ERR(session)) 2327 return PTR_ERR(session); 2328 2329 perf_stat.session = session; 2330 stat_config.output = stderr; 2331 evlist__delete(evsel_list); 2332 evsel_list = session->evlist; 2333 2334 ret = perf_session__process_events(session); 2335 if (ret) 2336 return ret; 2337 2338 perf_session__delete(session); 2339 return 0; 2340 } 2341 2342 static void setup_system_wide(int forks) 2343 { 2344 /* 2345 * Make system wide (-a) the default target if 2346 * no target was specified and one of following 2347 * conditions is met: 2348 * 2349 * - there's no workload specified 2350 * - there is workload specified but all requested 2351 * events are system wide events 2352 */ 2353 if (!target__none(&target)) 2354 return; 2355 2356 if (!forks) 2357 target.system_wide = true; 2358 else { 2359 struct evsel *counter; 2360 2361 evlist__for_each_entry(evsel_list, counter) { 2362 if (!counter->core.requires_cpu && 2363 !evsel__name_is(counter, "duration_time")) { 2364 return; 2365 } 2366 } 2367 2368 if (evsel_list->core.nr_entries) 2369 target.system_wide = true; 2370 } 2371 } 2372 2373 int cmd_stat(int argc, const char **argv) 2374 { 2375 struct opt_aggr_mode opt_mode = {}; 2376 struct option stat_options[] = { 2377 OPT_BOOLEAN('T', "transaction", &transaction_run, 2378 "hardware transaction statistics"), 2379 OPT_CALLBACK('e', "event", &parse_events_option_args, "event", 2380 "event selector. use 'perf list' to list available events", 2381 parse_events_option), 2382 OPT_CALLBACK(0, "filter", &evsel_list, "filter", 2383 "event filter", parse_filter), 2384 OPT_BOOLEAN('i', "no-inherit", &stat_config.no_inherit, 2385 "child tasks do not inherit counters"), 2386 OPT_STRING('p', "pid", &target.pid, "pid", 2387 "stat events on existing process id"), 2388 OPT_STRING('t', "tid", &target.tid, "tid", 2389 "stat events on existing thread id"), 2390 #ifdef HAVE_BPF_SKEL 2391 OPT_STRING('b', "bpf-prog", &target.bpf_str, "bpf-prog-id", 2392 "stat events on existing bpf program id"), 2393 OPT_BOOLEAN(0, "bpf-counters", &target.use_bpf, 2394 "use bpf program to count events"), 2395 OPT_STRING(0, "bpf-attr-map", &target.attr_map, "attr-map-path", 2396 "path to perf_event_attr map"), 2397 #endif 2398 OPT_BOOLEAN('a', "all-cpus", &target.system_wide, 2399 "system-wide collection from all CPUs"), 2400 OPT_BOOLEAN(0, "scale", &stat_config.scale, 2401 "Use --no-scale to disable counter scaling for multiplexing"), 2402 OPT_INCR('v', "verbose", &verbose, 2403 "be more verbose (show counter open errors, etc)"), 2404 OPT_INTEGER('r', "repeat", &stat_config.run_count, 2405 "repeat command and print average + stddev (max: 100, forever: 0)"), 2406 OPT_BOOLEAN(0, "table", &stat_config.walltime_run_table, 2407 "display details about each run (only with -r option)"), 2408 OPT_BOOLEAN('n', "null", &stat_config.null_run, 2409 "null run - dont start any counters"), 2410 OPT_INCR('d', "detailed", &detailed_run, 2411 "detailed run - start a lot of events"), 2412 OPT_BOOLEAN('S', "sync", &sync_run, 2413 "call sync() before starting a run"), 2414 OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, 2415 "print large numbers with thousands\' separators", 2416 stat__set_big_num), 2417 OPT_STRING('C', "cpu", &target.cpu_list, "cpu", 2418 "list of cpus to monitor in system-wide"), 2419 OPT_BOOLEAN('A', "no-aggr", &opt_mode.no_aggr, 2420 "disable aggregation across CPUs or PMUs"), 2421 OPT_BOOLEAN(0, "no-merge", &opt_mode.no_aggr, 2422 "disable aggregation the same as -A or -no-aggr"), 2423 OPT_BOOLEAN(0, "hybrid-merge", &stat_config.hybrid_merge, 2424 "Merge identical named hybrid events"), 2425 OPT_STRING('x', "field-separator", &stat_config.csv_sep, "separator", 2426 "print counts with custom separator"), 2427 OPT_BOOLEAN('j', "json-output", &stat_config.json_output, 2428 "print counts in JSON