~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/builtin-timechart.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * builtin-timechart.c - make an svg timechart of system activity
  4  *
  5  * (C) Copyright 2009 Intel Corporation
  6  *
  7  * Authors:
  8  *     Arjan van de Ven <arjan@linux.intel.com>
  9  */
 10 
 11 #include <errno.h>
 12 #include <inttypes.h>
 13 
 14 #include "builtin.h"
 15 #include "util/color.h"
 16 #include <linux/list.h>
 17 #include "util/evlist.h" // for struct evsel_str_handler
 18 #include "util/evsel.h"
 19 #include <linux/kernel.h>
 20 #include <linux/rbtree.h>
 21 #include <linux/time64.h>
 22 #include <linux/zalloc.h>
 23 #include "util/symbol.h"
 24 #include "util/thread.h"
 25 #include "util/callchain.h"
 26 
 27 #include "util/header.h"
 28 #include <subcmd/pager.h>
 29 #include <subcmd/parse-options.h>
 30 #include "util/parse-events.h"
 31 #include "util/event.h"
 32 #include "util/session.h"
 33 #include "util/svghelper.h"
 34 #include "util/tool.h"
 35 #include "util/data.h"
 36 #include "util/debug.h"
 37 #include "util/string2.h"
 38 #include "util/tracepoint.h"
 39 #include "util/util.h"
 40 #include <linux/err.h>
 41 #include <traceevent/event-parse.h>
 42 
 43 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
 44 FILE *open_memstream(char **ptr, size_t *sizeloc);
 45 #endif
 46 
 47 #define SUPPORT_OLD_POWER_EVENTS 1
 48 #define PWR_EVENT_EXIT -1
 49 
 50 struct per_pid;
 51 struct power_event;
 52 struct wake_event;
 53 
 54 struct timechart {
 55         struct perf_tool        tool;
 56         struct per_pid          *all_data;
 57         struct power_event      *power_events;
 58         struct wake_event       *wake_events;
 59         int                     proc_num;
 60         unsigned int            numcpus;
 61         u64                     min_freq,       /* Lowest CPU frequency seen */
 62                                 max_freq,       /* Highest CPU frequency seen */
 63                                 turbo_frequency,
 64                                 first_time, last_time;
 65         bool                    power_only,
 66                                 tasks_only,
 67                                 with_backtrace,
 68                                 topology;
 69         bool                    force;
 70         /* IO related settings */
 71         bool                    io_only,
 72                                 skip_eagain;
 73         u64                     io_events;
 74         u64                     min_time,
 75                                 merge_dist;
 76 };
 77 
 78 struct per_pidcomm;
 79 struct cpu_sample;
 80 struct io_sample;
 81 
 82 /*
 83  * Datastructure layout:
 84  * We keep an list of "pid"s, matching the kernels notion of a task struct.
 85  * Each "pid" entry, has a list of "comm"s.
 86  *      this is because we want to track different programs different, while
 87  *      exec will reuse the original pid (by design).
 88  * Each comm has a list of samples that will be used to draw
 89  * final graph.
 90  */
 91 
 92 struct per_pid {
 93         struct per_pid *next;
 94 
 95         int             pid;
 96         int             ppid;
 97 
 98         u64             start_time;
 99         u64             end_time;
100         u64             total_time;
101         u64             total_bytes;
102         int             display;
103 
104         struct per_pidcomm *all;
105         struct per_pidcomm *current;
106 };
107 
108 
109 struct per_pidcomm {
110         struct per_pidcomm *next;
111 
112         u64             start_time;
113         u64             end_time;
114         u64             total_time;
115         u64             max_bytes;
116         u64             total_bytes;
117 
118         int             Y;
119         int             display;
120 
121         long            state;
122         u64             state_since;
123 
124         char            *comm;
125 
126         struct cpu_sample *samples;
127         struct io_sample  *io_samples;
128 };
129 
130 struct sample_wrapper {
131         struct sample_wrapper *next;
132 
133         u64             timestamp;
134         unsigned char   data[];
135 };
136 
137 #define TYPE_NONE       0
138 #define TYPE_RUNNING    1
139 #define TYPE_WAITING    2
140 #define TYPE_BLOCKED    3
141 
142 struct cpu_sample {
143         struct cpu_sample *next;
144 
145         u64 start_time;
146         u64 end_time;
147         int type;
148         int cpu;
149         const char *backtrace;
150 };
151 
152 enum {
153         IOTYPE_READ,
154         IOTYPE_WRITE,
155         IOTYPE_SYNC,
156         IOTYPE_TX,
157         IOTYPE_RX,
158         IOTYPE_POLL,
159 };
160 
161 struct io_sample {
162         struct io_sample *next;
163 
164         u64 start_time;
165         u64 end_time;
166         u64 bytes;
167         int type;
168         int fd;
169         int err;
170         int merges;
171 };
172 
173 #define CSTATE 1
174 #define PSTATE 2
175 
176 struct power_event {
177         struct power_event *next;
178         int type;
179         int state;
180         u64 start_time;
181         u64 end_time;
182         int cpu;
183 };
184 
185 struct wake_event {
186         struct wake_event *next;
187         int waker;
188         int wakee;
189         u64 time;
190         const char *backtrace;
191 };
192 
193 struct process_filter {
194         char                    *name;
195         int                     pid;
196         struct process_filter   *next;
197 };
198 
199 static struct process_filter *process_filter;
200 
201 
202 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
203 {
204         struct per_pid *cursor = tchart->all_data;
205 
206         while (cursor) {
207                 if (cursor->pid == pid)
208                         return cursor;
209                 cursor = cursor->next;
210         }
211         cursor = zalloc(sizeof(*cursor));
212         assert(cursor != NULL);
213         cursor->pid = pid;
214         cursor->next = tchart->all_data;
215         tchart->all_data = cursor;
216         return cursor;
217 }
218 
219 static struct per_pidcomm *create_pidcomm(struct per_pid *p)
220 {
221         struct per_pidcomm *c;
222 
223         c = zalloc(sizeof(*c));
224         if (!c)
225                 return NULL;
226         p->current = c;
227         c->next = p->all;
228         p->all = c;
229         return c;
230 }
231 
232 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
233 {
234         struct per_pid *p;
235         struct per_pidcomm *c;
236         p = find_create_pid(tchart, pid);
237         c = p->all;
238         while (c) {
239                 if (c->comm && strcmp(c->comm, comm) == 0) {
240                         p->current = c;
241                         return;
242                 }
243                 if (!c->comm) {
244                         c->comm = strdup(comm);
245                         p->current = c;
246                         return;
247                 }
248                 c = c->next;
249         }
250         c = create_pidcomm(p);
251         assert(c != NULL);
252         c->comm = strdup(comm);
253 }
254 
255 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
256 {
257         struct per_pid *p, *pp;
258         p = find_create_pid(tchart, pid);
259         pp = find_create_pid(tchart, ppid);
260         p->ppid = ppid;
261         if (pp->current && pp->current->comm && !p->current)
262                 pid_set_comm(tchart, pid, pp->current->comm);
263 
264         p->start_time = timestamp;
265         if (p->current && !p->current->start_time) {
266                 p->current->start_time = timestamp;
267                 p->current->state_since = timestamp;
268         }
269 }
270 
271 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
272 {
273         struct per_pid *p;
274         p = find_create_pid(tchart, pid);
275         p->end_time = timestamp;
276         if (p->current)
277                 p->current->end_time = timestamp;
278 }
279 
280 static void pid_put_sample(struct timechart *tchart, int pid, int type,
281                            unsigned int cpu, u64 start, u64 end,
282                            const char *backtrace)
283 {
284         struct per_pid *p;
285         struct per_pidcomm *c;
286         struct cpu_sample *sample;
287 
288         p = find_create_pid(tchart, pid);
289         c = p->current;
290         if (!c) {
291                 c = create_pidcomm(p);
292                 assert(c != NULL);
293         }
294 
295         sample = zalloc(sizeof(*sample));
296         assert(sample != NULL);
297         sample->start_time = start;
298         sample->end_time = end;
299         sample->type = type;
300         sample->next = c->samples;
301         sample->cpu = cpu;
302         sample->backtrace = backtrace;
303         c->samples = sample;
304 
305         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
