~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/util/callchain.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2009-2011, Frederic Weisbecker <fweisbec@gmail.com>
  4  *
  5  * Handle the callchains from the stream in an ad-hoc radix tree and then
  6  * sort them in an rbtree.
  7  *
  8  * Using a radix for code path provides a fast retrieval and factorizes
  9  * memory use. Also that lets us use the paths in a hierarchical graph view.
 10  *
 11  */
 12 
 13 #include <inttypes.h>
 14 #include <stdlib.h>
 15 #include <stdio.h>
 16 #include <stdbool.h>
 17 #include <errno.h>
 18 #include <math.h>
 19 #include <linux/string.h>
 20 #include <linux/zalloc.h>
 21 
 22 #include "asm/bug.h"
 23 
 24 #include "debug.h"
 25 #include "dso.h"
 26 #include "event.h"
 27 #include "hist.h"
 28 #include "sort.h"
 29 #include "machine.h"
 30 #include "map.h"
 31 #include "callchain.h"
 32 #include "branch.h"
 33 #include "symbol.h"
 34 #include "util.h"
 35 #include "../perf.h"
 36 
 37 #define CALLCHAIN_PARAM_DEFAULT                 \
 38         .mode           = CHAIN_GRAPH_ABS,      \
 39         .min_percent    = 0.5,                  \
 40         .order          = ORDER_CALLEE,         \
 41         .key            = CCKEY_FUNCTION,       \
 42         .value          = CCVAL_PERCENT,        \
 43 
 44 struct callchain_param callchain_param = {
 45         CALLCHAIN_PARAM_DEFAULT
 46 };
 47 
 48 /*
 49  * Are there any events usind DWARF callchains?
 50  *
 51  * I.e.
 52  *
 53  * -e cycles/call-graph=dwarf/
 54  */
 55 bool dwarf_callchain_users;
 56 
 57 struct callchain_param callchain_param_default = {
 58         CALLCHAIN_PARAM_DEFAULT
 59 };
 60 
 61 /* Used for thread-local struct callchain_cursor. */
 62 static pthread_key_t callchain_cursor;
 63 
 64 int parse_callchain_record_opt(const char *arg, struct callchain_param *param)
 65 {
 66         return parse_callchain_record(arg, param);
 67 }
 68 
 69 static int parse_callchain_mode(const char *value)
 70 {
 71         if (!strncmp(value, "graph", strlen(value))) {
 72                 callchain_param.mode = CHAIN_GRAPH_ABS;
 73                 return 0;
 74         }
 75         if (!strncmp(value, "flat", strlen(value))) {
 76                 callchain_param.mode = CHAIN_FLAT;
 77                 return 0;
 78         }
 79         if (!strncmp(value, "fractal", strlen(value))) {
 80                 callchain_param.mode = CHAIN_GRAPH_REL;
 81                 return 0;
 82         }
 83         if (!strncmp(value, "folded", strlen(value))) {
 84                 callchain_param.mode = CHAIN_FOLDED;
 85                 return 0;
 86         }
 87         return -1;
 88 }
 89 
 90 static int parse_callchain_order(const char *value)
 91 {
 92         if (!strncmp(value, "caller", strlen(value))) {
 93                 callchain_param.order = ORDER_CALLER;
 94                 callchain_param.order_set = true;
 95                 return 0;
 96         }
 97         if (!strncmp(value, "callee", strlen(value))) {
 98                 callchain_param.order = ORDER_CALLEE;
 99                 callchain_param.order_set = true;
100                 return 0;
101         }
102         return -1;
103 }
104 
105 static int parse_callchain_sort_key(const char *value)
106 {
107         if (!strncmp(value, "function", strlen(value))) {
108                 callchain_param.key = CCKEY_FUNCTION;
109                 return 0;
110         }
111         if (!strncmp(value, "address", strlen(value))) {
112                 callchain_param.key = CCKEY_ADDRESS;
113                 return 0;
114         }
115         if (!strncmp(value, "srcline", strlen(value))) {
116                 callchain_param.key = CCKEY_SRCLINE;
117                 return 0;
118         }
119         if (!strncmp(value, "branch", strlen(value))) {
120                 callchain_param.branch_callstack = 1;
121                 return 0;
122         }
123         return -1;
124 }
125 
126 static int parse_callchain_value(const char *value)
127 {
128         if (!strncmp(value, "percent", strlen(value))) {
129                 callchain_param.value = CCVAL_PERCENT;
130                 return 0;
131         }
132         if (!strncmp(value, "period", strlen(value))) {
133                 callchain_param.value = CCVAL_PERIOD;
134                 return 0;
135         }
136         if (!strncmp(value, "count", strlen(value))) {
137                 callchain_param.value = CCVAL_COUNT;
138                 return 0;
139         }
140         return -1;
141 }
142 
143 static int get_stack_size(const char *str, unsigned long *_size)
144 {
145         char *endptr;
146         unsigned long size;
147         unsigned long max_size = round_down(USHRT_MAX, sizeof(u64));
148 
149         size = strtoul(str, &endptr, 0);
150 
151         do {
152                 if (*endptr)
153                         break;
154 
155                 size = round_up(size, sizeof(u64));
156                 if (!size || size > max_size)
157                         break;
158 
159                 *_size = size;
160                 return 0;
161 
162         } while (0);
163 
164         pr_err("callchain: Incorrect stack dump size (max %ld): %s\n",
165                max_size, str);
166         return -1;
167 }
168 
169 static int
170 __parse_callchain_report_opt(const char *arg, bool allow_record_opt)
171 {
172         char *tok;
173         char *endptr, *saveptr = NULL;
174         bool minpcnt_set = false;
175         bool record_opt_set = false;
176         bool try_stack_size = false;
177 
178         callchain_param.enabled = true;
179         symbol_conf.use_callchain = true;
180 
181         if (!arg)
182                 return 0;
183 
184         while ((tok = strtok_r((char *)arg, ",", &saveptr)) != NULL) {
185                 if (!strncmp(tok, "none", strlen(tok))) {
186                         callchain_param.mode = CHAIN_NONE;
187                         callchain_param.enabled = false;
188                         symbol_conf.use_callchain = false;
189                         return 0;
190                 }
191 
192                 if (!parse_callchain_mode(tok) ||
193                     !parse_callchain_order(tok) ||
194                     !parse_callchain_sort_key(tok) ||
195                     !parse_callchain_value(tok)) {
196                         /* parsing ok - move on to the next */
197                         try_stack_size = false;
198                         goto next;
199                 } else if (allow_record_opt && !record_opt_set) {
200                         if (parse_callchain_record(tok, &callchain_param))
201                                 goto try_numbers;
202 
203                         /* assume that number followed by 'dwarf' is stack size */
204                         if (callchain_param.record_mode == CALLCHAIN_DWARF)
205                                 try_stack_size = true;
206 
207                         record_opt_set = true;
208                         goto next;
209                 }
210 
211 try_numbers:
212                 if (try_stack_size) {
213                         unsigned long size = 0;
214 
215                         if (get_stack_size(tok, &size) < 0)
216                                 return -1;
217                         callchain_param.dump_size = size;
218                         try_stack_size = false;
219                 } else if (!minpcnt_set) {
220                         /* try to get the min percent */
221                         callchain_param.min_percent = strtod(tok, &endptr);
222                         if (tok == endptr)
223                                 return -1;
224                         minpcnt_set = true;
225                 } else {
226                         /* try print limit at last */
227                         callchain_param.print_limit = strtoul(tok, &endptr, 0);
228                         if (tok == endptr)
229                                 return -1;
230                 }
231 next:
232                 arg = NULL;
233         }
234 
235         if (callchain_register_param(&callchain_param) < 0) {
236                 pr_err("Can't register callchain params\n");
237                 return -1;
238         }
239         return 0;
240 }
241 
242 int parse_callchain_report_opt(const char *arg)
243 {
244         return __parse_callchain_report_opt(arg, false);
245 }
246 
247 int parse_callchain_top_opt(const char *arg)
248 {
249         return __parse_callchain_report_opt(arg, true);
250 }
251 
252 int parse_callchain_record(const char *arg, struct callchain_param *param)
253 {
254         char *tok, *name, *saveptr = NULL;
255         char *buf;
256         int ret = -1;
257 
258         /* We need buffer that we know we can write to. */
259         buf = malloc(strlen(arg) + 1);
260         if (!buf)
261                 return -ENOMEM;
262 
263         strcpy(buf, arg);
264 
265         tok = strtok_r((char *)buf, ",", &saveptr);
266         name = tok ? : (char *)buf;
267 
268         do {
269                 /* Framepointer style */
270                 if (!strncmp(name, "fp", sizeof("fp"))) {
271                         ret = 0;
