~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/tests/code-reading.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 #include <errno.h>
  3 #include <linux/kernel.h>
  4 #include <linux/types.h>
  5 #include <inttypes.h>
  6 #include <stdlib.h>
  7 #include <unistd.h>
  8 #include <stdio.h>
  9 #include <string.h>
 10 #include <sys/param.h>
 11 #include <perf/cpumap.h>
 12 #include <perf/evlist.h>
 13 #include <perf/mmap.h>
 14 
 15 #include "debug.h"
 16 #include "dso.h"
 17 #include "env.h"
 18 #include "parse-events.h"
 19 #include "evlist.h"
 20 #include "evsel.h"
 21 #include "thread_map.h"
 22 #include "machine.h"
 23 #include "map.h"
 24 #include "symbol.h"
 25 #include "event.h"
 26 #include "record.h"
 27 #include "util/mmap.h"
 28 #include "util/string2.h"
 29 #include "util/synthetic-events.h"
 30 #include "util/util.h"
 31 #include "thread.h"
 32 
 33 #include "tests.h"
 34 
 35 #include <linux/ctype.h>
 36 
 37 #define BUFSZ   1024
 38 #define READLEN 128
 39 
 40 struct state {
 41         u64 done[1024];
 42         size_t done_cnt;
 43 };
 44 
 45 static size_t read_objdump_chunk(const char **line, unsigned char **buf,
 46                                  size_t *buf_len)
 47 {
 48         size_t bytes_read = 0;
 49         unsigned char *chunk_start = *buf;
 50 
 51         /* Read bytes */
 52         while (*buf_len > 0) {
 53                 char c1, c2;
 54 
 55                 /* Get 2 hex digits */
 56                 c1 = *(*line)++;
 57                 if (!isxdigit(c1))
 58                         break;
 59                 c2 = *(*line)++;
 60                 if (!isxdigit(c2))
 61                         break;
 62 
 63                 /* Store byte and advance buf */
 64                 **buf = (hex(c1) << 4) | hex(c2);
 65                 (*buf)++;
 66                 (*buf_len)--;
 67                 bytes_read++;
 68 
 69                 /* End of chunk? */
 70                 if (isspace(**line))
 71                         break;
 72         }
 73 
 74         /*
 75          * objdump will display raw insn as LE if code endian
 76          * is LE and bytes_per_chunk > 1. In that case reverse
 77          * the chunk we just read.
 78          *
 79          * see disassemble_bytes() at binutils/objdump.c for details
 80          * how objdump chooses display endian)
 81          */
 82         if (bytes_read > 1 && !host_is_bigendian()) {
 83                 unsigned char *chunk_end = chunk_start + bytes_read - 1;
 84                 unsigned char tmp;
 85 
 86                 while (chunk_start < chunk_end) {
 87                         tmp = *chunk_start;
 88                         *chunk_start = *chunk_end;
 89                         *chunk_end = tmp;
 90                         chunk_start++;
 91                         chunk_end--;
 92                 }
 93         }
 94 
 95         return bytes_read;
 96 }
 97 
 98 static size_t read_objdump_line(const char *line, unsigned char *buf,
 99                                 size_t buf_len)
100 {
101         const char *p;
102         size_t ret, bytes_read = 0;
103 
104         /* Skip to a colon */
105         p = strchr(line, ':');
106         if (!p)
107                 return 0;
108         p++;
109 
110         /* Skip initial spaces */
111         while (*p) {
112                 if (!isspace(*p))
113                         break;
114                 p++;
115         }
116 
117         do {
118                 ret = read_objdump_chunk(&p, &buf, &buf_len);
119                 bytes_read += ret;
120                 p++;
121         } while (ret > 0);
122 
123         /* return number of successfully read bytes */
124         return bytes_read;
125 }
126 
127 static int read_objdump_output(FILE *f, void *buf, size_t *len, u64 start_addr)
128 {
129         char *line = NULL;
130         size_t line_len, off_last = 0;
131         ssize_t ret;
132         int err = 0;
133         u64 addr, last_addr = start_addr;
134 
135         while (off_last < *len) {
136                 size_t off, read_bytes, written_bytes;
