1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * builtin-timechart.c - make an svg timechart of system activity 4 * 5 * (C) Copyright 2009 Intel Corporation 6 * 7 * Authors: 8 * Arjan van de Ven <arjan@linux.intel.com> 9 */ 10 11 #include <errno.h> 12 #include <inttypes.h> 13 14 #include "builtin.h" 15 #include "util/color.h" 16 #include <linux/list.h> 17 #include "util/evlist.h" // for struct evsel_str_handler 18 #include "util/evsel.h" 19 #include <linux/kernel.h> 20 #include <linux/rbtree.h> 21 #include <linux/time64.h> 22 #include <linux/zalloc.h> 23 #include "util/symbol.h" 24 #include "util/thread.h" 25 #include "util/callchain.h" 26 27 #include "util/header.h" 28 #include <subcmd/pager.h> 29 #include <subcmd/parse-options.h> 30 #include "util/parse-events.h" 31 #include "util/event.h" 32 #include "util/session.h" 33 #include "util/svghelper.h" 34 #include "util/tool.h" 35 #include "util/data.h" 36 #include "util/debug.h" 37 #include "util/string2.h" 38 #include "util/tracepoint.h" 39 #include "util/util.h" 40 #include <linux/err.h> 41 #include <traceevent/event-parse.h> 42 43 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE 44 FILE *open_memstream(char **ptr, size_t *sizeloc); 45 #endif 46 47 #define SUPPORT_OLD_POWER_EVENTS 1 48 #define PWR_EVENT_EXIT -1 49 50 struct per_pid; 51 struct power_event; 52 struct wake_event; 53 54 struct timechart { 55 struct perf_tool tool; 56 struct per_pid *all_data; 57 struct power_event *power_events; 58 struct wake_event *wake_events; 59 int proc_num; 60 unsigned int numcpus; 61 u64 min_freq, /* Lowest CPU frequency seen */ 62 max_freq, /* Highest CPU frequency seen */ 63 turbo_frequency, 64 first_time, last_time; 65 bool power_only, 66 tasks_only, 67 with_backtrace, 68 topology; 69 bool force; 70 /* IO related settings */ 71 bool io_only, 72 skip_eagain; 73 u64 io_events; 74 u64 min_time, 75 merge_dist; 76 }; 77 78 struct per_pidcomm; 79 struct cpu_sample; 80 struct io_sample; 81 82 /* 83 * Datastructure layout: 84 * We keep an list of "pid"s, matching the kernels notion of a task struct. 85 * Each "pid" entry, has a list of "comm"s. 86 * this is because we want to track different programs different, while 87 * exec will reuse the original pid (by design). 88 * Each comm has a list of samples that will be used to draw 89 * final graph. 90 */ 91 92 struct per_pid { 93 struct per_pid *next; 94 95 int pid; 96 int ppid; 97 98 u64 start_time; 99 u64 end_time; 100 u64 total_time; 101 u64 total_bytes; 102 int display; 103 104 struct per_pidcomm *all; 105 struct per_pidcomm *current; 106 }; 107 108 109 struct per_pidcomm { 110 struct per_pidcomm *next; 111 112 u64 start_time; 113 u64 end_time; 114 u64 total_time; 115 u64 max_bytes; 116 u64 total_bytes; 117 118 int Y; 119 int display; 120 121 long state; 122 u64 state_since; 123 124 char *comm; 125 126 struct cpu_sample *samples; 127 struct io_sample *io_samples; 128 }; 129 130 struct sample_wrapper { 131 struct sample_wrapper *next; 132 133 u64 timestamp; 134 unsigned char data[]; 135 }; 136 137 #define TYPE_NONE 0 138 #define TYPE_RUNNING 1 139 #define TYPE_WAITING 2 140 #define TYPE_BLOCKED 3 141 142 struct cpu_sample { 143 struct cpu_sample *next; 144 145 u64 start_time; 146 u64 end_time; 147 int type; 148 int cpu; 149 const char *backtrace; 150 }; 151 152 enum { 153 IOTYPE_READ, 154 IOTYPE_WRITE, 155 IOTYPE_SYNC, 156 IOTYPE_TX, 157 IOTYPE_RX, 158 IOTYPE_POLL, 159 }; 160 161 struct io_sample { 162 struct io_sample *next; 163 164 u64 start_time; 165 u64 end_time; 166 u64 bytes; 167 int type; 168 int fd; 169 int err; 170 int merges; 171 }; 172 173 #define CSTATE 1 174 #define PSTATE 2 175 176 struct power_event { 177 struct power_event *next; 178 int type; 179 int state; 180 u64 start_time; 181 u64 end_time; 182 int cpu; 183 }; 184 185 struct wake_event { 186 struct wake_event *next; 187 int waker; 188 int wakee; 189 u64 time; 190 const char *backtrace; 191 }; 192 193 struct process_filter { 194 char *name; 195 int pid; 196 struct process_filter *next; 197 }; 198 199 static struct process_filter *process_filter; 200 201 202 static struct per_pid *find_create_pid(struct timechart *tchart, int pid) 203 { 204 struct per_pid *cursor = tchart->all_data; 205 206 while (cursor) { 207 if (cursor->pid == pid) 208 return cursor; 209 cursor = cursor->next; 210 } 211 cursor = zalloc(sizeof(*cursor)); 212 assert(cursor != NULL); 213 cursor->pid = pid; 214 cursor->next = tchart->all_data; 215 tchart->all_data = cursor; 216 return cursor; 217 } 218 219 static struct per_pidcomm *create_pidcomm(struct per_pid *p) 220 { 221 struct per_pidcomm *c; 222 223 c = zalloc(sizeof(*c)); 224 if (!c) 225 return NULL; 226 p->current = c; 227 c->next = p->all; 228 p->all = c; 229 return c; 230 } 231 232 static void pid_set_comm(struct timechart *tchart, int pid, char *comm) 233 { 234 struct per_pid *p; 235 struct per_pidcomm *c; 236 p = find_create_pid(tchart, pid); 237 c = p->all; 238 while (c) { 239 if (c->comm && strcmp(c->comm, comm) == 0) { 240 p->current = c; 241 return; 242 } 243 if (!c->comm) { 244 c->comm = strdup(comm); 245 p->current = c; 246 return; 247 } 248 c = c->next; 249 } 250 c = create_pidcomm(p); 251 assert(c != NULL); 252 c->comm = strdup(comm); 253 } 254 255 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp) 256 { 257 struct per_pid *p, *pp; 258 p = find_create_pid(tchart, pid); 259 pp = find_create_pid(tchart, ppid); 260 p->ppid = ppid; 261 if (pp->current && pp->current->comm && !p->current) 262 pid_set_comm(tchart, pid, pp->current->comm); 263 264 p->start_time = timestamp; 265 if (p->current && !p->current->start_time) { 266 p->current->start_time = timestamp; 267 p->current->state_since = timestamp; 268 } 269 } 270 271 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp) 272 { 273 struct per_pid *p; 274 p = find_create_pid(tchart, pid); 275 p->end_time = timestamp; 276 if (p->current) 277 p->current->end_time = timestamp; 278 } 279 280 static void pid_put_sample(struct timechart *tchart, int pid, int type, 281 unsigned int cpu, u64 start, u64 end, 282 const char *backtrace) 283 { 284 struct per_pid *p; 285 struct per_pidcomm *c; 286 struct cpu_sample *sample; 287 288 p = find_create_pid(tchart, pid); 289 c = p->current; 290 if (!c) { 291 c = create_pidcomm(p); 292 assert(c != NULL); 293 } 294 295 sample = zalloc(sizeof(*sample)); 296 assert(sample != NULL); 297 sample->start_time = start; 298 sample->end_time = end; 299 sample->type = type; 300 sample->next = c->samples; 301 sample->cpu = cpu; 302 sample->backtrace = backtrace; 303 c->samples = sample; 304 305 if (sample->type == TYPE_RUNNING && end > start && start > 0) { 306 c->total_time += (end-start); 307 p->total_time += (end-start); 308 } 309 310 if (c->start_time == 0 || c->start_time > start) 311 c->start_time = start; 312 if (p->start_time == 0 || p->start_time > start) 313 p->start_time = start; 314 } 315 316 #define MAX_CPUS 4096 317 318 static u64 *cpus_cstate_start_times; 319 static int *cpus_cstate_state; 320 static u64 *cpus_pstate_start_times; 321 static u64 *cpus_pstate_state; 322 323 static int process_comm_event(struct perf_tool *tool, 324 union perf_event *event, 325 struct perf_sample *sample __maybe_unused, 326 struct machine *machine __maybe_unused) 327 { 328 struct timechart *tchart = container_of(tool, struct timechart, tool); 329 pid_set_comm(tchart, event->comm.tid, event->comm.comm); 330 return 0; 331 } 332 333 static int process_fork_event(struct perf_tool *tool, 334 union perf_event *event, 335 struct perf_sample *sample __maybe_unused, 336 struct machine *machine __maybe_unused) 337 { 338 struct timechart *tchart = container_of(tool, struct timechart, tool); 339 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time); 340 return 0; 341 } 342 343 static int process_exit_event(struct perf_tool *tool, 344 union perf_event *event, 345 struct perf_sample *sample __maybe_unused, 346 struct machine *machine __maybe_unused) 347 { 348 struct timechart *tchart = container_of(tool, struct timechart, tool); 349 pid_exit(tchart, event->fork.pid, event->fork.time); 350 return 0; 351 } 352 353 #ifdef SUPPORT_OLD_POWER_EVENTS 354 static int use_old_power_events; 355 #endif 356 357 static void c_state_start(int cpu, u64 timestamp, int state) 358 { 359 cpus_cstate_start_times[cpu] = timestamp; 360 cpus_cstate_state[cpu] = state; 361 } 362 363 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp) 364 { 365 struct power_event *pwr = zalloc(sizeof(*pwr)); 366 367 if (!pwr) 368 return; 369 370 pwr->state = cpus_cstate_state[cpu]; 371 pwr->start_time = cpus_cstate_start_times[cpu]; 372 pwr->end_time = timestamp; 373 pwr->cpu = cpu; 374 pwr->type = CSTATE; 375 pwr->next = tchart->power_events; 376 377 tchart->power_events = pwr; 378 } 379 380 static struct power_event *p_state_end(struct timechart *tchart, int cpu, 381 u64 timestamp) 382 { 383 struct power_event *pwr = zalloc(sizeof(*pwr)); 384 385 if (!pwr) 386 return NULL; 387 388 pwr->state = cpus_pstate_state[cpu]; 389 pwr->start_time = cpus_pstate_start_times[cpu]; 390 pwr->end_time = timestamp; 391 pwr->cpu = cpu; 392 pwr->type = PSTATE; 393 pwr->next = tchart->power_events; 394 if (!pwr->start_time) 395 pwr->start_time = tchart->first_time; 396 397 tchart->power_events = pwr; 398 return pwr; 399 } 400 401 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq) 402 { 403 struct power_event *pwr; 404 405 if (new_freq > 8000000) /* detect invalid data */ 406 return; 407 408 pwr = p_state_end(tchart, cpu, timestamp); 409 if (!pwr) 410 return; 411 412 cpus_pstate_state[cpu] = new_freq; 413 cpus_pstate_start_times[cpu] = timestamp; 414 415 if ((u64)new_freq > tchart->max_freq) 416 tchart->max_freq = new_freq; 417 418 if (new_freq < tchart->min_freq || tchart->min_freq == 0) 419 tchart->min_freq = new_freq; 420 421 if (new_freq == tchart->max_freq - 1000) 422 tchart->turbo_frequency = tchart->max_freq; 423 } 424 425 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp, 426 int waker, int wakee, u8 flags, const char *backtrace) 427 { 428 struct per_pid *p; 429 struct wake_event *we = zalloc(sizeof(*we)); 430 431 if (!we) 432 return; 433 434 we->time = timestamp; 435 we->waker = waker; 436 we->backtrace = backtrace; 437 438 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ)) 439 we->waker = -1; 440 441 we->wakee = wakee; 442 we->next = tchart->wake_events; 443 tchart->wake_events = we; 444 p = find_create_pid(tchart, we->wakee); 445 446 if (p && p->current && p->current->state == TYPE_NONE) { 447 p->current->state_since = timestamp; 448 p->current->state = TYPE_WAITING; 449 } 450 if (p && p->current && p->current->state == TYPE_BLOCKED) { 451 pid_put_sample(tchart, p->pid, p->current->state, cpu, 452 p->current->state_since, timestamp, NULL); 453 p->current->state_since = timestamp; 454 p->current->state = TYPE_WAITING; 455 } 456 } 457 458 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp, 459 int prev_pid, int next_pid, u64 prev_state, 460 const char *backtrace) 461 { 462 struct per_pid *p = NULL, *prev_p; 463 464 prev_p = find_create_pid(tchart, prev_pid); 465 466 p = find_create_pid(tchart, next_pid); 467 468 if (prev_p->current && prev_p->current->state != TYPE_NONE) 469 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu, 470 prev_p->current->state_since, timestamp, 471 backtrace); 472 if (p && p->current) { 473 if (p->current->state != TYPE_NONE) 474 pid_put_sample(tchart, next_pid, p->current->state, cpu, 475 p->current->state_since, timestamp, 476 backtrace); 477 478 p->current->state_since = timestamp; 479 p->current->state = TYPE_RUNNING; 480 } 481 482 if (prev_p->current) { 483 prev_p->current->state = TYPE_NONE; 484 prev_p->current->state_since = timestamp; 485 if (prev_state & 2) 486 prev_p->current->state = TYPE_BLOCKED; 487 if (prev_state == 0) 488 prev_p->current->state = TYPE_WAITING; 489 } 490 } 491 492 static const char *cat_backtrace(union perf_event *event, 493 struct perf_sample *sample, 494 struct machine *machine) 495 { 496 struct addr_location al; 497 unsigned int i; 498 char *p = NULL; 499 size_t p_len; 500 u8 cpumode = PERF_RECORD_MISC_USER; 501 struct ip_callchain *chain = sample->callchain; 502 FILE *f = open_memstream(&p, &p_len); 503 504 if (!f) { 505 perror("open_memstream error"); 506 return NULL; 507 } 508 509 addr_location__init(&al); 510 if (!chain) 511 goto exit; 512 513 if (machine__resolve(machine, &al, sample) < 0) { 514 fprintf(stderr, "problem processing %d event, skipping it.\n", 515 event->header.type); 516 goto exit; 517 } 518 519 for (i = 0; i < chain->nr; i++) { 520 u64 ip; 521 struct addr_location tal; 522 523 if (callchain_param.order == ORDER_CALLEE) 524 ip = chain->ips[i]; 525 else 526 ip = chain->ips[chain->nr - i - 1]; 527 528 if (ip >= PERF_CONTEXT_MAX) { 529 switch (ip) { 530 case PERF_CONTEXT_HV: 531 cpumode = PERF_RECORD_MISC_HYPERVISOR; 532 break; 533 case PERF_CONTEXT_KERNEL: 534 cpumode = PERF_RECORD_MISC_KERNEL; 535 break; 536 case PERF_CONTEXT_USER: 537 cpumode = PERF_RECORD_MISC_USER; 538 break; 539 default: 540 pr_debug("invalid callchain context: " 541 "%"PRId64"\n", (s64) ip); 542 543 /* 544 * It seems the callchain is corrupted. 