272                         param->record_mode = CALLCHAIN_FP;
273 
274                         tok = strtok_r(NULL, ",", &saveptr);
275                         if (tok) {
276                                 unsigned long size;
277 
278                                 size = strtoul(tok, &name, 0);
279                                 if (size < (unsigned) sysctl__max_stack())
280                                         param->max_stack = size;
281                         }
282                         break;
283 
284                 /* Dwarf style */
285                 } else if (!strncmp(name, "dwarf", sizeof("dwarf"))) {
286                         const unsigned long default_stack_dump_size = 8192;
287 
288                         ret = 0;
289                         param->record_mode = CALLCHAIN_DWARF;
290                         param->dump_size = default_stack_dump_size;
291                         dwarf_callchain_users = true;
292 
293                         tok = strtok_r(NULL, ",", &saveptr);
294                         if (tok) {
295                                 unsigned long size = 0;
296 
297                                 ret = get_stack_size(tok, &size);
298                                 param->dump_size = size;
299                         }
300                 } else if (!strncmp(name, "lbr", sizeof("lbr"))) {
301                         if (!strtok_r(NULL, ",", &saveptr)) {
302                                 param->record_mode = CALLCHAIN_LBR;
303                                 ret = 0;
304                         } else
305                                 pr_err("callchain: No more arguments "
306                                         "needed for --call-graph lbr\n");
307                         break;
308                 } else {
309                         pr_err("callchain: Unknown --call-graph option "
310                                "value: %s\n", arg);
311                         break;
312                 }
313 
314         } while (0);
315 
316         free(buf);
317         return ret;
318 }
319 
320 int perf_callchain_config(const char *var, const char *value)
321 {
322         char *endptr;
323 
324         if (!strstarts(var, "call-graph."))
325                 return 0;
326         var += sizeof("call-graph.") - 1;
327 
328         if (!strcmp(var, "record-mode"))
329                 return parse_callchain_record_opt(value, &callchain_param);
330         if (!strcmp(var, "dump-size")) {
331                 unsigned long size = 0;
332                 int ret;
333 
334                 ret = get_stack_size(value, &size);
335                 callchain_param.dump_size = size;
336 
337                 return ret;
338         }
339         if (!strcmp(var, "print-type")){
340                 int ret;
341                 ret = parse_callchain_mode(value);
342                 if (ret == -1)
343                         pr_err("Invalid callchain mode: %s\n", value);
344                 return ret;
345         }
346         if (!strcmp(var, "order")){
347                 int ret;
348                 ret = parse_callchain_order(value);
349                 if (ret == -1)
350                         pr_err("Invalid callchain order: %s\n", value);
351                 return ret;
352         }
353         if (!strcmp(var, "sort-key")){
354                 int ret;
355                 ret = parse_callchain_sort_key(value);
356                 if (ret == -1)
357                         pr_err("Invalid callchain sort key: %s\n", value);
358                 return ret;
359         }
360         if (!strcmp(var, "threshold")) {
361                 callchain_param.min_percent = strtod(value, &endptr);
362                 if (value == endptr) {
363                         pr_err("Invalid callchain threshold: %s\n", value);
364                         return -1;
365                 }
366         }
367         if (!strcmp(var, "print-limit")) {
368                 callchain_param.print_limit = strtod(value, &endptr);
369                 if (value == endptr) {
370                         pr_err("Invalid callchain print limit: %s\n", value);
371                         return -1;
372                 }
373         }
374 
375         return 0;
376 }
377 
378 static void
379 rb_insert_callchain(struct rb_root *root, struct callchain_node *chain,
380                     enum chain_mode mode)
381 {
382         struct rb_node **p = &root->rb_node;
383         struct rb_node *parent = NULL;
384         struct callchain_node *rnode;
385         u64 chain_cumul = callchain_cumul_hits(chain);
386 
387         while (*p) {
388                 u64 rnode_cumul;
389 
390                 parent = *p;
391                 rnode = rb_entry(parent, struct callchain_node, rb_node);
392                 rnode_cumul = callchain_cumul_hits(rnode);
393 
394                 switch (mode) {
395                 case CHAIN_FLAT:
396                 case CHAIN_FOLDED:
397                         if (rnode->hit < chain->hit)
398                                 p = &(*p)->rb_left;
399                         else
400                                 p = &(*p)->rb_right;
401                         break;
402                 case CHAIN_GRAPH_ABS: /* Falldown */
403                 case CHAIN_GRAPH_REL:
404                         if (rnode_cumul < chain_cumul)
405                                 p = &(*p)->rb_left;
406                         else
407                                 p = &(*p)->rb_right;
408                         break;
409                 case CHAIN_NONE:
410                 default:
411                         break;
412                 }
413         }
414 
415         rb_link_node(&chain->rb_node, parent, p);
416         rb_insert_color(&chain->rb_node, root);
417 }
418 
419 static void
420 __sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node,
421                   u64 min_hit)
422 {
423         struct rb_node *n;
424         struct callchain_node *child;
425 
426         n = rb_first(&node->rb_root_in);
427         while (n) {
428                 child = rb_entry(n, struct callchain_node, rb_node_in);
429                 n = rb_next(n);
430 
431                 __sort_chain_flat(rb_root, child, min_hit);
432         }
433 
434         if (node->hit && node->hit >= min_hit)
435                 rb_insert_callchain(rb_root, node, CHAIN_FLAT);
436 }
437 
438 /*
439  * Once we get every callchains from the stream, we can now
440  * sort them by hit
441  */
442 static void
443 sort_chain_flat(struct rb_root *rb_root, struct callchain_root *root,
444                 u64 min_hit, struct callchain_param *param __maybe_unused)
445 {
446         *rb_root = RB_ROOT;
447         __sort_chain_flat(rb_root, &root->node, min_hit);
448 }
449 
450 static void __sort_chain_graph_abs(struct callchain_node *node,
451                                    u64 min_hit)
452 {
453         struct rb_node *n;
454         struct callchain_node *child;
455 
456         node->rb_root = RB_ROOT;
457         n = rb_first(&node->rb_root_in);
458 
459         while (n) {
460                 child = rb_entry(n, struct callchain_node, rb_node_in);
461                 n = rb_next(n);
462 
463                 __sort_chain_graph_abs(child, min_hit);
464                 if (callchain_cumul_hits(child) >= min_hit)
465                         rb_insert_callchain(&node->rb_root, child,
466                                             CHAIN_GRAPH_ABS);
467         }
468 }
469 
470 static void
471 sort_chain_graph_abs(struct rb_root *rb_root, struct callchain_root *chain_root,
472                      u64 min_hit, struct callchain_param *param __maybe_unused)
473 {
474         __sort_chain_graph_abs(&chain_root->node, min_hit);
475         rb_root->rb_node = chain_root->node.rb_root.rb_node;
476 }
477 
478 static void __sort_chain_graph_rel(struct callchain_node *node,
479                                    double min_percent)
480 {
481         struct rb_node *n;
482         struct callchain_node *child;
483         u64 min_hit;
484 
485         node->rb_root = RB_ROOT;
486         min_hit = ceil(node->children_hit * min_percent);
487 
488         n = rb_first(&node->rb_root_in);
489         while (n) {
490                 child = rb_entry(n, struct callchain_node, rb_node_in);
491                 n = rb_next(n);
492 
493                 __sort_chain_graph_rel(child, min_percent);
494                 if (callchain_cumul_hits(child) >= min_hit)
495                         rb_insert_callchain(&node->rb_root, child,
496                                             CHAIN_GRAPH_REL);
497         }
498 }
499 
500 static void
501 sort_chain_graph_rel(struct rb_root *rb_root, struct callchain_root *chain_root,
502                      u64 min_hit __maybe_unused, struct callchain_param *param)
503 {
504         __sort_chain_graph_rel(&chain_root->node, param->min_percent / 100.0);
505         rb_root->rb_node = chain_root->node.rb_root.rb_node;
506 }
507 
508 int callchain_register_param(struct callchain_param *param)
509 {
510         switch (param->mode) {
511         case CHAIN_GRAPH_ABS:
512                 param->sort = sort_chain_graph_abs;
513                 break;
514         case CHAIN_GRAPH_REL:
