1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 4 * 5 * Parts came from builtin-{top,stat,record}.c, see those files for further 6 * copyright notes. 7 */ 8 9 #include <byteswap.h> 10 #include <errno.h> 11 #include <inttypes.h> 12 #include <linux/bitops.h> 13 #include <api/io.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <linux/hw_breakpoint.h> 17 #include <linux/perf_event.h> 18 #include <linux/compiler.h> 19 #include <linux/err.h> 20 #include <linux/zalloc.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include <stdlib.h> 26 #include <perf/evsel.h> 27 #include "asm/bug.h" 28 #include "bpf_counter.h" 29 #include "callchain.h" 30 #include "cgroup.h" 31 #include "counts.h" 32 #include "event.h" 33 #include "evsel.h" 34 #include "time-utils.h" 35 #include "util/env.h" 36 #include "util/evsel_config.h" 37 #include "util/evsel_fprintf.h" 38 #include "evlist.h" 39 #include <perf/cpumap.h> 40 #include "thread_map.h" 41 #include "target.h" 42 #include "perf_regs.h" 43 #include "record.h" 44 #include "debug.h" 45 #include "trace-event.h" 46 #include "stat.h" 47 #include "string2.h" 48 #include "memswap.h" 49 #include "util.h" 50 #include "util/hashmap.h" 51 #include "off_cpu.h" 52 #include "pmu.h" 53 #include "pmus.h" 54 #include "rlimit.h" 55 #include "../perf-sys.h" 56 #include "util/parse-branch-options.h" 57 #include "util/bpf-filter.h" 58 #include "util/hist.h" 59 #include <internal/xyarray.h> 60 #include <internal/lib.h> 61 #include <internal/threadmap.h> 62 63 #include <linux/ctype.h> 64 65 #ifdef HAVE_LIBTRACEEVENT 66 #include <traceevent/event-parse.h> 67 #endif 68 69 struct perf_missing_features perf_missing_features; 70 71 static clockid_t clockid; 72 73 static const char *const perf_tool_event__tool_names[PERF_TOOL_MAX] = { 74 NULL, 75 "duration_time", 76 "user_time", 77 "system_time", 78 }; 79 80 const char *perf_tool_event__to_str(enum perf_tool_event ev) 81 { 82 if (ev > PERF_TOOL_NONE && ev < PERF_TOOL_MAX) 83 return perf_tool_event__tool_names[ev]; 84 85 return NULL; 86 } 87 88 enum perf_tool_event perf_tool_event__from_str(const char *str) 89 { 90 int i; 91 92 perf_tool_event__for_each_event(i) { 93 if (!strcmp(str, perf_tool_event__tool_names[i])) 94 return i; 95 } 96 return PERF_TOOL_NONE; 97 } 98 99 100 static int evsel__no_extra_init(struct evsel *evsel __maybe_unused) 101 { 102 return 0; 103 } 104 105 void __weak test_attr__ready(void) { } 106 107 static void evsel__no_extra_fini(struct evsel *evsel __maybe_unused) 108 { 109 } 110 111 static struct { 112 size_t size; 113 int (*init)(struct evsel *evsel); 114 void (*fini)(struct evsel *evsel); 115 } perf_evsel__object = { 116 .size = sizeof(struct evsel), 117 .init = evsel__no_extra_init, 118 .fini = evsel__no_extra_fini, 119 }; 120 121 int evsel__object_config(size_t object_size, int (*init)(struct evsel *evsel), 122 void (*fini)(struct evsel *evsel)) 123 { 124 125 if (object_size == 0) 126 goto set_methods; 127 128 if (perf_evsel__object.size > object_size) 129 return -EINVAL; 130 131 perf_evsel__object.size = object_size; 132 133 set_methods: 134 if (init != NULL) 135 perf_evsel__object.init = init; 136 137 if (fini != NULL) 138 perf_evsel__object.fini = fini; 139 140 return 0; 141 } 142 143 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y)) 144 145 int __evsel__sample_size(u64 sample_type) 146 { 147 u64 mask = sample_type & PERF_SAMPLE_MASK; 148 int size = 0; 149 int i; 150 151 for (i = 0; i < 64; i++) { 152 if (mask & (1ULL << i)) 153 size++; 154 } 155 156 size *= sizeof(u64); 157 158 return size; 159 } 160 161 /** 162 * __perf_evsel__calc_id_pos - calculate id_pos. 163 * @sample_type: sample type 164 * 165 * This function returns the position of the event id (PERF_SAMPLE_ID or 166 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 167 * perf_record_sample. 168 */ 169 static int __perf_evsel__calc_id_pos(u64 sample_type) 170 { 171 int idx = 0; 172 173 if (sample_type & PERF_SAMPLE_IDENTIFIER) 174 return 0; 175 176 if (!(sample_type & PERF_SAMPLE_ID)) 177 return -1; 178 179 if (sample_type & PERF_SAMPLE_IP) 180 idx += 1; 181 182 if (sample_type & PERF_SAMPLE_TID) 183 idx += 1; 184 185 if (sample_type & PERF_SAMPLE_TIME) 186 idx += 1; 187 188 if (sample_type & PERF_SAMPLE_ADDR) 189 idx += 1; 190 191 return idx; 192 } 193 194 /** 195 * __perf_evsel__calc_is_pos - calculate is_pos. 196 * @sample_type: sample type 197 * 198 * This function returns the position (counting backwards) of the event id 199 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 200 * sample_id_all is used there is an id sample appended to non-sample events. 201 */ 202 static int __perf_evsel__calc_is_pos(u64 sample_type) 203 { 204 int idx = 1; 205 206 if (sample_type & PERF_SAMPLE_IDENTIFIER) 207 return 1; 208 209 if (!(sample_type & PERF_SAMPLE_ID)) 210 return -1; 211 212 if (sample_type & PERF_SAMPLE_CPU) 213 idx += 1; 214 215 if (sample_type & PERF_SAMPLE_STREAM_ID) 216 idx += 1; 217 218 return idx; 219 } 220 221 void evsel__calc_id_pos(struct evsel *evsel) 222 { 223 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type); 224 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type); 225 } 226 227 void __evsel__set_sample_bit(struct evsel *evsel, 228 enum perf_event_sample_format bit) 229 { 230 if (!