545 * Discard all. 546 */ 547 zfree(&p); 548 goto exit; 549 } 550 continue; 551 } 552 553 addr_location__init(&tal); 554 tal.filtered = 0; 555 if (thread__find_symbol(al.thread, cpumode, ip, &tal)) 556 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name); 557 else 558 fprintf(f, "..... %016" PRIx64 "\n", ip); 559 560 addr_location__exit(&tal); 561 } 562 exit: 563 addr_location__exit(&al); 564 fclose(f); 565 566 return p; 567 } 568 569 typedef int (*tracepoint_handler)(struct timechart *tchart, 570 struct evsel *evsel, 571 struct perf_sample *sample, 572 const char *backtrace); 573 574 static int process_sample_event(struct perf_tool *tool, 575 union perf_event *event, 576 struct perf_sample *sample, 577 struct evsel *evsel, 578 struct machine *machine) 579 { 580 struct timechart *tchart = container_of(tool, struct timechart, tool); 581 582 if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) { 583 if (!tchart->first_time || tchart->first_time > sample->time) 584 tchart->first_time = sample->time; 585 if (tchart->last_time < sample->time) 586 tchart->last_time = sample->time; 587 } 588 589 if (evsel->handler != NULL) { 590 tracepoint_handler f = evsel->handler; 591 return f(tchart, evsel, sample, 592 cat_backtrace(event, sample, machine)); 593 } 594 595 return 0; 596 } 597 598 static int 599 process_sample_cpu_idle(struct timechart *tchart __maybe_unused, 600 struct evsel *evsel, 601 struct perf_sample *sample, 602 const char *backtrace __maybe_unused) 603 { 604 u32 state = evsel__intval(evsel, sample, "state"); 605 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id"); 606 607 if (state == (u32)PWR_EVENT_EXIT) 608 c_state_end(tchart, cpu_id, sample->time); 609 else 610 c_state_start(cpu_id, sample->time, state); 611 return 0; 612 } 613 614 static int 615 process_sample_cpu_frequency(struct timechart *tchart, 616 struct evsel *evsel, 617 struct perf_sample *sample, 618 const char *backtrace __maybe_unused) 619 { 620 u32 state = evsel__intval(evsel, sample, "state"); 621 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id"); 622 623 p_state_change(tchart, cpu_id, sample->time, state); 624 return 0; 625 } 626 627 static int 628 process_sample_sched_wakeup(struct timechart *tchart, 629 struct evsel *evsel, 630 struct perf_sample *sample, 631 const char *backtrace) 632 { 633 u8 flags = evsel__intval(evsel, sample, "common_flags"); 634 int waker = evsel__intval(evsel, sample, "common_pid"); 635 int wakee = evsel__intval(evsel, sample, "pid"); 636 637 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace); 638 return 0; 639 } 640 641 static int 642 process_sample_sched_switch(struct timechart *tchart, 643 struct evsel *evsel, 644 struct perf_sample *sample, 645 const char *backtrace) 646 { 647 int prev_pid = evsel__intval(evsel, sample, "prev_pid"); 648 int next_pid = evsel__intval(evsel, sample, "next_pid"); 649 u64 prev_state = evsel__intval(evsel, sample, "prev_state"); 650 651 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid, 652 prev_state, backtrace); 653 return 0; 654 } 655 656 #ifdef SUPPORT_OLD_POWER_EVENTS 657 static int 658 process_sample_power_start(struct timechart *tchart __maybe_unused, 659 struct evsel *evsel, 660 struct perf_sample *sample, 661 const char *backtrace __maybe_unused) 662 { 663 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id"); 664 u64 value = evsel__intval(evsel, sample, "value"); 665 666 c_state_start(cpu_id, sample->time, value); 667 return 0; 668 } 669 670 static int 671 process_sample_power_end(struct timechart *tchart, 672 struct evsel *evsel __maybe_unused, 673 struct perf_sample *sample, 674 const char *backtrace __maybe_unused) 675 { 676 c_state_end(tchart, sample->cpu, sample->time); 677 return 0; 678 } 679 680 static int 681 process_sample_power_frequency(struct timechart *tchart, 682 struct evsel *evsel, 683 struct perf_sample *sample, 684 const char *backtrace __maybe_unused) 685 { 686 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id"); 687 u64 value = evsel__intval(evsel, sample, "value"); 688 689 p_state_change(tchart, cpu_id, sample->time, value); 690 return 0; 691 } 692 #endif /* SUPPORT_OLD_POWER_EVENTS */ 693 694 /* 695 * After the last sample we need to wrap up the current C/P state 696 * and close out each CPU for these. 697 */ 698 static void end_sample_processing(struct timechart *tchart) 699 { 700 u64 cpu; 701 struct power_event *pwr; 702 703 for (cpu = 0; cpu <= tchart->numcpus; cpu++) { 704 /* C state */ 705 #if 0 706 pwr = zalloc(sizeof(*pwr)); 707 if (!pwr) 708 return; 709 710 pwr->state = cpus_cstate_state[cpu]; 711 pwr->start_time = cpus_cstate_start_times[cpu]; 712 pwr->end_time = tchart->last_time; 713 pwr->cpu = cpu; 714 pwr->type = CSTATE; 715 pwr->next = tchart->power_events; 716 717 tchart->power_events = pwr; 718 #endif 719 /* P state */ 720 721 pwr = p_state_end(tchart, cpu, tchart->last_time); 722 if (!pwr) 723 return; 724 725 if (!pwr->state) 726 pwr->state = tchart->min_freq; 727 } 728 } 729 730 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type, 731 u64 start, int fd) 732 { 733 struct per_pid *p = find_create_pid(tchart, pid); 734 struct per_pidcomm *c = p->current; 735 struct io_sample *sample; 736 struct io_sample *prev; 737 738 if (!c) { 739 c = create_pidcomm(p); 740 if (!c) 741 return -ENOMEM; 742 } 743 744 prev = c->io_samples; 745 746 if (prev && prev->start_time && !prev->end_time) { 747 pr_warning("Skip invalid start event: " 748 "previous event already started!\n"); 749 750 /* remove previous event that has been started, 751 * we are not sure we will ever get an end for it */ 752 c->io_samples = prev->next; 753 free(prev); 754 return 0; 755 } 756 757 sample = zalloc(sizeof(*sample)); 758 if (!sample) 759 return -ENOMEM; 760 sample->start_time = start; 761 sample->type = type; 762 sample->fd = fd; 763 sample->next = c->io_samples; 764 c->io_samples = sample; 765 766 if (c->start_time == 0 || c->start_time > start) 767 c->start_time = start; 768 769 return 0; 770 } 771 772 static int pid_end_io_sample(struct timechart *tchart, int pid, int type, 773 u64 end, long ret) 774 { 775 struct per_pid *p = find_create_pid(tchart, pid); 776 struct per_pidcomm *c = p->current; 777 struct io_sample *sample, *prev; 778 779 if (!c) { 780 pr_warning("Invalid pidcomm!\n"); 781 return -1; 782 } 783 784 sample = c->io_samples; 785 786 if (!sample) /* skip partially captured events */ 787 return 0; 788 789 if (sample->end_time) { 790 pr_warning("Skip invalid end event: " 791 "previous event already ended!\n"); 792 return 0; 793 } 794 795 if (sample->type != type) { 796 pr_warning("Skip invalid end event: invalid event type!