515                 param->sort = sort_chain_graph_rel;
516                 break;
517         case CHAIN_FLAT:
518         case CHAIN_FOLDED:
519                 param->sort = sort_chain_flat;
520                 break;
521         case CHAIN_NONE:
522         default:
523                 return -1;
524         }
525         return 0;
526 }
527 
528 /*
529  * Create a child for a parent. If inherit_children, then the new child
530  * will become the new parent of it's parent children
531  */
532 static struct callchain_node *
533 create_child(struct callchain_node *parent, bool inherit_children)
534 {
535         struct callchain_node *new;
536 
537         new = zalloc(sizeof(*new));
538         if (!new) {
539                 perror("not enough memory to create child for code path tree");
540                 return NULL;
541         }
542         new->parent = parent;
543         INIT_LIST_HEAD(&new->val);
544         INIT_LIST_HEAD(&new->parent_val);
545 
546         if (inherit_children) {
547                 struct rb_node *n;
548                 struct callchain_node *child;
549 
550                 new->rb_root_in = parent->rb_root_in;
551                 parent->rb_root_in = RB_ROOT;
552 
553                 n = rb_first(&new->rb_root_in);
554                 while (n) {
555                         child = rb_entry(n, struct callchain_node, rb_node_in);
556                         child->parent = new;
557                         n = rb_next(n);
558                 }
559 
560                 /* make it the first child */
561                 rb_link_node(&new->rb_node_in, NULL, &parent->rb_root_in.rb_node);
562                 rb_insert_color(&new->rb_node_in, &parent->rb_root_in);
563         }
564 
565         return new;
566 }
567 
568 
569 /*
570  * Fill the node with callchain values
571  */
572 static int
573 fill_node(struct callchain_node *node, struct callchain_cursor *cursor)
574 {
575         struct callchain_cursor_node *cursor_node;
576 
577         node->val_nr = cursor->nr - cursor->pos;
578         if (!node->val_nr)
579                 pr_warning("Warning: empty node in callchain tree\n");
580 
581         cursor_node = callchain_cursor_current(cursor);
582 
583         while (cursor_node) {
584                 struct callchain_list *call;
585 
586                 call = zalloc(sizeof(*call));
587                 if (!call) {
588                         perror("not enough memory for the code path tree");
589                         return -ENOMEM;
590                 }
591                 call->ip = cursor_node->ip;
592                 call->ms = cursor_node->ms;
593                 call->ms.map = map__get(call->ms.map);
594                 call->ms.maps = maps__get(call->ms.maps);
595                 call->srcline = cursor_node->srcline;
596 
597                 if (cursor_node->branch) {
598                         call->branch_count = 1;
599 
600                         if (cursor_node->branch_from) {
601                                 /*
602                                  * branch_from is set with value somewhere else
603                                  * to imply it's "to" of a branch.
604                                  */
605                                 if (!call->brtype_stat) {
606                                         call->brtype_stat = zalloc(sizeof(*call->brtype_stat));
607                                         if (!call->brtype_stat) {
608                                                 perror("not enough memory for the code path branch statistics");
609                                                 zfree(&call->brtype_stat);
610                                                 return -ENOMEM;
611                                         }
612                                 }
613                                 call->brtype_stat->branch_to = true;
614 
615                                 if (cursor_node->branch_flags.predicted)
616                                         call->predicted_count = 1;
617 
618                                 if (cursor_node->branch_flags.abort)
619                                         call->abort_count = 1;
620 
621                                 branch_type_count(call->brtype_stat,
622                                                   &cursor_node->branch_flags,
623                                                   cursor_node->branch_from,
624                                                   cursor_node->ip);
625                         } else {
626                                 /*
627                                  * It's "from" of a branch
628                                  */
629                                 if (call->brtype_stat && call->brtype_stat->branch_to)
630                                         call->brtype_stat->branch_to = false;
631                                 call->cycles_count =
632                                         cursor_node->branch_flags.cycles;
633                                 call->iter_count = cursor_node->nr_loop_iter;
634                                 call->iter_cycles = cursor_node->iter_cycles;
635                         }
636                 }
637 
638                 list_add_tail(&call->list, &node->val);
639 
640                 callchain_cursor_advance(cursor);
641                 cursor_node = callchain_cursor_current(cursor);
642         }
643         return 0;
644 }
645 
646 static struct callchain_node *
647 add_child(struct callchain_node *parent,
648           struct callchain_cursor *cursor,
649           u64 period)
650 {
651         struct callchain_node *new;
652 
653         new = create_child(parent, false);
654         if (new == NULL)
655                 return NULL;
656 
657         if (fill_node(new, cursor) < 0) {
658                 struct callchain_list *call, *tmp;
659 
660                 list_for_each_entry_safe(call, tmp, &new->val, list) {
661                         list_del_init(&call->list);
662                         map_symbol__exit(&call->ms);
663                         zfree(&call->brtype_stat);
664                         free(call);
665                 }
666                 free(new);
667                 return NULL;
668         }
669 
670         new->children_hit = 0;
671         new->hit = period;
672         new->children_count = 0;
673         new->count = 1;
674         return new;
675 }
676 
677 enum match_result {
678         MATCH_ERROR  = -1,
679         MATCH_EQ,
680         MATCH_LT,
681         MATCH_GT,
682 };
683 
684 static enum match_result match_chain_strings(const char *left,
685                                              const char *right)
686 {
687         enum match_result ret = MATCH_EQ;
688         int cmp;
689 
690         if (left && right)
691                 cmp = strcmp(left, right);
692         else if (!left && right)
693                 cmp = 1;
694         else if (left && !right)
695                 cmp = -1;
696         else
697                 return MATCH_ERROR;
698 
699         if (cmp != 0)
700                 ret = cmp < 0 ? MATCH_LT : MATCH_GT;
701 
702         return ret;
703 }
704 
705 /*
706  * We need to always use relative addresses because we're aggregating
707  * callchains from multiple threads, i.e. different address spaces, so
708  * comparing absolute addresses make no sense as a symbol in a DSO may end up
709  * in a different address when used in a different binary or even the same
710  * binary but with some sort of address randomization technique, thus we need
711  * to compare just relative addresses. -acme
712  */
713 static enum match_result match_chain_dso_addresses(struct map *left_map, u64 left_ip,
714                                                    struct map *right_map, u64 right_ip)
715 {
716         struct dso *left_dso = left_map ? map__dso(left_map) : NULL;
717         struct dso *right_dso = right_map ? map__dso(right_map) : NULL;
718 
719         if (left_dso != right_dso)
720                 return left_dso < right_dso ? MATCH_LT : MATCH_GT;
721 
722         if (left_ip != right_ip)
723                 return left_ip < right_ip ? MATCH_LT : MATCH_GT;
724 
725         return MATCH_EQ;
726 }
727 
728 static enum match_result match_chain(struct callchain_cursor_node *node,
729                                      struct callchain_list *cnode)
730 {
731         enum match_result match = MATCH_ERROR;
732 
733         switch (callchain_param.key) {
734         case CCKEY_SRCLINE:
735                 match = match_chain_strings(cnode->srcline, node->srcline);
736                 if (match != MATCH_ERROR)
737                         break;
738                 /* otherwise fall-back to symbol-based comparison below */
739                 fallthrough;
740         case CCKEY_FUNCTION:
741                 if (node->ms.sym && cnode->ms.sym) {
742                         /*
743                          * Compare inlined frames based on their symbol name
744                          * because different inlined frames will have the same
745                          * symbol start. Otherwise do a faster comparison based
746                          * on the symbol start address.