137                 unsigned char tmp[BUFSZ];
138 
139                 ret = getline(&line, &line_len, f);
140                 if (feof(f))
141                         break;
142                 if (ret < 0) {
143                         pr_debug("getline failed\n");
144                         err = -1;
145                         break;
146                 }
147 
148                 /* read objdump data into temporary buffer */
149                 read_bytes = read_objdump_line(line, tmp, sizeof(tmp));
150                 if (!read_bytes)
151                         continue;
152 
153                 if (sscanf(line, "%"PRIx64, &addr) != 1)
154                         continue;
155                 if (addr < last_addr) {
156                         pr_debug("addr going backwards, read beyond section?\n");
157                         break;
158                 }
159                 last_addr = addr;
160 
161                 /* copy it from temporary buffer to 'buf' according
162                  * to address on current objdump line */
163                 off = addr - start_addr;
164                 if (off >= *len)
165                         break;
166                 written_bytes = MIN(read_bytes, *len - off);
167                 memcpy(buf + off, tmp, written_bytes);
168                 off_last = off + written_bytes;
169         }
170 
171         /* len returns number of bytes that could not be read */
172         *len -= off_last;
173 
174         free(line);
175 
176         return err;
177 }
178 
179 static int read_via_objdump(const char *filename, u64 addr, void *buf,
180                             size_t len)
181 {
182         char cmd[PATH_MAX * 2];
183         const char *fmt;
184         FILE *f;
185         int ret;
186 
187         fmt = "%s -z -d --start-address=0x%"PRIx64" --stop-address=0x%"PRIx64" %s";
188         ret = snprintf(cmd, sizeof(cmd), fmt, test_objdump_path, addr, addr + len,
189                        filename);
190         if (ret <= 0 || (size_t)ret >= sizeof(cmd))
191                 return -1;
192 
193         pr_debug("Objdump command is: %s\n", cmd);
194 
195         /* Ignore objdump errors */
196         strcat(cmd, " 2>/dev/null");
197 
198         f = popen(cmd, "r");
199         if (!f) {
200                 pr_debug("popen failed\n");
201                 return -1;
202         }
203 
204         ret = read_objdump_output(f, buf, &len, addr);
205         if (len) {
206                 pr_debug("objdump read too few bytes: %zd\n", len);
207                 if (!ret)
208                         ret = len;
209         }
210 
211         pclose(f);
212 
213         return ret;
214 }
215 
216 static void dump_buf(unsigned char *buf, size_t len)
217 {
218         size_t i;
219 
220         for (i = 0; i < len; i++) {
221                 pr_debug("0x%02x ", buf[i]);
222                 if (i % 16 == 15)
223                         pr_debug("\n");
224         }
225         pr_debug("\n");
226 }
227 
228 static int read_object_code(u64 addr, size_t len, u8 cpumode,
229                             struct thread *thread, struct state *state)
230 {
231         struct addr_location al;
232         unsigned char buf1[BUFSZ] = {0};
233         unsigned char buf2[BUFSZ] = {0};
234         size_t ret_len;
235         u64 objdump_addr;
236         const char *objdump_name;
237         char decomp_name[KMOD_DECOMP_LEN];
238         bool decomp = false;
239         int ret, err = 0;
240         struct dso *dso;
241 
242         pr_debug("Reading object code for memory address: %#"PRIx64"\n", addr);
243 
244         addr_location__init(&al);
245         if (!thread__find_map(thread, cpumode, addr, &al) || !map__dso(al.map)) {
246                 if (cpumode == PERF_RECORD_MISC_HYPERVISOR) {
247                         pr_debug("Hypervisor address can not be resolved - skipping\n");
248                         goto out;
249                 }
250 
251                 pr_debug("thread__find_map failed\n");
252                 err = -1;
253                 goto out;
254         }
255         dso = map__dso(al.map);