\n"); 797 return 0; 798 } 799 800 sample->end_time = end; 801 prev = sample->next; 802 803 /* we want to be able to see small and fast transfers, so make them 804 * at least min_time long, but don't overlap them */ 805 if (sample->end_time - sample->start_time < tchart->min_time) 806 sample->end_time = sample->start_time + tchart->min_time; 807 if (prev && sample->start_time < prev->end_time) { 808 if (prev->err) /* try to make errors more visible */ 809 sample->start_time = prev->end_time; 810 else 811 prev->end_time = sample->start_time; 812 } 813 814 if (ret < 0) { 815 sample->err = ret; 816 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE || 817 type == IOTYPE_TX || type == IOTYPE_RX) { 818 819 if ((u64)ret > c->max_bytes) 820 c->max_bytes = ret; 821 822 c->total_bytes += ret; 823 p->total_bytes += ret; 824 sample->bytes = ret; 825 } 826 827 /* merge two requests to make svg smaller and render-friendly */ 828 if (prev && 829 prev->type == sample->type && 830 prev->err == sample->err && 831 prev->fd == sample->fd && 832 prev->end_time + tchart->merge_dist >= sample->start_time) { 833 834 sample->bytes += prev->bytes; 835 sample->merges += prev->merges + 1; 836 837 sample->start_time = prev->start_time; 838 sample->next = prev->next; 839 free(prev); 840 841 if (!sample->err && sample->bytes > c->max_bytes) 842 c->max_bytes = sample->bytes; 843 } 844 845 tchart->io_events++; 846 847 return 0; 848 } 849 850 static int 851 process_enter_read(struct timechart *tchart, 852 struct evsel *evsel, 853 struct perf_sample *sample) 854 { 855 long fd = evsel__intval(evsel, sample, "fd"); 856 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ, 857 sample->time, fd); 858 } 859 860 static int 861 process_exit_read(struct timechart *tchart, 862 struct evsel *evsel, 863 struct perf_sample *sample) 864 { 865 long ret = evsel__intval(evsel, sample, "ret"); 866 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ, 867 sample->time, ret); 868 } 869 870 static int 871 process_enter_write(struct timechart *tchart, 872 struct evsel *evsel, 873 struct perf_sample *sample) 874 { 875 long fd = evsel__intval(evsel, sample, "fd"); 876 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE, 877 sample->time, fd); 878 } 879 880 static int 881 process_exit_write(struct timechart *tchart, 882 struct evsel *evsel, 883 struct perf_sample *sample) 884 { 885 long ret = evsel__intval(evsel, sample, "ret"); 886 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE, 887 sample->time, ret); 888 } 889 890 static int 891 process_enter_sync(struct timechart *tchart, 892 struct evsel *evsel, 893 struct perf_sample *sample) 894 { 895 long fd = evsel__intval(evsel, sample, "fd"); 896 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC, 897 sample->time, fd); 898 } 899 900 static int 901 process_exit_sync(struct timechart *tchart, 902 struct evsel *evsel, 903 struct perf_sample *sample) 904 { 905 long ret = evsel__intval(evsel, sample, "ret"); 906 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC, 907 sample->time, ret); 908 } 909 910 static int 911 process_enter_tx(struct timechart *tchart, 912 struct evsel *evsel, 913 struct perf_sample *sample) 914 { 915 long fd = evsel__intval(evsel, sample, "fd"); 916 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX, 917 sample->time, fd); 918 } 919 920 static int 921 process_exit_tx(struct timechart *tchart, 922 struct evsel *evsel, 923 struct perf_sample *sample) 924 { 925 long ret = evsel__intval(evsel, sample, "ret"); 926 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX, 927 sample->time, ret); 928 } 929 930 static int 931 process_enter_rx(struct timechart *tchart, 932 struct evsel *evsel, 933 struct perf_sample *sample) 934 { 935 long fd = evsel__intval(evsel, sample, "fd"); 936 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX, 937 sample->time, fd); 938 } 939 940 static int 941 process_exit_rx(struct timechart *tchart, 942 struct evsel *evsel, 943 struct perf_sample *sample) 944 { 945 long ret = evsel__intval(evsel, sample, "ret"); 946 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX, 947 sample->time, ret); 948 } 949 950 static int 951 process_enter_poll(struct timechart *tchart, 952 struct evsel *evsel, 953 struct perf_sample *sample) 954 { 955 long fd = evsel__intval(evsel, sample, "fd"); 956 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL, 957 sample->time, fd); 958 } 959 960 static int 961 process_exit_poll(struct timechart *tchart, 962 struct evsel *evsel, 963 struct perf_sample *sample) 964 { 965 long ret = evsel__intval(evsel, sample, "ret"); 966 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL, 967 sample->time, ret); 968 } 969 970 /* 971 * Sort the pid datastructure 972 */ 973 static void sort_pids(struct timechart *tchart) 974 { 975 struct per_pid *new_list, *p, *cursor, *prev; 976 /* sort by ppid first, then by pid, lowest to highest */ 977 978 new_list = NULL; 979 980 while (tchart->all_data) { 981 p = tchart->all_data; 982 tchart->all_data = p->next; 983 p->next = NULL; 984 985 if (new_list == NULL) { 986 new_list = p; 987 p->next = NULL; 988 continue; 989 } 990 prev = NULL; 991 cursor = new_list; 992 while (cursor) { 993 if (cursor->ppid > p->ppid || 994 (cursor->ppid == p->ppid && cursor->pid > p->pid)) { 995 /* must insert before */ 996 if (prev) { 997 p->next = prev->next; 998 prev->next = p; 999 cursor = NULL; 1000 continue; 1001 } else { 1002 p->next = new_list; 1003 new_list = p; 1004 cursor = NULL; 1005 continue; 1006 } 1007 } 1008 1009 prev = cursor; 1010 cursor = cursor->next; 1011 if (!cursor) 1012 prev->next = p; 1013 } 1014 } 1015 tchart->all_data = new_list; 1016 } 1017 1018 1019 static void draw_c_p_states(struct timechart *tchart) 1020 { 1021 struct power_event *pwr; 1022 pwr = tchart->power_events; 1023 1024 /* 1025 * two pass drawing so that the P state bars are on top of the C state blocks 1026 */ 1027 while (pwr) { 1028 if (pwr->type == CSTATE) 1029 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 1030 pwr = pwr->next; 1031 } 1032 1033 pwr = tchart->power_events; 1034 while (pwr) { 1035 if (pwr->type == PSTATE) { 1036 if (!pwr->state) 1037 pwr->state = tchart->min_freq; 1038 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 1039 } 1040 pwr = pwr->next; 1041 } 1042 } 1043 1044 static void draw_wakeups(struct timechart *tchart) 1045 { 1046 struct wake_event *we; 1047 struct per_pid *p; 1048 struct per_pidcomm *c; 1049 1050 we = tchart->wake_events; 1051 while (we) { 1052 int from = 0, to = 0; 1053 char *task_from = NULL, *task_to = NULL; 1054 1055 /* locate the column of the waker and wakee */ 1056 p = tchart->all_data; 1057 while (p) { 1058 if (p->pid == we->waker || p->pid == we->wakee) { 1059 c = p->all; 1060 while (c) { 1061 