747                          */
748                         if (cnode->ms.sym->inlined || node->ms.sym->inlined) {
749                                 match = match_chain_strings(cnode->ms.sym->name,
750                                                             node->ms.sym->name);
751                                 if (match != MATCH_ERROR)
752                                         break;
753                         } else {
754                                 match = match_chain_dso_addresses(cnode->ms.map, cnode->ms.sym->start,
755                                                                   node->ms.map, node->ms.sym->start);
756                                 break;
757                         }
758                 }
759                 /* otherwise fall-back to IP-based comparison below */
760                 fallthrough;
761         case CCKEY_ADDRESS:
762         default:
763                 match = match_chain_dso_addresses(cnode->ms.map, cnode->ip, node->ms.map, node->ip);
764                 break;
765         }
766 
767         if (match == MATCH_EQ && node->branch) {
768                 cnode->branch_count++;
769 
770                 if (node->branch_from) {
771                         /*
772                          * It's "to" of a branch
773                          */
774                         if (!cnode->brtype_stat) {
775                                 cnode->brtype_stat = zalloc(sizeof(*cnode->brtype_stat));
776                                 if (!cnode->brtype_stat) {
777                                         perror("not enough memory for the code path branch statistics");
778                                         return MATCH_ERROR;
779                                 }
780                         }
781                         cnode->brtype_stat->branch_to = true;
782 
783                         if (node->branch_flags.predicted)
784                                 cnode->predicted_count++;
785 
786                         if (node->branch_flags.abort)
787                                 cnode->abort_count++;
788 
789                         branch_type_count(cnode->brtype_stat,
790                                           &node->branch_flags,
791                                           node->branch_from,
792                                           node->ip);
793                 } else {
794                         /*
795                          * It's "from" of a branch
796                          */
797                         if (cnode->brtype_stat && cnode->brtype_stat->branch_to)
798                                 cnode->brtype_stat->branch_to = false;
799                         cnode->cycles_count += node->branch_flags.cycles;
800                         cnode->iter_count += node->nr_loop_iter;
801                         cnode->iter_cycles += node->iter_cycles;
802                         cnode->from_count++;
803                 }
804         }
805 
806         return match;
807 }
808 
809 /*
810  * Split the parent in two parts (a new child is created) and
811  * give a part of its callchain to the created child.
812  * Then create another child to host the given callchain of new branch
813  */
814 static int
815 split_add_child(struct callchain_node *parent,
816                 struct callchain_cursor *cursor,
817                 struct callchain_list *to_split,
818                 u64 idx_parents, u64 idx_local, u64 period)
819 {
820         struct callchain_node *new;
821         struct list_head *old_tail;
822         unsigned int idx_total = idx_parents + idx_local;
823 
824         /* split */
825         new = create_child(parent, true);
826         if (new == NULL)
827                 return -1;
828 
829         /* split the callchain and move a part to the new child */
830         old_tail = parent->val.prev;
831         list_del_range(&to_split->list, old_tail);
832         new->val.next = &to_split->list;
833         new->val.prev = old_tail;
834         to_split->list.prev = &new->val;
835         old_tail->next = &new->val;
836 
837         /* split the hits */
838         new->hit = parent->hit;
839         new->children_hit = parent->children_hit;
840         parent->children_hit = callchain_cumul_hits(new);
841         new->val_nr = parent->val_nr - idx_local;
842         parent->val_nr = idx_local;
843         new->count = parent->count;
844         new->children_count = parent->children_count;
845         parent->children_count = callchain_cumul_counts(new);
846 
847         /* create a new child for the new branch if any */
848         if (idx_total < cursor->nr) {
849                 struct callchain_node *first;
850                 struct callchain_list *cnode;
851                 struct callchain_cursor_node *node;
852                 struct rb_node *p, **pp;
853 
854                 parent->hit = 0;
855                 parent->children_hit += period;
856                 parent->count = 0;
857                 parent->children_count += 1;
858 
859                 node = callchain_cursor_current(cursor);
860                 new = add_child(parent, cursor, period);
861                 if (new == NULL)
862                         return -1;
863 
864                 /*
865                  * This is second child since we moved parent's children
866                  * to new (first) child above.
867                  */
868                 p = parent->rb_root_in.rb_node;
869                 first = rb_entry(p, struct callchain_node, rb_node_in);
870                 cnode = list_first_entry(&first->val, struct callchain_list,
871                                          list);
872 
873                 if (match_chain(node, cnode) == MATCH_LT)
874                         pp = &p->rb_left;
875                 else
876                         pp = &p->rb_right;
877 
878                 rb_link_node(&new->rb_node_in, p, pp);
879                 rb_insert_color(&new->rb_node_in, &parent->rb_root_in);
880         } else {
881                 parent->hit = period;
882                 parent->count = 1;
883         }
884         return 0;
885 }
886 
887 static enum match_result
888 append_chain(struct callchain_node *root,
889              struct callchain_cursor *cursor,
890              u64 period);
891 
892 static int
893 append_chain_children(struct callchain_node *root,
894                       struct callchain_cursor *cursor,
895                       u64 period)
896 {
897         struct callchain_node *rnode;
898         struct callchain_cursor_node *node;
899         struct rb_node **p = &root->rb_root_in.rb_node;
900         struct rb_node *parent = NULL;
901 
902         node = callchain_cursor_current(cursor);
903         if (!node)
904                 return -1;
905 
906         /* lookup in children */
907         while (*p) {
908                 enum match_result ret;
909 
910                 parent = *p;
911                 rnode = rb_entry(parent, struct callchain_node, rb_node_in);
912 
913                 /* If at least first entry matches, rely to children */
914                 ret = append_chain(rnode, cursor, period);
915                 if (ret == MATCH_EQ)
916                         goto inc_children_hit;
917                 if (ret == MATCH_ERROR)
918                         return -1;
919 
920                 if (ret == MATCH_LT)
921                         p = &parent->rb_left;
922                 else
923                         p = &parent->rb_right;
924         }
925         /* nothing in children, add to the current node */
926         rnode = add_child(root, cursor, period);
927         if (rnode == NULL)
928                 return -1;
929 
930         rb_link_node(&rnode->rb_node_in, parent, p);
931         rb_insert_color(&rnode->rb_node_in, &root->rb_root_in);
932 
933 inc_children_hit:
934         root->children_hit += period;
935         root->children_count++;
936         return 0;
937 }
938 
939 static enum match_result
940 append_chain(struct callchain_node *root,
941              struct callchain_cursor *cursor,
942              u64 period)
943 {
944         struct callchain_list *cnode;
945         u64 start = cursor->pos;
946         bool found = false;
947         u64 matches;
948         enum match_result cmp = MATCH_ERROR;
949 
950         /*
951          * Lookup in the current node
952          * If we have a symbol, then compare the start to match
953          * anywhere inside a function, unless function
954          * mode is disabled.