306                 c->total_time += (end-start);
307                 p->total_time += (end-start);
308         }
309 
310         if (c->start_time == 0 || c->start_time > start)
311                 c->start_time = start;
312         if (p->start_time == 0 || p->start_time > start)
313                 p->start_time = start;
314 }
315 
316 #define MAX_CPUS 4096
317 
318 static u64 *cpus_cstate_start_times;
319 static int *cpus_cstate_state;
320 static u64 *cpus_pstate_start_times;
321 static u64 *cpus_pstate_state;
322 
323 static int process_comm_event(struct perf_tool *tool,
324                               union perf_event *event,
325                               struct perf_sample *sample __maybe_unused,
326                               struct machine *machine __maybe_unused)
327 {
328         struct timechart *tchart = container_of(tool, struct timechart, tool);
329         pid_set_comm(tchart, event->comm.tid, event->comm.comm);
330         return 0;
331 }
332 
333 static int process_fork_event(struct perf_tool *tool,
334                               union perf_event *event,
335                               struct perf_sample *sample __maybe_unused,
336                               struct machine *machine __maybe_unused)
337 {
338         struct timechart *tchart = container_of(tool, struct timechart, tool);
339         pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
340         return 0;
341 }
342 
343 static int process_exit_event(struct perf_tool *tool,
344                               union perf_event *event,
345                               struct perf_sample *sample __maybe_unused,
346                               struct machine *machine __maybe_unused)
347 {
348         struct timechart *tchart = container_of(tool, struct timechart, tool);
349         pid_exit(tchart, event->fork.pid, event->fork.time);
350         return 0;
351 }
352 
353 #ifdef SUPPORT_OLD_POWER_EVENTS
354 static int use_old_power_events;
355 #endif
356 
357 static void c_state_start(int cpu, u64 timestamp, int state)
358 {
359         cpus_cstate_start_times[cpu] = timestamp;
360         cpus_cstate_state[cpu] = state;
361 }
362 
363 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
364 {
365         struct power_event *pwr = zalloc(sizeof(*pwr));
366 
367         if (!pwr)
368                 return;
369 
370         pwr->state = cpus_cstate_state[cpu];
371         pwr->start_time = cpus_cstate_start_times[cpu];
372         pwr->end_time = timestamp;
373         pwr->cpu = cpu;
374         pwr->type = CSTATE;
375         pwr->next = tchart->power_events;
376 
377         tchart->power_events = pwr;
378 }
379 
380 static struct power_event *p_state_end(struct timechart *tchart, int cpu,
381                                         u64 timestamp)
382 {
383         struct power_event *pwr = zalloc(sizeof(*pwr));
384 
385         if (!pwr)
386                 return NULL;
387 
388         pwr->state = cpus_pstate_state[cpu];
389         pwr->start_time = cpus_pstate_start_times[cpu];
390         pwr->end_time = timestamp;
391         pwr->cpu = cpu;
392         pwr->type = PSTATE;
393         pwr->next = tchart->power_events;
394         if (!pwr->start_time)
395                 pwr->start_time = tchart->first_time;
396 
397         tchart->power_events = pwr;
398         return pwr;
399 }
400 
401 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
402 {
403         struct power_event *pwr;
404 
405         if (new_freq > 8000000) /* detect invalid data */
406                 return;
407 
408         pwr = p_state_end(tchart, cpu, timestamp);
409         if (!pwr)
410                 return;
411 
412         cpus_pstate_state[cpu] = new_freq;
413         cpus_pstate_start_times[cpu] = timestamp;
414 
415         if ((u64)new_freq > tchart->max_freq)
416                 tchart->max_freq = new_freq;
417 
418         if (new_freq < tchart->min_freq || tchart->min_freq == 0)
419                 tchart->min_freq = new_freq;
420 
421         if (new_freq == tchart->max_freq - 1000)
422                 tchart->turbo_frequency = tchart->max_freq;
423 }
424 
425 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
426                          int waker, int wakee, u8 flags, const char *backtrace)
427 {
428         struct per_pid *p;
429         struct wake_event *we = zalloc(sizeof(*we));
430 
431         if (!we)
432                 return;
433 
434         we->time = timestamp;
435         we->waker = waker;
436         we->backtrace = backtrace;
437 
438         if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
439                 we->waker = -1;
440 
441         we->wakee = wakee;
442         we->next = tchart->wake_events;
443         tchart->wake_events = we;
444         p = find_create_pid(tchart, we->wakee);
445 
446         if (p && p->current && p->current->state == TYPE_NONE) {
447                 p->current->state_since = timestamp;
448                 p->current->state = TYPE_WAITING;
449         }
450         if (p && p->current && p->current->state == TYPE_BLOCKED) {
451                 pid_put_sample(tchart, p->pid, p->current->state, cpu,
452                                p->current->state_since, timestamp, NULL);
453                 p->current->state_since = timestamp;
454                 p->current->state = TYPE_WAITING;
455         }
456 }
457 
458 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
459                          int prev_pid, int next_pid, u64 prev_state,
460                          const char *backtrace)
461 {
462         struct per_pid *p = NULL, *prev_p;
463 
464         prev_p = find_create_pid(tchart, prev_pid);
465 
466         p = find_create_pid(tchart, next_pid);
467 
468         if (prev_p->current && prev_p->current->state != TYPE_NONE)
469                 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
470                                prev_p->current->state_since, timestamp,
471                                backtrace);
472         if (p && p->current) {
473                 if (p->current->state != TYPE_NONE)
474                         pid_put_sample(tchart, next_pid, p->current->state, cpu,
475                                        p->current->state_since, timestamp,
476                                        backtrace);
477 
478                 p->current->state_since = timestamp;
479                 p->current->state = TYPE_RUNNING;
480         }
481 
482         if (prev_p->current) {
483                 prev_p->current->state = TYPE_NONE;
484                 prev_p->current->state_since = timestamp;
485                 if (prev_state & 2)
486                         prev_p->current->state = TYPE_BLOCKED;
487                 if (prev_state == 0)
488                         prev_p->current->state = TYPE_WAITING;
489         }
490 }
491 
492 static const char *cat_backtrace(union perf_event *event,
493                                  struct perf_sample *sample,
494                                  struct machine *machine)
495 {
496         struct addr_location al;
497         unsigned int i;
498         char *p = NULL;
499         size_t p_len;
500         u8 cpumode = PERF_RECORD_MISC_USER;
501         struct ip_callchain *chain = sample->callchain;
502         FILE *f = open_memstream(&p, &p_len);
503 
504         if (!f) {
505                 perror("open_memstream error");
506                 return NULL;
507         }
508 
509         addr_location__init(&al);
510         if (!chain)
511                 goto exit;
512 
513         if (machine__resolve(machine, &al, sample) < 0) {
514                 fprintf(stderr, "problem processing %d event, skipping it.\n",
515                         event->header.type);
516                 goto exit;
517         }
518 
519         for (i = 0; i < chain->nr; i++) {
520                 u64 ip;
521                 struct addr_location tal;
522 
523                 if (callchain_param.order == ORDER_CALLEE)
524                         ip = chain->ips[i];
525                 else
526                         ip = chain->ips[chain->nr - i - 1];
527 
528                 if (ip >= PERF_CONTEXT_MAX) {
529                         switch (ip) {
530                         case PERF_CONTEXT_HV:
531                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
532                                 break;
533                         case PERF_CONTEXT_KERNEL:
534                                 cpumode = PERF_RECORD_MISC_KERNEL;
535                                 break;
536                         case PERF_CONTEXT_USER:
537                                 cpumode = PERF_RECORD_MISC_USER;
538                                 break;
539                         default:
540                                 pr_debug("invalid callchain context: "
541                                          "%"PRId64"\n", (s64) ip);
542 
543                                 /*
544                                  * It seems the callchain is corrupted.
545                                  * Discard all.