(evsel->core.attr.sample_type & bit)) { 231 evsel->core.attr.sample_type |= bit; 232 evsel->sample_size += sizeof(u64); 233 evsel__calc_id_pos(evsel); 234 } 235 } 236 237 void __evsel__reset_sample_bit(struct evsel *evsel, 238 enum perf_event_sample_format bit) 239 { 240 if (evsel->core.attr.sample_type & bit) { 241 evsel->core.attr.sample_type &= ~bit; 242 evsel->sample_size -= sizeof(u64); 243 evsel__calc_id_pos(evsel); 244 } 245 } 246 247 void evsel__set_sample_id(struct evsel *evsel, 248 bool can_sample_identifier) 249 { 250 if (can_sample_identifier) { 251 evsel__reset_sample_bit(evsel, ID); 252 evsel__set_sample_bit(evsel, IDENTIFIER); 253 } else { 254 evsel__set_sample_bit(evsel, ID); 255 } 256 evsel->core.attr.read_format |= PERF_FORMAT_ID; 257 } 258 259 /** 260 * evsel__is_function_event - Return whether given evsel is a function 261 * trace event 262 * 263 * @evsel - evsel selector to be tested 264 * 265 * Return %true if event is function trace event 266 */ 267 bool evsel__is_function_event(struct evsel *evsel) 268 { 269 #define FUNCTION_EVENT "ftrace:function" 270 271 return evsel->name && 272 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 273 274 #undef FUNCTION_EVENT 275 } 276 277 void evsel__init(struct evsel *evsel, 278 struct perf_event_attr *attr, int idx) 279 { 280 perf_evsel__init(&evsel->core, attr, idx); 281 evsel->tracking = !idx; 282 evsel->unit = strdup(""); 283 evsel->scale = 1.0; 284 evsel->max_events = ULONG_MAX; 285 evsel->evlist = NULL; 286 evsel->bpf_obj = NULL; 287 evsel->bpf_fd = -1; 288 INIT_LIST_HEAD(&evsel->config_terms); 289 INIT_LIST_HEAD(&evsel->bpf_counter_list); 290 INIT_LIST_HEAD(&evsel->bpf_filters); 291 perf_evsel__object.init(evsel); 292 evsel->sample_size = __evsel__sample_size(attr->sample_type); 293 evsel__calc_id_pos(evsel); 294 evsel->cmdline_group_boundary = false; 295 evsel->metric_events = NULL; 296 evsel->per_pkg_mask = NULL; 297 evsel->collect_stat = false; 298 evsel->pmu_name = NULL; 299 evsel->group_pmu_name = NULL; 300 evsel->skippable = false; 301 } 302 303 struct evsel *evsel__new_idx(struct perf_event_attr *attr, int idx) 304 { 305 struct evsel *evsel = zalloc(perf_evsel__object.size); 306 307 if (!evsel) 308 return NULL; 309 evsel__init(evsel, attr, idx); 310 311 if (evsel__is_bpf_output(evsel) && !attr->sample_type) { 312 evsel->core.attr.sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 313 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 314 evsel->core.attr.sample_period = 1; 315 } 316 317 if (evsel__is_clock(evsel)) { 318 free((char *)evsel->unit); 319 evsel->unit = strdup("msec"); 320 evsel->scale = 1e-6; 321 } 322 323 return evsel; 324 } 325 326 int copy_config_terms(struct list_head *dst, struct list_head *src) 327 { 328 struct evsel_config_term *pos, *tmp; 329 330 list_for_each_entry(pos, src, list) { 331 tmp = malloc(sizeof(*tmp)); 332 if (tmp == NULL) 333 return -ENOMEM; 334 335 *tmp = *pos; 336 if (tmp->free_str) { 337 tmp->val.str = strdup(pos->val.str); 338 if (tmp->val.str == NULL) { 339 free(tmp); 340 return -ENOMEM; 341 } 342 } 343 list_add_tail(&tmp->list, dst); 344 } 345 return 0; 346 } 347 348 static int evsel__copy_config_terms(struct evsel *dst, struct evsel *src) 349 { 350 return copy_config_terms(&dst->config_terms, &src->config_terms); 351 } 352 353 /** 354 * evsel__clone - create a new evsel copied from @orig 355 * @orig: original evsel 356 * 357 * The assumption is that @orig is not configured nor opened yet. 358 * So we only care about the attributes that can be set while it's parsed. 359 */ 360 struct evsel *evsel__clone(struct evsel *orig) 361 { 362 struct evsel *evsel; 363 364 BUG_ON(orig->core.fd); 365 BUG_ON(orig->counts); 366 BUG_ON(orig->priv); 367 BUG_ON(orig->per_pkg_mask); 368 369 /* cannot handle BPF objects for now */ 370 if (orig->bpf_obj) 371 return NULL; 372 373 evsel = evsel__new(&orig->core.attr); 374 if (evsel == NULL) 375 return NULL; 376 377 evsel->core.cpus = perf_cpu_map__get(orig->core.cpus); 378 evsel->core.own_cpus = perf_cpu_map__get(orig->core.own_cpus); 379 evsel->core.threads = perf_thread_map__get(orig->core.threads); 380 evsel->core.nr_members = orig->core.nr_members; 381 evsel->core.system_wide = orig->core.system_wide; 382 evsel->core.requires_cpu = orig->core.requires_cpu; 383 evsel->core.is_pmu_core = orig->core.is_pmu_core; 384 385 if (orig->name) { 386 evsel->name = strdup(orig->name); 387 if (evsel->name == NULL) 388 goto out_err; 389 } 390 if (orig->group_name) { 391 evsel->group_name = strdup(orig->group_name); 392 if (evsel->group_name == NULL) 393 goto out_err; 394 } 395 if (orig->pmu_name) { 396 evsel->pmu_name = strdup(orig->pmu_name); 397 if (evsel->pmu_name == NULL) 398 goto out_err; 399 } 400 if (orig->group_pmu_name) { 401 evsel->group_pmu_name = strdup(orig->group_pmu_name); 402 if (evsel->group_pmu_name == NULL) 403 goto out_err; 404 } 405 if (orig->filter) { 406 evsel->filter = strdup(orig->filter); 407 if (evsel->filter == NULL) 408 goto out_err; 409 } 410 if (orig->metric_id) { 411 evsel->metric_id = strdup(orig->metric_id); 412 if (evsel->metric_id == NULL) 413 goto out_err; 414 } 415 evsel->cgrp = cgroup__get(orig->cgrp); 416 #ifdef HAVE_LIBTRACEEVENT 417 evsel->tp_format = orig->tp_format; 418 #endif 419 evsel->handler = orig->handler; 420 evsel->core.leader = orig->core.leader; 421 422 evsel->max_events = orig->max_events; 423 evsel->tool_event = orig->tool_event; 424 free((char *)evsel->unit); 425 evsel->unit = strdup(orig->unit); 426 if (evsel->unit == NULL) 427 goto out_err; 428 429 evsel->scale = orig->scale; 430 evsel->snapshot = orig->snapshot; 431 evsel->per_pkg = orig->per_pkg; 432 evsel->percore = orig->percore; 433 evsel->precise_max = orig->precise_max; 434 evsel->is_libpfm_event = orig->is_libpfm_event; 435 436 evsel->exclude_GH = orig->exclude_GH; 437 evsel->sample_read = orig->sample_read; 438 evsel->auto_merge_stats = orig->auto_merge_stats; 439 evsel->collect_stat = orig->collect_stat; 440 evsel->weak_group = orig->weak_group; 441 evsel->use_config_name = orig->use_config_name; 442 evsel->pmu = orig->pmu; 443 444 if (evsel__copy_config_terms(evsel, orig) < 0) 445 goto out_err; 446 447 return evsel; 448 449 out_err: 450 evsel__delete(evsel); 451 return NULL; 452 } 453 454 /* 455 * Returns pointer with encoded error via <linux/err.h> interface. 