955          */
956         list_for_each_entry(cnode, &root->val, list) {
957                 struct callchain_cursor_node *node;
958 
959                 node = callchain_cursor_current(cursor);
960                 if (!node)
961                         break;
962 
963                 cmp = match_chain(node, cnode);
964                 if (cmp != MATCH_EQ)
965                         break;
966 
967                 found = true;
968 
969                 callchain_cursor_advance(cursor);
970         }
971 
972         /* matches not, relay no the parent */
973         if (!found) {
974                 WARN_ONCE(cmp == MATCH_ERROR, "Chain comparison error\n");
975                 return cmp;
976         }
977 
978         matches = cursor->pos - start;
979 
980         /* we match only a part of the node. Split it and add the new chain */
981         if (matches < root->val_nr) {
982                 if (split_add_child(root, cursor, cnode, start, matches,
983                                     period) < 0)
984                         return MATCH_ERROR;
985 
986                 return MATCH_EQ;
987         }
988 
989         /* we match 100% of the path, increment the hit */
990         if (matches == root->val_nr && cursor->pos == cursor->nr) {
991                 root->hit += period;
992                 root->count++;
993                 return MATCH_EQ;
994         }
995 
996         /* We match the node and still have a part remaining */
997         if (append_chain_children(root, cursor, period) < 0)
998                 return MATCH_ERROR;
999 
1000         return MATCH_EQ;
1001 }
1002 
1003 int callchain_append(struct callchain_root *root,
1004                      struct callchain_cursor *cursor,
1005                      u64 period)
1006 {
1007         if (cursor == NULL)
1008                 return -1;
1009 
1010         if (!cursor->nr)
1011                 return 0;
1012 
1013         callchain_cursor_commit(cursor);
1014 
1015         if (append_chain_children(&root->node, cursor, period) < 0)
1016                 return -1;
1017 
1018         if (cursor->nr > root->max_depth)
1019                 root->max_depth = cursor->nr;
1020 
1021         return 0;
1022 }
1023 
1024 static int
1025 merge_chain_branch(struct callchain_cursor *cursor,
1026                    struct callchain_node *dst, struct callchain_node *src)
1027 {
1028         struct callchain_cursor_node **old_last = cursor->last;
1029         struct callchain_node *child;
1030         struct callchain_list *list, *next_list;
1031         struct rb_node *n;
1032         int old_pos = cursor->nr;
1033         int err = 0;
1034 
1035         list_for_each_entry_safe(list, next_list, &src->val, list) {
1036                 struct map_symbol ms = {
1037                         .maps = maps__get(list->ms.maps),
1038                         .map = map__get(list->ms.map),
1039                 };
1040                 callchain_cursor_append(cursor, list->ip, &ms, false, NULL, 0, 0, 0, list->srcline);
1041                 list_del_init(&list->list);
1042                 map_symbol__exit(&ms);
1043                 map_symbol__exit(&list->ms);
1044                 zfree(&list->brtype_stat);
1045                 free(list);
1046         }
1047 
1048         if (src->hit) {
1049                 callchain_cursor_commit(cursor);
1050                 if (append_chain_children(dst, cursor, src->hit) < 0)
1051                         return -1;
1052         }
1053 
1054         n = rb_first(&src->rb_root_in);
1055         while (n) {
1056                 child = container_of(n, struct callchain_node, rb_node_in);
1057                 n = rb_next(n);
1058                 rb_erase(&child->rb_node_in, &src->rb_root_in);
1059 
1060                 err = merge_chain_branch(cursor, dst, child);
1061                 if (err)
1062                         break;
1063 
1064                 free(child);
1065         }
1066 
1067         cursor->nr = old_pos;
1068         cursor->last = old_last;
1069 
1070         return err;
1071 }
1072 
1073 int callchain_merge(struct callchain_cursor *cursor,
1074                     struct callchain_root *dst, struct callchain_root *src)
1075 {
1076         return merge_chain_branch(cursor, &dst->node, &src->node);
1077 }
1078 
1079 int callchain_cursor_append(struct callchain_cursor *cursor,
1080                             u64 ip, struct map_symbol *ms,
1081                             bool branch, struct branch_flags *flags,
1082                             int nr_loop_iter, u64 iter_cycles, u64 branch_from,
1083                             const char *srcline)
1084 {
1085         struct callchain_cursor_node *node = *cursor->last;
1086 
1087         if (!node) {
1088                 node = calloc(1, sizeof(*node));
1089                 if (!node)
1090                         return -ENOMEM;
1091 
1092                 *cursor->last = node;
1093         }
1094 
1095         node->ip = ip;
1096         map_symbol__exit(&node->ms);
1097         node->ms = *ms;
1098         node->ms.maps = maps__get(ms->maps);
1099         node->ms.map = map__get(ms->map);
1100         node->branch = branch;
1101         node->nr_loop_iter = nr_loop_iter;
1102         node->iter_cycles = iter_cycles;
1103         node->srcline = srcline;
1104 
1105         if (flags)
1106                 memcpy(&node->branch_flags, flags,
1107                         sizeof(struct branch_flags));
1108 
1109         node->branch_from = branch_from;
1110         cursor->nr++;
1111 
1112         cursor->last = &node->next;
1113 
1114         return 0;
1115 }
1116 
1117 int sample__resolve_callchain(struct perf_sample *sample,
1118                               struct callchain_cursor *cursor, struct symbol **parent,
1119                               struct evsel *evsel, struct addr_location *al,
1120                               int max_stack)
1121 {
1122         if (sample->callchain == NULL && !symbol_conf.show_branchflag_count)
1123                 return 0;
1124 
1125         if (symbol_conf.use_callchain || symbol_conf.cumulate_callchain ||
1126             perf_hpp_list.parent || symbol_conf.show_branchflag_count) {
1127                 return thread__resolve_callchain(al->thread, cursor, evsel, sample,
1128                                                  parent, al, max_stack);
1129         }
1130         return 0;
1131 }
1132 
1133 int hist_entry__append_callchain(struct hist_entry *he, struct perf_sample *sample)
1134 {
1135         if ((!symbol_conf.use_callchain || sample->callchain == NULL) &&
1136                 !symbol_conf.show_branchflag_count)
1137                 return 0;
1138         return callchain_append(he->callchain, get_tls_callchain_cursor(), sample->period);
1139 }
1140 
1141 int fill_callchain_info(struct addr_location *al, struct callchain_cursor_node *node,
1142                         bool hide_unresolved)
1143 {
1144         struct machine *machine = node->ms.maps ? maps__machine(node->ms.maps) : NULL;
1145 
1146         maps__put(al->maps);
1147         al->maps = maps__get(node->ms.maps);
1148         map__put(al->map);
1149         al->map = map__get(node->ms.map);
1150         al->sym = node->ms.sym;
1151         al->srcline = node->srcline;
1152         al->addr = node->ip;
1153 
1154         if (al->sym == NULL) {
1155                 if (hide_unresolved)
1156                         return 0;
1157                 if (al->map == NULL)
1158                         goto out;
1159         }
1160         if (maps__equal(al->maps, machine__kernel_maps(machine))) {
1161                 if (machine__is_host(machine)) {
1162                         al->cpumode = PERF_RECORD_MISC_KERNEL;
1163                         al->level = 'k';
1164                 } else {
1165                         al->cpumode = PERF_RECORD_MISC_GUEST_KERNEL;
1166                         al->level = 'g';
1167                 }
1168         } else {
1169                 if (machine__is_host(machine)) {
1170                         al->cpumode = PERF_RECORD_MISC_USER;
1171                         al->level = '.';
1172                 } else if (perf_guest) {
1173                         al->cpumode = PERF_RECORD_MISC_GUEST_USER;
1174                         al->level = 'u';
1175                 } else {
1176                         al->cpumode = PERF_RECORD_MISC_HYPERVISOR;
1177                         al->level = 'H';
1178                 }
1179         }
1180 
1181 out:
1182         return 1;
1183 }
1184 
1185 char *callchain_list__sym_name(struct callchain_list *cl,
1186                                char *bf, size_t bfsize, bool show_dso)
1187 {
1188         bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1189         bool show_srcline = show_addr || callchain_param.key == CCKEY_SRCLINE;
1190         int printed;
1191 
1192         if (cl->ms.sym) {
1193                 const char *inlined = cl->ms.sym->inlined ? " (inlined)" : "";
1194 
1195                 if (show_srcline && cl->srcline)
1196                         printed = scnprintf(bf, bfsize, "%s %s%s",
1197                                             cl->ms.sym->name, cl->srcline,
1198                                             inlined);
1199                 else
1200                         printed = scnprintf(bf, bfsize, "%s%s",
1201                                             cl->ms.sym->name, inlined);
1202         } else
1203                 printed = scnprintf(bf, bfsize, "%#" PRIx64, cl->ip);
1204 
1205         if (show_dso)
1206                 scnprintf(bf + printed, bfsize - printed, " %s",
1207                           cl->ms.map ?