546                                  */
547                                 zfree(&p);
548                                 goto exit;
549                         }
550                         continue;
551                 }
552 
553                 addr_location__init(&tal);
554                 tal.filtered = 0;
555                 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
556                         fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
557                 else
558                         fprintf(f, "..... %016" PRIx64 "\n", ip);
559 
560                 addr_location__exit(&tal);
561         }
562 exit:
563         addr_location__exit(&al);
564         fclose(f);
565 
566         return p;
567 }
568 
569 typedef int (*tracepoint_handler)(struct timechart *tchart,
570                                   struct evsel *evsel,
571                                   struct perf_sample *sample,
572                                   const char *backtrace);
573 
574 static int process_sample_event(struct perf_tool *tool,
575                                 union perf_event *event,
576                                 struct perf_sample *sample,
577                                 struct evsel *evsel,
578                                 struct machine *machine)
579 {
580         struct timechart *tchart = container_of(tool, struct timechart, tool);
581 
582         if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
583                 if (!tchart->first_time || tchart->first_time > sample->time)
584                         tchart->first_time = sample->time;
585                 if (tchart->last_time < sample->time)
586                         tchart->last_time = sample->time;
587         }
588 
589         if (evsel->handler != NULL) {
590                 tracepoint_handler f = evsel->handler;
591                 return f(tchart, evsel, sample,
592                          cat_backtrace(event, sample, machine));
593         }
594 
595         return 0;
596 }
597 
598 static int
599 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
600                         struct evsel *evsel,
601                         struct perf_sample *sample,
602                         const char *backtrace __maybe_unused)
603 {
604         u32 state  = evsel__intval(evsel, sample, "state");
605         u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
606 
607         if (state == (u32)PWR_EVENT_EXIT)
608                 c_state_end(tchart, cpu_id, sample->time);
609         else
610                 c_state_start(cpu_id, sample->time, state);
611         return 0;
612 }
613 
614 static int
615 process_sample_cpu_frequency(struct timechart *tchart,
616                              struct evsel *evsel,
617                              struct perf_sample *sample,
618                              const char *backtrace __maybe_unused)
619 {
620         u32 state  = evsel__intval(evsel, sample, "state");
621         u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
622 
623         p_state_change(tchart, cpu_id, sample->time, state);
624         return 0;
625 }
626 
627 static int
628 process_sample_sched_wakeup(struct timechart *tchart,
629                             struct evsel *evsel,
630                             struct perf_sample *sample,
631                             const char *backtrace)
632 {
633         u8 flags  = evsel__intval(evsel, sample, "common_flags");
634         int waker = evsel__intval(evsel, sample, "common_pid");
635         int wakee = evsel__intval(evsel, sample, "pid");
636 
637         sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
638         return 0;
639 }
640 
641 static int
642 process_sample_sched_switch(struct timechart *tchart,
643                             struct evsel *evsel,
644                             struct perf_sample *sample,
645                             const char *backtrace)
646 {
647         int prev_pid   = evsel__intval(evsel, sample, "prev_pid");
648         int next_pid   = evsel__intval(evsel, sample, "next_pid");
649         u64 prev_state = evsel__intval(evsel, sample, "prev_state");
650 
651         sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
652                      prev_state, backtrace);
653         return 0;
654 }
655 
656 #ifdef SUPPORT_OLD_POWER_EVENTS
657 static int
658 process_sample_power_start(struct timechart *tchart __maybe_unused,
659                            struct evsel *evsel,
660                            struct perf_sample *sample,
661                            const char *backtrace __maybe_unused)
662 {
663         u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
664         u64 value  = evsel__intval(evsel, sample, "value");
665 
666         c_state_start(cpu_id, sample->time, value);
667         return 0;
668 }
669 
670 static int
671 process_sample_power_end(struct timechart *tchart,
672                          struct evsel *evsel __maybe_unused,
673                          struct perf_sample *sample,
674                          const char *backtrace __maybe_unused)
675 {
676         c_state_end(tchart, sample->cpu, sample->time);
677         return 0;
678 }
679 
680 static int
681 process_sample_power_frequency(struct timechart *tchart,
682                                struct evsel *evsel,
683                                struct perf_sample *sample,
684                                const char *backtrace __maybe_unused)
685 {
686         u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
687         u64 value  = evsel__intval(evsel, sample, "value");
688 
689         p_state_change(tchart, cpu_id, sample->time, value);
690         return 0;
691 }
692 #endif /* SUPPORT_OLD_POWER_EVENTS */
693 
694 /*
695  * After the last sample we need to wrap up the current C/P state
696  * and close out each CPU for these.
697  */
698 static void end_sample_processing(struct timechart *tchart)
699 {
700         u64 cpu;
701         struct power_event *pwr;
702 
703         for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
704                 /* C state */
705 #if 0
706                 pwr = zalloc(sizeof(*pwr));
707                 if (!pwr)
708                         return;
709 
710                 pwr->state = cpus_cstate_state[cpu];
711                 pwr->start_time = cpus_cstate_start_times[cpu];
712                 pwr->end_time = tchart->last_time;
713                 pwr->cpu = cpu;
714                 pwr->type = CSTATE;
715                 pwr->next = tchart->power_events;
716 
717                 tchart->power_events = pwr;
718 #endif
719                 /* P state */
720 
721                 pwr = p_state_end(tchart, cpu, tchart->last_time);
722                 if (!pwr)
723                         return;
724 
725                 if (!pwr->state)
726                         pwr->state = tchart->min_freq;
727         }
728 }
729 
730 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
731                                u64 start, int fd)
732 {
733         struct per_pid *p = find_create_pid(tchart, pid);
734         struct per_pidcomm *c = p->current;
735         struct io_sample *sample;
736         struct io_sample *prev;
737 
738         if (!c) {
739                 c = create_pidcomm(p);
740                 if (!c)
741                         return -ENOMEM;
742         }
743 
744         prev = c->io_samples;
745 
746         if (prev && prev->start_time && !prev->end_time) {
747                 pr_warning("Skip invalid start event: "
748                            "previous event already started!\n");
749 
750                 /* remove previous event that has been started,
751                  * we are not sure we will ever get an end for it */
752                 c->io_samples = prev->next;
753                 free(prev);
754                 return 0;
755         }
756 
757         sample = zalloc(sizeof(*sample));
758         if (!sample)
759                 return -ENOMEM;
760         sample->start_time = start;
761         sample->type = type;
762         sample->fd = fd;
763         sample->next = c->io_samples;
764         c->io_samples = sample;
765 
766         if (c->start_time == 0 || c->start_time > start)
767                 c->start_time = start;
768 
769         return 0;
770 }
771 
772 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
773                              u64 end, long ret)
774 {
775         struct per_pid *p = find_create_pid(tchart, pid);
776         struct per_pidcomm *c = p->current;
777         struct io_sample *sample, *prev;
778 
779         if (!c) {
780                 pr_warning("Invalid pidcomm!\n");
781                 return -1;
782         }
783 
784         sample = c->io_samples;
785 
786         if (!sample) /* skip partially captured events */
787                 return 0;
788 
789         if (sample->end_time) {
790                 pr_warning("Skip invalid end event: "
791                            "previous event already ended!\n");
792                 return 0;
793         }
794 
795         if (sample->type != type) {
796                 pr_warning("Skip invalid end event: invalid event type!\n");
797                 return 0;
798         }
799 
800         sample->end_time = end;
801         prev = sample->next;
802 
803         /* we want to be able to see small and fast transfers, so make them
804          * at least min_time long, but don't overlap them */
805         if (sample->end_time - sample->start_time < tchart->min_time)
806                 sample->end_time = sample->start_time + tchart->min_time;
807         if (prev && sample->start_time < prev->end_time) {
808                 if (prev->err) /* try to make errors more visible */
809                         sample->start_time = prev->end_time;
810                 else
811                         prev->end_time = sample->start_time;
812         }
813 
814         if (ret < 0) {
815                 sample->err = ret;
816         } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
817                    type == IOTYPE_TX || type == IOTYPE_RX) {
818 
819                 if ((u64)ret > c->max_bytes)