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { 1062 if (p->pid == we->waker && !from) { 1063 from = c->Y; 1064 task_from = strdup(c->comm); 1065 } 1066 if (p->pid == we->wakee && !to) { 1067 to = c->Y; 1068 task_to = strdup(c->comm); 1069 } 1070 } 1071 c = c->next; 1072 } 1073 c = p->all; 1074 while (c) { 1075 if (p->pid == we->waker && !from) { 1076 from = c->Y; 1077 task_from = strdup(c->comm); 1078 } 1079 if (p->pid == we->wakee && !to) { 1080 to = c->Y; 1081 task_to = strdup(c->comm); 1082 } 1083 c = c->next; 1084 } 1085 } 1086 p = p->next; 1087 } 1088 1089 if (!task_from) { 1090 task_from = malloc(40); 1091 sprintf(task_from, "[%i]", we->waker); 1092 } 1093 if (!task_to) { 1094 task_to = malloc(40); 1095 sprintf(task_to, "[%i]", we->wakee); 1096 } 1097 1098 if (we->waker == -1) 1099 svg_interrupt(we->time, to, we->backtrace); 1100 else if (from && to && abs(from - to) == 1) 1101 svg_wakeline(we->time, from, to, we->backtrace); 1102 else 1103 svg_partial_wakeline(we->time, from, task_from, to, 1104 task_to, we->backtrace); 1105 we = we->next; 1106 1107 free(task_from); 1108 free(task_to); 1109 } 1110 } 1111 1112 static void draw_cpu_usage(struct timechart *tchart) 1113 { 1114 struct per_pid *p; 1115 struct per_pidcomm *c; 1116 struct cpu_sample *sample; 1117 p = tchart->all_data; 1118 while (p) { 1119 c = p->all; 1120 while (c) { 1121 sample = c->samples; 1122 while (sample) { 1123 if (sample->type == TYPE_RUNNING) { 1124 svg_process(sample->cpu, 1125 sample->start_time, 1126 sample->end_time, 1127 p->pid, 1128 c->comm, 1129 sample->backtrace); 1130 } 1131 1132 sample = sample->next; 1133 } 1134 c = c->next; 1135 } 1136 p = p->next; 1137 } 1138 } 1139 1140 static void draw_io_bars(struct timechart *tchart) 1141 { 1142 const char *suf; 1143 double bytes; 1144 char comm[256]; 1145 struct per_pid *p; 1146 struct per_pidcomm *c; 1147 struct io_sample *sample; 1148 int Y = 1; 1149 1150 p = tchart->all_data; 1151 while (p) { 1152 c = p->all; 1153 while (c) { 1154 if (!c->display) { 1155 c->Y = 0; 1156 c = c->next; 1157 continue; 1158 } 1159 1160 svg_box(Y, c->start_time, c->end_time, "process3"); 1161 sample = c->io_samples; 1162 for (sample = c->io_samples; sample; sample = sample->next) { 1163 double h = (double)sample->bytes / c->max_bytes; 1164 1165 if (tchart->skip_eagain && 1166 sample->err == -EAGAIN) 1167 continue; 1168 1169 if (sample->err) 1170 h = 1; 1171 1172 if (sample->type == IOTYPE_SYNC) 1173 svg_fbox(Y, 1174 sample->start_time, 1175 sample->end_time, 1176 1, 1177 sample->err ? "error" : "sync", 1178 sample->fd, 1179 sample->err, 1180 sample->merges); 1181 else if (sample->type == IOTYPE_POLL) 1182 svg_fbox(Y, 1183 sample->start_time, 1184 sample->end_time, 1185 1, 1186 sample->err ? "error" : "poll", 1187 sample->fd, 1188 sample->err, 1189 sample->merges); 1190 else if (sample->type == IOTYPE_READ) 1191 svg_ubox(Y, 1192 sample->start_time, 1193 sample->end_time, 1194 h, 1195 sample->err ? "error" : "disk", 1196 sample->fd, 1197 sample->err, 1198 sample->merges); 1199 else if (sample->type == IOTYPE_WRITE) 1200 svg_lbox(Y, 1201 sample->start_time, 1202 sample->end_time, 1203 h, 1204 sample->err ? "error" : "disk", 1205 sample->fd, 1206 sample->err, 1207 sample->merges); 1208 else if (sample->type == IOTYPE_RX) 1209 svg_ubox(Y, 1210 sample->start_time, 1211 sample->end_time, 1212 h, 1213 sample->err ? "error" : "net", 1214 sample->fd, 1215 sample->err, 1216 sample->merges); 1217 else if (sample->type == IOTYPE_TX) 1218 svg_lbox(Y, 1219 sample->start_time, 1220 sample->end_time, 1221 h, 1222 sample->err ? "error" : "net", 1223 sample->fd, 1224 sample->err, 1225 sample->merges); 1226 } 1227 1228 suf = ""; 1229 bytes = c->total_bytes; 1230 if (bytes > 1024) { 1231 bytes = bytes / 1024; 1232 suf = "K"; 1233 } 1234 if (bytes > 1024) { 1235 bytes = bytes / 1024; 1236 suf = "M"; 1237 } 1238 if (bytes > 1024) { 1239 bytes = bytes / 1024; 1240 suf = "G"; 1241 } 1242 1243 1244 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf); 1245 svg_text(Y, c->start_time, comm); 1246 1247 c->Y = Y; 1248 Y++; 1249 c = c->next; 1250 } 1251 p = p->next; 1252 } 1253 } 1254 1255 static void draw_process_bars(struct timechart *tchart) 1256 { 1257 struct per_pid *p; 1258 struct per_pidcomm *c; 1259 struct cpu_sample *sample; 1260 int Y = 0; 1261 1262 Y = 2 * tchart->numcpus + 2; 1263 1264 p = tchart->all_data; 1265 while (p) { 1266 c = p->all; 1267 while (c) { 1268 if (!c->display) { 1269 c->Y = 0; 1270 c = c->next; 1271 continue; 1272 } 1273 1274 svg_box(Y, c->start_time, c->end_time, "process"); 1275 sample = c->samples; 1276 while (sample) { 1277 if (sample->type == TYPE_RUNNING) 1278 svg_running(Y, sample->cpu, 1279 sample->start_time, 1280 sample->end_time, 1281 sample->backtrace); 1282 if (sample->type == TYPE_BLOCKED) 1283 svg_blocked(Y, sample->cpu, 1284 sample->start_time, 1285 sample->end_time, 1286 sample->backtrace); 1287 if (sample->type == TYPE_WAITING) 1288 svg_waiting(Y, sample->cpu, 1289 sample->start_time, 1290 sample->end_time, 1291 sample->backtrace); 1292 sample = sample->next; 1293 } 1294 1295 if (c->comm) { 1296 char comm[256]; 1297 if (c->total_time > 5000000000) /* 5 seconds */ 1298 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC); 1299 else 1300 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC); 1301 1302 svg_text(Y, c->start_time, comm); 1303 } 1304 c->Y = Y; 1305 Y++; 1306 c = c->next; 1307 } 1308 p = p->next; 1309 } 1310 } 1311 1312 static void add_process_filter(const char *string) 1313 { 1314 int pid = strtoull(string, NULL, 10); 1315 struct process_filter *filt = malloc(sizeof(*filt)); 1316 1317 if (!filt) 1318 return; 1319 1320 filt->name = strdup(string); 1321 filt->pid = pid; 1322 filt->next = process_filter; 1323 1324 process_filter = filt; 1325 } 1326 1327 static int passes_filter(struct per_pid *p, struct per_pidcomm *c) 1328 { 1329 struct process_filter *filt; 1330 if (!process_filter) 1331 return 1; 1332 1333 filt = process_filter; 1334 while (filt) { 1335 if (filt->pid && p->pid == filt->pid) 1336 return 1; 1337 if (strcmp(filt->name, c->comm) == 0) 1338 return 1; 1339 filt = filt->next; 1340 } 1341 return 0; 1342 } 1343 1344 static int determine_display_tasks_filtered(struct timechart *tchart) 1345 { 1346 struct per_pid *p; 1347 struct per_pidcomm *c; 1348 int count = 0; 1349 1350 p = tchart->all_data; 1351 while (p) { 1352 p->display = 0; 1353 if (p->start_time == 1) 1354 p->start_time = tchart->first_time; 1355 1356 /* no exit marker, task kept running to the end */ 1357 if (p->end_time == 0) 1358 p->end_time = tchart->last_time; 1359 1360 c = p->all; 1361 1362 while (c) { 1363 c->display = 0; 1364 1365 if (c->start_time == 1) 1366 c->start_time = tchart->first_time; 1367 1368 if (passes_filter(p, c)) { 1369 c->display = 1; 1370 p->display = 1; 1371 count++; 1372 } 1373 1374 if (c->end_time == 0) 1375 c->end_time = tchart->last_time; 1376 1377 c = c->next; 1378 } 1379 p = p->next; 1380 } 1381 return count; 1382 } 1383 1384 static int determine_display_tasks(struct timechart *tchart, u64 threshold) 1385 { 1386 struct per_pid *p; 1387 struct per_pidcomm *c; 1388 int count = 0; 1389 1390 p = tchart->all_data; 1391 while (p) { 1392 p->display = 0; 1393 if (p->start_time == 1) 1394 p->start_time = tchart->first_time; 1395 1396 /* no exit marker, task kept running to the end */ 1397 if (p->end_time == 0) 1398 p->end_time = tchart->last_time; 1399 if (p->total_time >= threshold) 1400 p->display = 1; 1401 1402 c = p->all; 1403 1404 while (c) { 1405 c->display = 0; 1406 1407 if (c->start_time == 1) 1408 c->start_time = tchart->first_time; 1409 1410 if (c->total_time >= threshold) { 1411 c->display = 1; 1412 count++; 1413 } 1414 1415 if (c->end_time == 0) 1416 c->end_time = tchart->last_time; 1417 1418 c = c->next; 1419 } 1420 p = p->next; 1421 } 1422 return count; 1423 } 1424 1425 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold) 1426 { 1427 struct per_pid *p; 1428 struct per_pidcomm *c; 1429 int count = 0; 1430 1431 p = timechart->all_data; 1432 while (p) { 1433 /* no exit marker, task kept running to the end */ 1434 if (p->end_time == 0) 1435 p->end_time = timechart->last_time; 1436 1437 c = p->all; 1438 1439 while (c) { 1440 c->display = 0; 1441 1442 if (c->total_bytes >= threshold) { 1443 c->display = 1; 1444 count++; 1445 } 1446 1447 if (c->end_time == 0) 1448 c->end_time = timechart->last_time; 1449 1450 c = c->next; 1451 } 1452 p = p->next; 1453 } 1454 return count; 1455 } 1456 1457 #define BYTES_THRESH (1 * 1024 * 1024) 1458 #define TIME_THRESH 10000000 1459 1460 static void write_svg_file(struct timechart *tchart, const char *filename) 1461 { 1462 u64 i; 1463 int count; 1464 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH; 1465 1466 if (tchart->power_only) 1467 tchart->proc_num = 0; 1468 1469 /* We'd like to show at least proc_num tasks; 1470 * be less picky if we have fewer */ 1471 do { 1472 if (process_filter) 1473 count = determine_display_tasks_filtered(tchart); 1474 else if (tchart->io_events) 1475 count = determine_display_io_tasks(tchart, thresh); 1476 else 1477 count = determine_display_tasks(tchart, thresh); 1478 thresh /= 10; 1479 } while (!process_filter && thresh && count < tchart->proc_num); 1480 1481 if (!tchart->proc_num) 1482 count = 0; 1483 1484 if (tchart->io_events) { 1485 open_svg(filename, 0, count, tchart->first_time, tchart->last_time); 1486 1487 svg_time_grid(0.5); 1488 svg_io_legenda(); 1489 1490 draw_io_bars(tchart); 1491 } else { 1492 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time); 1493 1494 svg_time_grid(0); 1495 1496 svg_legenda(); 1497 1498 for (i = 0; i < tchart->numcpus; i++) 1499 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency); 1500 1501 draw_cpu_usage(tchart); 1502 if (tchart->proc_num) 1503 draw_process_bars(tchart); 1504 if (!tchart->tasks_only) 1505 draw_c_p_states(tchart); 1506 if (tchart->proc_num) 1507 draw_wakeups(tchart); 1508 } 1509 1510 svg_close(); 1511 } 1512 1513 static int process_header(struct perf_file_section *section __maybe_unused, 1514 struct perf_header *ph, 1515 int feat, 1516 int fd __maybe_unused, 1517 void *data) 1518 { 1519 struct timechart *tchart = data; 1520 1521 switch (feat) { 1522 case HEADER_NRCPUS: 1523 tchart->numcpus = ph->env.nr_cpus_avail; 1524 break; 1525 1526 case HEADER_CPU_TOPOLOGY: 1527 if (!tchart->topology) 1528 break; 1529 1530 if (svg_build_topology_map(&ph->env)) 1531 fprintf(stderr, "problem building topology\n"); 1532 break; 1533 1534 default: 1535 break; 1536 } 1537 1538 return 0; 1539 } 1540 1541 static int __cmd_timechart(struct timechart *tchart, const char *output_name) 1542 { 1543 const struct evsel_str_handler power_tracepoints[] = { 1544 { "power:cpu_idle", process_sample_cpu_idle }, 1545 { "power:cpu_frequency", process_sample_cpu_frequency }, 1546 { "sched:sched_wakeup", process_sample_sched_wakeup }, 1547 { "sched:sched_switch", process_sample_sched_switch }, 1548 #ifdef SUPPORT_OLD_POWER_EVENTS 1549 { "power:power_start", process_sample_power_start }, 1550 { "power:power_end", process_sample_power_end }, 1551 { "power:power_frequency", process_sample_power_frequency }, 1552 #endif 1553 1554 { "syscalls:sys_enter_read", process_enter_read }, 1555 { "syscalls:sys_enter_pread64", process_enter_read }, 1556 { "syscalls:sys_enter_readv", process_enter_read }, 1557 { "syscalls:sys_enter_preadv", process_enter_read }, 1558 { "syscalls:sys_enter_write", process_enter_write }, 1559 { "syscalls:sys_enter_pwrite64", process_enter_write }, 1560 { "syscalls:sys_enter_writev", process_enter_write }, 1561 { "syscalls:sys_enter_pwritev", process_enter_write }, 1562 { "syscalls:sys_enter_sync", process_enter_sync }, 1563 { "syscalls:sys_enter_sync_file_range", process_enter_sync }, 1564 { "syscalls:sys_enter_fsync", process_enter_sync }, 1565 { "syscalls:sys_enter_msync", process_enter_sync }, 1566 { "syscalls:sys_enter_recvfrom", process_enter_rx }, 1567 { "syscalls:sys_enter_recvmmsg", process_enter_rx }, 1568 { "syscalls:sys_enter_recvmsg", process_enter_rx }, 1569 { "syscalls:sys_enter_sendto", process_enter_tx }, 1570 { "syscalls:sys_enter_sendmsg", process_enter_tx }, 1571 { "syscalls:sys_enter_sendmmsg", process_enter_tx }, 1572 { "syscalls:sys_enter_epoll_pwait", process_enter_poll }, 1573 { "syscalls:sys_enter_epoll_wait", process_enter_poll }, 1574 { "syscalls:sys_enter_poll", process_enter_poll }, 1575 { "syscalls:sys_enter_ppoll", process_enter_poll }, 1576 { "syscalls:sys_enter_pselect6", process_enter_poll }, 1577 { "syscalls:sys_enter_select", process_enter_poll }, 1578 1579 { "syscalls:sys_exit_read", process_exit_read }, 1580 { "syscalls:sys_exit_pread64", process_exit_read }, 1581 { "syscalls:sys_exit_readv", process_exit_read }, 1582 { "syscalls:sys_exit_preadv", process_exit_read }, 1583 { "syscalls:sys_exit_write", process_exit_write }, 1584 { "syscalls:sys_exit_pwrite64", process_exit_write }, 1585 { "syscalls:sys_exit_writev", process_exit_write }, 1586 { "syscalls:sys_exit_pwritev", process_exit_write }, 1587 { "syscalls:sys_exit_sync", process_exit_sync }, 1588 { "syscalls:sys_exit_sync_file_range", process_exit_sync }, 1589 { "syscalls:sys_exit_fsync", process_exit_sync }, 1590 { "syscalls:sys_exit_msync", process_exit_sync }, 1591 { "syscalls:sys_exit_recvfrom", process_exit_rx }, 1592 { "syscalls:sys_exit_recvmmsg", process_exit_rx }, 1593 { "syscalls:sys_exit_recvmsg", process_exit_rx }, 1594 { "syscalls:sys_exit_sendto", process_exit_tx }, 1595 { "syscalls:sys_exit_sendmsg", process_exit_tx }, 1596 { "syscalls:sys_exit_sendmmsg", process_exit_tx }, 1597 { "syscalls:sys_exit_epoll_pwait", process_exit_poll }, 1598 { "syscalls:sys_exit_epoll_wait", process_exit_poll }, 1599 { "syscalls:sys_exit_poll", process_exit_poll }, 1600 { "syscalls:sys_exit_ppoll", process_exit_poll }, 1601 { "syscalls:sys_exit_pselect6", process_exit_poll }, 1602 { "syscalls:sys_exit_select", process_exit_poll }, 1603 }; 1604 struct perf_data data = { 1605 .path = input_name, 1606 .mode = PERF_DATA_MODE_READ, 1607 .force = tchart->force, 1608 }; 1609 1610 struct perf_session *session = perf_session__new(&data, &tchart->tool); 1611 int ret = -EINVAL; 1612 1613 if (IS_ERR(session)) 1614 return PTR_ERR(session); 1615 1616 symbol__init(&session->header.env); 1617 1618 (void)perf_header__process_sections(&session->header, 1619 perf_data__fd(session->data), 1620 tchart, 1621 process_header); 1622 1623 if (!perf_session__has_traces(session, "timechart record")) 1624 goto out_delete; 1625 1626 if (perf_session__set_tracepoints_handlers(session, 1627 power_tracepoints)) { 1628 pr_err("Initializing session tracepoint handlers failed\n"); 1629 goto out_delete; 1630 } 1631 1632 ret = perf_session__process_events(session); 1633 if (ret) 1634 goto out_delete; 1635 1636 end_sample_processing(tchart); 1637 1638 sort_pids(tchart); 1639 1640 write_svg_file(tchart, output_name); 1641 1642 pr_info("Written %2.1f seconds of trace to %s.\n", 1643 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name); 1644 out_delete: 1645 perf_session__delete(session); 1646 return ret; 1647 } 1648 1649 static int timechart__io_record(int argc, const char **argv) 1650 { 1651 unsigned int rec_argc, i; 1652 const char **rec_argv; 1653 const char **p; 1654 char *filter = NULL; 1655 1656 const char * const common_args[] = { 1657 "record", "-a", "-R", "-c", "1", 1658 }; 1659 unsigned int common_args_nr = ARRAY_SIZE(common_args); 1660 1661 const char * const disk_events[] = { 1662 "syscalls:sys_enter_read", 1663 "syscalls:sys_enter_pread64", 1664 "syscalls:sys_enter_readv", 1665 "syscalls:sys_enter_preadv", 1666 "syscalls:sys_enter_write", 1667 "syscalls:sys_enter_pwrite64", 1668 "syscalls:sys_enter_writev", 1669 "syscalls:sys_enter_pwritev", 1670 "syscalls:sys_enter_sync", 1671 "syscalls:sys_enter_sync_file_range", 1672 "syscalls:sys_enter_fsync", 1673 "syscalls:sys_enter_msync", 1674 1675 "syscalls:sys_exit_read", 1676 "syscalls:sys_exit_pread64", 1677 "syscalls:sys_exit_readv", 1678 "syscalls:sys_exit_preadv", 1679 "syscalls:sys_exit_write", 1680 "syscalls:sys_exit_pwrite64", 1681 "syscalls:sys_exit_writev", 1682 "syscalls:sys_exit_pwritev", 1683 "syscalls:sys_exit_sync", 1684 "syscalls:sys_exit_sync_file_range", 1685 "syscalls:sys_exit_fsync", 1686 "syscalls:sys_exit_msync", 1687 }; 1688 unsigned int disk_events_nr = ARRAY_SIZE(disk_events); 1689 1690 const char * const net_events[] = { 1691 "syscalls:sys_enter_recvfrom", 1692 "syscalls:sys_enter_recvmmsg", 1693 "syscalls:sys_enter_recvmsg", 1694 "syscalls:sys_enter_sendto", 1695 "syscalls:sys_enter_sendmsg", 1696 "syscalls:sys_enter_sendmmsg", 1697 1698 "syscalls:sys_exit_recvfrom", 1699 "syscalls:sys_exit_recvmmsg", 1700 "syscalls:sys_exit_recvmsg", 1701 "syscalls:sys_exit_sendto", 1702 "syscalls:sys_exit_sendmsg", 1703 "syscalls:sys_exit_sendmmsg", 1704 }; 1705 unsigned int net_events_nr = ARRAY_SIZE(net_events); 1706 1707 const char * const poll_events[] = { 1708 "syscalls:sys_enter_epoll_pwait", 1709 "syscalls:sys_enter_epoll_wait", 1710 "syscalls:sys_enter_poll", 1711 "syscalls:sys_enter_ppoll", 1712 "syscalls:sys_enter_pselect6", 1713 "syscalls:sys_enter_select", 1714 1715 "syscalls:sys_exit_epoll_pwait", 1716 "syscalls:sys_exit_epoll_wait", 1717 "syscalls:sys_exit_poll", 1718 "syscalls:sys_exit_ppoll", 1719 "syscalls:sys_exit_pselect6", 1720 "syscalls:sys_exit_select", 1721 }; 1722 unsigned int poll_events_nr = ARRAY_SIZE(poll_events); 1723 1724 rec_argc = common_args_nr + 1725 disk_events_nr * 4 + 1726 net_events_nr * 4 + 1727 poll_events_nr * 4 + 1728 argc; 1729 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1730 1731 if (rec_argv == NULL) 1732 return -ENOMEM; 1733 1734 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) { 1735 free(rec_argv); 1736 return -ENOMEM; 1737 } 1738 1739 p = rec_argv; 1740 for (i = 0; i < common_args_nr; i++) 1741 *p++ = strdup(common_args[i]); 1742 1743 for (i = 0; i < disk_events_nr; i++) { 1744 if (!is_valid_tracepoint(disk_events[i])) { 1745 rec_argc -= 4; 1746 continue; 1747 } 1748 1749 *p++ = "-e"; 1750 *p++ = strdup(disk_events[i]); 1751 *p++ = "--filter"; 1752 *p++ = filter; 1753 } 1754 for (i = 0; i < net_events_nr; i++) { 1755 if (!is_valid_tracepoint(net_events[i])) { 1756 rec_argc -= 4; 1757 continue; 1758 } 1759 1760 *p++ = "-e"; 1761 *p++ = strdup(net_events[i]); 1762 *p++ = "--filter"; 1763 *p++ = filter; 1764 } 1765 for (i = 0; i < poll_events_nr; i++) { 1766 if (!is_valid_tracepoint(poll_events[i])) { 1767 rec_argc -= 4; 1768 continue; 1769 } 1770 1771 *p++ = "-e"; 1772 *p++ = strdup(poll_events[i]); 1773 *p++ = "--filter"; 1774 *p++ = filter; 1775 } 1776 1777 for (i = 0; i < (unsigned int)argc; i++) 1778 *p++ = argv[i]; 1779 1780 return cmd_record(rec_argc, rec_argv); 1781 } 1782 1783 1784 static int timechart__record(struct timechart *tchart, int argc, const char **argv) 1785 { 1786 unsigned int rec_argc, i, j; 1787 const char **rec_argv; 1788 const char **p; 1789 unsigned int record_elems; 1790 1791 const char * const common_args[] = { 1792 "record", "-a", "-R", "-c", "1", 1793 }; 1794 unsigned int common_args_nr = ARRAY_SIZE(common_args); 1795 1796 const char * const backtrace_args[] = { 1797 "-g", 1798 }; 1799 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args); 1800 1801 const char * const power_args[] = { 1802 "-e", "power:cpu_frequency", 1803 "-e", "power:cpu_idle", 1804 }; 1805 unsigned int power_args_nr = ARRAY_SIZE(power_args); 1806 1807 const char * const old_power_args[] = { 1808 #ifdef SUPPORT_OLD_POWER_EVENTS 1809 "-e", "power:power_start", 1810 "-e", "power:power_end", 1811 "-e", "power:power_frequency", 1812 #endif 1813 }; 1814 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args); 1815 1816 const char * const tasks_args[] = { 1817 "-e", "sched:sched_wakeup", 1818 "-e", "sched:sched_switch", 1819 }; 1820 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args); 1821 1822 #ifdef