format"), 2429 OPT_CALLBACK('G', "cgroup", &evsel_list, "name", 2430 "monitor event in cgroup name only", parse_stat_cgroups), 2431 OPT_STRING(0, "for-each-cgroup", &stat_config.cgroup_list, "name", 2432 "expand events for each cgroup"), 2433 OPT_STRING('o', "output", &output_name, "file", "output file name"), 2434 OPT_BOOLEAN(0, "append", &append_file, "append to the output file"), 2435 OPT_INTEGER(0, "log-fd", &output_fd, 2436 "log output to fd, instead of stderr"), 2437 OPT_STRING(0, "pre", &pre_cmd, "command", 2438 "command to run prior to the measured command"), 2439 OPT_STRING(0, "post", &post_cmd, "command", 2440 "command to run after to the measured command"), 2441 OPT_UINTEGER('I', "interval-print", &stat_config.interval, 2442 "print counts at regular interval in ms " 2443 "(overhead is possible for values <= 100ms)"), 2444 OPT_INTEGER(0, "interval-count", &stat_config.times, 2445 "print counts for fixed number of times"), 2446 OPT_BOOLEAN(0, "interval-clear", &stat_config.interval_clear, 2447 "clear screen in between new interval"), 2448 OPT_UINTEGER(0, "timeout", &stat_config.timeout, 2449 "stop workload and print counts after a timeout period in ms (>= 10ms)"), 2450 OPT_BOOLEAN(0, "per-socket", &opt_mode.socket, 2451 "aggregate counts per processor socket"), 2452 OPT_BOOLEAN(0, "per-die", &opt_mode.die, "aggregate counts per processor die"), 2453 OPT_BOOLEAN(0, "per-cluster", &opt_mode.cluster, 2454 "aggregate counts per processor cluster"), 2455 OPT_CALLBACK_OPTARG(0, "per-cache", &opt_mode, &stat_config.aggr_level, 2456 "cache level", "aggregate count at this cache level (Default: LLC)", 2457 parse_cache_level), 2458 OPT_BOOLEAN(0, "per-core", &opt_mode.core, 2459 "aggregate counts per physical processor core"), 2460 OPT_BOOLEAN(0, "per-thread", &opt_mode.thread, "aggregate counts per thread"), 2461 OPT_BOOLEAN(0, "per-node", &opt_mode.node, "aggregate counts per numa node"), 2462 OPT_INTEGER('D', "delay", &target.initial_delay, 2463 "ms to wait before starting measurement after program start (-1: start with events disabled)"), 2464 OPT_CALLBACK_NOOPT(0, "metric-only", &stat_config.metric_only, NULL, 2465 "Only print computed metrics. No raw values", enable_metric_only), 2466 OPT_BOOLEAN(0, "metric-no-group", &stat_config.metric_no_group, 2467 "don't group metric events, impacts multiplexing"), 2468 OPT_BOOLEAN(0, "metric-no-merge", &stat_config.metric_no_merge, 2469 "don't try to share events between metrics in a group"), 2470 OPT_BOOLEAN(0, "metric-no-threshold", &stat_config.metric_no_threshold, 2471 "disable adding events for the metric threshold calculation"), 2472 OPT_BOOLEAN(0, "topdown", &topdown_run, 2473 "measure top-down statistics"), 2474 OPT_UINTEGER(0, "td-level", &stat_config.topdown_level, 2475 "Set the metrics level for the top-down statistics (0: max level)"), 2476 OPT_BOOLEAN(0, "smi-cost", &smi_cost, 2477 "measure SMI cost"), 2478 OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list", 2479 "monitor specified metrics or metric groups (separated by ,)", 2480 append_metric_groups), 2481 OPT_BOOLEAN_FLAG(0, "all-kernel", &stat_config.all_kernel, 2482 "Configure all used events to run in kernel space.", 2483 PARSE_OPT_EXCLUSIVE), 2484 OPT_BOOLEAN_FLAG(0, "all-user", &stat_config.all_user, 2485 "Configure all used events to run in user space.", 2486 PARSE_OPT_EXCLUSIVE), 2487 OPT_BOOLEAN(0, "percore-show-thread", &stat_config.percore_show_thread, 2488 "Use with 'percore' event qualifier to show the event " 2489 "counts of one hardware thread by sum up total hardware " 2490 "threads of same physical core"), 2491 OPT_BOOLEAN(0, "summary", &stat_config.summary, 2492 "print summary for interval mode"), 2493 OPT_BOOLEAN(0, "no-csv-summary", &stat_config.no_csv_summary, 2494 "don't print 'summary' for CSV summary