256         pr_debug("File is: %s\n", dso__long_name(dso));
257 
258         if (dso__symtab_type(dso) == DSO_BINARY_TYPE__KALLSYMS && !dso__is_kcore(dso)) {
259                 pr_debug("Unexpected kernel address - skipping\n");
260                 goto out;
261         }
262 
263         pr_debug("On file address is: %#"PRIx64"\n", al.addr);
264 
265         if (len > BUFSZ)
266                 len = BUFSZ;
267 
268         /* Do not go off the map */
269         if (addr + len > map__end(al.map))
270                 len = map__end(al.map) - addr;
271 
272         /*
273          * Some architectures (ex: powerpc) have stubs (trampolines) in kernel
274          * modules to manage long jumps. Check if the ip offset falls in stubs
275          * sections for kernel modules. And skip module address after text end
276          */
277         if (dso__is_kmod(dso) && al.addr > dso__text_end(dso)) {
278                 pr_debug("skipping the module address %#"PRIx64" after text end\n", al.addr);
279                 goto out;
280         }
281 
282         /* Read the object code using perf */
283         ret_len = dso__data_read_offset(dso, maps__machine(thread__maps(thread)),
284                                         al.addr, buf1, len);
285         if (ret_len != len) {
286                 pr_debug("dso__data_read_offset failed\n");
287                 err = -1;
288                 goto out;
289         }
290 
291         /*
292          * Converting addresses for use by objdump requires more information.
293          * map__load() does that.  See map__rip_2objdump() for details.
294          */
295         if (map__load(al.map)) {
296                 err = -1;
297                 goto out;
298         }
299 
300         /* objdump struggles with kcore - try each map only once */
301         if (dso__is_kcore(dso)) {
302                 size_t d;
303 
304                 for (d = 0; d < state->done_cnt; d++) {
305                         if (state->done[d] == map__start(al.map)) {
306                                 pr_debug("kcore map tested already");
307                                 pr_debug(" - skipping\n");
308                                 goto out;
309                         }
310                 }
311                 if (state->done_cnt >= ARRAY_SIZE(state->done)) {
312                         pr_debug("Too many kcore maps - skipping\n");
313                         goto out;
314                 }
315                 state->done[state->done_cnt++] = map__start(al.map);
316         }
317 
318         objdump_name = dso__long_name(dso);
319         if (dso__needs_decompress(dso)) {
320                 if (dso__decompress_kmodule_path(dso, objdump_name,
321                                                  decomp_name,
322                                                  sizeof(decomp_name)) < 0) {
323                         pr_debug("decompression failed\n");
324                         err = -1;
325                         goto out;
326                 }
327 
328                 decomp = true;
329                 objdump_name = decomp_name;
330         }
331 
332         /* Read the object code using objdump */
333         objdump_addr = map__rip_2objdump(al.map, al.addr);
334         ret = read_via_objdump(objdump_name, objdump_addr, buf2, len);
335 
336         if (decomp)
337                 unlink(objdump_name);
338 
339         if (ret > 0) {
340                 /*
341                  * The kernel maps are inaccurate - assume objdump is right in
342                  * that case.
343                  */
344                 if (cpumode == PERF_RECORD_MISC_KERNEL ||
345                     cpumode == PERF_RECORD_MISC_GUEST_KERNEL) {
346                         len -= ret;
347                         if (len) {
348                                 pr_debug("Reducing len to %zu\n", len);
349                         } else if (dso__is_kcore(dso)) {
350                                 /*
351                                  * objdump cannot handle very large segments
352                                  * that may be found in kcore.