456 */ 457 #ifdef HAVE_LIBTRACEEVENT 458 struct evsel *evsel__newtp_idx(const char *sys, const char *name, int idx, bool format) 459 { 460 struct evsel *evsel = zalloc(perf_evsel__object.size); 461 int err = -ENOMEM; 462 463 if (evsel == NULL) { 464 goto out_err; 465 } else { 466 struct perf_event_attr attr = { 467 .type = PERF_TYPE_TRACEPOINT, 468 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 469 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 470 }; 471 472 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 473 goto out_free; 474 475 event_attr_init(&attr); 476 477 if (format) { 478 evsel->tp_format = trace_event__tp_format(sys, name); 479 if (IS_ERR(evsel->tp_format)) { 480 err = PTR_ERR(evsel->tp_format); 481 goto out_free; 482 } 483 attr.config = evsel->tp_format->id; 484 } else { 485 attr.config = (__u64) -1; 486 } 487 488 489 attr.sample_period = 1; 490 evsel__init(evsel, &attr, idx); 491 } 492 493 return evsel; 494 495 out_free: 496 zfree(&evsel->name); 497 free(evsel); 498 out_err: 499 return ERR_PTR(err); 500 } 501 #endif 502 503 const char *const evsel__hw_names[PERF_COUNT_HW_MAX] = { 504 "cycles", 505 "instructions", 506 "cache-references", 507 "cache-misses", 508 "branches", 509 "branch-misses", 510 "bus-cycles", 511 "stalled-cycles-frontend", 512 "stalled-cycles-backend", 513 "ref-cycles", 514 }; 515 516 char *evsel__bpf_counter_events; 517 518 bool evsel__match_bpf_counter_events(const char *name) 519 { 520 int name_len; 521 bool match; 522 char *ptr; 523 524 if (!evsel__bpf_counter_events) 525 return false; 526 527 ptr = strstr(evsel__bpf_counter_events, name); 528 name_len = strlen(name); 529 530 /* check name matches a full token in evsel__bpf_counter_events */ 531 match = (ptr != NULL) && 532 ((ptr == evsel__bpf_counter_events) || (*(ptr - 1) == ',')) && 533 ((*(ptr + name_len) == ',') || (*(ptr + name_len) == '\0')); 534 535 return match; 536 } 537 538 static const char *__evsel__hw_name(u64 config) 539 { 540 if (config < PERF_COUNT_HW_MAX && evsel__hw_names[config]) 541 return evsel__hw_names[config]; 542 543 return "unknown-hardware"; 544 } 545 546 static int evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size) 547 { 548 int colon = 0, r = 0; 549 struct perf_event_attr *attr = &evsel->core.attr; 550 bool exclude_guest_default = false; 551 552 #define MOD_PRINT(context, mod) do { \ 553 if (!attr->exclude_##context) { \ 554 if (!colon) colon = ++r; \ 555 r += scnprintf(bf + r, size - r, "%c", mod); \ 556 } } while(0) 557 558 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 559 MOD_PRINT(kernel, 'k'); 560 MOD_PRINT(user, 'u'); 561 MOD_PRINT(hv, 'h'); 562 exclude_guest_default = true; 563 } 564 565 if (attr->precise_ip) { 566 if (!colon) 567 colon = ++r; 568 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 569 exclude_guest_default = true; 570 } 571 572 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 573 MOD_PRINT(host, 'H'); 574 MOD_PRINT(guest, 'G'); 575 } 576 #undef MOD_PRINT 577 if (colon) 578 bf[colon - 1] = ':'; 579 return r; 580 } 581 582 int __weak arch_evsel__hw_name(struct evsel *evsel, char *bf, size_t size) 583 { 584 return scnprintf(bf, size, "%s", __evsel__hw_name(evsel->core.attr.config)); 585 } 586 587 static int evsel__hw_name(struct evsel *evsel, char *bf, size_t size) 588 { 589 int r = arch_evsel__hw_name(evsel, bf, size); 590 return r + evsel__add_modifiers(evsel, bf + r, size - r); 591 } 592 593 const char *const evsel__sw_names[PERF_COUNT_SW_MAX] = { 594 "cpu-clock", 595 "task-clock", 596 "page-faults", 597 "context-switches", 598 "cpu-migrations", 599 "minor-faults", 600 "major-faults", 601 "alignment-faults", 602 "emulation-faults", 603 "dummy", 604 }; 605 606 static const char *__evsel__sw_name(u64 config) 607 { 608 if (config < PERF_COUNT_SW_MAX && evsel__sw_names[config]) 609 return evsel__sw_names[config]; 610 return "unknown-software"; 611 } 612 613 static int evsel__sw_name(struct evsel *evsel, char *bf, size_t size) 614 { 615 int r = scnprintf(bf, size, "%s", __evsel__sw_name(evsel->core.attr.config)); 616 return r + evsel__add_modifiers(evsel, bf + r, size - r); 617 } 618 619 static int evsel__tool_name(enum perf_tool_event ev, char *bf, size_t size) 620 { 621 return scnprintf(bf, size, "%s", perf_tool_event__to_str(ev)); 622 } 623 624 static int __evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 625 { 626 int r; 627 628 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 629 630 if (type & HW_BREAKPOINT_R) 631 r += scnprintf(bf + r, size - r, "r"); 632 633 if (type & HW_BREAKPOINT_W) 634 r += scnprintf(bf + r, size - r, "w"); 635 636 if (type & HW_BREAKPOINT_X) 637 r += scnprintf(bf + r, size - r, "x"); 638 639 return r; 640 } 641 642 static int evsel__bp_name(struct evsel *evsel, char *bf, size_t size) 643 { 644 struct perf_event_attr *attr = &evsel->core.attr; 645 int r = __evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 646 return r + evsel__add_modifiers(evsel, bf + r, size - r); 647 } 648 649 const char *const evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX][EVSEL__MAX_ALIASES] = { 650 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 651 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 652 { "LLC", "L2", }, 653 { "dTLB", "d-tlb", "Data-TLB", }, 654 { "iTLB", "i-tlb", "Instruction-TLB", }, 655 { "branch", "branches", "bpu", "btb", "bpc", }, 656 { "node", }, 657 }; 658 659 const char *const evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX][EVSEL__MAX_ALIASES] = { 660 { "load", "loads", "read", }, 661 { "store", "stores", "write", }, 662 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 663 }; 664 665 const char *const evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX][EVSEL__MAX_ALIASES] = { 666 { "refs", "Reference", "ops", "access", }, 