output"), 2495 OPT_BOOLEAN(0, "quiet", &quiet, 2496 "don't print any output, messages or warnings (useful with record)"), 2497 OPT_CALLBACK(0, "cputype", &evsel_list, "hybrid cpu type", 2498 "Only enable events on applying cpu with this type " 2499 "for hybrid platform (e.g. core or atom)", 2500 parse_cputype), 2501 #ifdef HAVE_LIBPFM 2502 OPT_CALLBACK(0, "pfm-events", &evsel_list, "event", 2503 "libpfm4 event selector. use 'perf list' to list available events", 2504 parse_libpfm_events_option), 2505 #endif 2506 OPT_CALLBACK(0, "control", &stat_config, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]", 2507 "Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events).\n" 2508 "\t\t\t Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n" 2509 "\t\t\t Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.", 2510 parse_control_option), 2511 OPT_CALLBACK_OPTARG(0, "iostat", &evsel_list, &stat_config, "default", 2512 "measure I/O performance metrics provided by arch/platform", 2513 iostat_parse), 2514 OPT_END() 2515 }; 2516 const char * const stat_usage[] = { 2517 "perf stat [<options>] [<command>]", 2518 NULL 2519 }; 2520 int status = -EINVAL, run_idx, err; 2521 const char *mode; 2522 FILE *output = stderr; 2523 unsigned int interval, timeout; 2524 const char * const stat_subcommands[] = { "record", "report" }; 2525 char errbuf[BUFSIZ]; 2526 2527 setlocale(LC_ALL, ""); 2528 2529 evsel_list = evlist__new(); 2530 if (evsel_list == NULL) 2531 return -ENOMEM; 2532 2533 parse_events__shrink_config_terms(); 2534 2535 /* String-parsing callback-based options would segfault when negated */ 2536 set_option_flag(stat_options, 'e', "event", PARSE_OPT_NONEG); 2537 set_option_flag(stat_options, 'M', "metrics", PARSE_OPT_NONEG); 2538 set_option_flag(stat_options, 'G', "cgroup", PARSE_OPT_NONEG); 2539 2540 argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands, 2541 (const char **) stat_usage, 2542 PARSE_OPT_STOP_AT_NON_OPTION); 2543 2544 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(&opt_mode); 2545 2546 if (stat_config.csv_sep) { 2547 stat_config.csv_output = true; 2548 if (!strcmp(stat_config.csv_sep, "\\t")) 2549 stat_config.csv_sep = "\t"; 2550 } else 2551 stat_config.csv_sep = DEFAULT_SEPARATOR; 2552 2553 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 2554 argc = __cmd_record(stat_options, &opt_mode, argc, argv); 2555 if (argc < 0) 2556 return -1; 2557 } else if (argc && strlen(argv[0]) > 2 && strstarts("report", argv[0])) 2558 return __cmd_report(argc, argv); 2559 2560 interval = stat_config.interval; 2561 timeout = stat_config.timeout; 2562 2563 /* 2564 * For record command the -o is already taken care of. 2565 */ 2566 if (!STAT_RECORD && output_name && strcmp(output_name, "-")) 2567 output = NULL; 2568 2569 if (output_name && output_fd) { 2570 fprintf(stderr, "cannot use both --output and --log-fd\n"); 2571 parse_options_usage(stat_usage, stat_options, "o", 1); 2572 parse_options_usage(NULL, stat_options, "log-fd", 0); 2573 goto out; 2574 } 2575 2576 if (stat_config.metric_only && stat_config.aggr_mode == AGGR_THREAD) { 2577 fprintf(stderr, "--metric-only is not supported with --per-thread\n"); 2578 goto out; 2579 } 2580 2581 if (stat_config.metric_only && stat_config.run_count > 1) { 2582 fprintf(stderr, "--metric-only is not supported with -r\n"); 2583 goto out; 2584 } 2585 2586 if (stat_config.walltime_run_table && stat_config.run_count <= 1) { 2587 fprintf(stderr, "--table is only supported with -r\n"); 2588 parse_options_usage(stat_usage, stat_options, "r", 1); 2589 parse_options_usage(NULL, stat_options, "table", 0); 2590 goto out; 2591 } 2592 2593 if (output_fd < 0) { 2594 fprintf(stderr, "argument to --log-fd must be a > 0\n"); 2595 parse_options_usage(stat_usage, stat_options, "log-fd", 0); 2596 goto out; 2597 } 2598 2599 