820                         c->max_bytes = ret;
821 
822                 c->total_bytes += ret;
823                 p->total_bytes += ret;
824                 sample->bytes = ret;
825         }
826 
827         /* merge two requests to make svg smaller and render-friendly */
828         if (prev &&
829             prev->type == sample->type &&
830             prev->err == sample->err &&
831             prev->fd == sample->fd &&
832             prev->end_time + tchart->merge_dist >= sample->start_time) {
833 
834                 sample->bytes += prev->bytes;
835                 sample->merges += prev->merges + 1;
836 
837                 sample->start_time = prev->start_time;
838                 sample->next = prev->next;
839                 free(prev);
840 
841                 if (!sample->err && sample->bytes > c->max_bytes)
842                         c->max_bytes = sample->bytes;
843         }
844 
845         tchart->io_events++;
846 
847         return 0;
848 }
849 
850 static int
851 process_enter_read(struct timechart *tchart,
852                    struct evsel *evsel,
853                    struct perf_sample *sample)
854 {
855         long fd = evsel__intval(evsel, sample, "fd");
856         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
857                                    sample->time, fd);
858 }
859 
860 static int
861 process_exit_read(struct timechart *tchart,
862                   struct evsel *evsel,
863                   struct perf_sample *sample)
864 {
865         long ret = evsel__intval(evsel, sample, "ret");
866         return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
867                                  sample->time, ret);
868 }
869 
870 static int
871 process_enter_write(struct timechart *tchart,
872                     struct evsel *evsel,
873                     struct perf_sample *sample)
874 {
875         long fd = evsel__intval(evsel, sample, "fd");
876         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
877                                    sample->time, fd);
878 }
879 
880 static int
881 process_exit_write(struct timechart *tchart,
882                    struct evsel *evsel,
883                    struct perf_sample *sample)
884 {
885         long ret = evsel__intval(evsel, sample, "ret");
886         return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
887                                  sample->time, ret);
888 }
889 
890 static int
891 process_enter_sync(struct timechart *tchart,
892                    struct evsel *evsel,
893                    struct perf_sample *sample)
894 {
895         long fd = evsel__intval(evsel, sample, "fd");
896         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
897                                    sample->time, fd);
898 }
899 
900 static int
901 process_exit_sync(struct timechart *tchart,
902                   struct evsel *evsel,
903                   struct perf_sample *sample)
904 {
905         long ret = evsel__intval(evsel, sample, "ret");
906         return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
907                                  sample->time, ret);
908 }
909 
910 static int
911 process_enter_tx(struct timechart *tchart,
912                  struct evsel *evsel,
913                  struct perf_sample *sample)
914 {
915         long fd = evsel__intval(evsel, sample, "fd");
916         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
917                                    sample->time, fd);
918 }
919 
920 static int
921 process_exit_tx(struct timechart *tchart,
922                 struct evsel *evsel,
923                 struct perf_sample *sample)
924 {
925         long ret = evsel__intval(evsel, sample, "ret");
926         return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
927                                  sample->time, ret);
928 }
929 
930 static int
931 process_enter_rx(struct timechart *tchart,
932                  struct evsel *evsel,
933                  struct perf_sample *sample)
934 {
935         long fd = evsel__intval(evsel, sample, "fd");
936         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
937                                    sample->time, fd);
938 }
939 
940 static int
941 process_exit_rx(struct timechart *tchart,
942                 struct evsel *evsel,
943                 struct perf_sample *sample)
944 {
945         long ret = evsel__intval(evsel, sample, "ret");
946         return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
947                                  sample->time, ret);
948 }
949 
950 static int
951 process_enter_poll(struct timechart *tchart,
952                    struct evsel *evsel,
953                    struct perf_sample *sample)
954 {
955         long fd = evsel__intval(evsel, sample, "fd");
956         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
957                                    sample->time, fd);
958 }
959 
960 static int
961 process_exit_poll(struct timechart *tchart,
962                   struct evsel *evsel,
963                   struct perf_sample *sample)
964 {
965         long ret = evsel__intval(evsel, sample, "ret");
966         return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
967                                  sample->time, ret);
968 }
969 
970 /*
971  * Sort the pid datastructure
972  */
973 static void sort_pids(struct timechart *tchart)
974 {
975         struct per_pid *new_list, *p, *cursor, *prev;
976         /* sort by ppid first, then by pid, lowest to highest */
977 
978         new_list = NULL;
979 
980         while (tchart->all_data) {
981                 p = tchart->all_data;
982                 tchart->all_data = p->next;
983                 p->next = NULL;
984 
985                 if (new_list == NULL) {
986                         new_list = p;
987                         p->next = NULL;
988                         continue;
989                 }
990                 prev = NULL;
991                 cursor = new_list;
992                 while (cursor) {
993                         if (cursor->ppid > p->ppid ||
994                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
995                                 /* must insert before */
996                                 if (prev) {
997                                         p->next = prev->next;
998                                         prev->next = p;
999                                         cursor = NULL;
1000                                         continue;
1001                                 } else {
1002                                         p->next = new_list;
1003                                         new_list = p;
1004                                         cursor = NULL;
1005                                         continue;
1006                                 }
1007                         }
1008 
1009                         prev = cursor;
1010                         cursor = cursor->next;
1011                         if (!cursor)
1012                                 prev->next = p;
1013                 }
1014         }
1015         tchart->all_data = new_list;
1016 }
1017 
1018 
1019 static void draw_c_p_states(struct timechart *tchart)
1020 {
1021         struct power_event *pwr;
1022         pwr = tchart->power_events;
1023 
1024         /*
1025          * two pass drawing so that the P state bars are on top of the C state blocks
1026          */
1027         while (pwr) {
1028                 if (pwr->type == CSTATE)
1029                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030                 pwr = pwr->next;
1031         }
1032 
1033         pwr = tchart->power_events;
1034         while (pwr) {
1035                 if (pwr->type == PSTATE) {
1036                         if (!pwr->state)
1037                                 pwr->state = tchart->min_freq;
1038                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1039                 }
1040                 pwr = pwr->next;
1041         }
1042 }
1043 
1044 static void draw_wakeups(struct timechart *tchart)
1045 {
1046         struct wake_event *we;
1047         struct per_pid *p;
1048         struct per_pidcomm *c;
1049 
1050         we = tchart->wake_events;
1051         while (we) {
1052                 int from = 0, to = 0;
1053                 char *task_from = NULL, *task_to = NULL;
1054 
1055                 /* locate the column of the waker and wakee */
1056                 p = tchart->all_data;
1057                 while (p) {
1058                         if (p->pid == we->waker || p->pid == we->wakee) {
1059                                 c = p->all;
1060                                 while (c) {
1061                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1062                                                 if (p->pid == we->waker && !from) {
1063                                                         from = c->Y;
1064                                                         task_from = strdup(c->comm);
1065                                                 }
1066                                                 if (p->pid == we->wakee && !to) {
1067                                                         to = c->Y;
1068                                                         task_to = strdup(c->comm);
1069                                                 }
1070                                         }
1071                                         c = c->next;
1072                                 }
1073                                 c = p->all;
1074                                 while (c) {
1075                                         if (p->pid == we->waker && !from) {
1076                                                 from = c->Y;
1077                                                 task_from = strdup(c->comm);
1078                                         }
1079                                         if (p->pid == we->wakee && !to) {
1080                                                 to = c->Y;
1081                                                 task_to = strdup(c->comm);
1082                                         }