667 { "misses", "miss", }, 668 }; 669 670 #define C(x) PERF_COUNT_HW_CACHE_##x 671 #define CACHE_READ (1 << C(OP_READ)) 672 #define CACHE_WRITE (1 << C(OP_WRITE)) 673 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 674 #define COP(x) (1 << x) 675 676 /* 677 * cache operation stat 678 * L1I : Read and prefetch only 679 * ITLB and BPU : Read-only 680 */ 681 static const unsigned long evsel__hw_cache_stat[C(MAX)] = { 682 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 683 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 684 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 685 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 686 [C(ITLB)] = (CACHE_READ), 687 [C(BPU)] = (CACHE_READ), 688 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 689 }; 690 691 bool evsel__is_cache_op_valid(u8 type, u8 op) 692 { 693 if (evsel__hw_cache_stat[type] & COP(op)) 694 return true; /* valid */ 695 else 696 return false; /* invalid */ 697 } 698 699 int __evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, char *bf, size_t size) 700 { 701 if (result) { 702 return scnprintf(bf, size, "%s-%s-%s", evsel__hw_cache[type][0], 703 evsel__hw_cache_op[op][0], 704 evsel__hw_cache_result[result][0]); 705 } 706 707 return scnprintf(bf, size, "%s-%s", evsel__hw_cache[type][0], 708 evsel__hw_cache_op[op][1]); 709 } 710 711 static int __evsel__hw_cache_name(u64 config, char *bf, size_t size) 712 { 713 u8 op, result, type = (config >> 0) & 0xff; 714 const char *err = "unknown-ext-hardware-cache-type"; 715 716 if (type >= PERF_COUNT_HW_CACHE_MAX) 717 goto out_err; 718 719 op = (config >> 8) & 0xff; 720 err = "unknown-ext-hardware-cache-op"; 721 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 722 goto out_err; 723 724 result = (config >> 16) & 0xff; 725 err = "unknown-ext-hardware-cache-result"; 726 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 727 goto out_err; 728 729 err = "invalid-cache"; 730 if (!evsel__is_cache_op_valid(type, op)) 731 goto out_err; 732 733 return __evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 734 out_err: 735 return scnprintf(bf, size, "%s", err); 736 } 737 738 static int evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size) 739 { 740 int ret = __evsel__hw_cache_name(evsel->core.attr.config, bf, size); 741 return ret + evsel__add_modifiers(evsel, bf + ret, size - ret); 742 } 743 744 static int evsel__raw_name(struct evsel *evsel, char *bf, size_t size) 745 { 746 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config); 747 return ret + evsel__add_modifiers(evsel, bf + ret, size - ret); 748 } 749 750 const char *evsel__name(struct evsel *evsel) 751 { 752 char bf[128]; 753 754 if (!evsel) 755 goto out_unknown; 756 757 if (evsel->name) 758 return evsel->name; 759 760 switch (evsel->core.attr.type) { 761 case PERF_TYPE_RAW: 762 evsel__raw_name(evsel, bf, sizeof(bf)); 763 break; 764 765 case PERF_TYPE_HARDWARE: 766 evsel__hw_name(evsel, bf, sizeof(bf)); 767 break; 768 769 case PERF_TYPE_HW_CACHE: 770 evsel__hw_cache_name(evsel, bf, sizeof(bf)); 771 break; 772 773 case PERF_TYPE_SOFTWARE: 774 if (evsel__is_tool(evsel)) 775 evsel__tool_name(evsel->tool_event, bf, sizeof(bf)); 776 else 777 evsel__sw_name(evsel, bf, sizeof(bf)); 778 break; 779 780 case PERF_TYPE_TRACEPOINT: 781 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 782 break; 783 784 case PERF_TYPE_BREAKPOINT: 785 evsel__bp_name(evsel, bf, sizeof(bf)); 786 break; 787 788 default: 789 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 790 evsel->core.attr.type); 791 break; 792 } 793 794 evsel->name = strdup(bf); 795 796 if (evsel->name) 797 return evsel->name; 798 out_unknown: 799 return "unknown"; 800 } 801 802 bool evsel__name_is(struct evsel *evsel, const char *name) 803 { 804 return !strcmp(evsel__name(evsel), name); 805 } 806 807 const char *evsel__metric_id(const struct evsel *evsel) 808 { 809 if (evsel->metric_id) 810 return evsel->metric_id; 811 812 if (evsel__is_tool(evsel)) 813 return perf_tool_event__to_str(evsel->tool_event); 814 815 return "unknown"; 816 } 817 818 const char *evsel__group_name(struct evsel *evsel) 819 { 820 return evsel->group_name ?: "anon group"; 821 } 822 823 /* 824 * Returns the group details for the specified leader, 825 * with following rules. 826 * 827 * For record -e '{cycles,instructions}' 828 * 'anon group { cycles:u, instructions:u }' 829 * 830 * For record -e 'cycles,instructions' and report --group 831 * 'cycles:u, instructions:u' 832 */ 833 int evsel__group_desc(struct evsel *evsel, char *buf, size_t size) 834 { 835 int ret = 0; 836 bool first = true; 837 struct evsel *pos; 838 const char *group_name = evsel__group_name(evsel); 839 840 if (!evsel->forced_leader) 841 ret = scnprintf(buf, size, "%s { ", group_name); 842 843 for_each_group_evsel(pos, evsel) { 844 if (symbol_conf.skip_empty && 845 evsel__hists(pos)->stats.nr_samples == 0) 846 continue; 847 848 ret += scnprintf(buf + ret, size - ret, "%s%s", 849 first ? "" : ", ", evsel__name(pos)); 850 first = false; 851 } 852 853 if (!evsel->forced_leader) 854 ret += scnprintf(buf + ret, size - ret, " }"); 855 856 return ret; 857 } 858 859 static void __evsel__config_callchain(struct evsel *evsel, struct record_opts *opts, 860 struct callchain_param *param) 861 { 862 bool function = evsel__is_function_event(evsel); 863 struct perf_event_attr *attr = &evsel->core.attr; 864 const char *arch = perf_env__arch(evsel__env(evsel)); 865 866 evsel__set_sample_bit(evsel, CALLCHAIN); 867 868 attr->sample_max_stack = param->max_stack; 869 870 if (opts->kernel_callchains) 871 attr->exclude_callchain_user = 1; 872 if (opts->user_callchains) 873 attr->exclude_callchain_kernel = 1; 874 if (param->record_mode == CALLCHAIN_LBR) { 875 if (!opts->branch_stack) { 876 if (attr->exclude_user) { 877 pr_warning("LBR callstack option is only available " 878 "to get user callchain information. " 879 "Falling back to framepointers.