1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 #include <linux/zalloc.h> 28 29 #include "config.h" 30 #include "evlist.h" 31 #include "dso.h" 32 #include "map.h" 33 #include "pmu.h" 34 #include "evsel.h" 35 #include "evsel_config.h" 36 #include "symbol.h" 37 #include "util/perf_api_probe.h" 38 #include "util/synthetic-events.h" 39 #include "thread_map.h" 40 #include "asm/bug.h" 41 #include "auxtrace.h" 42 43 #include <linux/hash.h> 44 45 #include "event.h" 46 #include "record.h" 47 #include "session.h" 48 #include "debug.h" 49 #include <subcmd/parse-options.h> 50 51 #include "cs-etm.h" 52 #include "intel-pt.h" 53 #include "intel-bts.h" 54 #include "arm-spe.h" 55 #include "hisi-ptt.h" 56 #include "s390-cpumsf.h" 57 #include "util/mmap.h" 58 59 #include <linux/ctype.h> 60 #include "symbol/kallsyms.h" 61 #include <internal/lib.h> 62 #include "util/sample.h" 63 64 /* 65 * Make a group from 'leader' to 'last', requiring that the events were not 66 * already grouped to a different leader. 67 */ 68 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last) 69 { 70 struct evsel *evsel; 71 bool grp; 72 73 if (!evsel__is_group_leader(leader)) 74 return -EINVAL; 75 76 grp = false; 77 evlist__for_each_entry(evlist, evsel) { 78 if (grp) { 79 if (!(evsel__leader(evsel) == leader || 80 (evsel__leader(evsel) == evsel && 81 evsel->core.nr_members <= 1))) 82 return -EINVAL; 83 } else if (evsel == leader) { 84 grp = true; 85 } 86 if (evsel == last) 87 break; 88 } 89 90 grp = false; 91 evlist__for_each_entry(evlist, evsel) { 92 if (grp) { 93 if (!evsel__has_leader(evsel, leader)) { 94 evsel__set_leader(evsel, leader); 95 if (leader->core.nr_members < 1) 96 leader->core.nr_members = 1; 97 leader->core.nr_members += 1; 98 } 99 } else if (evsel == leader) { 100 grp = true; 101 } 102 if (evsel == last) 103 break; 104 } 105 106 return 0; 107 } 108 109 static bool auxtrace__dont_decode(struct perf_session *session) 110 { 111 return !session->itrace_synth_opts || 112 session->itrace_synth_opts->dont_decode; 113 } 114 115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 116 struct auxtrace_mmap_params *mp, 117 void *userpg, int fd) 118 { 119 struct perf_event_mmap_page *pc = userpg; 120 121 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 122 123 mm->userpg = userpg; 124 mm->mask = mp->mask; 125 mm->len = mp->len; 126 mm->prev = 0; 127 mm->idx = mp->idx; 128 mm->tid = mp->tid; 129 mm->cpu = mp->cpu.cpu; 130 131 if (!mp->len || !mp->mmap_needed) { 132 mm->base = NULL; 133 return 0; 134 } 135 136 pc->aux_offset = mp->offset; 137 pc->aux_size = mp->len; 138 139 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 140 if (mm->base == MAP_FAILED) { 141 pr_debug2("failed to mmap AUX area\n"); 142 mm->base = NULL; 143 return -1; 144 } 145 146 return 0; 147 } 148 149 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 150 { 151 if (mm->base) { 152 munmap(mm->base, mm->len); 153 mm->base = NULL; 154 } 155 } 156 157 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 158 off_t auxtrace_offset, 159 unsigned int auxtrace_pages, 160 bool auxtrace_overwrite) 161 { 162 if (auxtrace_pages) { 163 mp->offset = auxtrace_offset; 164 mp->len = auxtrace_pages * (size_t)page_size; 165 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 166 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 167 pr_debug2("AUX area mmap length %zu\n", mp->len); 168 } else { 169 mp->len = 0; 170 } 171 } 172 173 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 174 struct evlist *evlist, 175 struct evsel *evsel, int idx) 176 { 177 bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus); 178 179 mp->mmap_needed = evsel->needs_auxtrace_mmap; 180 181 if (!mp->mmap_needed) 182 return; 183 184 mp->idx = idx; 185 186 if (per_cpu) { 187 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 188 if (evlist->core.threads) 189 mp->tid = perf_thread_map__pid(evlist->core.threads, 0); 190 else 191 mp->tid = -1; 192 } else { 193 mp->cpu.cpu = -1; 194 mp->tid = perf_thread_map__pid(evlist->core.threads, idx); 195 } 196 } 197 198 #define AUXTRACE_INIT_NR_QUEUES 32 199 200 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 201 { 202 struct auxtrace_queue *queue_array; 203 unsigned int max_nr_queues, i; 204 205 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 206 if (nr_queues > max_nr_queues) 207 return NULL; 208 209 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 210 if (!queue_array) 211 return NULL; 212 213 for (i = 0; i < nr_queues; i++) { 214 INIT_LIST_HEAD(&queue_array[i].head); 215 queue_array[i].priv = NULL; 216 } 217 218 return queue_array; 219 } 220 221 int auxtrace_queues__init_nr(struct auxtrace_queues *queues, int nr_queues) 222 { 223 queues->nr_queues = nr_queues; 224 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 225 if (!queues->queue_array) 226 return -ENOMEM; 227 return 0; 228 } 229 230 int auxtrace_queues__init(struct auxtrace_queues *queues) 231 { 232 return auxtrace_queues__init_nr(queues, AUXTRACE_INIT_NR_QUEUES); 233 } 234 235 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 236 unsigned int new_nr_queues) 237 { 238 unsigned int nr_queues = queues->nr_queues; 239 struct auxtrace_queue *queue_array; 240 unsigned int i; 241 242 if (!nr_queues) 243 nr_queues = AUXTRACE_INIT_NR_QUEUES; 244 245 while (nr_queues && nr_queues < new_nr_queues) 246 nr_queues <<= 1; 247 248 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 249 return -EINVAL; 250 251 queue_array = auxtrace_alloc_queue_array(nr_queues); 252 if (!queue_array) 253 return -ENOMEM; 254 255 for (i = 0; i < queues->nr_queues; i++) { 256 list_splice_tail(&queues->queue_array[i].head, 257 &queue_array[i].head); 258 queue_array[i].tid = queues->queue_array[i].tid; 259 queue_array[i].cpu = queues->queue_array[i].cpu; 260 queue_array[i].set = queues->queue_array[i].set; 261 queue_array[i].priv = queues->queue_array[i].priv; 262 } 263 264 queues->nr_queues = nr_queues; 265 queues->queue_array = queue_array; 266 267 return 0; 268 } 269 270 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 271 { 272 int fd = perf_data__fd(session->data); 273 void *p; 274 ssize_t ret; 275 276 if (size > SSIZE_MAX) 277 return NULL; 278 279 p = malloc(size); 280 if (!p) 281 return NULL; 282 283 ret = readn(fd, p, size); 284 if (ret != (ssize_t)size) { 285 free(p); 286 return NULL; 287 } 288 289 return p; 290 } 291 292 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 293 unsigned int idx, 294 struct auxtrace_buffer *buffer) 295 { 296 struct auxtrace_queue *queue; 297 int err; 298 299 if (idx >= queues->nr_queues) { 300 err = auxtrace_queues__grow(queues, idx + 1); 301 if (err) 302 return err; 303 } 304 305 queue = &queues->queue_array[idx]; 306 307 if (!queue->set) { 308 queue->set = true; 309 queue->tid = buffer->tid; 310 queue->cpu = buffer->cpu.cpu; 311 } 312 313 buffer->buffer_nr = queues->next_buffer_nr++; 314 315 list_add_tail(&buffer->list, &queue->head); 316 317 queues->new_data = true; 318 queues->populated = true; 319 320 return 0; 321 } 322 323 /* Limit buffers to 32MiB on 32-bit */ 324 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 325 326 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 327 unsigned int idx, 328 struct auxtrace_buffer *buffer) 329 { 330 u64 sz = buffer->size; 331 bool consecutive = false; 332 struct auxtrace_buffer *b; 333 int err; 334 335 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 336 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 337 if (!b) 338 return -ENOMEM; 339 b->size = BUFFER_LIMIT_FOR_32_BIT; 340 b->consecutive = consecutive; 341 err = auxtrace_queues__queue_buffer(queues, idx, b); 342 if (err) { 343 auxtrace_buffer__free(b); 344 return err; 345 } 346 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 347 sz -= BUFFER_LIMIT_FOR_32_BIT; 348 consecutive = true; 349 } 350 351 buffer->size = sz; 352 buffer->consecutive = consecutive; 353 354 return 0; 355 } 356 357 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu) 358 { 359 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 360 361 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap); 362 } 363 364 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 365 struct perf_session *session, 366 unsigned int idx, 367 struct auxtrace_buffer *buffer, 368 struct auxtrace_buffer **buffer_ptr) 369 { 370 int err = -ENOMEM; 371 372 if (filter_cpu(session, buffer->cpu)) 373 return 0; 374 375 buffer = memdup(buffer, sizeof(*buffer)); 376 if (!buffer) 377 return -ENOMEM; 378 379 if (session->one_mmap) { 380 buffer->data = buffer->data_offset - session->one_mmap_offset + 381 session->one_mmap_addr; 382 } else if (perf_data__is_pipe(session->data)) { 383 buffer->data = auxtrace_copy_data(buffer->size, session); 384 if (!buffer->data) 385 goto out_free; 386 buffer->data_needs_freeing = true; 387 } else if (BITS_PER_LONG == 32 && 388 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 389 err = auxtrace_queues__split_buffer(queues, idx, buffer); 390 if (err) 391 goto out_free; 392 } 393 394 