1083                                         c = c->next;
1084                                 }
1085                         }
1086                         p = p->next;
1087                 }
1088 
1089                 if (!task_from) {
1090                         task_from = malloc(40);
1091                         sprintf(task_from, "[%i]", we->waker);
1092                 }
1093                 if (!task_to) {
1094                         task_to = malloc(40);
1095                         sprintf(task_to, "[%i]", we->wakee);
1096                 }
1097 
1098                 if (we->waker == -1)
1099                         svg_interrupt(we->time, to, we->backtrace);
1100                 else if (from && to && abs(from - to) == 1)
1101                         svg_wakeline(we->time, from, to, we->backtrace);
1102                 else
1103                         svg_partial_wakeline(we->time, from, task_from, to,
1104                                              task_to, we->backtrace);
1105                 we = we->next;
1106 
1107                 free(task_from);
1108                 free(task_to);
1109         }
1110 }
1111 
1112 static void draw_cpu_usage(struct timechart *tchart)
1113 {
1114         struct per_pid *p;
1115         struct per_pidcomm *c;
1116         struct cpu_sample *sample;
1117         p = tchart->all_data;
1118         while (p) {
1119                 c = p->all;
1120                 while (c) {
1121                         sample = c->samples;
1122                         while (sample) {
1123                                 if (sample->type == TYPE_RUNNING) {
1124                                         svg_process(sample->cpu,
1125                                                     sample->start_time,
1126                                                     sample->end_time,
1127                                                     p->pid,
1128                                                     c->comm,
1129                                                     sample->backtrace);
1130                                 }
1131 
1132                                 sample = sample->next;
1133                         }
1134                         c = c->next;
1135                 }
1136                 p = p->next;
1137         }
1138 }
1139 
1140 static void draw_io_bars(struct timechart *tchart)
1141 {
1142         const char *suf;
1143         double bytes;
1144         char comm[256];
1145         struct per_pid *p;
1146         struct per_pidcomm *c;
1147         struct io_sample *sample;
1148         int Y = 1;
1149 
1150         p = tchart->all_data;
1151         while (p) {
1152                 c = p->all;
1153                 while (c) {
1154                         if (!c->display) {
1155                                 c->Y = 0;
1156                                 c = c->next;
1157                                 continue;
1158                         }
1159 
1160                         svg_box(Y, c->start_time, c->end_time, "process3");
1161                         sample = c->io_samples;
1162                         for (sample = c->io_samples; sample; sample = sample->next) {
1163                                 double h = (double)sample->bytes / c->max_bytes;
1164 
1165                                 if (tchart->skip_eagain &&
1166                                     sample->err == -EAGAIN)
1167                                         continue;
1168 
1169                                 if (sample->err)
1170                                         h = 1;
1171 
1172                                 if (sample->type == IOTYPE_SYNC)
1173                                         svg_fbox(Y,
1174                                                 sample->start_time,
1175                                                 sample->end_time,
1176                                                 1,
1177                                                 sample->err ? "error" : "sync",
1178                                                 sample->fd,
1179                                                 sample->err,
1180                                                 sample->merges);
1181                                 else if (sample->type == IOTYPE_POLL)
1182                                         svg_fbox(Y,
1183                                                 sample->start_time,
1184                                                 sample->end_time,
1185                                                 1,
1186                                                 sample->err ? "error" : "poll",
1187                                                 sample->fd,
1188                                                 sample->err,
1189                                                 sample->merges);
1190                                 else if (sample->type == IOTYPE_READ)
1191                                         svg_ubox(Y,
1192                                                 sample->start_time,
1193                                                 sample->end_time,
1194                                                 h,
1195                                                 sample->err ? "error" : "disk",
1196                                                 sample->fd,
1197                                                 sample->err,
1198                                                 sample->merges);
1199                                 else if (sample->type == IOTYPE_WRITE)
1200                                         svg_lbox(Y,
1201                                                 sample->start_time,
1202                                                 sample->end_time,
1203                                                 h,
1204                                                 sample->err ? "error" : "disk",
1205                                                 sample->fd,
1206                                                 sample->err,
1207                                                 sample->merges);
1208                                 else if (sample->type == IOTYPE_RX)
1209                                         svg_ubox(Y,
1210                                                 sample->start_time,
1211                                                 sample->end_time,
1212                                                 h,
1213                                                 sample->err ? "error" : "net",
1214                                                 sample->fd,
1215                                                 sample->err,
1216                                                 sample->merges);
1217                                 else if (sample->type == IOTYPE_TX)
1218                                         svg_lbox(Y,
1219                                                 sample->start_time,
1220                                                 sample->end_time,
1221                                                 h,
1222                                                 sample->err ? "error" : "net",
1223                                                 sample->fd,
1224                                                 sample->err,
1225                                                 sample->merges);
1226                         }
1227 
1228                         suf = "";
1229                         bytes = c->total_bytes;
1230                         if (bytes > 1024) {
1231                                 bytes = bytes / 1024;
1232                                 suf = "K";
1233                         }
1234                         if (bytes > 1024) {
1235                                 bytes = bytes / 1024;
1236                                 suf = "M";
1237                         }
1238                         if (bytes > 1024) {
1239                                 bytes = bytes / 1024;
1240                                 suf = "G";
1241                         }
1242 
1243 
1244                         sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1245                         svg_text(Y, c->start_time, comm);
1246 
1247                         c->Y = Y;
1248                         Y++;
1249                         c = c->next;
1250                 }
1251                 p = p->next;
1252         }
1253 }
1254 
1255 static void draw_process_bars(struct timechart *tchart)
1256 {
1257         struct per_pid *p;
1258         struct per_pidcomm *c;
1259         struct cpu_sample *sample;
1260         int Y = 0;
1261 
1262         Y = 2 * tchart->numcpus + 2;
1263 
1264         p = tchart->all_data;
1265         while (p) {
1266                 c = p->all;
1267                 while (c) {
1268                         if (!c->display) {
1269                                 c->Y = 0;
1270                                 c = c->next;
1271                                 continue;
1272                         }
1273 
1274                         svg_box(Y, c->start_time, c->end_time, "process");
1275                         sample = c->samples;
1276                         while (sample) {
1277                                 if (sample->type == TYPE_RUNNING)
1278                                         svg_running(Y, sample->cpu,
1279                                                     sample->start_time,
1280                                                     sample->end_time,
1281                                                     sample->backtrace);
1282                                 if (sample->type == TYPE_BLOCKED)
1283                                         svg_blocked(Y, sample->cpu,
1284                                                     sample->start_time,
1285                                                     sample->end_time,
1286                                                     sample->backtrace);
1287                                 if (sample->type == TYPE_WAITING)
1288                                         svg_waiting(Y, sample->cpu,
1289                                                     sample->start_time,
1290                                                     sample->end_time,