if (!output && !quiet) { 2600 struct timespec tm; 2601 mode = append_file ? "a" : "w"; 2602 2603 output = fopen(output_name, mode); 2604 if (!output) { 2605 perror("failed to create output file"); 2606 return -1; 2607 } 2608 if (!stat_config.json_output) { 2609 clock_gettime(CLOCK_REALTIME, &tm); 2610 fprintf(output, "# started on %s\n", ctime(&tm.tv_sec)); 2611 } 2612 } else if (output_fd > 0) { 2613 mode = append_file ? "a" : "w"; 2614 output = fdopen(output_fd, mode); 2615 if (!output) { 2616 perror("Failed opening logfd"); 2617 return -errno; 2618 } 2619 } 2620 2621 if (stat_config.interval_clear && !isatty(fileno(output))) { 2622 fprintf(stderr, "--interval-clear does not work with output\n"); 2623 parse_options_usage(stat_usage, stat_options, "o", 1); 2624 parse_options_usage(NULL, stat_options, "log-fd", 0); 2625 parse_options_usage(NULL, stat_options, "interval-clear", 0); 2626 return -1; 2627 } 2628 2629 stat_config.output = output; 2630 2631 /* 2632 * let the spreadsheet do the pretty-printing 2633 */ 2634 if (stat_config.csv_output) { 2635 /* User explicitly passed -B? */ 2636 if (big_num_opt == 1) { 2637 fprintf(stderr, "-B option not supported with -x\n"); 2638 parse_options_usage(stat_usage, stat_options, "B", 1); 2639 parse_options_usage(NULL, stat_options, "x", 1); 2640 goto out; 2641 } else /* Nope, so disable big number formatting */ 2642 stat_config.big_num = false; 2643 } else if (big_num_opt == 0) /* User passed --no-big-num */ 2644 stat_config.big_num = false; 2645 2646 err = target__validate(&target); 2647 if (err) { 2648 target__strerror(&target, err, errbuf, BUFSIZ); 2649 pr_warning("%s\n", errbuf); 2650 } 2651 2652 setup_system_wide(argc); 2653 2654 /* 2655 * Display user/system times only for single 2656 * run and when there's specified tracee. 2657 */ 2658 if ((stat_config.run_count == 1) && target__none(&target)) 2659 stat_config.ru_display = true; 2660 2661 if (stat_config.run_count < 0) { 2662 pr_err("Run count must be a positive number\n"); 2663 parse_options_usage(stat_usage, stat_options, "r", 1); 2664 goto out; 2665 } else if (stat_config.run_count == 0) { 2666 forever = true; 2667 stat_config.run_count = 1; 2668 } 2669 2670 if (stat_config.walltime_run_table) { 2671 stat_config.walltime_run = zalloc(stat_config.run_count * sizeof(stat_config.walltime_run[0])); 2672 if (!stat_config.walltime_run) { 2673 pr_err("failed to setup -r option"); 2674 goto out; 2675 } 2676 } 2677 2678 if ((stat_config.aggr_mode == AGGR_THREAD) && 2679 !target__has_task(&target)) { 2680 if (!target.system_wide || target.cpu_list) { 2681 fprintf(stderr, "The --per-thread option is only " 2682 "available when monitoring via -p -t -a " 2683 "options or only --per-thread.\n"); 2684 parse_options_usage(NULL, stat_options, "p", 1); 2685 parse_options_usage(NULL, stat_options, "t", 1); 2686 goto out; 2687 } 2688 } 2689 2690 /* 2691 * no_aggr, cgroup are for system-wide only 2692 * --per-thread is aggregated per thread, we dont mix it with cpu mode 2693 */ 2694 if (((stat_config.aggr_mode != AGGR_GLOBAL && 2695 stat_config.aggr_mode != AGGR_THREAD) || 2696 (nr_cgroups || stat_config.cgroup_list)) && 2697 !target__has_cpu(&target)) { 2698 fprintf(stderr, "both cgroup and no-aggregation " 2699 "modes only available in system-wide mode\n"); 2700 2701 parse_options_usage(stat_usage, stat_options, "G", 1); 2702 parse_options_usage(NULL, stat_options, "A", 1); 2703 parse_options_usage(NULL, stat_options, "a", 1); 2704 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2705 goto out; 2706 } 2707 2708 if (stat_config.iostat_run) { 2709 status = iostat_prepare(evsel_list, &stat_config); 2710 if (status) 2711 goto out; 2712 if (iostat_mode == IOSTAT_LIST) { 2713 iostat_list(evsel_list, &stat_config); 2714 goto out; 2715 } else if (verbose > 0) 2716 