\n"); 880 } else { 881 evsel__set_sample_bit(evsel, BRANCH_STACK); 882 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 883 PERF_SAMPLE_BRANCH_CALL_STACK | 884 PERF_SAMPLE_BRANCH_NO_CYCLES | 885 PERF_SAMPLE_BRANCH_NO_FLAGS | 886 PERF_SAMPLE_BRANCH_HW_INDEX; 887 } 888 } else 889 pr_warning("Cannot use LBR callstack with branch stack. " 890 "Falling back to framepointers.\n"); 891 } 892 893 if (param->record_mode == CALLCHAIN_DWARF) { 894 if (!function) { 895 evsel__set_sample_bit(evsel, REGS_USER); 896 evsel__set_sample_bit(evsel, STACK_USER); 897 if (opts->sample_user_regs && 898 DWARF_MINIMAL_REGS(arch) != arch__user_reg_mask()) { 899 attr->sample_regs_user |= DWARF_MINIMAL_REGS(arch); 900 pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, " 901 "specifying a subset with --user-regs may render DWARF unwinding unreliable, " 902 "so the minimal registers set (IP, SP) is explicitly forced.\n"); 903 } else { 904 attr->sample_regs_user |= arch__user_reg_mask(); 905 } 906 attr->sample_stack_user = param->dump_size; 907 attr->exclude_callchain_user = 1; 908 } else { 909 pr_info("Cannot use DWARF unwind for function trace event," 910 " falling back to framepointers.\n"); 911 } 912 } 913 914 if (function) { 915 pr_info("Disabling user space callchains for function trace event.\n"); 916 attr->exclude_callchain_user = 1; 917 } 918 } 919 920 void evsel__config_callchain(struct evsel *evsel, struct record_opts *opts, 921 struct callchain_param *param) 922 { 923 if (param->enabled) 924 return __evsel__config_callchain(evsel, opts, param); 925 } 926 927 static void evsel__reset_callgraph(struct evsel *evsel, struct callchain_param *param) 928 { 929 struct perf_event_attr *attr = &evsel->core.attr; 930 931 evsel__reset_sample_bit(evsel, CALLCHAIN); 932 if (param->record_mode == CALLCHAIN_LBR) { 933 evsel__reset_sample_bit(evsel, BRANCH_STACK); 934 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 935 PERF_SAMPLE_BRANCH_CALL_STACK | 936 PERF_SAMPLE_BRANCH_HW_INDEX); 937 } 938 if (param->record_mode == CALLCHAIN_DWARF) { 939 evsel__reset_sample_bit(evsel, REGS_USER); 940 evsel__reset_sample_bit(evsel, STACK_USER); 941 } 942 } 943 944 static void evsel__apply_config_terms(struct evsel *evsel, 945 struct record_opts *opts, bool track) 946 { 947 struct evsel_config_term *term; 948 struct list_head *config_terms = &evsel->config_terms; 949 struct perf_event_attr *attr = &evsel->core.attr; 950 /* callgraph default */ 951 struct callchain_param param = { 952 .record_mode = callchain_param.record_mode, 953 }; 954 u32 dump_size = 0; 955 int max_stack = 0; 956 const char *callgraph_buf = NULL; 957 958 list_for_each_entry(term, config_terms, list) { 959 switch (term->type) { 960 case EVSEL__CONFIG_TERM_PERIOD: 961 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 962 attr->sample_period = term->val.period; 963 attr->freq = 0; 964 evsel__reset_sample_bit(evsel, PERIOD); 965 } 966 break; 967 case EVSEL__CONFIG_TERM_FREQ: 968 if (!(term->weak && opts->user_freq != UINT_MAX)) { 969 attr->sample_freq = term->val.freq; 970 attr->freq = 1; 971 evsel__set_sample_bit(evsel, PERIOD); 972 } 973 break; 974 case EVSEL__CONFIG_TERM_TIME: 975 if (term->val.time) 976 evsel__set_sample_bit(evsel, TIME); 977 else 978 evsel__reset_sample_bit(evsel, TIME); 979 break; 980 case EVSEL__CONFIG_TERM_CALLGRAPH: 981 callgraph_buf = term->val.str; 982 break; 983 case EVSEL__CONFIG_TERM_BRANCH: 984 if (term->val.str && strcmp(term->val.str, "no")) { 985 evsel__set_sample_bit(evsel, BRANCH_STACK); 986 parse_branch_str(term->val.str, 987 &attr->branch_sample_type); 988 } else 989 evsel__reset_sample_bit(evsel, BRANCH_STACK); 990 break; 991 case EVSEL__CONFIG_TERM_STACK_USER: 992 dump_size = term->val.stack_user; 993 break; 994 case EVSEL__CONFIG_TERM_MAX_STACK: 995 max_stack = term->val.max_stack; 996 break; 997 case EVSEL__CONFIG_TERM_MAX_EVENTS: 998 evsel->max_events = term->val.max_events; 999 break; 1000 case EVSEL__CONFIG_TERM_INHERIT: 1001 /* 1002 * attr->inherit should has already been set by 1003 * evsel__config. If user explicitly set 1004 * inherit using config terms, override global 1005 * opt->no_inherit setting. 1006 */ 1007 attr->inherit = term->val.inherit ? 1 : 0; 1008 break; 1009 case EVSEL__CONFIG_TERM_OVERWRITE: 1010 attr->write_backward = term->val.overwrite ? 1 : 0; 1011 break; 1012 case EVSEL__CONFIG_TERM_DRV_CFG: 1013 break; 1014 case EVSEL__CONFIG_TERM_PERCORE: 1015 break; 1016 case EVSEL__CONFIG_TERM_AUX_OUTPUT: 1017 attr->aux_output = term->val.aux_output ? 1 : 0; 1018 break; 1019 case EVSEL__CONFIG_TERM_AUX_SAMPLE_SIZE: 1020 /* Already applied by auxtrace */ 1021 break; 1022 case EVSEL__CONFIG_TERM_CFG_CHG: 1023 break; 1024 default: 1025 break; 1026 } 1027 } 1028 1029 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 1030 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 1031 bool sample_address = false; 1032 1033 if (max_stack) { 1034 param.max_stack = max_stack; 1035 if (callgraph_buf == NULL) 1036 callgraph_buf = "fp"; 1037 } 1038 1039 /* parse callgraph parameters */ 1040 if (callgraph_buf != NULL) { 1041 if (!strcmp(callgraph_buf, "no")) { 1042 param.enabled = false; 1043 param.record_mode = CALLCHAIN_NONE; 1044 } else { 1045 param.enabled = true; 1046 if (parse_callchain_record(callgraph_buf, ¶m)) { 1047 pr_err("per-event callgraph setting for %s failed. " 1048 "Apply callgraph global setting for it\n", 1049 evsel->name); 1050 return; 1051 } 1052 if (param.record_mode == CALLCHAIN_DWARF) 1053 sample_address = true; 1054 } 1055 } 1056 if (dump_size > 0) { 1057 dump_size = round_up(dump_size, sizeof(u64)); 1058 param.dump_size = dump_size; 1059 } 1060 1061 /* If global callgraph set, clear it */ 1062 if (callchain_param.enabled) 1063 evsel__reset_callgraph(evsel, &callchain_param); 1064 1065 /* set perf-event callgraph */ 1066 if (param.enabled) { 1067 if (sample_address) { 1068 evsel__set_sample_bit(evsel, ADDR); 1069 evsel__set_sample_bit(evsel, DATA_SRC); 1070 evsel->core.attr.mmap_data = track; 1071 } 1072 evsel__config_callchain(evsel, opts, ¶m); 1073 } 1074 } 1075 } 1076 1077 struct evsel_config_term *__evsel__get_config_term(struct evsel *evsel, enum evsel_term_type type) 1078 { 1079 struct evsel_config_term *term, *found_term = NULL; 1080 1081 list_for_each_entry(term, &evsel->config_terms, list) { 1082 if (term->type == type) 1083 found_term = term; 1084 } 1085 1086 return found_term; 1087 } 1088 1089 void __weak arch_evsel__set_sample_weight(struct evsel *evsel) 1090 { 1091 evsel__set_sample_bit(evsel, WEIGHT); 1092 } 1093 1094 void __weak arch__post_evsel_config(struct evsel *evsel __maybe_unused, 1095 struct perf_event_attr *attr __maybe_unused) 1096 { 1097 } 1098 1099 static void evsel__set_default_freq_period(struct record_opts *opts, 1100 struct perf_event_attr *attr) 1101 { 1102 if (opts->freq) { 1103 attr->freq = 1; 1104 attr->sample_freq = opts->freq; 1105 } else { 1106 attr->sample_period = opts->default_interval; 1107 } 1108 } 1109 1110 static bool evsel__is_offcpu_event(struct evsel *evsel) 1111 { 1112 return evsel__is_bpf_output(evsel) && evsel__name_is(evsel, OFFCPU_EVENT); 1113 } 1114 1115 /* 1116 * The enable_on_exec/disabled value strategy: 1117 * 1118 * 1) For any type of traced program: 1119 * - all independent events and group leaders are disabled 1120 * - all group members are enabled 1121 * 1122 * Group members are ruled by group leaders. They need to 1123 * be enabled, because the group scheduling relies on that. 1124 * 1125 * 2) For traced programs executed by perf: 1126 * - all independent events and group leaders have 1127 * enable_on_exec set 1128 * - we don't specifically enable or disable any event during 1129 * the record command 1130 * 1131 * Independent events and group leaders are initially disabled 1132 * and get enabled by exec. Group members are ruled by group 1133 * leaders as stated in 1). 1134 * 1135 * 3) For traced programs attached by perf (pid/tid): 1136 * - we specifically enable or disable all events during 1137 * the record command 1138 * 1139 * When attaching events to already running traced we 1140 * enable/disable events specifically, as there's no 1141 * initial traced exec call. 1142 */ 1143 void evsel__config(struct evsel *evsel, struct record_opts *opts, 1144 struct callchain_param *callchain) 1145 { 1146 struct evsel *leader = evsel__leader(evsel); 1147 struct perf_event_attr *attr = &evsel->core.attr; 1148 int track = evsel->tracking; 1149 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 1150 1151 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 1152 attr->inherit = !opts->no_inherit; 1153 attr->write_backward = opts->overwrite ? 1 : 0; 1154 attr->read_format = PERF_FORMAT_LOST; 1155 1156 evsel__set_sample_bit(evsel, IP); 1157 evsel__set_sample_bit(evsel, TID); 1158 1159 if (evsel->sample_read) { 1160 evsel__set_sample_bit(evsel, READ); 1161 1162 /* 1163 * We need ID even in case of single event, because 1164 * PERF_SAMPLE_READ process ID specific data. 1165 */ 1166 evsel__set_sample_id(evsel, false); 1167 1168 /* 1169 * Apply group format only if we belong to group 1170 * with more than one members. 1171 */ 1172 if (leader->core.nr_members > 1) { 1173 attr->read_format |= PERF_FORMAT_GROUP; 1174 attr->inherit = 0; 1175 } 1176 } 1177 1178 /* 1179 * We default some events to have a default interval. But keep 1180 * it a weak assumption overridable by the user. 1181 */ 1182 if ((evsel->is_libpfm_event && !attr->sample_period) || 1183 (!evsel->is_libpfm_event && (!attr->sample_period || 1184 opts->user_freq != UINT_MAX || 1185 opts->user_interval != ULLONG_MAX))) 1186 evsel__set_default_freq_period(opts, attr); 1187 1188 /* 1189 * If attr->freq was set (here or earlier), ask for period 1190 * to be sampled. 1191 */ 1192 if (attr->freq) 1193 evsel__set_sample_bit(evsel, PERIOD); 1194 1195 if (opts->no_samples) 1196 attr->sample_freq = 0; 1197 1198 if (opts->inherit_stat) { 1199 evsel->core.attr.read_format |= 1200 PERF_FORMAT_TOTAL_TIME_ENABLED | 1201 PERF_FORMAT_TOTAL_TIME_RUNNING | 1202 PERF_FORMAT_ID; 1203 attr->inherit_stat = 1; 1204 } 1205 1206 if (opts->sample_address) { 1207 evsel__set_sample_bit(evsel, ADDR); 1208 attr->mmap_data = track; 1209 } 1210 1211 /* 1212 * We don't allow user space callchains for function trace 1213 * event, due to issues with page faults while tracing page 1214 * fault handler and its overall trickiness nature. 1215 */ 1216 if (evsel__is_function_event(evsel)) 1217 evsel->core.attr.exclude_callchain_user = 1; 1218 1219 if (callchain && callchain->enabled && !evsel->no_aux_samples) 1220 evsel__config_callchain(evsel, opts, callchain); 1221 1222 if (opts->sample_intr_regs && !evsel->no_aux_samples && 1223 !evsel__is_dummy_event(evsel)) { 1224 attr->sample_regs_intr = opts->sample_intr_regs; 1225 evsel__set_sample_bit(evsel, REGS_INTR); 1226 } 1227 1228 if (opts->sample_user_regs && !evsel->no_aux_samples && 1229 !evsel__is_dummy_event(evsel)) { 1230 attr->sample_regs_user |= opts->sample_user_regs; 1231 evsel__set_sample_bit(evsel, REGS_USER); 1232 } 1233 1234 if (target__has_cpu(&opts->target) || opts->sample_cpu) 1235 evsel__set_sample_bit(evsel, CPU); 1236 1237 /* 1238 * When the user explicitly disabled time don't force it here. 1239 */ 1240 if (opts->sample_time && 1241 (!perf_missing_features.sample_id_all && 1242 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1243 opts->sample_time_set))) 1244 evsel__set_sample_bit(evsel, TIME); 