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 395 if (err) 396 goto out_free; 397 398 /* FIXME: Doesn't work for split buffer */ 399 if (buffer_ptr) 400 *buffer_ptr = buffer; 401 402 return 0; 403 404 out_free: 405 auxtrace_buffer__free(buffer); 406 return err; 407 } 408 409 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 410 struct perf_session *session, 411 union perf_event *event, off_t data_offset, 412 struct auxtrace_buffer **buffer_ptr) 413 { 414 struct auxtrace_buffer buffer = { 415 .pid = -1, 416 .tid = event->auxtrace.tid, 417 .cpu = { event->auxtrace.cpu }, 418 .data_offset = data_offset, 419 .offset = event->auxtrace.offset, 420 .reference = event->auxtrace.reference, 421 .size = event->auxtrace.size, 422 }; 423 unsigned int idx = event->auxtrace.idx; 424 425 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 426 buffer_ptr); 427 } 428 429 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 430 struct perf_session *session, 431 off_t file_offset, size_t sz) 432 { 433 union perf_event *event; 434 int err; 435 char buf[PERF_SAMPLE_MAX_SIZE]; 436 437 err = perf_session__peek_event(session, file_offset, buf, 438 PERF_SAMPLE_MAX_SIZE, &event, NULL); 439 if (err) 440 return err; 441 442 if (event->header.type == PERF_RECORD_AUXTRACE) { 443 if (event->header.size < sizeof(struct perf_record_auxtrace) || 444 event->header.size != sz) { 445 err = -EINVAL; 446 goto out; 447 } 448 file_offset += event->header.size; 449 err = auxtrace_queues__add_event(queues, session, event, 450 file_offset, NULL); 451 } 452 out: 453 return err; 454 } 455 456 void auxtrace_queues__free(struct auxtrace_queues *queues) 457 { 458 unsigned int i; 459 460 for (i = 0; i < queues->nr_queues; i++) { 461 while (!list_empty(&queues->queue_array[i].head)) { 462 struct auxtrace_buffer *buffer; 463 464 buffer = list_entry(queues->queue_array[i].head.next, 465 struct auxtrace_buffer, list); 466 list_del_init(&buffer->list); 467 auxtrace_buffer__free(buffer); 468 } 469 } 470 471 zfree(&queues->queue_array); 472 queues->nr_queues = 0; 473 } 474 475 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 476 unsigned int pos, unsigned int queue_nr, 477 u64 ordinal) 478 { 479 unsigned int parent; 480 481 while (pos) { 482 parent = (pos - 1) >> 1; 483 if (heap_array[parent].ordinal <= ordinal) 484 break; 485 heap_array[pos] = heap_array[parent]; 486 pos = parent; 487 } 488 heap_array[pos].queue_nr = queue_nr; 489 heap_array[pos].ordinal = ordinal; 490 } 491 492 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 493 u64 ordinal) 494 { 495 struct auxtrace_heap_item *heap_array; 496 497 if (queue_nr >= heap->heap_sz) { 498 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 499 500 while (heap_sz <= queue_nr) 501 heap_sz <<= 1; 502 heap_array = realloc(heap->heap_array, 503 heap_sz * sizeof(struct auxtrace_heap_item)); 504 if (!heap_array) 505 return -ENOMEM; 506 heap->heap_array = heap_array; 507 heap->heap_sz = heap_sz; 508 } 509 510 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 511 512 return 0; 513 } 514 515 void auxtrace_heap__free(struct auxtrace_heap *heap) 516 { 517 zfree(&heap->heap_array); 518 heap->heap_cnt = 0; 519 heap->heap_sz = 0; 520 } 521 522 void auxtrace_heap__pop(struct auxtrace_heap *heap) 523 { 524 unsigned int pos, last, heap_cnt = heap->heap_cnt; 525 struct auxtrace_heap_item *heap_array; 526 527 if (!heap_cnt) 528 return; 529 530 heap->heap_cnt -= 1; 531 532 heap_array = heap->heap_array; 533 534 pos = 0; 535 while (1) { 536 unsigned int left, right; 537 538 left = (pos << 1) + 1; 539 if (left >= heap_cnt) 540 break; 541 right = left + 1; 542 if (right >= heap_cnt) { 543 heap_array[pos] = heap_array[left]; 544 return; 545 } 546 if (heap_array[left].ordinal < heap_array[right].ordinal) { 547 heap_array[pos] = heap_array[left]; 548 pos = left; 549 } else { 550 heap_array[pos] = heap_array[right]; 551 pos = right; 552 } 553 } 554 555 last = heap_cnt - 1; 556 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 557 heap_array[last].ordinal); 558 } 559 560 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 561 struct evlist *evlist) 562 { 563 if (itr) 564 return itr->info_priv_size(itr, evlist); 565 return 0; 566 } 567 568 static int auxtrace_not_supported(void) 569 { 570 pr_err("AUX area tracing is not supported on this architecture\n"); 571 return -EINVAL; 572 } 573 574 int auxtrace_record__info_fill(struct auxtrace_record *itr, 575 struct perf_session *session, 576 struct perf_record_auxtrace_info *auxtrace_info, 577 size_t priv_size) 578 { 579 if (itr) 580 return itr->info_fill(itr, session, auxtrace_info, priv_size); 581 return auxtrace_not_supported(); 582 } 583 584 void auxtrace_record__free(struct auxtrace_record *itr) 585 { 586 if (itr) 587 itr->free(itr); 588 } 589 590 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 591 { 592 if (itr && itr->snapshot_start) 593 return itr->snapshot_start(itr); 594 return 0; 595 } 596 597 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) 598 { 599 if (!on_exit && itr && itr->snapshot_finish) 600 return itr->snapshot_finish(itr); 601 return 0; 602 } 603 604 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 605 struct auxtrace_mmap *mm, 606 unsigned char *data, u64 *head, u64 *old) 607 { 608 if (itr && itr->find_snapshot) 609 return itr->find_snapshot(itr, idx, mm, data, head, old); 610 return 0; 611 } 612 613 int auxtrace_record__options(struct auxtrace_record *itr, 614 struct evlist *evlist, 615 struct record_opts *opts) 616 { 617 if (itr) { 618 itr->evlist = evlist; 619 return itr->recording_options(itr, evlist, opts); 620 } 621 return 0; 622 } 623 624 u64 auxtrace_record__reference(struct auxtrace_record *itr) 625 { 626 if (itr) 627 return itr->reference(itr); 628 return 0; 629 } 630 631 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 632 struct record_opts *opts, const char *str) 633 { 634 if (!str) 635 return 0; 636 637 /* PMU-agnostic options */ 638 switch (*str) { 639 case 'e': 640 opts->auxtrace_snapshot_on_exit = true; 641 str++; 642 break; 643 default: 644 break; 645 } 646 647 if (itr && itr->parse_snapshot_options) 648 return itr->parse_snapshot_options(itr, opts, str); 649 650 pr_err("No AUX area tracing to snapshot\n"); 651 return -EINVAL; 652 } 653 654 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx) 655 { 656 bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus); 657 658 if (per_cpu_mmaps) { 659 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 660 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu); 661 662 if (cpu_map_idx == -1) 663 return -EINVAL; 664 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx); 665 } 666 667 return perf_evsel__enable_thread(&evsel->core, idx); 668 } 669 670 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx) 671 { 672 struct evsel *evsel; 673 674 if (!itr->evlist || !itr->pmu) 675 return -EINVAL; 676 677 evlist__for_each_entry(itr->evlist, evsel) { 678 if (evsel->core.attr.type == itr->pmu->type) { 679 if (evsel->disabled) 680 return 0; 681 return evlist__enable_event_idx(itr->evlist, evsel, idx); 682 } 683 } 684 return -EINVAL; 685 } 686 687 /* 688 * Event record size is 16-bit which results in a maximum size of about 64KiB. 689 * Allow about 4KiB for the rest of the sample record, to give a maximum 690 * AUX area sample size of 60KiB. 691 */ 692 #define MAX_AUX_SAMPLE_SIZE (60 * 1024) 693 694 /* Arbitrary default size if no other default provided */ 695 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024) 696 697 static int auxtrace_validate_aux_sample_size(struct evlist *evlist, 698 struct record_opts *opts) 699 { 700 struct evsel *evsel; 701 bool has_aux_leader = false; 702 u32 sz; 703 704 evlist__for_each_entry(evlist, evsel) { 705 sz = evsel->core.attr.aux_sample_size; 706 if (evsel__is_group_leader(evsel)) { 707 has_aux_leader = evsel__is_aux_event(evsel); 708 if (sz) { 709 if (has_aux_leader) 710 pr_err("Cannot add AUX area sampling to an AUX area event\n"); 711 else 712 pr_err("Cannot add AUX area sampling to a group leader\n"); 713 return -EINVAL; 714 } 715 } 716 if (sz > MAX_AUX_SAMPLE_SIZE) { 717 pr_err("AUX area sample size %u too big, max. %d\n", 718 sz, MAX_AUX_SAMPLE_SIZE); 719 return -EINVAL; 720 } 721 if (sz) { 722 if (!has_aux_leader) { 723 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n"); 724 return -EINVAL; 725 } 726 evsel__set_sample_bit(evsel, AUX); 727 opts->auxtrace_sample_mode = true; 728 } else { 729 evsel__reset_sample_bit(evsel, AUX); 730 } 731 } 732 733 if (!opts->auxtrace_sample_mode) { 734 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n"); 735 return -EINVAL; 736 } 737 738 if (!perf_can_aux_sample()) { 739 pr_err("AUX area sampling is not supported by kernel\n"); 740 return -EINVAL; 741 } 742 743 return 0; 744 } 745 746 int auxtrace_parse_sample_options(struct auxtrace_record *itr, 747 struct evlist *evlist, 748 struct record_opts *opts, const char *str) 749 { 750 struct evsel_config_term *term; 751 struct evsel *aux_evsel; 752 bool has_aux_sample_size = false; 753 bool has_aux_leader = false; 754 struct evsel *evsel; 755 char *endptr; 756 unsigned long sz; 757 758 if (!str) 759 goto no_opt; 760 761 if (!itr) { 762 pr_err("No AUX area event to sample\n"); 763 return -EINVAL; 764 } 765 766 sz = strtoul(str, &endptr, 0); 767 if (*endptr || sz > UINT_MAX) { 768 pr_err("Bad AUX area sampling option: '%s'\n", str); 769 return -EINVAL; 770 } 771 772 if (!sz) 773 sz = itr->default_aux_sample_size; 774 775 if (!sz) 776 sz = DEFAULT_AUX_SAMPLE_SIZE; 777 778 /* Set aux_sample_size based on --aux-sample option */ 779 evlist__for_each_entry(evlist, evsel) { 780 if (evsel__is_group_leader(evsel)) { 781 has_aux_leader = evsel__is_aux_event(evsel); 782 } else if (has_aux_leader) { 783 evsel->core.attr.aux_sample_size = sz; 784 } 785 } 786 no_opt: 787 aux_evsel = NULL; 788 /* Override with aux_sample_size from config term */ 789 evlist__for_each_entry(evlist, evsel) { 790 if (evsel__is_aux_event(evsel)) 791 aux_evsel = evsel; 792 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE); 793 if (term) { 794 has_aux_sample_size = true; 795 evsel->core.attr.aux_sample_size = term->val.aux_sample_size; 796 /* If possible, group with the AUX event */ 797 if (aux_evsel && evsel->core.attr.aux_sample_size) 798 evlist__regroup(evlist, aux_evsel, evsel); 799 } 800 } 801 802 if (!str && !has_aux_sample_size) 803 return 0; 804 805 if (!itr) { 806 pr_err("No AUX area event to sample\n"); 807 return -EINVAL; 808 } 809 810 return auxtrace_validate_aux_sample_size(evlist, opts); 811 } 812 813 void auxtrace_regroup_aux_output(struct evlist *evlist) 814 { 815 struct evsel *evsel, *aux_evsel = NULL; 816 struct evsel_config_term *term; 817 818 evlist__for_each_entry(evlist, evsel) { 819 if (evsel__is_aux_event(evsel)) 820 aux_evsel = evsel; 821 term = evsel__get_config_term(evsel, AUX_OUTPUT); 822 /* If possible, group with the AUX event */ 823 if (term && aux_evsel) 824 evlist__regroup(evlist, aux_evsel, evsel); 825 } 826 } 827 828 struct auxtrace_record *__weak 829 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) 830 { 831 *err = 0; 832 return NULL; 833 } 834 835 static int auxtrace_index__alloc(struct list_head *head) 836 { 837 struct auxtrace_index *auxtrace_index; 838 839 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 840 if (!auxtrace_index) 841 return -ENOMEM; 842 843 auxtrace_index->nr = 0; 844 INIT_LIST_HEAD(&auxtrace_index->list); 845 846 list_add_tail(&auxtrace_index->list, head); 847 848 return 0; 849 } 850 851 void auxtrace_index__free(struct list_head *head) 852 { 853 struct auxtrace_index *auxtrace_index, *n; 854 855 list_for_each_entry_safe(auxtrace_index, n, head, list) { 856 list_del_init(&auxtrace_index->list); 857 free(auxtrace_index); 858 } 859 } 860 861 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 862 { 863 struct auxtrace_index *auxtrace_index; 864 int err; 865 866 if (list_empty(head)) { 867 err = auxtrace_index__alloc(head); 868 if (err) 869 return NULL; 870 } 871 872 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 873 874 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 875 err = auxtrace_index__alloc(head); 876 if (err) 877 return NULL; 878 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 879 list); 880 } 881 882 return auxtrace_index; 883 } 884 885 int auxtrace_index__auxtrace_event(struct list_head *head, 886 union perf_event *event, off_t file_offset) 887 { 888 struct auxtrace_index *auxtrace_index; 889 size_t nr; 890 891 auxtrace_index = auxtrace_index__last(head); 892 if (!auxtrace_index) 893 return -ENOMEM; 894 895 nr = auxtrace_index->nr; 896 auxtrace_index->entries[nr].file_offset = file_offset; 897 auxtrace_index->entries[nr].sz = event->header.size; 898 auxtrace_index->nr += 1; 899 900 return 0; 901 } 902 903 static int auxtrace_index__do_write(int fd, 904 struct auxtrace_index *auxtrace_index) 905 { 906 struct auxtrace_index_entry ent; 907 size_t i; 908 909 for (i = 0; i < auxtrace_index->nr; i++) { 910 ent.file_offset = auxtrace_index->entries[i].file_offset; 911 ent.sz = auxtrace_index->entries[i].sz; 912 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 913 return -errno; 914 } 915 return 0; 916 } 917 918 int auxtrace_index__write(int fd, struct list_head *head) 919 { 920 struct auxtrace_index *auxtrace_index; 921 u64 total = 0; 922 int err; 923 924 list_for_each_entry(auxtrace_index, head, list) 925 total += auxtrace_index->nr; 926 927 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 928 return -errno; 929 930 list_for_each_entry(auxtrace_index, head, list) { 931 err = auxtrace_index__do_write(fd, auxtrace_index); 932 if (err) 933 return err; 934 } 935 936 return 0; 937 } 938 939 static int auxtrace_index__process_entry(int fd, struct list_head *head, 940 bool needs_swap) 941 { 942 struct auxtrace_index *auxtrace_index; 943 struct auxtrace_index_entry ent; 944 size_t nr; 945 946 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 947 return -1; 948 949 auxtrace_index = auxtrace_index__last(head); 950 if (!auxtrace_index) 951 return -1; 952 953 nr = auxtrace_index->nr; 954 if (needs_swap) { 955 auxtrace_index->entries[nr].file_offset = 956 bswap_64(ent.file_offset); 957 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 958 } else { 959 auxtrace_index->entries[nr].file_offset = ent.file_offset; 960 auxtrace_index->entries[nr].sz = ent.sz; 961 } 962 963 auxtrace_index->nr = nr + 1; 964 965 return 0; 966 } 967 968 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 969 bool needs_swap) 970 { 971 struct list_head *head = &session->auxtrace_index; 972 u64 nr; 973 974 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 975 return -1; 976 977 if (needs_swap) 978 nr = bswap_64(nr); 979 980 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 981 return -1; 982 983 while (nr--) { 984 int err; 985 986 err = auxtrace_index__process_entry(fd, head, needs_swap); 987 if (err) 988 return -1; 989 } 990 991 return 0; 992 } 993 994 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 995 struct perf_session *session, 996 struct auxtrace_index_entry *ent) 997 { 998 return auxtrace_queues__add_indexed_event(queues, session, 999 ent->file_offset, ent->sz); 1000 } 1001 1002 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 1003 struct perf_session *session) 1004 { 1005 struct auxtrace_index *auxtrace_index; 1006 struct auxtrace_index_entry *ent; 1007 size_t i; 1008 int err; 1009 1010 if (auxtrace__dont_decode(session)) 1011 return 0; 1012 1013 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 1014 for (i = 0; i < auxtrace_index->nr; i++) { 1015 ent = &auxtrace_index->entries[i]; 1016 err = auxtrace_queues__process_index_entry(queues, 1017 session, 1018 ent); 1019 if (err) 1020 return err; 1021 } 1022 } 1023 return 0; 1024 } 1025 1026 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 1027 struct auxtrace_buffer *buffer) 1028 { 1029 if (buffer) { 1030 if (list_is_last(&buffer->list, &queue->head)) 1031 return NULL; 1032 return list_entry(buffer->list.next, struct auxtrace_buffer, 1033 list); 1034 } else { 1035 if (list_empty(&queue->head)) 1036 return NULL; 1037 return list_entry(queue->head.next, struct auxtrace_buffer, 1038 list); 1039 } 1040 } 1041 1042 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues, 1043 struct perf_sample *sample, 1044 struct perf_session *session) 1045 { 1046 struct perf_sample_id *sid; 1047 unsigned int idx; 1048 u64 id; 1049 1050 id = sample->id; 1051 if (!id) 1052 return NULL; 1053 1054 sid = evlist__id2sid(session->evlist, id); 1055 if (!sid) 1056 return NULL; 1057 1058 idx = sid->idx; 1059 1060 if (idx >= queues->nr_queues) 1061 return NULL; 1062 1063 return &queues->queue_array[idx]; 1064 } 1065 1066 int auxtrace_queues__add_sample(struct auxtrace_queues *queues, 1067 struct perf_session *session, 1068 struct perf_sample *sample, u64 data_offset, 1069 u64 reference) 1070 { 1071 struct auxtrace_buffer buffer = { 1072 .pid = -1, 1073 .data_offset = data_offset, 1074 .reference = reference, 1075 .size = sample->aux_sample.size, 1076 }; 1077 struct perf_sample_id *sid; 1078 u64 id = sample->id; 1079 unsigned int idx; 1080 1081 if (!id) 1082 return -EINVAL; 1083 1084 sid = evlist__id2sid(session->evlist, id); 1085 if (!sid) 1086 return -ENOENT; 1087 1088 idx = sid->idx; 1089 buffer.tid = sid->tid; 1090 buffer.cpu = sid->cpu; 1091 1092 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL); 1093 } 1094 1095 struct queue_data { 1096 bool samples; 1097 bool events; 1098 }; 1099 1100 static int auxtrace_queue_data_cb(struct perf_session *session, 1101 union perf_event *event, u64 offset, 1102 void *data) 1103 { 1104 struct queue_data *qd = data; 1105 struct perf_sample sample; 1106 int err; 1107 1108 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) { 1109 if (event->header.size < sizeof(struct perf_record_auxtrace)) 1110 return -EINVAL; 1111 offset += event->header.size; 1112 return session->auxtrace->queue_data(session, NULL, event, 1113 offset); 1114 } 1115 1116 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE) 