iostat_list(evsel_list, &stat_config); 2717 if (iostat_mode == IOSTAT_RUN && !target__has_cpu(&target)) 2718 target.system_wide = true; 2719 } 2720 2721 if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide)) 2722 target.per_thread = true; 2723 2724 stat_config.system_wide = target.system_wide; 2725 if (target.cpu_list) { 2726 stat_config.user_requested_cpu_list = strdup(target.cpu_list); 2727 if (!stat_config.user_requested_cpu_list) { 2728 status = -ENOMEM; 2729 goto out; 2730 } 2731 } 2732 2733 /* 2734 * Metric parsing needs to be delayed as metrics may optimize events 2735 * knowing the target is system-wide. 2736 */ 2737 if (metrics) { 2738 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 2739 int ret = metricgroup__parse_groups(evsel_list, pmu, metrics, 2740 stat_config.metric_no_group, 2741 stat_config.metric_no_merge, 2742 stat_config.metric_no_threshold, 2743 stat_config.user_requested_cpu_list, 2744 stat_config.system_wide, 2745 stat_config.hardware_aware_grouping, 2746 &stat_config.metric_events); 2747 2748 zfree(&metrics); 2749 if (ret) { 2750 status = ret; 2751 goto out; 2752 } 2753 } 2754 2755 if (add_default_attributes()) 2756 goto out; 2757 2758 if (stat_config.cgroup_list) { 2759 if (nr_cgroups > 0) { 2760 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 2761 parse_options_usage(stat_usage, stat_options, "G", 1); 2762 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2763 goto out; 2764 } 2765 2766 if (evlist__expand_cgroup(evsel_list, stat_config.cgroup_list, 2767 &stat_config.metric_events, true) < 0) { 2768 parse_options_usage(stat_usage, stat_options, 2769 "for-each-cgroup", 0); 2770 goto out; 2771 } 2772 } 2773 2774 evlist__warn_user_requested_cpus(evsel_list, target.cpu_list); 2775 2776 if (evlist__create_maps(evsel_list, &target) < 0) { 2777 if (target__has_task(&target)) { 2778 pr_err("Problems finding threads of monitor\n"); 2779 parse_options_usage(stat_usage, stat_options, "p", 1); 2780 parse_options_usage(NULL, stat_options, "t", 1); 2781 } else if (target__has_cpu(&target)) { 2782 perror("failed to parse CPUs map"); 2783 parse_options_usage(stat_usage, stat_options, "C", 1); 2784 parse_options_usage(NULL, stat_options, "a", 1); 2785 } 2786 goto out; 2787 } 2788 2789 evlist__check_cpu_maps(evsel_list); 2790 2791 /* 2792 * Initialize thread_map with comm names, 2793 * so we could print it out on output. 2794 */ 2795 if (stat_config.aggr_mode == AGGR_THREAD) { 2796 thread_map__read_comms(evsel_list->core.threads); 2797 } 2798 2799 if (stat_config.aggr_mode == AGGR_NODE) 2800 cpu__setup_cpunode_map(); 2801 2802 if (stat_config.times && interval) 2803 interval_count = true; 2804 else if (stat_config.times && !interval) { 2805 pr_err("interval-count option should be used together with " 2806 "interval-print.\n"); 2807 parse_options_usage(stat_usage, stat_options, "interval-count", 0); 2808 parse_options_usage(stat_usage, stat_options, "I", 1); 2809 goto out; 2810 } 2811 2812 if (timeout && timeout < 100) { 2813 if (timeout < 10) { 2814 pr_err("timeout must be >= 10ms.\n"); 2815 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2816 goto out; 2817 } else 2818 pr_warning("timeout < 100ms. " 2819 "The overhead percentage could be high in some cases. " 2820 "Please proceed with caution.\n"); 2821 } 2822 if (timeout && interval) { 2823 pr_err("timeout option is not supported with interval-print.\n"); 2824 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2825 parse_options_usage(stat_usage, stat_options, "I", 1); 2826 goto out; 2827 } 2828 2829 if (perf_stat_init_aggr_mode()) 2830 goto out; 2831 2832 if (evlist__alloc_stats(&stat_config, evsel_list, interval)) 2833 goto out; 2834 2835 /* 2836 * Set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless 2837 * while avoiding that older tools show confusing messages. 