1245 1246 if (opts->raw_samples && !evsel->no_aux_samples) { 1247 evsel__set_sample_bit(evsel, TIME); 1248 evsel__set_sample_bit(evsel, RAW); 1249 evsel__set_sample_bit(evsel, CPU); 1250 } 1251 1252 if (opts->sample_address) 1253 evsel__set_sample_bit(evsel, DATA_SRC); 1254 1255 if (opts->sample_phys_addr) 1256 evsel__set_sample_bit(evsel, PHYS_ADDR); 1257 1258 if (opts->no_buffering) { 1259 attr->watermark = 0; 1260 attr->wakeup_events = 1; 1261 } 1262 if (opts->branch_stack && !evsel->no_aux_samples) { 1263 evsel__set_sample_bit(evsel, BRANCH_STACK); 1264 attr->branch_sample_type = opts->branch_stack; 1265 } 1266 1267 if (opts->sample_weight) 1268 arch_evsel__set_sample_weight(evsel); 1269 1270 attr->task = track; 1271 attr->mmap = track; 1272 attr->mmap2 = track && !perf_missing_features.mmap2; 1273 attr->comm = track; 1274 attr->build_id = track && opts->build_id; 1275 1276 /* 1277 * ksymbol is tracked separately with text poke because it needs to be 1278 * system wide and enabled immediately. 1279 */ 1280 if (!opts->text_poke) 1281 attr->ksymbol = track && !perf_missing_features.ksymbol; 1282 attr->bpf_event = track && !opts->no_bpf_event && !perf_missing_features.bpf; 1283 1284 if (opts->record_namespaces) 1285 attr->namespaces = track; 1286 1287 if (opts->record_cgroup) { 1288 attr->cgroup = track && !perf_missing_features.cgroup; 1289 evsel__set_sample_bit(evsel, CGROUP); 1290 } 1291 1292 if (opts->sample_data_page_size) 1293 evsel__set_sample_bit(evsel, DATA_PAGE_SIZE); 1294 1295 if (opts->sample_code_page_size) 1296 evsel__set_sample_bit(evsel, CODE_PAGE_SIZE); 1297 1298 if (opts->record_switch_events) 1299 attr->context_switch = track; 1300 1301 if (opts->sample_transaction) 1302 evsel__set_sample_bit(evsel, TRANSACTION); 1303 1304 if (opts->running_time) { 1305 evsel->core.attr.read_format |= 1306 PERF_FORMAT_TOTAL_TIME_ENABLED | 1307 PERF_FORMAT_TOTAL_TIME_RUNNING; 1308 } 1309 1310 /* 1311 * XXX see the function comment above 1312 * 1313 * Disabling only independent events or group leaders, 1314 * keeping group members enabled. 1315 */ 1316 if (evsel__is_group_leader(evsel)) 1317 attr->disabled = 1; 1318 1319 /* 1320 * Setting enable_on_exec for independent events and 1321 * group leaders for traced executed by perf. 1322 */ 1323 if (target__none(&opts->target) && evsel__is_group_leader(evsel) && 1324 !opts->target.initial_delay) 1325 attr->enable_on_exec = 1; 1326 1327 if (evsel->immediate) { 1328 attr->disabled = 0; 1329 attr->enable_on_exec = 0; 1330 } 1331 1332 clockid = opts->clockid; 1333 if (opts->use_clockid) { 1334 attr->use_clockid = 1; 1335 attr->clockid = opts->clockid; 1336 } 1337 1338 if (evsel->precise_max) 1339 attr->precise_ip = 3; 1340 1341 if (opts->all_user) { 1342 attr->exclude_kernel = 1; 1343 attr->exclude_user = 0; 1344 } 1345 1346 if (opts->all_kernel) { 1347 attr->exclude_kernel = 0; 1348 attr->exclude_user = 1; 1349 } 1350 1351 if (evsel->core.own_cpus || evsel->unit) 1352 evsel->core.attr.read_format |= PERF_FORMAT_ID; 1353 1354 /* 1355 * Apply event specific term settings, 1356 * it overloads any global configuration. 1357 */ 1358 evsel__apply_config_terms(evsel, opts, track); 1359 1360 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1361 1362 /* The --period option takes the precedence. */ 1363 if (opts->period_set) { 1364 if (opts->period) 1365 evsel__set_sample_bit(evsel, PERIOD); 1366 else 1367 evsel__reset_sample_bit(evsel, PERIOD); 1368 } 1369 1370 /* 1371 * A dummy event never triggers any actual counter and therefore 1372 * cannot be used with branch_stack. 1373 * 1374 * For initial_delay, a dummy event is added implicitly. 1375 * The software event will trigger -EOPNOTSUPP error out, 1376 * if BRANCH_STACK bit is set. 1377 */ 1378 if (evsel__is_dummy_event(evsel)) 1379 evsel__reset_sample_bit(evsel, BRANCH_STACK); 1380 1381 if (evsel__is_offcpu_event(evsel)) 1382 evsel->core.attr.sample_type &= OFFCPU_SAMPLE_TYPES; 1383 1384 arch__post_evsel_config(evsel, attr); 1385 } 1386 1387 int evsel__set_filter(struct evsel *evsel, const char *filter) 1388 { 1389 char *new_filter = strdup(filter); 1390 1391 if (new_filter != NULL) { 1392 free(evsel->filter); 1393 evsel->filter = new_filter; 1394 return 0; 1395 } 1396 1397 return -1; 1398 } 1399 1400 static int evsel__append_filter(struct evsel *evsel, const char *fmt, const char *filter) 1401 { 1402 char *new_filter; 1403 1404 if (evsel->filter == NULL) 1405 return evsel__set_filter(evsel, filter); 1406 1407 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1408 free(evsel->filter); 1409 evsel->filter = new_filter; 1410 return 0; 1411 } 1412 1413 return -1; 1414 } 1415 1416 int evsel__append_tp_filter(struct evsel *evsel, const char *filter) 1417 { 1418 return evsel__append_filter(evsel, "(%s) && (%s)", filter); 1419 } 1420 1421 int evsel__append_addr_filter(struct evsel *evsel, const char *filter) 1422 { 1423 return evsel__append_filter(evsel, "%s,%s", filter); 1424 } 1425 1426 /* Caller has to clear disabled after going through all CPUs. */ 1427 int evsel__enable_cpu(struct evsel *evsel, int cpu_map_idx) 1428 { 1429 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx); 1430 } 1431 1432 int evsel__enable(struct evsel *evsel) 1433 { 1434 int err = perf_evsel__enable(&evsel->core); 1435 1436 if (!err) 1437 evsel->disabled = false; 1438 return err; 1439 } 1440 1441 /* Caller has to set disabled after going through all CPUs. */ 1442 int evsel__disable_cpu(struct evsel *evsel, int cpu_map_idx) 1443 { 1444 return perf_evsel__disable_cpu(&evsel->core, cpu_map_idx); 1445 } 1446 1447 int evsel__disable(struct evsel *evsel) 1448 { 1449 int err = perf_evsel__disable(&evsel->core); 1450 /* 1451 * We mark it disabled here so that tools that disable a event can 1452 * ignore events after they disable it. I.e. the ring buffer may have 1453 * already a few more events queued up before the kernel got the stop 1454 * request. 