1117 return 0; 1118 1119 err = evlist__parse_sample(session->evlist, event, &sample); 1120 if (err) 1121 return err; 1122 1123 if (!sample.aux_sample.size) 1124 return 0; 1125 1126 offset += sample.aux_sample.data - (void *)event; 1127 1128 return session->auxtrace->queue_data(session, &sample, NULL, offset); 1129 } 1130 1131 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events) 1132 { 1133 struct queue_data qd = { 1134 .samples = samples, 1135 .events = events, 1136 }; 1137 1138 if (auxtrace__dont_decode(session)) 1139 return 0; 1140 1141 if (perf_data__is_pipe(session->data)) 1142 return 0; 1143 1144 if (!session->auxtrace || !session->auxtrace->queue_data) 1145 return -EINVAL; 1146 1147 return perf_session__peek_events(session, session->header.data_offset, 1148 session->header.data_size, 1149 auxtrace_queue_data_cb, &qd); 1150 } 1151 1152 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw) 1153 { 1154 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ; 1155 size_t adj = buffer->data_offset & (page_size - 1); 1156 size_t size = buffer->size + adj; 1157 off_t file_offset = buffer->data_offset - adj; 1158 void *addr; 1159 1160 if (buffer->data) 1161 return buffer->data; 1162 1163 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset); 1164 if (addr == MAP_FAILED) 1165 return NULL; 1166 1167 buffer->mmap_addr = addr; 1168 buffer->mmap_size = size; 1169 1170 buffer->data = addr + adj; 1171 1172 return buffer->data; 1173 } 1174 1175 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 1176 { 1177 if (!buffer->data || !buffer->mmap_addr) 1178 return; 1179 munmap(buffer->mmap_addr, buffer->mmap_size); 1180 buffer->mmap_addr = NULL; 1181 buffer->mmap_size = 0; 1182 buffer->data = NULL; 1183 buffer->use_data = NULL; 1184 } 1185 1186 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 1187 { 1188 auxtrace_buffer__put_data(buffer); 1189 if (buffer->data_needs_freeing) { 1190 buffer->data_needs_freeing = false; 1191 zfree(&buffer->data); 1192 buffer->use_data = NULL; 1193 buffer->size = 0; 1194 } 1195 } 1196 1197 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 1198 { 1199 auxtrace_buffer__drop_data(buffer); 1200 free(buffer); 1201 } 1202 1203 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1204 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1205 const char *msg, u64 timestamp, 1206 pid_t machine_pid, int vcpu) 1207 { 1208 size_t size; 1209 1210 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); 1211 1212 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 1213 auxtrace_error->type = type; 1214 auxtrace_error->code = code; 1215 auxtrace_error->cpu = cpu; 1216 auxtrace_error->pid = pid; 1217 auxtrace_error->tid = tid; 1218 auxtrace_error->fmt = 1; 1219 auxtrace_error->ip = ip; 1220 auxtrace_error->time = timestamp; 1221 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 1222 if (machine_pid) { 1223 auxtrace_error->fmt = 2; 1224 auxtrace_error->machine_pid = machine_pid; 1225 auxtrace_error->vcpu = vcpu; 1226 size = sizeof(*auxtrace_error); 1227 } else { 1228 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 1229 strlen(auxtrace_error->msg) + 1; 1230 } 1231 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 1232 } 1233 1234 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1235 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1236 const char *msg, u64 timestamp) 1237 { 1238 auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid, 1239 ip, msg, timestamp, 0, -1); 1240 } 1241 1242 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 1243 struct perf_tool *tool, 1244 struct perf_session *session, 1245 perf_event__handler_t process) 1246 { 1247 union perf_event *ev; 1248 size_t priv_size; 1249 int err; 1250 1251 pr_debug2("Synthesizing auxtrace information\n"); 1252 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 1253 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); 1254 if (!ev) 1255 return -ENOMEM; 1256 1257 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 1258 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + 1259 priv_size; 1260 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 1261 priv_size); 1262 if (err) 1263 goto out_free; 1264 1265 err = process(tool, ev, NULL, NULL); 1266 out_free: 1267 free(ev); 1268 return err; 1269 } 1270 1271 static void unleader_evsel(struct evlist *evlist, struct evsel *leader) 1272 { 1273 struct evsel *new_leader = NULL; 1274 struct evsel *evsel; 1275 1276 /* Find new leader for the group */ 1277 evlist__for_each_entry(evlist, evsel) { 1278 if (!evsel__has_leader(evsel, leader) || evsel == leader) 1279 continue; 1280 if (!new_leader) 1281 new_leader = evsel; 1282 evsel__set_leader(evsel, new_leader); 1283 } 1284 1285 /* Update group information */ 1286 if (new_leader) { 1287 zfree(&new_leader->group_name); 1288 new_leader->group_name = leader->group_name; 1289 leader->group_name = NULL; 1290 1291 new_leader->core.nr_members = leader->core.nr_members - 1; 1292 leader->core.nr_members = 1; 1293 } 1294 } 1295 1296 static void unleader_auxtrace(struct perf_session *session) 1297 { 1298 struct evsel *evsel; 1299 1300 evlist__for_each_entry(session->evlist, evsel) { 1301 if (auxtrace__evsel_is_auxtrace(session, evsel) && 1302 evsel__is_group_leader(evsel)) { 1303 unleader_evsel(session->evlist, evsel); 1304 } 1305 } 1306 } 1307 1308 int perf_event__process_auxtrace_info(struct perf_session *session, 1309 union perf_event *event) 1310 { 1311 enum auxtrace_type type = event->auxtrace_info.type; 1312 int err; 1313 1314 if (dump_trace) 1315 fprintf(stdout, " type: %u\n", type); 1316 1317 switch (type) { 1318 case PERF_AUXTRACE_INTEL_PT: 1319 err = intel_pt_process_auxtrace_info(event, session); 1320 break; 1321 case PERF_AUXTRACE_INTEL_BTS: 1322 err = intel_bts_process_auxtrace_info(event, session); 1323 break; 1324 case PERF_AUXTRACE_ARM_SPE: 1325 err = arm_spe_process_auxtrace_info(event, session); 1326 break; 1327 case PERF_AUXTRACE_CS_ETM: 1328 err = cs_etm__process_auxtrace_info(event, session); 1329 break; 1330 case PERF_AUXTRACE_S390_CPUMSF: 1331 err = s390_cpumsf_process_auxtrace_info(event, session); 1332 break; 1333 case PERF_AUXTRACE_HISI_PTT: 1334 err = hisi_ptt_process_auxtrace_info(event, session); 1335 break; 1336 case PERF_AUXTRACE_UNKNOWN: 1337 default: 1338 return -EINVAL; 1339 } 1340 1341 if (err) 1342 return err; 1343 1344 unleader_auxtrace(session); 1345 1346 return 0; 1347 } 1348 1349 s64 perf_event__process_auxtrace(struct perf_session *session, 1350 union perf_event *event) 1351 { 1352 s64 err; 1353 1354 if (dump_trace) 1355 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", 1356 event->auxtrace.size, event->auxtrace.offset, 1357 event->auxtrace.reference, event->auxtrace.idx, 1358 event->auxtrace.tid, event->auxtrace.cpu); 1359 1360 if (auxtrace__dont_decode(session)) 1361 return event->auxtrace.size; 1362 1363 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 1364 return -EINVAL; 1365 1366 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 1367 if (err < 0) 1368 return err; 1369 1370 return event->auxtrace.size; 1371 } 1372 1373 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 1374 #define PERF_ITRACE_DEFAULT_PERIOD 100000 1375 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 1376 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 1377 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 1378 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 1379 1380 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 1381 bool no_sample) 1382 { 1383 synth_opts->branches = true; 1384 synth_opts->transactions = true; 1385 synth_opts->ptwrites = true; 1386 synth_opts->pwr_events = true; 1387 synth_opts->other_events = true; 1388 synth_opts->intr_events = true; 1389 synth_opts->errors = true; 1390 synth_opts->flc = true; 1391 synth_opts->llc = true; 1392 synth_opts->tlb = true; 1393 synth_opts->mem = true; 1394 synth_opts->remote_access = true; 1395 1396 if (no_sample) { 1397 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 1398 synth_opts->period = 1; 1399 synth_opts->calls = true; 1400 } else { 1401 synth_opts->instructions = true; 1402 synth_opts->cycles = true; 1403 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1404 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1405 } 1406 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1407 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1408 synth_opts->initial_skip = 0; 1409 } 1410 1411 static int get_flag(const char **ptr, unsigned int *flags) 1412 { 1413 while (1) { 1414 char c = **ptr; 1415 1416 if (c >= 'a' && c <= 'z') { 1417 *flags |= 1 << (c - 'a'); 1418 ++*ptr; 1419 return 0; 1420 } else if (c == ' ') { 1421 ++*ptr; 1422 continue; 1423 } else { 1424 return -1; 1425 } 1426 } 1427 } 1428 1429 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags) 1430 { 1431 while (1) { 1432 switch (**ptr) { 1433 case '+': 1434 ++*ptr; 1435 if (get_flag(ptr, plus_flags)) 1436 return -1; 1437 break; 1438 case '-': 1439 ++*ptr; 1440 if (get_flag(ptr, minus_flags)) 1441 return -1; 1442 break; 1443 case ' ': 1444 ++*ptr; 1445 break; 1446 default: 1447 return 0; 1448 } 1449 } 1450 } 1451 1452 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384 1453 1454 static unsigned int itrace_log_on_error_size(void) 1455 { 1456 unsigned int sz = 0; 1457 1458 perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz); 1459 return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ; 1460 } 1461 1462 /* 1463 * Please check tools/perf/Documentation/perf-script.txt for information 1464 * about the options parsed here, which is introduced after this cset, 1465 * when support in 'perf script' for these options is introduced. 