SUPPORT_OLD_POWER_EVENTS 1823 if (!is_valid_tracepoint("power:cpu_idle") && 1824 is_valid_tracepoint("power:power_start")) { 1825 use_old_power_events = 1; 1826 power_args_nr = 0; 1827 } else { 1828 old_power_args_nr = 0; 1829 } 1830 #endif 1831 1832 if (tchart->power_only) 1833 tasks_args_nr = 0; 1834 1835 if (tchart->tasks_only) { 1836 power_args_nr = 0; 1837 old_power_args_nr = 0; 1838 } 1839 1840 if (!tchart->with_backtrace) 1841 backtrace_args_no = 0; 1842 1843 record_elems = common_args_nr + tasks_args_nr + 1844 power_args_nr + old_power_args_nr + backtrace_args_no; 1845 1846 rec_argc = record_elems + argc; 1847 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1848 1849 if (rec_argv == NULL) 1850 return -ENOMEM; 1851 1852 p = rec_argv; 1853 for (i = 0; i < common_args_nr; i++) 1854 *p++ = strdup(common_args[i]); 1855 1856 for (i = 0; i < backtrace_args_no; i++) 1857 *p++ = strdup(backtrace_args[i]); 1858 1859 for (i = 0; i < tasks_args_nr; i++) 1860 *p++ = strdup(tasks_args[i]); 1861 1862 for (i = 0; i < power_args_nr; i++) 1863 *p++ = strdup(power_args[i]); 1864 1865 for (i = 0; i < old_power_args_nr; i++) 1866 *p++ = strdup(old_power_args[i]); 1867 1868 for (j = 0; j < (unsigned int)argc; j++) 1869 *p++ = argv[j]; 1870 1871 return cmd_record(rec_argc, rec_argv); 1872 } 1873 1874 static int 1875 parse_process(const struct option *opt __maybe_unused, const char *arg, 1876 int __maybe_unused unset) 1877 { 1878 if (arg) 1879 add_process_filter(arg); 1880 return 0; 1881 } 1882 1883 static int 1884 parse_highlight(const struct option *opt __maybe_unused, const char *arg, 1885 int __maybe_unused unset) 1886 { 1887 unsigned long duration = strtoul(arg, NULL, 0); 1888 1889 if (svg_highlight || svg_highlight_name) 1890 return -1; 1891 1892 if (duration) 1893 svg_highlight = duration; 1894 else 1895 svg_highlight_name = strdup(arg); 1896 1897 return 0; 1898 } 1899 1900 static int 1901 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset) 1902 { 1903 char unit = 'n'; 1904 u64 *value = opt->value; 1905 1906 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) { 1907 switch (unit) { 1908 case 'm': 1909 *value *= NSEC_PER_MSEC; 1910 break; 1911 case 'u': 1912 *value *= NSEC_PER_USEC; 1913 break; 1914 case 'n': 1915 break; 1916 default: 1917 return -1; 1918 } 1919 } 1920 1921 return 0; 1922 } 1923 1924 int cmd_timechart(int argc, const char **argv) 1925 { 1926 struct timechart tchart = { 1927 .tool = { 1928 .comm = process_comm_event, 1929 .fork = process_fork_event, 1930 .exit = process_exit_event, 1931 .sample = process_sample_event, 1932 .ordered_events = true, 1933 }, 1934 .proc_num = 15, 1935 .min_time = NSEC_PER_MSEC, 1936 .merge_dist = 1000, 1937 }; 1938 const char *output_name = "output.svg"; 1939 const struct option timechart_common_options[] = { 1940 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"), 1941 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"), 1942 OPT_END() 1943 }; 1944 const struct option timechart_options[] = { 1945 OPT_STRING('i', "input", &input_name, "file", "input file name"), 1946 OPT_STRING('o', "output", &output_name, "file", "output file name"), 1947 OPT_INTEGER('w', "width", &svg_page_width, "page width"), 1948 OPT_CALLBACK(0, "highlight", NULL, "duration or task name", 1949 "highlight tasks. Pass duration in ns or process name.", 1950 parse_highlight), 1951 OPT_CALLBACK('p', "process", NULL, "process", 1952 "process selector. Pass a pid or process name.", 1953 parse_process), 1954 OPT_CALLBACK(0, "symfs", NULL, "directory", 1955 "Look for files with symbols relative to this directory", 1956 symbol__config_symfs), 1957 OPT_INTEGER('n', "proc-num", &tchart.proc_num, 1958 "min. number of tasks to print"), 1959 OPT_BOOLEAN('t', "topology", &tchart.topology, 1960 "sort CPUs according to topology"), 1961 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain, 1962 "skip EAGAIN errors"), 1963 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time", 1964 "all IO faster than min-time will visually appear longer", 1965 parse_time), 1966 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time", 1967 "merge events that are merge-dist us apart", 1968 parse_time), 1969 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"), 1970 OPT_PARENT(timechart_common_options), 1971 }; 1972 const char * const timechart_subcommands[] = { "record", NULL }; 1973 const char *timechart_usage[] = { 1974 "perf timechart [<options>] {record}", 1975 NULL 1976 }; 1977 const struct option timechart_record_options[] = { 1978 OPT_BOOLEAN('I', "io-only", &tchart.io_only, 1979 "record only IO data"), 1980 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"), 1981 OPT_PARENT(timechart_common_options), 1982 }; 1983 const char * const timechart_record_usage[] = { 1984 "perf timechart record [<options>]", 1985 NULL 1986 }; 1987 int ret; 1988 1989 cpus_cstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_cstate_start_times)); 1990 if (!cpus_cstate_start_times) 1991 return -ENOMEM; 1992 cpus_cstate_state = calloc(MAX_CPUS, sizeof(*cpus_cstate_state)); 1993 if (!cpus_cstate_state) { 1994 ret = -ENOMEM; 1995 goto out; 1996 } 1997 cpus_pstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_pstate_start_times)); 1998 if (!cpus_pstate_start_times) { 1999 ret = -ENOMEM; 2000 goto out; 2001 } 2002 cpus_pstate_state = calloc(MAX_CPUS, sizeof(*cpus_pstate_state)); 2003 if (!cpus_pstate_state) { 2004 ret = -ENOMEM; 2005 goto out; 2006 } 2007 2008 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands, 2009 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION); 2010 2011 if (tchart.power_only && tchart.tasks_only) { 2012 pr_err("-P and -T options cannot be used at the same time.\n"); 2013 ret = -1; 2014 goto out; 2015 } 2016 2017 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 2018 argc = parse_options(argc, argv, timechart_record_options, 2019 timechart_record_usage, 2020 PARSE_OPT_STOP_AT_NON_OPTION); 2021 2022 if (tchart.power_only && tchart.tasks_only) { 2023 pr_err("-P and -T options cannot be used at the same time.\n"); 2024 ret = -1; 2025 goto out; 2026 } 2027 2028 if (tchart.io_only) 2029 ret = timechart__io_record(argc, argv); 2030 else 2031 ret = timechart__record(&tchart, argc, argv); 2032 goto out; 2033 } else if (argc) 2034 usage_with_options(timechart_usage, timechart_options); 2035 2036 setup_pager(); 2037 2038 ret = __cmd_timechart(&tchart, output_name); 2039 out: 2040 zfree(&cpus_cstate_start_times); 2041 zfree(&cpus_cstate_state); 2042 zfree(&cpus_pstate_start_times); 2043 zfree(&cpus_pstate_state); 2044 return ret; 2045 } 2046
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.