1208                           dso__short_name(map__dso(cl->ms.map)) :
1209                           "unknown");
1210 
1211         return bf;
1212 }
1213 
1214 char *callchain_node__scnprintf_value(struct callchain_node *node,
1215                                       char *bf, size_t bfsize, u64 total)
1216 {
1217         double percent = 0.0;
1218         u64 period = callchain_cumul_hits(node);
1219         unsigned count = callchain_cumul_counts(node);
1220 
1221         if (callchain_param.mode == CHAIN_FOLDED) {
1222                 period = node->hit;
1223                 count = node->count;
1224         }
1225 
1226         switch (callchain_param.value) {
1227         case CCVAL_PERIOD:
1228                 scnprintf(bf, bfsize, "%"PRIu64, period);
1229                 break;
1230         case CCVAL_COUNT:
1231                 scnprintf(bf, bfsize, "%u", count);
1232                 break;
1233         case CCVAL_PERCENT:
1234         default:
1235                 if (total)
1236                         percent = period * 100.0 / total;
1237                 scnprintf(bf, bfsize, "%.2f%%", percent);
1238                 break;
1239         }
1240         return bf;
1241 }
1242 
1243 int callchain_node__fprintf_value(struct callchain_node *node,
1244                                  FILE *fp, u64 total)
1245 {
1246         double percent = 0.0;
1247         u64 period = callchain_cumul_hits(node);
1248         unsigned count = callchain_cumul_counts(node);
1249 
1250         if (callchain_param.mode == CHAIN_FOLDED) {
1251                 period = node->hit;
1252                 count = node->count;
1253         }
1254 
1255         switch (callchain_param.value) {
1256         case CCVAL_PERIOD:
1257                 return fprintf(fp, "%"PRIu64, period);
1258         case CCVAL_COUNT:
1259                 return fprintf(fp, "%u", count);
1260         case CCVAL_PERCENT:
1261         default:
1262                 if (total)
1263                         percent = period * 100.0 / total;
1264                 return percent_color_fprintf(fp, "%.2f%%", percent);
1265         }
1266         return 0;
1267 }
1268 
1269 static void callchain_counts_value(struct callchain_node *node,
1270                                    u64 *branch_count, u64 *predicted_count,
1271                                    u64 *abort_count, u64 *cycles_count)
1272 {
1273         struct callchain_list *clist;
1274 
1275         list_for_each_entry(clist, &node->val, list) {
1276                 if (branch_count)
1277                         *branch_count += clist->branch_count;
1278 
1279                 if (predicted_count)
1280                         *predicted_count += clist->predicted_count;
1281 
1282                 if (abort_count)
1283                         *abort_count += clist->abort_count;
1284 
1285                 if (cycles_count)
1286                         *cycles_count += clist->cycles_count;
1287         }
1288 }
1289 
1290 static int callchain_node_branch_counts_cumul(struct callchain_node *node,
1291                                               u64 *branch_count,
1292                                               u64 *predicted_count,
1293                                               u64 *abort_count,
1294                                               u64 *cycles_count)
1295 {
1296         struct callchain_node *child;
1297         struct rb_node *n;
1298 
1299         n = rb_first(&node->rb_root_in);
1300         while (n) {
1301                 child = rb_entry(n, struct callchain_node, rb_node_in);
1302                 n = rb_next(n);
1303 
1304                 callchain_node_branch_counts_cumul(child, branch_count,
1305                                                    predicted_count,
1306                                                    abort_count,
1307                                                    cycles_count);
1308 
1309                 callchain_counts_value(child, branch_count,
1310                                        predicted_count, abort_count,
1311                                        cycles_count);
1312         }
1313 
1314         return 0;
1315 }
1316 
1317 int callchain_branch_counts(struct callchain_root *root,
1318                             u64 *branch_count, u64 *predicted_count,
1319                             u64 *abort_count, u64 *cycles_count)
1320 {
1321         if (branch_count)
1322                 *branch_count = 0;
1323 
1324         if (predicted_count)
1325                 *predicted_count = 0;
1326 
1327         if (abort_count)
1328                 *abort_count = 0;
1329 
1330         if (cycles_count)
1331                 *cycles_count = 0;
1332 
1333         return callchain_node_branch_counts_cumul(&root->node,
1334                                                   branch_count,
1335                                                   predicted_count,
1336                                                   abort_count,
1337                                                   cycles_count);
1338 }
1339 
1340 static int count_pri64_printf(int idx, const char *str, u64 value, char *bf, int bfsize)
1341 {
1342         return scnprintf(bf, bfsize, "%s%s:%" PRId64 "", (idx) ? " " : " (", str, value);
1343 }
1344 
1345 static int count_float_printf(int idx, const char *str, float value,
1346                               char *bf, int bfsize, float threshold)
1347 {
1348         if (threshold != 0.0 && value < threshold)
1349                 return 0;
1350 
1351         return scnprintf(bf, bfsize, "%s%s:%.1f%%", (idx) ? " " : " (", str, value);
1352 }
1353 
1354 static int branch_to_str(char *bf, int bfsize,
1355                          u64 branch_count, u64 predicted_count,
1356                          u64 abort_count,
1357                          const struct branch_type_stat *brtype_stat)
1358 {
1359         int printed, i = 0;
1360 
1361         printed = branch_type_str(brtype_stat, bf, bfsize);
1362         if (printed)
1363                 i++;
1364 
1365         if (predicted_count < branch_count) {
1366                 printed += count_float_printf(i++, "predicted",
1367                                 predicted_count * 100.0 / branch_count,
1368                                 bf + printed, bfsize - printed, 0.0);
1369         }
1370 
1371         if (abort_count) {
1372                 printed += count_float_printf(i++, "abort",
1373                                 abort_count * 100.0 / branch_count,
1374                                 bf + printed, bfsize - printed, 0.1);
1375         }
1376 
1377         if (i)
1378                 printed += scnprintf(bf + printed, bfsize - printed, ")");
1379 
1380         return printed;
1381 }
1382 
1383 static int branch_from_str(char *bf, int bfsize,
1384                            u64 branch_count,
1385                            u64 cycles_count, u64 iter_count,
1386                            u64 iter_cycles, u64 from_count)
1387 {
1388         int printed = 0, i = 0;
1389         u64 cycles, v = 0;
1390 
1391         cycles = cycles_count / branch_count;
1392         if (cycles) {
1393                 printed += count_pri64_printf(i++, "cycles",
1394                                 cycles,
1395                                 bf + printed, bfsize - printed);
1396         }
1397 
1398         if (iter_count && from_count) {
1399                 v = iter_count / from_count;
1400                 if (v) {
1401                         printed += count_pri64_printf(i++, "iter",
1402                                         v, bf + printed, bfsize - printed);