2838 * 2839 * However for pipe sessions we need to keep it zero, 2840 * because script's perf_evsel__check_attr is triggered 2841 * by attr->sample_type != 0, and we can't run it on 2842 * stat sessions. 2843 */ 2844 stat_config.identifier = !(STAT_RECORD && perf_stat.data.is_pipe); 2845 2846 /* 2847 * We dont want to block the signals - that would cause 2848 * child tasks to inherit that and Ctrl-C would not work. 2849 * What we want is for Ctrl-C to work in the exec()-ed 2850 * task, but being ignored by perf stat itself: 2851 */ 2852 atexit(sig_atexit); 2853 if (!forever) 2854 signal(SIGINT, skip_signal); 2855 signal(SIGCHLD, skip_signal); 2856 signal(SIGALRM, skip_signal); 2857 signal(SIGABRT, skip_signal); 2858 2859 if (evlist__initialize_ctlfd(evsel_list, stat_config.ctl_fd, stat_config.ctl_fd_ack)) 2860 goto out; 2861 2862 /* Enable ignoring missing threads when -p option is defined. */ 2863 evlist__first(evsel_list)->ignore_missing_thread = target.pid; 2864 status = 0; 2865 for (run_idx = 0; forever || run_idx < stat_config.run_count; run_idx++) { 2866 if (stat_config.run_count != 1 && verbose > 0) 2867 fprintf(output, "[ perf stat: executing run #%d ... ]\n", 2868 run_idx + 1); 2869 2870 if (run_idx != 0) 2871 evlist__reset_prev_raw_counts(evsel_list); 2872 2873 status = run_perf_stat(argc, argv, run_idx); 2874 if (forever && status != -1 && !interval) { 2875 print_counters(NULL, argc, argv); 2876 perf_stat__reset_stats(); 2877 } 2878 } 2879 2880 if (!forever && status != -1 && (!interval || stat_config.summary)) { 2881 if (stat_config.run_count > 1) 2882 evlist__copy_res_stats(&stat_config, evsel_list); 2883 print_counters(NULL, argc, argv); 2884 } 2885 2886 evlist__finalize_ctlfd(evsel_list); 2887 2888 if (STAT_RECORD) { 2889 /* 2890 * We synthesize the kernel mmap record just so that older tools 2891 * don't emit warnings about not being able to resolve symbols 2892 * due to /proc/sys/kernel/kptr_restrict settings and instead provide 2893 * a saner message about no samples being in the perf.data file. 2894 * 2895 * This also serves to suppress a warning about f_header.data.size == 0 2896 * in header.c at the moment 'perf stat record' gets introduced, which 2897 * is not really needed once we start adding the stat specific PERF_RECORD_ 2898 * records, but the need to suppress the kptr_restrict messages in older 2899 * tools remain -acme 2900 */ 2901 int fd = perf_data__fd(&perf_stat.data); 2902 2903 err = perf_event__synthesize_kernel_mmap((void *)&perf_stat, 2904 process_synthesized_event, 2905 &perf_stat.session->machines.host); 2906 if (err) { 2907 pr_warning("Couldn't synthesize the kernel mmap record, harmless, " 2908 "older tools may produce warnings about this file\n."); 2909 } 2910 2911 if (!interval) { 2912 if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL)) 2913 pr_err("failed to write stat round event\n"); 2914 } 2915 2916 if (!perf_stat.data.is_pipe) { 2917 perf_stat.session->header.data_size += perf_stat.bytes_written; 2918 perf_session__write_header(perf_stat.session, evsel_list, fd, true); 2919 } 2920 2921 evlist__close(evsel_list); 2922 perf_session__delete(perf_stat.session); 2923 } 2924 2925 perf_stat__exit_aggr_mode(); 2926 evlist__free_stats(evsel_list); 2927 out: 2928 if (stat_config.iostat_run) 2929 iostat_release(evsel_list); 2930 2931 zfree(&stat_config.walltime_run); 2932 zfree(&stat_config.user_requested_cpu_list); 2933 2934 if (smi_cost && smi_reset) 2935 sysfs__write_int(FREEZE_ON_SMI_PATH, 0); 2936 2937 evlist__delete(evsel_list); 2938 2939 metricgroup__rblist_exit(&stat_config.metric_events); 2940 evlist__close_control(stat_config.ctl_fd, stat_config.ctl_fd_ack, &stat_config.ctl_fd_close); 2941 2942 return status; 2943 } 2944
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.