1291                                                     sample->backtrace);
1292                                 sample = sample->next;
1293                         }
1294 
1295                         if (c->comm) {
1296                                 char comm[256];
1297                                 if (c->total_time > 5000000000) /* 5 seconds */
1298                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1299                                 else
1300                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1301 
1302                                 svg_text(Y, c->start_time, comm);
1303                         }
1304                         c->Y = Y;
1305                         Y++;
1306                         c = c->next;
1307                 }
1308                 p = p->next;
1309         }
1310 }
1311 
1312 static void add_process_filter(const char *string)
1313 {
1314         int pid = strtoull(string, NULL, 10);
1315         struct process_filter *filt = malloc(sizeof(*filt));
1316 
1317         if (!filt)
1318                 return;
1319 
1320         filt->name = strdup(string);
1321         filt->pid  = pid;
1322         filt->next = process_filter;
1323 
1324         process_filter = filt;
1325 }
1326 
1327 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1328 {
1329         struct process_filter *filt;
1330         if (!process_filter)
1331                 return 1;
1332 
1333         filt = process_filter;
1334         while (filt) {
1335                 if (filt->pid && p->pid == filt->pid)
1336                         return 1;
1337                 if (strcmp(filt->name, c->comm) == 0)
1338                         return 1;
1339                 filt = filt->next;
1340         }
1341         return 0;
1342 }
1343 
1344 static int determine_display_tasks_filtered(struct timechart *tchart)
1345 {
1346         struct per_pid *p;
1347         struct per_pidcomm *c;
1348         int count = 0;
1349 
1350         p = tchart->all_data;
1351         while (p) {
1352                 p->display = 0;
1353                 if (p->start_time == 1)
1354                         p->start_time = tchart->first_time;
1355 
1356                 /* no exit marker, task kept running to the end */
1357                 if (p->end_time == 0)
1358                         p->end_time = tchart->last_time;
1359 
1360                 c = p->all;
1361 
1362                 while (c) {
1363                         c->display = 0;
1364 
1365                         if (c->start_time == 1)
1366                                 c->start_time = tchart->first_time;
1367 
1368                         if (passes_filter(p, c)) {
1369                                 c->display = 1;
1370                                 p->display = 1;
1371                                 count++;
1372                         }
1373 
1374                         if (c->end_time == 0)
1375                                 c->end_time = tchart->last_time;
1376 
1377                         c = c->next;
1378                 }
1379                 p = p->next;
1380         }
1381         return count;
1382 }
1383 
1384 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1385 {
1386         struct per_pid *p;
1387         struct per_pidcomm *c;
1388         int count = 0;
1389 
1390         p = tchart->all_data;
1391         while (p) {
1392                 p->display = 0;
1393                 if (p->start_time == 1)
1394                         p->start_time = tchart->first_time;
1395 
1396                 /* no exit marker, task kept running to the end */
1397                 if (p->end_time == 0)
1398                         p->end_time = tchart->last_time;
1399                 if (p->total_time >= threshold)
1400                         p->display = 1;
1401 
1402                 c = p->all;
1403 
1404                 while (c) {
1405                         c->display = 0;
1406 
1407                         if (c->start_time == 1)
1408                                 c->start_time = tchart->first_time;
1409 
1410                         if (c->total_time >= threshold) {
1411                                 c->display = 1;
1412                                 count++;
1413                         }
1414 
1415                         if (c->end_time == 0)
1416                                 c->end_time = tchart->last_time;
1417 
1418                         c = c->next;
1419                 }
1420                 p = p->next;
1421         }
1422         return count;
1423 }
1424 
1425 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1426 {
1427         struct per_pid *p;
1428         struct per_pidcomm *c;
1429         int count = 0;
1430 
1431         p = timechart->all_data;
1432         while (p) {
1433                 /* no exit marker, task kept running to the end */
1434                 if (p->end_time == 0)
1435                         p->end_time = timechart->last_time;
1436 
1437                 c = p->all;
1438 
1439                 while (c) {
1440                         c->display = 0;
1441 
1442                         if (c->total_bytes >= threshold) {
1443                                 c->display = 1;
1444                                 count++;
1445                         }
1446 
1447                         if (c->end_time == 0)
1448                                 c->end_time = timechart->last_time;
1449 
1450                         c = c->next;
1451                 }
1452                 p = p->next;
1453         }
1454         return count;
1455 }
1456 
1457 #define BYTES_THRESH (1 * 1024 * 1024)
1458 #define TIME_THRESH 10000000
1459 
1460 static void write_svg_file(struct timechart *tchart, const char *filename)
1461 {
1462         u64 i;
1463         int count;
1464         int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1465 
1466         if (tchart->power_only)
1467                 tchart->proc_num = 0;
1468 
1469         /* We'd like to show at least proc_num tasks;
1470          * be less picky if we have fewer */
1471         do {
1472                 if (process_filter)
1473                         count = determine_display_tasks_filtered(tchart);
1474                 else if (tchart->io_events)
1475                         count = determine_display_io_tasks(tchart, thresh);
1476                 else
1477                         count = determine_display_tasks(tchart, thresh);
1478                 thresh /= 10;
1479         } while (!process_filter && thresh && count < tchart->proc_num);
1480 
1481         if (!tchart->proc_num)
1482                 count = 0;
1483 
1484         if (tchart->io_events) {
1485                 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1486 
1487                 svg_time_grid(0.5);
1488                 svg_io_legenda();
1489 
1490                 draw_io_bars(tchart);
1491         } else {
1492                 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1493 
1494                 svg_time_grid(0);
1495 
1496                 svg_legenda();
1497 
1498                 for (i = 0; i < tchart->numcpus; i++)
1499                         svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1500 
1501                 draw_cpu_usage(tchart);
1502                 if (tchart->proc_num)
1503                         draw_process_bars(tchart);
1504                 if (!tchart->tasks_only)
1505                         draw_c_p_states(tchart);
1506                 if (tchart->proc_num)
1507                         draw_wakeups(tchart);
1508         }
1509 
1510         svg_close();
1511 }
1512 
1513 static int process_header(struct perf_file_section *section __maybe_unused,
1514                           struct perf_header *ph,
1515                           int feat,
1516                           int fd __maybe_unused,
1517                           void *data)
1518 {
1519         struct timechart *tchart = data;
1520 
1521         switch (feat) {
1522         case HEADER_NRCPUS:
1523                 tchart->numcpus = ph->env.nr_cpus_avail;
1524                 break;
1525 
1526         case HEADER_CPU_TOPOLOGY:
1527                 if (!tchart->topology)
1528                         break;
1529 
1530                 if (svg_build_topology_map(&ph->env))
1531                         fprintf(stderr, "problem building topology\n");
1532                 break;
1533 
1534         default:
1535                 break;
1536         }
1537 
1538         return 0;
1539 }
1540 
1541 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1542 {
1543         const struct evsel_str_handler power_tracepoints[] = {
1544                 { "power:cpu_idle",             process_sample_cpu_idle },
1545                 { "power:cpu_frequency",        process_sample_cpu_frequency },
1546                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
1547                 { "sched:sched_switch",         process_sample_sched_switch },
1548 #ifdef SUPPORT_OLD_POWER_EVENTS
1549                 { "power:power_start",          process_sample_power_start },
1550                 { "power:power_end",            process_sample_power_end },
1551                 { "power:power_frequency",      process_sample_power_frequency },
1552 #endif
1553 
1554                 { "syscalls:sys_enter_read",            process_enter_read },
1555                 { "syscalls:sys_enter_pread64",         process_enter_read },
1556                 { "syscalls:sys_enter_readv",           process_enter_read },
1557                 { "syscalls:sys_enter_preadv",          process_enter_read },
1558                 { "syscalls:sys_enter_write",           process_enter_write },
1559                 { "syscalls:sys_enter_pwrite64",        process_enter_write },
1560                 { "syscalls:sys_enter_writev",          process_enter_write },
1561                 { "syscalls:sys_enter_pwritev",         process_enter_write },
1562                 { "syscalls:sys_enter_sync",            process_enter_sync },
1563                 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1564                 { "syscalls:sys_enter_fsync",           process_enter_sync },