1403 
1404                         printed += count_pri64_printf(i++, "avg_cycles",
1405                                         iter_cycles / iter_count,
1406                                         bf + printed, bfsize - printed);
1407                 }
1408         }
1409 
1410         if (i)
1411                 printed += scnprintf(bf + printed, bfsize - printed, ")");
1412 
1413         return printed;
1414 }
1415 
1416 static int counts_str_build(char *bf, int bfsize,
1417                              u64 branch_count, u64 predicted_count,
1418                              u64 abort_count, u64 cycles_count,
1419                              u64 iter_count, u64 iter_cycles,
1420                              u64 from_count,
1421                              const struct branch_type_stat *brtype_stat)
1422 {
1423         int printed;
1424 
1425         if (branch_count == 0)
1426                 return scnprintf(bf, bfsize, " (calltrace)");
1427 
1428         if (brtype_stat->branch_to) {
1429                 printed = branch_to_str(bf, bfsize, branch_count,
1430                                 predicted_count, abort_count, brtype_stat);
1431         } else {
1432                 printed = branch_from_str(bf, bfsize, branch_count,
1433                                 cycles_count, iter_count, iter_cycles,
1434                                 from_count);
1435         }
1436 
1437         if (!printed)
1438                 bf[0] = 0;
1439 
1440         return printed;
1441 }
1442 
1443 static int callchain_counts_printf(FILE *fp, char *bf, int bfsize,
1444                                    u64 branch_count, u64 predicted_count,
1445                                    u64 abort_count, u64 cycles_count,
1446                                    u64 iter_count, u64 iter_cycles,
1447                                    u64 from_count,
1448                                    const struct branch_type_stat *brtype_stat)
1449 {
1450         char str[256];
1451 
1452         counts_str_build(str, sizeof(str), branch_count,
1453                          predicted_count, abort_count, cycles_count,
1454                          iter_count, iter_cycles, from_count, brtype_stat);
1455 
1456         if (fp)
1457                 return fprintf(fp, "%s", str);
1458 
1459         return scnprintf(bf, bfsize, "%s", str);
1460 }
1461 
1462 int callchain_list_counts__printf_value(struct callchain_list *clist,
1463                                         FILE *fp, char *bf, int bfsize)
1464 {
1465         static const struct branch_type_stat empty_brtype_stat = {};
1466         const struct branch_type_stat *brtype_stat;
1467         u64 branch_count, predicted_count;
1468         u64 abort_count, cycles_count;
1469         u64 iter_count, iter_cycles;
1470         u64 from_count;
1471 
1472         brtype_stat = clist->brtype_stat ?: &empty_brtype_stat;
1473         branch_count = clist->branch_count;
1474         predicted_count = clist->predicted_count;
1475         abort_count = clist->abort_count;
1476         cycles_count = clist->cycles_count;
1477         iter_count = clist->iter_count;
1478         iter_cycles = clist->iter_cycles;
1479         from_count = clist->from_count;
1480 
1481         return callchain_counts_printf(fp, bf, bfsize, branch_count,
1482                                        predicted_count, abort_count,
1483                                        cycles_count, iter_count, iter_cycles,
1484                                        from_count, brtype_stat);
1485 }
1486 
1487 static void free_callchain_node(struct callchain_node *node)
1488 {
1489         struct callchain_list *list, *tmp;
1490         struct callchain_node *child;
1491         struct rb_node *n;
1492 
1493         list_for_each_entry_safe(list, tmp, &node->parent_val, list) {
1494                 list_del_init(&list->list);
1495                 map_symbol__exit(&list->ms);
1496                 zfree(&list->brtype_stat);
1497                 free(list);
1498         }
1499 
1500         list_for_each_entry_safe(list, tmp, &node->val, list) {
1501                 list_del_init(&list->list);
1502                 map_symbol__exit(&list->ms);
1503                 zfree(&list->brtype_stat);
1504                 free(list);
1505         }
1506 
1507         n = rb_first(&node->rb_root_in);
1508         while (n) {
1509                 child = container_of(n, struct callchain_node, rb_node_in);
1510                 n = rb_next(n);
1511                 rb_erase(&child->rb_node_in, &node->rb_root_in);
1512 
1513                 free_callchain_node(child);
1514                 free(child);
1515         }
1516 }
1517 
1518 void free_callchain(struct callchain_root *root)
1519 {
1520         if (!symbol_conf.use_callchain)
1521                 return;
1522 
1523         free_callchain_node(&root->node);
1524 }
1525 
1526 static u64 decay_callchain_node(struct callchain_node *node)
1527 {
1528         struct callchain_node *child;
1529         struct rb_node *n;
1530         u64 child_hits = 0;
1531 
1532         n = rb_first(&node->rb_root_in);
1533         while (n) {
1534                 child = container_of(n, struct callchain_node, rb_node_in);
1535 
1536                 child_hits += decay_callchain_node(child);
1537                 n = rb_next(n);
1538         }
1539 
1540         node->hit = (node->hit * 7) / 8;
1541         node->children_hit = child_hits;
1542 
1543         return node->hit;
1544 }
1545 
1546 void decay_callchain(struct callchain_root *root)
1547 {
1548         if (!symbol_conf.use_callchain)
1549                 return;
1550 
1551         decay_callchain_node(&root->node);
1552 }
1553 
1554 int callchain_node__make_parent_list(struct callchain_node *node)
1555 {
1556         struct callchain_node *parent = node->parent;
1557         struct callchain_list *chain, *new;
1558         LIST_HEAD(head);
1559 
1560         while (parent) {
1561                 list_for_each_entry_reverse(chain, &parent->val, list) {
1562                         new = malloc(sizeof(*new));
1563                         if (new == NULL)
1564                                 goto out;
1565                         *new = *chain;
1566                         new->has_children = false;
1567                         new->ms.map = map__get(new->ms.map);
1568                         list_add_tail(&new->list, &head);
1569                 }
1570                 parent = parent->parent;
1571         }
1572 
1573         list_for_each_entry_safe_reverse(chain, new, &head, list)
1574                 list_move_tail(&chain->list, &node->parent_val);
1575 
1576         if (!list_empty(&node->parent_val)) {
1577                 chain = list_first_entry(&node->parent_val, struct callchain_list, list);
1578                 chain->has_children = rb_prev(&node->rb_node) || rb_next(&node->rb_node);
1579 
1580                 chain = list_first_entry(&node->val, struct callchain_list, list);
1581                 chain->has_children = false;
1582         }
1583         return 0;
1584 
1585 out:
1586         list_for_each_entry_safe(chain, new, &head, list) {
1587                 list_del_init(&chain->list);
1588                 map_symbol__exit(&chain->ms);
1589                 zfree(&chain->brtype_stat);
1590                 free(chain);
1591         }
1592         return -ENOMEM;
1593 }
1594 
1595 static void callchain_cursor__delete(void *vcursor)
1596 {
1597         struct callchain_cursor *cursor = vcursor;
1598         struct callchain_cursor_node *node, *next;