353                                  */
354                                 pr_debug("objdump failed for kcore");
355                                 pr_debug(" - skipping\n");
356                         } else {
357                                 err = -1;
358                         }
359                         goto out;
360                 }
361         }
362         if (ret < 0) {
363                 pr_debug("read_via_objdump failed\n");
364                 err = -1;
365                 goto out;
366         }
367 
368         /* The results should be identical */
369         if (memcmp(buf1, buf2, len)) {
370                 pr_debug("Bytes read differ from those read by objdump\n");
371                 pr_debug("buf1 (dso):\n");
372                 dump_buf(buf1, len);
373                 pr_debug("buf2 (objdump):\n");
374                 dump_buf(buf2, len);
375                 err = -1;
376                 goto out;
377         }
378         pr_debug("Bytes read match those read by objdump\n");
379 out:
380         addr_location__exit(&al);
381         return err;
382 }
383 
384 static int process_sample_event(struct machine *machine,
385                                 struct evlist *evlist,
386                                 union perf_event *event, struct state *state)
387 {
388         struct perf_sample sample;
389         struct thread *thread;
390         int ret;
391 
392         if (evlist__parse_sample(evlist, event, &sample)) {
393                 pr_debug("evlist__parse_sample failed\n");
394                 return -1;
395         }
396 
397         thread = machine__findnew_thread(machine, sample.pid, sample.tid);
398         if (!thread) {
399                 pr_debug("machine__findnew_thread failed\n");
400                 return -1;
401         }
402 
403         ret = read_object_code(sample.ip, READLEN, sample.cpumode, thread, state);
404         thread__put(thread);
405         return ret;
406 }
407 
408 static int process_event(struct machine *machine, struct evlist *evlist,
409                          union perf_event *event, struct state *state)
410 {
411         if (event->header.type == PERF_RECORD_SAMPLE)
412                 return process_sample_event(machine, evlist, event, state);
413 
414         if (event->header.type == PERF_RECORD_THROTTLE ||
415             event->header.type == PERF_RECORD_UNTHROTTLE)
416                 return 0;
417 
418         if (event->header.type < PERF_RECORD_MAX) {
419                 int ret;
420 
421                 ret = machine__process_event(machine, event, NULL);
422                 if (ret < 0)
423                         pr_debug("machine__process_event failed, event type %u\n",
424                                  event->header.type);
425                 return ret;
426         }
427 
428         return 0;
429 }
430 
431 static int process_events(struct machine *machine, struct evlist *evlist,
432                           struct state *state)
433 {
434         union perf_event *event;
435         struct mmap *md;
436         int i, ret;
437 
438         for (i = 0; i < evlist->core.nr_mmaps; i++) {
439                 md = &evlist->mmap[i];
440                 if (perf_mmap__read_init(&md->core) < 0)
441                         continue;
442 
443                 while ((event = perf_mmap__read_event(&md->core)) != NULL) {
444                         ret = process_event(machine, evlist, event, state);
445                         perf_mmap__consume(&md->core);
446                         if (ret < 0)
447                                 return ret;
448                 }
449                 perf_mmap__read_done(&md->core);
450         }
451         return 0;
452 }
453 
454 static int comp(const void *a, const void *b)
455 {
456         return *(int *)a - *(int *)b;
457 }
458 
459 static void do_sort_something(void)
460 {
461         int buf[40960], i;
462 
463         for (i = 0; i < (int)ARRAY_SIZE(buf); i++)
464                 buf[i] = ARRAY_SIZE(buf) - i - 1;
465 
466         qsort(buf, ARRAY_SIZE(buf), sizeof(int), comp);
467 
468         for (i = 0; i < (int)ARRAY_SIZE(buf); i++) {
469                 if (buf[i] != i) {
470                         pr_debug("qsort failed\n");
471                         break;
472                 }
473         }
474 }
475 
476 static void sort_something(void)
477 {
478         int i;
479 
480         for (i = 0; i < 10; i++)