1466 */ 1467 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts, 1468 const char *str, int unset) 1469 { 1470 const char *p; 1471 char *endptr; 1472 bool period_type_set = false; 1473 bool period_set = false; 1474 bool iy = false; 1475 1476 synth_opts->set = true; 1477 1478 if (unset) { 1479 synth_opts->dont_decode = true; 1480 return 0; 1481 } 1482 1483 if (!str) { 1484 itrace_synth_opts__set_default(synth_opts, 1485 synth_opts->default_no_sample); 1486 return 0; 1487 } 1488 1489 for (p = str; *p;) { 1490 switch (*p++) { 1491 case 'i': 1492 case 'y': 1493 iy = true; 1494 if (p[-1] == 'y') 1495 synth_opts->cycles = true; 1496 else 1497 synth_opts->instructions = true; 1498 while (*p == ' ' || *p == ',') 1499 p += 1; 1500 if (isdigit(*p)) { 1501 synth_opts->period = strtoull(p, &endptr, 10); 1502 period_set = true; 1503 p = endptr; 1504 while (*p == ' ' || *p == ',') 1505 p += 1; 1506 switch (*p++) { 1507 case 'i': 1508 synth_opts->period_type = 1509 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1510 period_type_set = true; 1511 break; 1512 case 't': 1513 synth_opts->period_type = 1514 PERF_ITRACE_PERIOD_TICKS; 1515 period_type_set = true; 1516 break; 1517 case 'm': 1518 synth_opts->period *= 1000; 1519 /* Fall through */ 1520 case 'u': 1521 synth_opts->period *= 1000; 1522 /* Fall through */ 1523 case 'n': 1524 if (*p++ != 's') 1525 goto out_err; 1526 synth_opts->period_type = 1527 PERF_ITRACE_PERIOD_NANOSECS; 1528 period_type_set = true; 1529 break; 1530 case '\0': 1531 goto out; 1532 default: 1533 goto out_err; 1534 } 1535 } 1536 break; 1537 case 'b': 1538 synth_opts->branches = true; 1539 break; 1540 case 'x': 1541 synth_opts->transactions = true; 1542 break; 1543 case 'w': 1544 synth_opts->ptwrites = true; 1545 break; 1546 case 'p': 1547 synth_opts->pwr_events = true; 1548 break; 1549 case 'o': 1550 synth_opts->other_events = true; 1551 break; 1552 case 'I': 1553 synth_opts->intr_events = true; 1554 break; 1555 case 'e': 1556 synth_opts->errors = true; 1557 if (get_flags(&p, &synth_opts->error_plus_flags, 1558 &synth_opts->error_minus_flags)) 1559 goto out_err; 1560 break; 1561 case 'd': 1562 synth_opts->log = true; 1563 if (get_flags(&p, &synth_opts->log_plus_flags, 1564 &synth_opts->log_minus_flags)) 1565 goto out_err; 1566 if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR) 1567 synth_opts->log_on_error_size = itrace_log_on_error_size(); 1568 break; 1569 case 'c': 1570 synth_opts->branches = true; 1571 synth_opts->calls = true; 1572 break; 1573 case 'r': 1574 synth_opts->branches = true; 1575 synth_opts->returns = true; 1576 break; 1577 case 'G': 1578 case 'g': 1579 if (p[-1] == 'G') 1580 synth_opts->add_callchain = true; 1581 else 1582 synth_opts->callchain = true; 1583 synth_opts->callchain_sz = 1584 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1585 while (*p == ' ' || *p == ',') 1586 p += 1; 1587 if (isdigit(*p)) { 1588 unsigned int val; 1589 1590 val = strtoul(p, &endptr, 10); 1591 p = endptr; 1592 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1593 goto out_err; 1594 synth_opts->callchain_sz = val; 1595 } 1596 break; 1597 case 'L': 1598 case 'l': 1599 if (p[-1] == 'L') 1600 synth_opts->add_last_branch = true; 1601 else 1602 synth_opts->last_branch = true; 1603 synth_opts->last_branch_sz = 1604 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1605 while (*p == ' ' || *p == ',') 1606 p += 1; 1607 if (isdigit(*p)) { 1608 unsigned int val; 1609 1610 val = strtoul(p, &endptr, 10); 1611 p = endptr; 1612 if (!val || 1613 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1614 goto out_err; 1615 synth_opts->last_branch_sz = val; 1616 } 1617 break; 1618 case 's': 1619 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1620 if (p == endptr) 1621 goto out_err; 1622 p = endptr; 1623 break; 1624 case 'f': 1625 synth_opts->flc = true; 1626 break; 1627 case 'm': 1628 synth_opts->llc = true; 1629 break; 1630 case 't': 1631 synth_opts->tlb = true; 1632 break; 1633 case 'a': 1634 synth_opts->remote_access = true; 1635 break; 1636 case 'M': 1637 synth_opts->mem = true; 1638 break; 1639 case 'q': 1640 synth_opts->quick += 1; 1641 break; 1642 case 'A': 1643 synth_opts->approx_ipc = true; 1644 break; 1645 case 'Z': 1646 synth_opts->timeless_decoding = true; 1647 break; 1648 case 'T': 1649 synth_opts->use_timestamp = true; 1650 break; 1651 case ' ': 1652 case ',': 1653 break; 1654 default: 1655 goto out_err; 1656 } 1657 } 1658 out: 1659 if (iy) { 1660 if (!period_type_set) 1661 synth_opts->period_type = 1662 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1663 if (!period_set) 1664 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1665 } 1666 1667 return 0; 1668 1669 out_err: 1670 pr_err("Bad Instruction Tracing options '%s'\n", str); 1671 return -EINVAL; 1672 } 1673 1674 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset) 1675 { 1676 return itrace_do_parse_synth_opts(opt->value, str, unset); 1677 } 1678 1679 static const char * const auxtrace_error_type_name[] = { 1680 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1681 }; 1682 1683 static const char *auxtrace_error_name(int type) 1684 { 1685 const char *error_type_name = NULL; 1686 1687 if (type < PERF_AUXTRACE_ERROR_MAX) 1688 error_type_name = auxtrace_error_type_name[type]; 1689 if (!error_type_name) 1690 error_type_name = "unknown AUX"; 1691 return error_type_name; 1692 } 1693 1694 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1695 { 1696 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1697 unsigned long long nsecs = e->time; 1698 const char *msg = e->msg; 1699 int ret; 1700 1701 ret = fprintf(fp, " %s error type %u", 1702 auxtrace_error_name(e->type), e->type); 1703 1704 if (e->fmt && nsecs) { 1705 unsigned long secs = nsecs / NSEC_PER_SEC; 1706 1707 nsecs -= secs * NSEC_PER_SEC; 1708 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1709 } else { 1710 ret += fprintf(fp, " time 0"); 1711 } 1712 1713 if (!e->fmt) 1714 msg = (const char *)&e->time; 1715 1716 if (e->fmt >= 2 && e->machine_pid) 1717 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu); 1718 1719 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", 1720 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1721 return ret; 1722 } 1723 1724 void perf_session__auxtrace_error_inc(struct perf_session *session, 1725 union perf_event *event) 1726 { 1727 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1728 1729 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1730 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1731 } 1732 1733 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1734 { 1735 int i; 1736 1737 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1738 if (!stats->nr_auxtrace_errors[i]) 1739 continue; 1740 ui__warning("%u %s errors\n", 1741 stats->nr_auxtrace_errors[i], 1742 auxtrace_error_name(i)); 1743 } 1744 } 1745 1746 int perf_event__process_auxtrace_error(struct perf_session *session, 1747 union perf_event *event) 1748 { 1749 if (auxtrace__dont_decode(session)) 1750 return 0; 1751 1752 perf_event__fprintf_auxtrace_error(event, stdout); 1753 return 0; 1754 } 1755 1756 /* 1757 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode, 1758 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to 1759 * the issues caused by the below sequence on multiple CPUs: when perf tool 1760 * accesses either the load operation or the store operation for 64-bit value, 1761 * on some architectures the operation is divided into two instructions, one 1762 * is for accessing the low 32-bit value and another is for the high 32-bit; 1763 * thus these two user operations can give the kernel chances to access the 1764 * 64-bit value, and thus leads to the unexpected load values. 1765 * 1766 * kernel (64-bit) user (32-bit) 1767 * 1768 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo 1769 * STORE $aux_data | ,---> 1770 * FLUSH $aux_data | | LOAD ->aux_head_hi 1771 * STORE ->aux_head --|-------` smp_rmb() 1772 * } | LOAD $data 1773 * | smp_mb() 1774 * | STORE ->aux_tail_lo 1775 * `-----------> 1776 * STORE ->aux_tail_hi 1777 * 1778 * For this reason, it's impossible for the perf tool to work correctly when 1779 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we 1780 * can not simply limit the AUX ring buffer to less than 4GB, the reason is 1781 * the pointers can be increased monotonically, whatever the buffer size it is, 1782 * at the end the head and tail can be bigger than 4GB and carry out to the 1783 * high 32-bit. 1784 * 1785 * To mitigate the issues and improve the user experience, we can allow the 1786 * perf tool working in certain conditions and bail out with error if detect 1787 * any overflow cannot be handled. 