~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/scripts/python/event_analyzing_sample.py

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 # event_analyzing_sample.py: general event handler in python
  2 # SPDX-License-Identifier: GPL-2.0
  3 #
  4 # Current perf report is already very powerful with the annotation integrated,
  5 # and this script is not trying to be as powerful as perf report, but
  6 # providing end user/developer a flexible way to analyze the events other
  7 # than trace points.
  8 #
  9 # The 2 database related functions in this script just show how to gather
 10 # the basic information, and users can modify and write their own functions
 11 # according to their specific requirement.
 12 #
 13 # The first function "show_general_events" just does a basic grouping for all
 14 # generic events with the help of sqlite, and the 2nd one "show_pebs_ll" is
 15 # for a x86 HW PMU event: PEBS with load latency data.
 16 #
 17 
 18 from __future__ import print_function
 19 
 20 import os
 21 import sys
 22 import math
 23 import struct
 24 import sqlite3
 25 
 26 sys.path.append(os.environ['PERF_EXEC_PATH'] + \
 27         '/scripts/python/Perf-Trace-Util/lib/Perf/Trace')
 28 
 29 from perf_trace_context import *
 30 from EventClass import *
 31 
 32 #
 33 # If the perf.data has a big number of samples, then the insert operation
 34 # will be very time consuming (about 10+ minutes for 10000 samples) if the
 35 # .db database is on disk. Move the .db file to RAM based FS to speedup
 36 # the handling, which will cut the time down to several seconds.
 37 #
 38 con = sqlite3.connect("/dev/shm/perf.db")
 39 con.isolation_level = None
 40 
 41 def trace_begin():
 42         print("In trace_begin:\n")
 43 
 44         #
 45         # Will create several tables at the start, pebs_ll is for PEBS data with
 46         # load latency info, while gen_events is for general event.
 47         #
 48         con.execute("""
 49                 create table if not exists gen_events (
 50                         name text,
 51                         symbol text,
 52                         comm text,
 53                         dso text
 54                 );""")
 55         con.execute("""
 56                 create table if not exists pebs_ll (
 57                         name text,
 58                         symbol text,
 59                         comm text,
 60                         dso text,
 61                         flags integer,
 62                         ip integer,
 63                         status integer,
 64                         dse integer,
 65                         dla integer,
 66                         lat integer
 67                 );""")
 68 
 69 #
 70 # Create and insert event object to a database so that user could
 71 # do more analysis with simple database commands.
 72 #
 73 def process_event(param_dict):
 74         event_attr = param_dict["attr"]
 75         sample     = param_dict["sample"]
 76         raw_buf    = param_dict["raw_buf"]
 77         comm       = param_dict["comm"]
 78         name       = param_dict["ev_name"]
 79 
 80         # Symbol and dso info are not always resolved
 81         if ("dso" in param_dict):
 82                 dso = param_dict["dso"]
 83         else:
 84                 dso = "Unknown_dso"
 85 
 86         if ("symbol" in param_dict):
 87                 symbol = param_dict["symbol"]
 88         else:
 89                 symbol = "Unknown_symbol"
 90 
 91         # Create the event object and insert it to the right table in database
 92         event = create_event(name, comm, dso, symbol, raw_buf)
 93         insert_db(event)
 94 
 95 def insert_db(event):
 96         if event.ev_type == EVTYPE_GENERIC:
 97                 con.execute("insert into gen_events values(?, ?, ?, ?)",
 98                                 (event.name, event.symbol, event.comm, event.dso))
 99         elif event.ev_type == EVTYPE_PEBS_LL:
100                 event.ip &= 0x7fffffffffffffff
101                 event.dla &= 0x7fffffffffffffff
102                 con.execute("insert into pebs_ll values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
103                         (event.name, event.symbol, event.comm, event.dso, event.flags,
104                                 event.ip, event.status, event.dse, event.dla, event.lat))
105 
106 def trace_end():
107         print("In trace_end:\n")
108         # We show the basic info for the 2 type of event classes
109         show_general_events()
110         show_pebs_ll()
111         con.close()
112 
113 #
114 # As the event number may be very big, so we can't use linear way
115 # to show the histogram in real number, but use a log2 algorithm.
116 #
117 
118 def num2sym(num):
119         # Each number will have at least one '#'
120         snum = '#' * (int)(math.log(num, 2) + 1)
121         return snum
122 
123 def show_general_events():
124 
125         # Check the total record number in the table
126         count = con.execute("select count(*) from gen_events")
127         for t in count:
128                 print("There is %d records in gen_events table" % t[0])
129                 if t[0] == 0:
130                         return
131 
132         print("Statistics about the general events grouped by thread/symbol/dso: \n")
133 
134          # Group by thread
135         commq = con.execute("select comm, count(comm) from gen_events group by comm order by -count(comm)")
136         print("\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42))
137         for row in commq:
138              print("%16s %8d     %s" % (row[0], row[1], num2sym(row[1])))
139 
140         # Group by symbol
141         print("\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58))
142         symbolq = con.execute("select symbol, count(symbol) from gen_events group by symbol order by -count(symbol)")
143         for row in symbolq:
144              print("%32s %8d     %s" % (row[0], row[1], num2sym(row[1])))
145 
146         # Group by dso
147         print("\n%40s %8s %16s\n%s" % ("dso", "number", "histogram", "="*74))
148         dsoq = con.execute("select dso, count(dso) from gen_events group by dso order by -count(dso)")
149         for row in dsoq:
150              print("%40s %8d     %s" % (row[0], row[1], num2sym(row[1])))
151 
152 #
153 # This function just shows the basic info, and we could do more with the
154 # data in the tables, like checking the function parameters when some
155 # big latency events happen.
156 #
157 def show_pebs_ll():
158 
159         count = con.execute("select count(*) from pebs_ll")
160         for t in count:
161                 print("There is %d records in pebs_ll table" % t[0])
162                 if t[0] == 0:
163                         return
164 
165         print("Statistics about the PEBS Load Latency events grouped by thread/symbol/dse/latency: \n")
166 
167         # Group by thread
168         commq = con.execute("select comm, count(comm) from pebs_ll group by comm order by -count(comm)")
169         print("\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42))
170         for row in commq:
171              print("%16s %8d     %s" % (row[0], row[1], num2sym(row[1])))
172 
173         # Group by symbol
174         print("\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58))
175         symbolq = con.execute("select symbol, count(symbol) from pebs_ll group by symbol order by -count(symbol)")
176         for row in symbolq:
177              print("%32s %8d     %s" % (row[0], row[1], num2sym(row[1])))
178 
179         # Group by dse
180         dseq = con.execute("select dse, count(dse) from pebs_ll group by dse order by -count(dse)")
181         print("\n%32s %8s %16s\n%s" % ("dse", "number", "histogram", "="*58))
182         for row in dseq:
183              print("%32s %8d     %s" % (row[0], row[1], num2sym(row[1])))
184 
185         # Group by latency
186         latq = con.execute("select lat, count(lat) from pebs_ll group by lat order by lat")
187         print("\n%32s %8s %16s\n%s" % ("latency", "number", "histogram", "="*58))
188         for row in latq:
189              print("%32s %8d     %s" % (row[0], row[1], num2sym(row[1])))
190 
191 def trace_unhandled(event_name, context, event_fields_dict):
192         print (' '.join(['%s=%s'%(k,str(v))for k,v in sorted(event_fields_dict.items())]))

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php