481                 do_sort_something();
482 }
483 
484 static void syscall_something(void)
485 {
486         int pipefd[2];
487         int i;
488 
489         for (i = 0; i < 1000; i++) {
490                 if (pipe(pipefd) < 0) {
491                         pr_debug("pipe failed\n");
492                         break;
493                 }
494                 close(pipefd[1]);
495                 close(pipefd[0]);
496         }
497 }
498 
499 static void fs_something(void)
500 {
501         const char *test_file_name = "temp-perf-code-reading-test-file--";
502         FILE *f;
503         int i;
504 
505         for (i = 0; i < 1000; i++) {
506                 f = fopen(test_file_name, "w+");
507                 if (f) {
508                         fclose(f);
509                         unlink(test_file_name);
510                 }
511         }
512 }
513 
514 static void do_something(void)
515 {
516         fs_something();
517 
518         sort_something();
519 
520         syscall_something();
521 }
522 
523 enum {
524         TEST_CODE_READING_OK,
525         TEST_CODE_READING_NO_VMLINUX,
526         TEST_CODE_READING_NO_KCORE,
527         TEST_CODE_READING_NO_ACCESS,
528         TEST_CODE_READING_NO_KERNEL_OBJ,
529 };
530 
531 static int do_test_code_reading(bool try_kcore)
532 {
533         struct machine *machine;
534         struct thread *thread;
535         struct record_opts opts = {
536                 .mmap_pages          = UINT_MAX,
537                 .user_freq           = UINT_MAX,
538                 .user_interval       = ULLONG_MAX,
539                 .freq                = 500,
540                 .target              = {
541                         .uses_mmap   = true,
542                 },
543         };
544         struct state state = {
545                 .done_cnt = 0,
546         };
547         struct perf_thread_map *threads = NULL;
548         struct perf_cpu_map *cpus = NULL;
549         struct evlist *evlist = NULL;
550         struct evsel *evsel = NULL;
551         int err = -1, ret;
552         pid_t pid;
553         struct map *map;
554         bool have_vmlinux, have_kcore;
555         struct dso *dso;
556         const char *events[] = { "cycles", "cycles:u", "cpu-clock", "cpu-clock:u", NULL };
557         int evidx = 0;
558 
559         pid = getpid();
560 
561         machine = machine__new_host();
562         machine->env = &perf_env;
563 
564         ret = machine__create_kernel_maps(machine);
565         if (ret < 0) {
566                 pr_debug("machine__create_kernel_maps failed\n");
567                 goto out_err;
568         }
569 
570         /* Force the use of kallsyms instead of vmlinux to try kcore */
571         if (try_kcore)
572                 symbol_conf.kallsyms_name = "/proc/kallsyms";
573 
574         /* Load kernel map */
575         map = machine__kernel_map(machine);
576         ret = map__load(map);
577         if (ret < 0) {
578                 pr_debug("map__load failed\n");
579                 goto out_err;
580         }
581         dso = map__dso(map);
582         have_vmlinux = dso__is_vmlinux(dso);
583         have_kcore = dso__is_kcore(dso);
584 
585         /* 2nd time through we just try kcore */
586         if (try_kcore && !have_kcore)
587                 return TEST_CODE_READING_NO_KCORE;
588 
589         /* No point getting kernel events if there is no kernel object */
590         if (!have_vmlinux && !have_kcore)
591                 evidx++;
592 
593         threads = thread_map__new_by_tid(pid);
594         if (!threads) {
595                 pr_debug("thread_map__new_by_tid failed\n");
596                 goto out_err;
597         }
598 
599         ret = perf_event__synthesize_thread_map(NULL, threads,
600                                                 perf_event__process, machine,
601                                                 true, false);
602         if (ret < 0) {
603                 pr_debug("perf_event__synthesize_thread_map failed\n");
604                 goto out_err;
605         }
606 
607         thread = machine__findnew_thread(machine, pid, pid);
608         if (!thread) {
609                 pr_debug("machine__findnew_thread failed\n");
610                 goto out_put;
611         }
612 
613         cpus = perf_cpu_map__new_online_cpus();
614         if (!cpus) {
615                 pr_debug("perf_cpu_map__new failed\n");