1788 * 1789 * For reading the AUX head, it reads out the values for three times, and 1790 * compares the high 4 bytes of the values between the first time and the last 1791 * time, if there has no change for high 4 bytes injected by the kernel during 1792 * the user reading sequence, it's safe for use the second value. 1793 * 1794 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high 1795 * 32 bits, it means there have two store operations in user space and it cannot 1796 * promise the atomicity for 64-bit write, so return '-1' in this case to tell 1797 * the caller an overflow error has happened. 1798 */ 1799 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm) 1800 { 1801 struct perf_event_mmap_page *pc = mm->userpg; 1802 u64 first, second, last; 1803 u64 mask = (u64)(UINT32_MAX) << 32; 1804 1805 do { 1806 first = READ_ONCE(pc->aux_head); 1807 /* Ensure all reads are done after we read the head */ 1808 smp_rmb(); 1809 second = READ_ONCE(pc->aux_head); 1810 /* Ensure all reads are done after we read the head */ 1811 smp_rmb(); 1812 last = READ_ONCE(pc->aux_head); 1813 } while ((first & mask) != (last & mask)); 1814 1815 return second; 1816 } 1817 1818 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail) 1819 { 1820 struct perf_event_mmap_page *pc = mm->userpg; 1821 u64 mask = (u64)(UINT32_MAX) << 32; 1822 1823 if (tail & mask) 1824 return -1; 1825 1826 /* Ensure all reads are done before we write the tail out */ 1827 smp_mb(); 1828 WRITE_ONCE(pc->aux_tail, tail); 1829 return 0; 1830 } 1831 1832 static int __auxtrace_mmap__read(struct mmap *map, 1833 struct auxtrace_record *itr, 1834 struct perf_tool *tool, process_auxtrace_t fn, 1835 bool snapshot, size_t snapshot_size) 1836 { 1837 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1838 u64 head, old = mm->prev, offset, ref; 1839 unsigned char *data = mm->base; 1840 size_t size, head_off, old_off, len1, len2, padding; 1841 union perf_event ev; 1842 void *data1, *data2; 1843 int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL)); 1844 1845 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit); 1846 1847 if (snapshot && 1848 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old)) 1849 return -1; 1850 1851 if (old == head) 1852 return 0; 1853 1854 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1855 mm->idx, old, head, head - old); 1856 1857 if (mm->mask) { 1858 head_off = head & mm->mask; 1859 old_off = old & mm->mask; 1860 } else { 1861 head_off = head % mm->len; 1862 old_off = old % mm->len; 1863 } 1864 1865 if (head_off > old_off) 1866 size = head_off - old_off; 1867 else 1868 size = mm->len - (old_off - head_off); 1869 1870 if (snapshot && size > snapshot_size) 1871 size = snapshot_size; 1872 1873 ref = auxtrace_record__reference(itr); 1874 1875 if (head > old || size <= head || mm->mask) { 1876 offset = head - size; 1877 } else { 1878 /* 1879 * When the buffer size is not a power of 2, 'head' wraps at the 1880 * highest multiple of the buffer size, so we have to subtract 1881 * the remainder here. 1882 */ 1883 u64 rem = (0ULL - mm->len) % mm->len; 1884 1885 offset = head - size - rem; 1886 } 1887 1888 if (size > head_off) { 1889 len1 = size - head_off; 1890 data1 = &data[mm->len - len1]; 1891 len2 = head_off; 1892 data2 = &data[0]; 1893 } else { 1894 len1 = size; 1895 data1 = &data[head_off - len1]; 1896 len2 = 0; 1897 data2 = NULL; 1898 } 1899 1900 if (itr->alignment) { 1901 unsigned int unwanted = len1 % itr->alignment; 1902 1903 len1 -= unwanted; 1904 size -= unwanted; 1905 } 1906 1907 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1908 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1909 if (padding) 1910 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1911 1912 memset(&ev, 0, sizeof(ev)); 1913 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1914 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1915 ev.auxtrace.size = size + padding; 1916 ev.auxtrace.offset = offset; 1917 ev.auxtrace.reference = ref; 1918 ev.auxtrace.idx = mm->idx; 1919 ev.auxtrace.tid = mm->tid; 1920 ev.auxtrace.cpu = mm->cpu; 1921 1922 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1923 return -1; 1924 1925 mm->prev = head; 1926 1927 if (!snapshot) { 1928 int err; 1929 1930 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit); 1931 if (err < 0) 1932 return err; 1933 1934 if (itr->read_finish) { 1935 err = itr->read_finish(itr, mm->idx); 1936 if (err < 0) 1937 return err; 1938 } 1939 } 1940 1941 return 1; 1942 } 1943 1944 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, 1945 struct perf_tool *tool, process_auxtrace_t fn) 1946 { 1947 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); 1948 } 1949 1950 int auxtrace_mmap__read_snapshot(struct mmap *map, 1951 struct auxtrace_record *itr, 1952 struct perf_tool *tool, process_auxtrace_t fn, 1953 size_t snapshot_size) 1954 { 1955 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); 1956 } 1957 1958 /** 1959 * struct auxtrace_cache - hash table to implement a cache 1960 * @hashtable: the hashtable 1961 * @sz: hashtable size (number of hlists) 1962 * @entry_size: size of an entry 1963 * @limit: limit the number of entries to this maximum, when reached the cache 1964 * is dropped and caching begins again with an empty cache 1965 * @cnt: current number of entries 1966 * @bits: hashtable size (@sz = 2^@bits) 1967 */ 1968 struct auxtrace_cache { 1969 struct hlist_head *hashtable; 1970 size_t sz; 1971 size_t entry_size; 1972 size_t limit; 1973 size_t cnt; 1974 unsigned int bits; 1975 }; 1976 1977 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 1978 unsigned int limit_percent) 1979 { 1980 struct auxtrace_cache *c; 1981 struct hlist_head *ht; 1982 size_t sz, i; 1983 1984 c = zalloc(sizeof(struct auxtrace_cache)); 1985 if (!c) 1986 return NULL; 1987 1988 sz = 1UL << bits; 1989 1990 ht = calloc(sz, sizeof(struct hlist_head)); 1991 if (!ht) 1992 goto out_free; 1993 1994 for (i = 0; i < sz; i++) 1995 INIT_HLIST_HEAD(&ht[i]); 1996 1997 c->hashtable = ht; 1998 c->sz = sz; 1999 c->entry_size = entry_size; 2000 c->limit = (c->sz * limit_percent) / 100; 2001 c->bits = bits; 2002 2003 return c; 2004 2005 out_free: 2006 free(c); 2007 return NULL; 2008 } 2009 2010 static void auxtrace_cache__drop(struct auxtrace_cache *c) 2011 { 2012 struct auxtrace_cache_entry *entry; 2013 struct hlist_node *tmp; 2014 size_t i; 2015 2016 if (!c) 2017 return; 2018 2019 for (i = 0; i < c->sz; i++) { 2020 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 2021 hlist_del(&entry->hash); 2022 auxtrace_cache__free_entry(c, entry); 2023 } 2024 } 2025 2026 c->cnt = 0; 2027 } 2028 2029 void auxtrace_cache__free(struct auxtrace_cache *c) 2030 { 2031 if (!c) 2032 return; 2033 2034 auxtrace_cache__drop(c); 2035 zfree(&c->hashtable); 2036 free(c); 2037 } 2038 2039 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 2040 { 2041 return malloc(c->entry_size); 2042 } 2043 2044 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 2045 void *entry) 2046 { 2047 free(entry); 2048 } 2049 2050 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 2051 struct auxtrace_cache_entry *entry) 2052 { 2053 if (c->limit && ++c->cnt > c->limit) 2054 auxtrace_cache__drop(c); 2055 2056 entry->key = key; 2057 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 2058 2059 return 0; 2060 } 2061 2062 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c, 2063 u32 key) 2064 { 2065 struct auxtrace_cache_entry *entry; 2066 struct hlist_head *hlist; 2067 struct hlist_node *n; 2068 2069 if (!c) 2070 return NULL; 2071 2072 hlist = &c->hashtable[hash_32(key, c->bits)]; 2073 hlist_for_each_entry_safe(entry, n, hlist, hash) { 2074 if (entry->key == key) { 2075 hlist_del(&entry->hash); 2076 return entry; 2077 } 2078 } 2079 2080 return NULL; 2081 } 2082 2083 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key) 2084 { 2085 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key); 2086 2087 auxtrace_cache__free_entry(c, entry); 2088 } 2089 2090 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 2091 { 2092 struct auxtrace_cache_entry *entry; 2093 struct hlist_head *hlist; 2094 2095 if (!c) 2096 return NULL; 2097 2098 hlist = &c->hashtable[hash_32(key, c->bits)]; 2099 hlist_for_each_entry(entry, hlist, hash) { 2100 if (entry->key == key) 2101 return entry; 2102 } 2103 2104 return NULL; 2105 } 2106 2107 static void addr_filter__free_str(struct addr_filter *filt) 2108 { 2109 zfree(&filt->str); 2110 filt->action = NULL; 2111 filt->sym_from = NULL; 2112 filt->sym_to = NULL; 2113 filt->filename = NULL; 2114 } 2115 2116 static struct addr_filter *addr_filter__new(void) 2117 { 2118 struct addr_filter *filt = zalloc(sizeof(*filt)); 2119 2120 if (filt) 2121 INIT_LIST_HEAD(&filt->list); 2122 2123 return filt; 2124 } 2125 2126 static void addr_filter__free(struct addr_filter *filt) 2127 { 2128 if (filt) 2129 addr_filter__free_str(filt); 2130 free(filt); 2131 } 2132 2133 static void addr_filters__add(struct addr_filters *filts, 2134 struct addr_filter *filt) 2135 { 2136 list_add_tail(&filt->list, &filts->head); 2137 filts->cnt += 1; 2138 } 2139 2140 static void addr_filters__del(struct addr_filters *filts, 2141 struct addr_filter *filt) 2142 { 2143 list_del_init(&filt->list); 2144 filts->cnt -= 1; 2145 } 2146 2147 void addr_filters__init(struct addr_filters *filts) 2148 { 2149 INIT_LIST_HEAD(&filts->head); 2150 filts->cnt = 0; 2151 } 2152 2153 void addr_filters__exit(struct addr_filters *filts) 2154 { 2155 struct addr_filter *filt, *n; 2156 2157 list_for_each_entry_safe(filt, n, &filts->head, list) { 2158 addr_filters__del(filts, filt); 2159 addr_filter__free(filt); 2160 } 2161 } 2162 2163 static int parse_num_or_str(char **inp, u64 *num, const char **str, 2164 const char *str_delim) 2165 { 2166 *inp += strspn(*inp, " "); 2167 2168 if (isdigit(**inp)) { 2169 char *endptr; 2170 2171 if (!num) 2172 return -EINVAL; 2173 errno = 0; 2174 *num = strtoull(*inp, &endptr, 0); 2175 if (errno) 2176 return -errno; 2177 if (endptr == *inp) 2178 return -EINVAL; 2179 *inp = endptr; 2180 } else { 2181 size_t n; 2182 2183 if (!str) 2184 return -EINVAL; 2185 *inp += strspn(*inp, " "); 2186 *str = *inp; 2187 n = strcspn(*inp, str_delim); 2188 if (!n) 2189 return -EINVAL; 2190 *inp += n; 2191 if (**inp) { 2192 **inp = '\0'; 2193 *inp += 1; 2194 } 2195 } 2196 return 0; 2197 } 2198 2199 static int parse_action(struct addr_filter *filt) 2200 { 2201 if (!strcmp(filt->action, "filter")) { 2202 filt->start = true; 2203 filt->range = true; 2204 } else if (!strcmp(filt->action, "start")) { 2205 filt->start = true; 2206 } else if (!strcmp(filt->action, "stop")) { 2207 filt->start = false; 2208 } else if (!strcmp(filt->action, "tracestop")) { 2209 filt->start = false; 2210 filt->range = true; 2211 filt->action += 5; /* Change 'tracestop' to 'stop' */ 2212 } else { 2213 return -EINVAL; 2214 } 2215 return 0; 2216 } 2217 2218 static int parse_sym_idx(char **inp, int *idx) 2219 { 2220 *idx = -1; 2221 2222 *inp += strspn(*inp, " "); 2223 2224 if (**inp != '#') 2225 return 0; 2226 2227 *inp += 1; 2228 2229 if (**inp == 'g' || **inp == 'G') { 2230 *inp += 1; 2231 *idx = 0; 2232 } else { 2233 unsigned long num; 2234 char *endptr; 2235 2236 errno = 0; 2237 num = strtoul(*inp, &endptr, 0); 2238 if (errno) 2239 return -errno; 2240 if (endptr == *inp || num > INT_MAX) 2241 return -EINVAL; 2242 *inp = endptr; 2243 *idx = num; 2244 } 2245 2246 return 0; 2247 } 2248 2249 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 2250 { 2251 int err = parse_num_or_str(inp, num, str, " "); 2252 2253 if (!err && *str) 2254 err = parse_sym_idx(inp, idx); 2255 2256 return err; 2257 } 2258 2259 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 2260 { 2261 char *fstr; 2262 int err; 2263 2264 filt->str = fstr = strdup(*filter_inp); 2265 if (!fstr) 2266 return -ENOMEM; 2267 2268 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 2269 if (err) 2270 goto out_err; 2271 2272 err = parse_action(filt); 2273 if (err) 2274 goto out_err; 2275 2276 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 2277 &filt->sym_from_idx); 2278 if (err) 2279 goto out_err; 2280 2281 fstr += strspn(fstr, " "); 2282 2283 if (*fstr == '/') { 2284 fstr += 1; 2285 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 2286 &filt->sym_to_idx); 2287 if (err) 2288 goto out_err; 2289 filt->range = true; 2290 } 2291 2292 fstr += strspn(fstr, " "); 2293 2294 if (*fstr == '@') { 2295 fstr += 1; 2296 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 2297 if (err) 2298 goto out_err; 2299 } 2300 2301 fstr += strspn(fstr, " ,"); 2302 2303 *filter_inp += fstr - filt->str; 2304 2305 return 0; 2306 2307 out_err: 2308 addr_filter__free_str(filt); 2309 2310 return err; 2311 } 2312 2313 int addr_filters__parse_bare_filter(struct addr_filters *filts, 2314 const char *filter) 2315 { 2316 struct addr_filter *filt; 2317 const char *fstr = filter; 2318 int err; 2319 2320 while (*fstr) { 2321 filt = addr_filter__new(); 2322 err = parse_one_filter(filt, &fstr); 2323 if (err) { 2324 addr_filter__free(filt); 2325 addr_filters__exit(filts); 2326 return err; 2327 } 2328 addr_filters__add(filts, filt); 2329 } 2330 2331 return 0; 2332 } 2333 2334 struct sym_args { 2335 const char *name; 2336 u64 start; 2337 u64 size; 2338 int idx; 2339 int cnt; 2340 bool started; 2341 bool global; 2342 bool selected; 2343 bool duplicate; 2344 bool near; 2345 }; 2346 2347 static bool kern_sym_name_match(const char *kname, const char *name) 2348 { 2349 size_t n = strlen(name); 2350 2351 return !strcmp(kname, name) || 2352 (!strncmp(kname, name, n) && kname[n] == '\t'); 2353 } 2354 2355 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 2356 { 2357 /* A function with the same name, and global or the n'th found or any */ 2358 return kallsyms__is_function(type) && 2359 kern_sym_name_match(name, args->name) && 2360 ((args->global && isupper(type)) || 2361 (args->selected && ++(args->cnt) == args->idx) || 2362 (!args->global && !args->selected)); 2363 } 2364 2365 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2366 { 2367 struct sym_args *args = arg; 2368 2369 if (args->started) { 2370 if (!args->size) 2371 args->size = start - args->start; 2372 if (args->selected) { 2373 if (args->size) 2374 return 1; 2375 } else if (kern_sym_match(args, name, type)) { 2376 args->duplicate = true; 2377 return 1; 2378 } 2379 } else if (kern_sym_match(args, name, type)) { 2380 args->started = true; 2381 args->start = start; 2382 } 2383 2384 return 0; 2385 } 2386 2387 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2388 { 2389 struct sym_args *args = arg; 2390 2391 if (kern_sym_match(args, name, type)) { 2392 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2393 ++args->cnt, start, type, name); 2394 args->near = true; 2395 } else if (args->near) { 2396 args->near = false; 2397 pr_err("\t\twhich is near\t\t%s\n", name); 2398 } 2399 2400 return 0; 2401 } 2402 2403 static int sym_not_found_error(const char *sym_name, int idx) 2404 { 2405 if (idx > 0) { 2406 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 2407 idx, sym_name); 2408 } else if (!idx) { 2409 pr_err("Global symbol '%s' not found.\n", sym_name); 2410 } else { 2411 pr_err("Symbol '%s' not found.\n", sym_name); 2412 } 2413 pr_err("Note that symbols must be functions.\n"); 2414 2415 return -EINVAL; 2416 } 2417 2418 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 2419 { 2420 struct sym_args args = { 2421 .name = sym_name, 2422 .idx = idx, 2423 .global = !idx, 2424 .selected = idx > 0, 2425 }; 2426 int err; 2427 2428 *start = 0; 2429 *size = 0; 2430 2431 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 2432 if (err < 0) { 2433 pr_err("Failed to parse /proc/kallsyms\n"); 2434 return err; 2435 } 2436 2437 if (args.duplicate) { 2438 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 2439 args.cnt = 0; 2440 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 2441 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2442 sym_name); 2443 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2444 return -EINVAL; 2445 } 2446 2447 if (!args.started) { 2448 pr_err("Kernel symbol lookup: "); 2449 return sym_not_found_error(sym_name, idx); 2450 } 2451 2452 *start = args.start; 2453 *size = args.size; 2454 2455 return 0; 2456 } 2457 2458 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 2459 char type, u64 start) 2460 { 2461 struct sym_args *args = arg; 2462 u64 size; 2463 2464 if (!kallsyms__is_function(type)) 2465 return 0; 2466 2467 if (!args->started) { 2468 args->started = true; 2469 args->start = start; 2470 } 2471 /* Don't know exactly where the kernel ends, so we add a page */ 2472 size = round_up(start, page_size) + page_size - args->start; 2473 if (size > args->size) 2474 args->size = size; 2475 2476 return 0; 2477 } 2478 2479 static int addr_filter__entire_kernel(struct addr_filter *filt) 2480 { 2481 struct sym_args args = { .started = false }; 2482 int err; 2483 2484 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 2485 if (err < 0 || !args.started) { 2486 pr_err("Failed to parse /proc/kallsyms\n"); 2487 return err; 2488 } 2489 2490 filt->addr = args.start; 2491 filt->size = args.size; 2492 2493 return 0; 2494 } 2495 2496 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 2497 { 2498 if (start + size >= filt->addr) 2499 return 0; 2500 2501 if (filt->sym_from) { 2502 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 2503 filt->sym_to, start, filt->sym_from, filt->addr); 2504 } else { 2505 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 2506 filt->sym_to, start, filt->addr); 2507 } 2508 2509 return -EINVAL; 2510 } 2511 2512 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 