1565                 { "syscalls:sys_enter_msync",           process_enter_sync },
1566                 { "syscalls:sys_enter_recvfrom",        process_enter_rx },
1567                 { "syscalls:sys_enter_recvmmsg",        process_enter_rx },
1568                 { "syscalls:sys_enter_recvmsg",         process_enter_rx },
1569                 { "syscalls:sys_enter_sendto",          process_enter_tx },
1570                 { "syscalls:sys_enter_sendmsg",         process_enter_tx },
1571                 { "syscalls:sys_enter_sendmmsg",        process_enter_tx },
1572                 { "syscalls:sys_enter_epoll_pwait",     process_enter_poll },
1573                 { "syscalls:sys_enter_epoll_wait",      process_enter_poll },
1574                 { "syscalls:sys_enter_poll",            process_enter_poll },
1575                 { "syscalls:sys_enter_ppoll",           process_enter_poll },
1576                 { "syscalls:sys_enter_pselect6",        process_enter_poll },
1577                 { "syscalls:sys_enter_select",          process_enter_poll },
1578 
1579                 { "syscalls:sys_exit_read",             process_exit_read },
1580                 { "syscalls:sys_exit_pread64",          process_exit_read },
1581                 { "syscalls:sys_exit_readv",            process_exit_read },
1582                 { "syscalls:sys_exit_preadv",           process_exit_read },
1583                 { "syscalls:sys_exit_write",            process_exit_write },
1584                 { "syscalls:sys_exit_pwrite64",         process_exit_write },
1585                 { "syscalls:sys_exit_writev",           process_exit_write },
1586                 { "syscalls:sys_exit_pwritev",          process_exit_write },
1587                 { "syscalls:sys_exit_sync",             process_exit_sync },
1588                 { "syscalls:sys_exit_sync_file_range",  process_exit_sync },
1589                 { "syscalls:sys_exit_fsync",            process_exit_sync },
1590                 { "syscalls:sys_exit_msync",            process_exit_sync },
1591                 { "syscalls:sys_exit_recvfrom",         process_exit_rx },
1592                 { "syscalls:sys_exit_recvmmsg",         process_exit_rx },
1593                 { "syscalls:sys_exit_recvmsg",          process_exit_rx },
1594                 { "syscalls:sys_exit_sendto",           process_exit_tx },
1595                 { "syscalls:sys_exit_sendmsg",          process_exit_tx },
1596                 { "syscalls:sys_exit_sendmmsg",         process_exit_tx },
1597                 { "syscalls:sys_exit_epoll_pwait",      process_exit_poll },
1598                 { "syscalls:sys_exit_epoll_wait",       process_exit_poll },
1599                 { "syscalls:sys_exit_poll",             process_exit_poll },
1600                 { "syscalls:sys_exit_ppoll",            process_exit_poll },
1601                 { "syscalls:sys_exit_pselect6",         process_exit_poll },
1602                 { "syscalls:sys_exit_select",           process_exit_poll },
1603         };
1604         struct perf_data data = {
1605                 .path  = input_name,
1606                 .mode  = PERF_DATA_MODE_READ,
1607                 .force = tchart->force,
1608         };
1609 
1610         struct perf_session *session = perf_session__new(&data, &tchart->tool);
1611         int ret = -EINVAL;
1612 
1613         if (IS_ERR(session))
1614                 return PTR_ERR(session);
1615 
1616         symbol__init(&session->header.env);
1617 
1618         (void)perf_header__process_sections(&session->header,
1619                                             perf_data__fd(session->data),
1620                                             tchart,
1621                                             process_header);
1622 
1623         if (!perf_session__has_traces(session, "timechart record"))
1624                 goto out_delete;
1625 
1626         if (perf_session__set_tracepoints_handlers(session,
1627                                                    power_tracepoints)) {
1628                 pr_err("Initializing session tracepoint handlers failed\n");
1629                 goto out_delete;
1630         }
1631 
1632         ret = perf_session__process_events(session);
1633         if (ret)
1634                 goto out_delete;
1635 
1636         end_sample_processing(tchart);
1637 
1638         sort_pids(tchart);
1639 
1640         write_svg_file(tchart, output_name);
1641 
1642         pr_info("Written %2.1f seconds of trace to %s.\n",
1643                 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1644 out_delete:
1645         perf_session__delete(session);
1646         return ret;
1647 }
1648 
1649 static int timechart__io_record(int argc, const char **argv)
1650 {
1651         unsigned int rec_argc, i;
1652         const char **rec_argv;
1653         const char **p;
1654         char *filter = NULL;
1655 
1656         const char * const common_args[] = {
1657                 "record", "-a", "-R", "-c", "1",
1658         };
1659         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1660 
1661         const char * const disk_events[] = {
1662                 "syscalls:sys_enter_read",
1663                 "syscalls:sys_enter_pread64",
1664                 "syscalls:sys_enter_readv",
1665                 "syscalls:sys_enter_preadv",
1666                 "syscalls:sys_enter_write",
1667                 "syscalls:sys_enter_pwrite64",
1668                 "syscalls:sys_enter_writev",
1669                 "syscalls:sys_enter_pwritev",
1670                 "syscalls:sys_enter_sync",
1671                 "syscalls:sys_enter_sync_file_range",
1672                 "syscalls:sys_enter_fsync",
1673                 "syscalls:sys_enter_msync",
1674 
1675                 "syscalls:sys_exit_read",
1676                 "syscalls:sys_exit_pread64",
1677                 "syscalls:sys_exit_readv",
1678                 "syscalls:sys_exit_preadv",
1679                 "syscalls:sys_exit_write",
1680                 "syscalls:sys_exit_pwrite64",
1681                 "syscalls:sys_exit_writev",
1682                 "syscalls:sys_exit_pwritev",
1683                 "syscalls:sys_exit_sync",
1684                 "syscalls:sys_exit_sync_file_range",
1685                 "syscalls:sys_exit_fsync",
1686                 "syscalls:sys_exit_msync",
1687         };
1688         unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1689 
1690         const char * const net_events[] = {
1691                 "syscalls:sys_enter_recvfrom",
1692                 "syscalls:sys_enter_recvmmsg",
1693                 "syscalls:sys_enter_recvmsg",
1694                 "syscalls:sys_enter_sendto",
1695                 "syscalls:sys_enter_sendmsg",
1696                 "syscalls:sys_enter_sendmmsg",
1697 
1698                 "syscalls:sys_exit_recvfrom",
1699                 "syscalls:sys_exit_recvmmsg",
1700                 "syscalls:sys_exit_recvmsg",
1701                 "syscalls:sys_exit_sendto",
1702                 "syscalls:sys_exit_sendmsg",
1703                 "syscalls:sys_exit_sendmmsg",
1704         };
1705         unsigned int net_events_nr = ARRAY_SIZE(net_events);
1706 
1707         const char * const poll_events[] = {
1708                 "syscalls:sys_enter_epoll_pwait",
1709                 "syscalls:sys_enter_epoll_wait",
1710                 "syscalls:sys_enter_poll",
1711                 "syscalls:sys_enter_ppoll",
1712                 "syscalls:sys_enter_pselect6",
1713                 "syscalls:sys_enter_select",
1714 
1715                 "syscalls:sys_exit_epoll_pwait",
1716                 "syscalls:sys_exit_epoll_wait",
1717                 "syscalls:sys_exit_poll",
1718                 "syscalls:sys_exit_ppoll",
1719                 "syscalls:sys_exit_pselect6",
1720                 "syscalls:sys_exit_select",
1721         };
1722         unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1723 
1724         rec_argc = common_args_nr +
1725                 disk_events_nr * 4 +
1726                 net_events_nr * 4 +
1727                 poll_events_nr * 4 +
1728                 argc;
1729         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1730 
1731         if (rec_argv == NULL)
1732                 return -ENOMEM;
1733 
1734         if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1735                 free(rec_argv);
1736                 return -ENOMEM;
1737         }
1738 
1739         p = rec_argv;
1740         for (i = 0; i < common_args_nr; i++)
1741                 *p++ = strdup(common_args[i]);
1742 
1743         for (i = 0; i < disk_events_nr; i++) {
1744                 if (!is_valid_tracepoint(disk_events[i])) {
1745                         rec_argc -= 4;
1746                         continue;
1747                 }
1748 
1749                 *p++ = "-e";
1750                 *p++ = strdup(disk_events[i]);
1751                 *p++ = "--filter";
1752                 *p++ = filter;
1753         }
1754         for (i = 0; i < net_events_nr; i++) {
1755                 if (!is_valid_tracepoint(net_events[i])) {
1756                         rec_argc -= 4;
1757                         continue;
1758                 }
1759 
1760                 *p++ = "-e";
1761                 *p++ = strdup(net_events[i]);
1762                 *p++ = "--filter";
1763                 *p++ = filter;
1764         }
1765         for (i = 0; i < poll_events_nr; i++) {
1766                 if (!is_valid_tracepoint(poll_events[i])) {
1767                         rec_argc -= 4;
1768                         continue;
1769                 }
1770 
1771                 *p++ = "-e";
1772                 *p++ = strdup(poll_events[i]);
1773                 *p++ = "--filter";
1774                 *p++ = filter;
1775         }
1776 
1777         for (i = 0; i < (unsigned int)argc; i++)
1778                 *p++ = argv[i];
1779 
1780         return cmd_record(rec_argc, rec_argv);
1781 }
1782 
1783 
1784 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1785 {
1786         unsigned int rec_argc, i, j;
1787         const char **rec_argv;
1788         const char **p;
1789         unsigned int record_elems;