616                 goto out_put;
617         }
618 
619         while (events[evidx]) {
620                 const char *str;
621 
622                 evlist = evlist__new();
623                 if (!evlist) {
624                         pr_debug("evlist__new failed\n");
625                         goto out_put;
626                 }
627 
628                 perf_evlist__set_maps(&evlist->core, cpus, threads);
629 
630                 str = events[evidx];
631                 pr_debug("Parsing event '%s'\n", str);
632                 ret = parse_event(evlist, str);
633                 if (ret < 0) {
634                         pr_debug("parse_events failed\n");
635                         goto out_put;
636                 }
637 
638                 evlist__config(evlist, &opts, NULL);
639 
640                 evlist__for_each_entry(evlist, evsel) {
641                         evsel->core.attr.comm = 1;
642                         evsel->core.attr.disabled = 1;
643                         evsel->core.attr.enable_on_exec = 0;
644                 }
645 
646                 ret = evlist__open(evlist);
647                 if (ret < 0) {
648                         evidx++;
649 
650                         if (events[evidx] == NULL && verbose > 0) {
651                                 char errbuf[512];
652                                 evlist__strerror_open(evlist, errno, errbuf, sizeof(errbuf));
653                                 pr_debug("perf_evlist__open() failed!\n%s\n", errbuf);
654                         }
655 
656                         /*
657                          * Both cpus and threads are now owned by evlist
658                          * and will be freed by following perf_evlist__set_maps
659                          * call. Getting reference to keep them alive.
660                          */
661                         perf_cpu_map__get(cpus);
662                         perf_thread_map__get(threads);
663                         perf_evlist__set_maps(&evlist->core, NULL, NULL);
664                         evlist__delete(evlist);
665                         evlist = NULL;
666                         continue;
667                 }
668                 break;
669         }
670 
671         if (events[evidx] == NULL)
672                 goto out_put;
673 
674         ret = evlist__mmap(evlist, UINT_MAX);
675         if (ret < 0) {
676                 pr_debug("evlist__mmap failed\n");
677                 goto out_put;
678         }
679 
680         evlist__enable(evlist);
681 
682         do_something();
683 
684         evlist__disable(evlist);
685 
686         ret = process_events(machine, evlist, &state);
687         if (ret < 0)
688                 goto out_put;
689 
690         if (!have_vmlinux && !have_kcore && !try_kcore)
691                 err = TEST_CODE_READING_NO_KERNEL_OBJ;
692         else if (!have_vmlinux && !try_kcore)
693                 err = TEST_CODE_READING_NO_VMLINUX;
694         else if (strstr(events[evidx], ":u"))
695                 err = TEST_CODE_READING_NO_ACCESS;
696         else
697                 err = TEST_CODE_READING_OK;
698 out_put:
699         thread__put(thread);
700 out_err:
701         evlist__delete(evlist);
702         perf_cpu_map__put(cpus);
703         perf_thread_map__put(threads);
704         machine__delete(machine);
705 
706         return err;
707 }
708 
709 static int test__code_reading(struct test_suite *test __maybe_unused, int subtest __maybe_unused)
710 {
711         int ret;
712 
713         ret = do_test_code_reading(false);
714         if (!ret)
715                 ret = do_test_code_reading(true);
716 
717         switch (ret) {
718         case TEST_CODE_READING_OK:
719                 return 0;
720         case TEST_CODE_READING_NO_VMLINUX:
721                 pr_debug("no vmlinux\n");
722                 return 0;
723         case TEST_CODE_READING_NO_KCORE:
724                 pr_debug("no kcore\n");
725                 return 0;
726         case TEST_CODE_READING_NO_ACCESS:
727                 pr_debug("no access\n");
728                 return 0;
729         case TEST_CODE_READING_NO_KERNEL_OBJ:
730                 pr_debug("no kernel obj\n");
731                 return 0;
732         default:
733                 return -1;
734         };
735 }
736 
737 DEFINE_SUITE("Object code reading", code_reading);
738 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php