1599 
1600         callchain_cursor_reset(cursor);
1601         for (node = cursor->first; node != NULL; node = next) {
1602                 next = node->next;
1603                 free(node);
1604         }
1605         free(cursor);
1606 }
1607 
1608 static void init_callchain_cursor_key(void)
1609 {
1610         if (pthread_key_create(&callchain_cursor, callchain_cursor__delete)) {
1611                 pr_err("callchain cursor creation failed");
1612                 abort();
1613         }
1614 }
1615 
1616 struct callchain_cursor *get_tls_callchain_cursor(void)
1617 {
1618         static pthread_once_t once_control = PTHREAD_ONCE_INIT;
1619         struct callchain_cursor *cursor;
1620 
1621         pthread_once(&once_control, init_callchain_cursor_key);
1622         cursor = pthread_getspecific(callchain_cursor);
1623         if (!cursor) {
1624                 cursor = zalloc(sizeof(*cursor));
1625                 if (!cursor)
1626                         pr_debug3("%s: not enough memory\n", __func__);
1627                 pthread_setspecific(callchain_cursor, cursor);
1628         }
1629         return cursor;
1630 }
1631 
1632 int callchain_cursor__copy(struct callchain_cursor *dst,
1633                            struct callchain_cursor *src)
1634 {
1635         int rc = 0;
1636 
1637         callchain_cursor_reset(dst);
1638         callchain_cursor_commit(src);
1639 
1640         while (true) {
1641                 struct callchain_cursor_node *node;
1642 
1643                 node = callchain_cursor_current(src);
1644                 if (node == NULL)
1645                         break;
1646 
1647                 rc = callchain_cursor_append(dst, node->ip, &node->ms,
1648                                              node->branch, &node->branch_flags,
1649                                              node->nr_loop_iter,
1650                                              node->iter_cycles,
1651                                              node->branch_from, node->srcline);
1652                 if (rc)
1653                         break;
1654 
1655                 callchain_cursor_advance(src);
1656         }
1657 
1658         return rc;
1659 }
1660 
1661 /*
1662  * Initialize a cursor before adding entries inside, but keep
1663  * the previously allocated entries as a cache.
1664  */
1665 void callchain_cursor_reset(struct callchain_cursor *cursor)
1666 {
1667         struct callchain_cursor_node *node;
1668 
1669         cursor->nr = 0;
1670         cursor->last = &cursor->first;
1671 
1672         for (node = cursor->first; node != NULL; node = node->next)
1673                 map_symbol__exit(&node->ms);
1674 }
1675 
1676 void callchain_param_setup(u64 sample_type, const char *arch)
1677 {
1678         if (symbol_conf.use_callchain || symbol_conf.cumulate_callchain) {
1679                 if ((sample_type & PERF_SAMPLE_REGS_USER) &&
1680                     (sample_type & PERF_SAMPLE_STACK_USER)) {
1681                         callchain_param.record_mode = CALLCHAIN_DWARF;
1682                         dwarf_callchain_users = true;
1683                 } else if (sample_type & PERF_SAMPLE_BRANCH_STACK)
1684                         callchain_param.record_mode = CALLCHAIN_LBR;
1685                 else
1686                         callchain_param.record_mode = CALLCHAIN_FP;
1687         }
1688 
1689         /*
1690          * It's necessary to use libunwind to reliably determine the caller of
1691          * a leaf function on aarch64, as otherwise we cannot know whether to
1692          * start from the LR or FP.
1693          *
1694          * Always starting from the LR can result in duplicate or entirely
1695          * erroneous entries. Always skipping the LR and starting from the FP
1696          * can result in missing entries.
1697          */
1698         if (callchain_param.record_mode == CALLCHAIN_FP && !strcmp(arch, "arm64"))
1699                 dwarf_callchain_users = true;
1700 }
1701 
1702 static bool chain_match(struct callchain_list *base_chain,
1703                         struct callchain_list *pair_chain)
1704 {
1705         enum match_result match;
1706 
1707         match = match_chain_strings(base_chain->srcline,
1708                                     pair_chain->srcline);
1709         if (match != MATCH_ERROR)
1710                 return match == MATCH_EQ;
1711 
1712         match = match_chain_dso_addresses(base_chain->ms.map,
1713                                           base_chain->ip,
1714                                           pair_chain->ms.map,
1715                                           pair_chain->ip);
1716 
1717         return match == MATCH_EQ;
1718 }
1719 
1720 bool callchain_cnode_matched(struct callchain_node *base_cnode,
1721                              struct callchain_node *pair_cnode)
1722 {
1723         struct callchain_list *base_chain, *pair_chain;
1724         bool match = false;
1725 
1726         pair_chain = list_first_entry(&pair_cnode->val,
1727                                       struct callchain_list,
1728                                       list);
1729 
1730         list_for_each_entry(base_chain, &base_cnode->val, list) {
1731                 if (&pair_chain->list == &pair_cnode->val)
1732                         return false;
1733 
1734                 if (!base_chain->srcline || !pair_chain->srcline) {
1735                         pair_chain = list_next_entry(pair_chain, list);
1736                         continue;
1737                 }
1738 
1739                 match = chain_match(base_chain, pair_chain);
1740                 if (!match)
1741                         return false;
1742 
1743                 pair_chain = list_next_entry(pair_chain, list);
1744         }
1745 
1746         /*
1747          * Say chain1 is ABC, chain2 is ABCD, we consider they are
1748          * not fully matched.
1749          */
1750         if (pair_chain && (&pair_chain->list != &pair_cnode->val))
1751                 return false;
1752 
1753         return match;
1754 }
1755 
1756 static u64 count_callchain_hits(struct hist_entry *he)
1757 {
1758         struct rb_root *root = &he->sorted_chain;
1759         struct rb_node *rb_node = rb_first(root);
1760         struct callchain_node *node;
1761         u64 chain_hits = 0;
1762 
1763         while (rb_node) {
1764                 node = rb_entry(rb_node, struct callchain_node, rb_node);
1765                 chain_hits += node->hit;
1766                 rb_node = rb_next(rb_node);
1767         }
1768 
1769         return chain_hits;
1770 }
1771 
1772 u64 callchain_total_hits(struct hists *hists)
1773 {
1774         struct rb_node *next = rb_first_cached(&hists->entries);
1775         u64 chain_hits = 0;
1776 
1777         while (next) {
1778                 struct hist_entry *he = rb_entry(next, struct hist_entry,
1779                                                  rb_node);
1780 
1781                 chain_hits += count_callchain_hits(he);
1782                 next = rb_next(&he->rb_node);
1783         }
1784 
1785         return chain_hits;
1786 }
1787 
1788 s64 callchain_avg_cycles(struct callchain_node *cnode)
1789 {
1790         struct callchain_list *chain;
1791         s64 cycles = 0;
1792 
1793         list_for_each_entry(chain, &cnode->val, list) {
1794                 if (chain->srcline && chain->branch_count)
1795                         cycles += chain->cycles_count / chain->branch_count;
1796         }
1797 
1798         return cycles;
1799 }
1800 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php