1790 
1791         const char * const common_args[] = {
1792                 "record", "-a", "-R", "-c", "1",
1793         };
1794         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1795 
1796         const char * const backtrace_args[] = {
1797                 "-g",
1798         };
1799         unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1800 
1801         const char * const power_args[] = {
1802                 "-e", "power:cpu_frequency",
1803                 "-e", "power:cpu_idle",
1804         };
1805         unsigned int power_args_nr = ARRAY_SIZE(power_args);
1806 
1807         const char * const old_power_args[] = {
1808 #ifdef SUPPORT_OLD_POWER_EVENTS
1809                 "-e", "power:power_start",
1810                 "-e", "power:power_end",
1811                 "-e", "power:power_frequency",
1812 #endif
1813         };
1814         unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1815 
1816         const char * const tasks_args[] = {
1817                 "-e", "sched:sched_wakeup",
1818                 "-e", "sched:sched_switch",
1819         };
1820         unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1821 
1822 #ifdef SUPPORT_OLD_POWER_EVENTS
1823         if (!is_valid_tracepoint("power:cpu_idle") &&
1824             is_valid_tracepoint("power:power_start")) {
1825                 use_old_power_events = 1;
1826                 power_args_nr = 0;
1827         } else {
1828                 old_power_args_nr = 0;
1829         }
1830 #endif
1831 
1832         if (tchart->power_only)
1833                 tasks_args_nr = 0;
1834 
1835         if (tchart->tasks_only) {
1836                 power_args_nr = 0;
1837                 old_power_args_nr = 0;
1838         }
1839 
1840         if (!tchart->with_backtrace)
1841                 backtrace_args_no = 0;
1842 
1843         record_elems = common_args_nr + tasks_args_nr +
1844                 power_args_nr + old_power_args_nr + backtrace_args_no;
1845 
1846         rec_argc = record_elems + argc;
1847         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1848 
1849         if (rec_argv == NULL)
1850                 return -ENOMEM;
1851 
1852         p = rec_argv;
1853         for (i = 0; i < common_args_nr; i++)
1854                 *p++ = strdup(common_args[i]);
1855 
1856         for (i = 0; i < backtrace_args_no; i++)
1857                 *p++ = strdup(backtrace_args[i]);
1858 
1859         for (i = 0; i < tasks_args_nr; i++)
1860                 *p++ = strdup(tasks_args[i]);
1861 
1862         for (i = 0; i < power_args_nr; i++)
1863                 *p++ = strdup(power_args[i]);
1864 
1865         for (i = 0; i < old_power_args_nr; i++)
1866                 *p++ = strdup(old_power_args[i]);
1867 
1868         for (j = 0; j < (unsigned int)argc; j++)
1869                 *p++ = argv[j];
1870 
1871         return cmd_record(rec_argc, rec_argv);
1872 }
1873 
1874 static int
1875 parse_process(const struct option *opt __maybe_unused, const char *arg,
1876               int __maybe_unused unset)
1877 {
1878         if (arg)
1879                 add_process_filter(arg);
1880         return 0;
1881 }
1882 
1883 static int
1884 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1885                 int __maybe_unused unset)
1886 {
1887         unsigned long duration = strtoul(arg, NULL, 0);
1888 
1889         if (svg_highlight || svg_highlight_name)
1890                 return -1;
1891 
1892         if (duration)
1893                 svg_highlight = duration;
1894         else
1895                 svg_highlight_name = strdup(arg);
1896 
1897         return 0;
1898 }
1899 
1900 static int
1901 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1902 {
1903         char unit = 'n';
1904         u64 *value = opt->value;
1905 
1906         if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1907                 switch (unit) {
1908                 case 'm':
1909                         *value *= NSEC_PER_MSEC;
1910                         break;
1911                 case 'u':
1912                         *value *= NSEC_PER_USEC;
1913                         break;
1914                 case 'n':
1915                         break;
1916                 default:
1917                         return -1;
1918                 }
1919         }
1920 
1921         return 0;
1922 }
1923 
1924 int cmd_timechart(int argc, const char **argv)
1925 {
1926         struct timechart tchart = {
1927                 .tool = {
1928                         .comm            = process_comm_event,
1929                         .fork            = process_fork_event,
1930                         .exit            = process_exit_event,
1931                         .sample          = process_sample_event,
1932                         .ordered_events  = true,
1933                 },
1934                 .proc_num = 15,
1935                 .min_time = NSEC_PER_MSEC,
1936                 .merge_dist = 1000,
1937         };
1938         const char *output_name = "output.svg";
1939         const struct option timechart_common_options[] = {
1940         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1941         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1942         OPT_END()
1943         };
1944         const struct option timechart_options[] = {
1945         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1946         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1947         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1948         OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1949                       "highlight tasks. Pass duration in ns or process name.",
1950                        parse_highlight),
1951         OPT_CALLBACK('p', "process", NULL, "process",
1952                       "process selector. Pass a pid or process name.",
1953                        parse_process),
1954         OPT_CALLBACK(0, "symfs", NULL, "directory",
1955                      "Look for files with symbols relative to this directory",
1956                      symbol__config_symfs),
1957         OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1958                     "min. number of tasks to print"),
1959         OPT_BOOLEAN('t', "topology", &tchart.topology,
1960                     "sort CPUs according to topology"),
1961         OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1962                     "skip EAGAIN errors"),
1963         OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1964                      "all IO faster than min-time will visually appear longer",
1965                      parse_time),
1966         OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1967                      "merge events that are merge-dist us apart",
1968                      parse_time),
1969         OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1970         OPT_PARENT(timechart_common_options),
1971         };
1972         const char * const timechart_subcommands[] = { "record", NULL };
1973         const char *timechart_usage[] = {
1974                 "perf timechart [<options>] {record}",
1975                 NULL
1976         };
1977         const struct option timechart_record_options[] = {
1978         OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1979                     "record only IO data"),
1980         OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1981         OPT_PARENT(timechart_common_options),
1982         };
1983         const char * const timechart_record_usage[] = {
1984                 "perf timechart record [<options>]",
1985                 NULL
1986         };
1987         int ret;
1988 
1989         cpus_cstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_cstate_start_times));
1990         if (!cpus_cstate_start_times)
1991                 return -ENOMEM;
1992         cpus_cstate_state = calloc(MAX_CPUS, sizeof(*cpus_cstate_state));
1993         if (!cpus_cstate_state) {
1994                 ret = -ENOMEM;
1995                 goto out;
1996         }
1997         cpus_pstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_pstate_start_times));
1998         if (!cpus_pstate_start_times) {
1999                 ret = -ENOMEM;
2000                 goto out;
2001         }
2002         cpus_pstate_state = calloc(MAX_CPUS, sizeof(*cpus_pstate_state));
2003         if (!cpus_pstate_state) {
2004                 ret = -ENOMEM;
2005                 goto out;
2006         }
2007 
2008         argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
2009                         timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
2010 
2011         if (tchart.power_only && tchart.tasks_only) {
2012                 pr_err("-P and -T options cannot be used at the same time.\n");
2013                 ret = -1;
2014                 goto out;
2015         }
2016 
2017         if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
2018                 argc = parse_options(argc, argv, timechart_record_options,
2019                                      timechart_record_usage,
2020                                      PARSE_OPT_STOP_AT_NON_OPTION);
2021 
2022                 if (tchart.power_only && tchart.tasks_only) {
2023                         pr_err("-P and -T options cannot be used at the same time.\n");
2024                         ret = -1;
2025                         goto out;
2026                 }
2027 
2028                 if (tchart.io_only)
2029                         ret = timechart__io_record(argc, argv);
2030                 else
2031                         ret = timechart__record(&tchart, argc, argv);
2032                 goto out;
2033         } else if (argc)
2034                 usage_with_options(timechart_usage, timechart_options);
2035 
2036         setup_pager();
2037 
2038         ret = __cmd_timechart(&tchart, output_name);
2039 out:
2040         zfree(&cpus_cstate_start_times);
2041         zfree(&cpus_cstate_state);
2042         zfree(&cpus_pstate_start_times);
2043         zfree(&cpus_pstate_state);
2044         return ret;
2045 }
2046 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php