2513 { 2514 bool no_size = false; 2515 u64 start, size; 2516 int err; 2517 2518 if (symbol_conf.kptr_restrict) { 2519 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 2520 return -EINVAL; 2521 } 2522 2523 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 2524 return addr_filter__entire_kernel(filt); 2525 2526 if (filt->sym_from) { 2527 err = find_kern_sym(filt->sym_from, &start, &size, 2528 filt->sym_from_idx); 2529 if (err) 2530 return err; 2531 filt->addr = start; 2532 if (filt->range && !filt->size && !filt->sym_to) { 2533 filt->size = size; 2534 no_size = !size; 2535 } 2536 } 2537 2538 if (filt->sym_to) { 2539 err = find_kern_sym(filt->sym_to, &start, &size, 2540 filt->sym_to_idx); 2541 if (err) 2542 return err; 2543 2544 err = check_end_after_start(filt, start, size); 2545 if (err) 2546 return err; 2547 filt->size = start + size - filt->addr; 2548 no_size = !size; 2549 } 2550 2551 /* The very last symbol in kallsyms does not imply a particular size */ 2552 if (no_size) { 2553 pr_err("Cannot determine size of symbol '%s'\n", 2554 filt->sym_to ? filt->sym_to : filt->sym_from); 2555 return -EINVAL; 2556 } 2557 2558 return 0; 2559 } 2560 2561 static struct dso *load_dso(const char *name) 2562 { 2563 struct map *map; 2564 struct dso *dso; 2565 2566 map = dso__new_map(name); 2567 if (!map) 2568 return NULL; 2569 2570 if (map__load(map) < 0) 2571 pr_err("File '%s' not found or has no symbols.\n", name); 2572 2573 dso = dso__get(map__dso(map)); 2574 2575 map__put(map); 2576 2577 return dso; 2578 } 2579 2580 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 2581 int idx) 2582 { 2583 /* Same name, and global or the n'th found or any */ 2584 return !arch__compare_symbol_names(name, sym->name) && 2585 ((!idx && sym->binding == STB_GLOBAL) || 2586 (idx > 0 && ++*cnt == idx) || 2587 idx < 0); 2588 } 2589 2590 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 2591 { 2592 struct symbol *sym; 2593 bool near = false; 2594 int cnt = 0; 2595 2596 pr_err("Multiple symbols with name '%s'\n", sym_name); 2597 2598 sym = dso__first_symbol(dso); 2599 while (sym) { 2600 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 2601 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2602 ++cnt, sym->start, 2603 sym->binding == STB_GLOBAL ? 'g' : 2604 sym->binding == STB_LOCAL ? 'l' : 'w', 2605 sym->name); 2606 near = true; 2607 } else if (near) { 2608 near = false; 2609 pr_err("\t\twhich is near\t\t%s\n", sym->name); 2610 } 2611 sym = dso__next_symbol(sym); 2612 } 2613 2614 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2615 sym_name); 2616 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2617 } 2618 2619 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 2620 u64 *size, int idx) 2621 { 2622 struct symbol *sym; 2623 int cnt = 0; 2624 2625 *start = 0; 2626 *size = 0; 2627 2628 sym = dso__first_symbol(dso); 2629 while (sym) { 2630 if (*start) { 2631 if (!*size) 2632 *size = sym->start - *start; 2633 if (idx > 0) { 2634 if (*size) 2635 return 0; 2636 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2637 print_duplicate_syms(dso, sym_name); 2638 return -EINVAL; 2639 } 2640 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2641 *start = sym->start; 2642 *size = sym->end - sym->start; 2643 } 2644 sym = dso__next_symbol(sym); 2645 } 2646 2647 if (!*start) 2648 return sym_not_found_error(sym_name, idx); 2649 2650 return 0; 2651 } 2652 2653 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 2654 { 2655 if (dso__data_file_size(dso, NULL)) { 2656 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 2657 filt->filename); 2658 return -EINVAL; 2659 } 2660 2661 filt->addr = 0; 2662 filt->size = dso__data(dso)->file_size; 2663 2664 return 0; 2665 } 2666 2667 static int addr_filter__resolve_syms(struct addr_filter *filt) 2668 { 2669 u64 start, size; 2670 struct dso *dso; 2671 int err = 0; 2672 2673 if (!filt->sym_from && !filt->sym_to) 2674 return 0; 2675 2676 if (!filt->filename) 2677 return addr_filter__resolve_kernel_syms(filt); 2678 2679 dso = load_dso(filt->filename); 2680 if (!dso) { 2681 pr_err("Failed to load symbols from: %s\n", filt->filename); 2682 return -EINVAL; 2683 } 2684 2685 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2686 err = addr_filter__entire_dso(filt, dso); 2687 goto put_dso; 2688 } 2689 2690 if (filt->sym_from) { 2691 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2692 filt->sym_from_idx); 2693 if (err) 2694 goto put_dso; 2695 filt->addr = start; 2696 if (filt->range && !filt->size && !filt->sym_to) 2697 filt->size = size; 2698 } 2699 2700 if (filt->sym_to) { 2701 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2702 filt->sym_to_idx); 2703 if (err) 2704 goto put_dso; 2705 2706 err = check_end_after_start(filt, start, size); 2707 if (err) 2708 return err; 2709 2710 filt->size = start + size - filt->addr; 2711 } 2712 2713 put_dso: 2714 dso__put(dso); 2715 2716 return err; 2717 } 2718 2719 static char *addr_filter__to_str(struct addr_filter *filt) 2720 { 2721 char filename_buf[PATH_MAX]; 2722 const char *at = ""; 2723 const char *fn = ""; 2724 char *filter; 2725 int err; 2726 2727 if (filt->filename) { 2728 at = "@"; 2729 fn = realpath(filt->filename, filename_buf); 2730 if (!fn) 2731 return NULL; 2732 } 2733 2734 if (filt->range) { 2735 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2736 filt->action, filt->addr, filt->size, at, fn); 2737 } else { 2738 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2739 filt->action, filt->addr, at, fn); 2740 } 2741 2742 return err < 0 ? NULL : filter; 2743 } 2744 2745 static int parse_addr_filter(struct evsel *evsel, const char *filter, 2746 int max_nr) 2747 { 2748 struct addr_filters filts; 2749 struct addr_filter *filt; 2750 int err; 2751 2752 addr_filters__init(&filts); 2753 2754 err = addr_filters__parse_bare_filter(&filts, filter); 2755 if (err) 2756 goto out_exit; 2757 2758 if (filts.cnt > max_nr) { 2759 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2760 filts.cnt, max_nr); 2761 err = -EINVAL; 2762 goto out_exit; 2763 } 2764 2765 list_for_each_entry(filt, &filts.head, list) { 2766 char *new_filter; 2767 2768 err = addr_filter__resolve_syms(filt); 2769 if (err) 2770 goto out_exit; 2771 2772 new_filter = addr_filter__to_str(filt); 2773 if (!new_filter) { 2774 err = -ENOMEM; 2775 goto out_exit; 2776 } 2777 2778 if (evsel__append_addr_filter(evsel, new_filter)) { 2779 err = -ENOMEM; 2780 goto out_exit; 2781 } 2782 } 2783 2784 out_exit: 2785 addr_filters__exit(&filts); 2786 2787 if (err) { 2788 pr_err("Failed to parse address filter: '%s'\n", filter); 2789 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2790 pr_err("Where multiple filters are separated by space or comma.\n"); 2791 } 2792 2793 return err; 2794 } 2795 2796 static int evsel__nr_addr_filter(struct evsel *evsel) 2797 { 2798 struct perf_pmu *pmu = evsel__find_pmu(evsel); 2799 int nr_addr_filters = 0; 2800 2801 if (!pmu) 2802 return 0; 2803 2804 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2805 2806 return nr_addr_filters; 2807 } 2808 2809 int auxtrace_parse_filters(struct evlist *evlist) 2810 { 2811 struct evsel *evsel; 2812 char *filter; 2813 int err, max_nr; 2814 2815 evlist__for_each_entry(evlist, evsel) { 2816 filter = evsel->filter; 2817 max_nr = evsel__nr_addr_filter(evsel); 2818 if (!filter || !max_nr) 2819 continue; 2820 evsel->filter = NULL; 2821 err = parse_addr_filter(evsel, filter, max_nr); 2822 free(filter); 2823 if (err) 2824 return err; 2825 pr_debug("Address filter: %s\n", evsel->filter); 2826 } 2827 2828 return 0; 2829 } 2830 2831 int auxtrace__process_event(struct perf_session *session, union perf_event *event, 2832 struct perf_sample *sample, struct perf_tool *tool) 2833 { 2834 if (!session->auxtrace) 2835 return 0; 2836 2837 return session->auxtrace->process_event(session, event, sample, tool); 2838 } 2839 2840 void auxtrace__dump_auxtrace_sample(struct perf_session *session, 2841 struct perf_sample *sample) 2842 { 2843 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample || 2844 auxtrace__dont_decode(session)) 2845 return; 2846 2847 session->auxtrace->dump_auxtrace_sample(session, sample); 2848 } 2849 2850 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool) 2851 { 2852 if (!session->auxtrace) 2853 return 0; 2854 2855 return session->auxtrace->flush_events(session, tool); 2856 } 2857 2858 void auxtrace__free_events(struct perf_session *session) 2859 { 2860 if (!session->auxtrace) 2861 return; 2862 2863 return session->auxtrace->free_events(session); 2864 } 2865 2866 void auxtrace__free(struct perf_session *session) 2867 { 2868 if (!session->auxtrace) 2869 return; 2870 2871 return session->auxtrace->free(session); 2872 } 2873 2874 bool auxtrace__evsel_is_auxtrace(struct perf_session *session, 2875 struct evsel *evsel) 2876 { 2877 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace) 2878 return false; 2879 2880 return session->auxtrace->evsel_is_auxtrace(session, evsel); 2881 } 2882
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.