1455 */ 1456 if (!err) 1457 evsel->disabled = true; 1458 1459 return err; 1460 } 1461 1462 void free_config_terms(struct list_head *config_terms) 1463 { 1464 struct evsel_config_term *term, *h; 1465 1466 list_for_each_entry_safe(term, h, config_terms, list) { 1467 list_del_init(&term->list); 1468 if (term->free_str) 1469 zfree(&term->val.str); 1470 free(term); 1471 } 1472 } 1473 1474 static void evsel__free_config_terms(struct evsel *evsel) 1475 { 1476 free_config_terms(&evsel->config_terms); 1477 } 1478 1479 void evsel__exit(struct evsel *evsel) 1480 { 1481 assert(list_empty(&evsel->core.node)); 1482 assert(evsel->evlist == NULL); 1483 bpf_counter__destroy(evsel); 1484 perf_bpf_filter__destroy(evsel); 1485 evsel__free_counts(evsel); 1486 perf_evsel__free_fd(&evsel->core); 1487 perf_evsel__free_id(&evsel->core); 1488 evsel__free_config_terms(evsel); 1489 cgroup__put(evsel->cgrp); 1490 perf_cpu_map__put(evsel->core.cpus); 1491 perf_cpu_map__put(evsel->core.own_cpus); 1492 perf_thread_map__put(evsel->core.threads); 1493 zfree(&evsel->group_name); 1494 zfree(&evsel->name); 1495 zfree(&evsel->filter); 1496 zfree(&evsel->pmu_name); 1497 zfree(&evsel->group_pmu_name); 1498 zfree(&evsel->unit); 1499 zfree(&evsel->metric_id); 1500 evsel__zero_per_pkg(evsel); 1501 hashmap__free(evsel->per_pkg_mask); 1502 evsel->per_pkg_mask = NULL; 1503 zfree(&evsel->metric_events); 1504 perf_evsel__object.fini(evsel); 1505 if (evsel->tool_event == PERF_TOOL_SYSTEM_TIME || 1506 evsel->tool_event == PERF_TOOL_USER_TIME) 1507 xyarray__delete(evsel->start_times); 1508 } 1509 1510 void evsel__delete(struct evsel *evsel) 1511 { 1512 if (!evsel) 1513 return; 1514 1515 evsel__exit(evsel); 1516 free(evsel); 1517 } 1518 1519 void evsel__compute_deltas(struct evsel *evsel, int cpu_map_idx, int thread, 1520 struct perf_counts_values *count) 1521 { 1522 struct perf_counts_values tmp; 1523 1524 if (!evsel->prev_raw_counts) 1525 return; 1526 1527 tmp = *perf_counts(evsel->prev_raw_counts, cpu_map_idx, thread); 1528 *perf_counts(evsel->prev_raw_counts, cpu_map_idx, thread) = *count; 1529 1530 count->val = count->val - tmp.val; 1531 count->ena = count->ena - tmp.ena; 1532 count->run = count->run - tmp.run; 1533 } 1534 1535 static int evsel__read_one(struct evsel *evsel, int cpu_map_idx, int thread) 1536 { 1537 struct perf_counts_values *count = perf_counts(evsel->counts, cpu_map_idx, thread); 1538 1539 return perf_evsel__read(&evsel->core, cpu_map_idx, thread, count); 1540 } 1541 1542 static void evsel__set_count(struct evsel *counter, int cpu_map_idx, int thread, 1543 u64 val, u64 ena, u64 run, u64 lost) 1544 { 1545 struct perf_counts_values *count; 1546 1547 count = perf_counts(counter->counts, cpu_map_idx, thread); 1548 1549 count->val = val; 1550 count->ena = ena; 1551 count->run = run; 1552 count->lost = lost; 1553 1554 perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, true); 1555 } 1556 1557 static int evsel__process_group_data(struct evsel *leader, int cpu_map_idx, int thread, u64 *data) 1558 { 1559 u64 read_format = leader->core.attr.read_format; 1560 struct sample_read_value *v; 1561 u64 nr, ena = 0, run = 0, lost = 0; 1562 1563 nr = *data++; 1564 1565 if (nr != (u64) leader->core.nr_members) 1566 return -EINVAL; 1567 1568 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1569 ena = *data++; 1570 1571 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1572 run = *data++; 1573 1574 v = (void *)data; 1575 sample_read_group__for_each(v, nr, read_format) { 1576 struct evsel *counter; 1577 1578 counter = evlist__id2evsel(leader->evlist, v->id); 1579 if (!counter) 1580 return -EINVAL; 1581 1582 if (read_format & PERF_FORMAT_LOST) 1583 lost = v->lost; 1584 1585 evsel__set_count(counter, cpu_map_idx, thread, v->value, ena, run, lost); 1586 } 1587 1588 return 0; 1589 } 1590 1591 static int evsel__read_group(struct evsel *leader, int cpu_map_idx, int thread) 1592 { 1593 struct perf_stat_evsel *ps = leader->stats; 1594 u64 read_format = leader->core.attr.read_format; 1595 int size = perf_evsel__read_size(&leader->core); 1596 u64 *data = ps->group_data; 1597 1598 if (!(read_format & PERF_FORMAT_ID)) 1599 return -EINVAL; 1600 1601 if (!evsel__is_group_leader(leader)) 1602 return -EINVAL; 1603 1604 if (!data) { 1605 data = zalloc(size); 1606 if (!data) 1607 return -ENOMEM; 1608 1609 ps->group_data = data; 1610 } 1611 1612 if (FD(leader, cpu_map_idx, thread) < 0) 1613 return -EINVAL; 1614 1615 if (readn(FD(leader, cpu_map_idx, thread), data, size) <= 0) 1616 return -errno; 1617 1618 return evsel__process_group_data(leader, cpu_map_idx, thread, data); 1619 } 1620 1621 static bool read_until_char(struct io *io, char e) 1622 { 1623 int c; 1624 1625 do { 1626 c = io__get_char(io); 1627 if (c == -1) 1628 return false; 1629 } while (c != e); 1630 return true; 1631 } 1632 1633 static int read_stat_field(int fd, struct perf_cpu cpu, int field, __u64 *val) 1634 { 1635 char buf[256]; 1636 struct io io; 1637 int i; 1638 1639 io__init(&io, fd, buf, sizeof(buf)); 1640 1641 /* Skip lines to relevant CPU. */ 1642 for (i = -1; i < cpu.cpu; i++) { 1643 if (!read_until_char(&io, '\n')) 1644 return -EINVAL; 1645 } 1646 /* Skip to "cpu". */ 1647 if (io__get_char(&io) != 'c') return -EINVAL; 1648 if (io__get_char(&io) != 'p') return -EINVAL; 1649 if (io__get_char(&io) != 'u') return -EINVAL; 1650 1651 /* Skip N of cpuN. */ 1652 if (!read_until_char(&io, ' ')) 1653 return -EINVAL; 1654 1655 i = 1; 1656 while (true) { 1657 if (io__get_dec(&io, val) != ' ') 1658 break; 1659 if (field == i) 1660 return 0; 1661 i++; 1662 } 1663 return -EINVAL; 1664 } 1665 1666 static int read_pid_stat_field(int fd, int field, __u64 *val) 1667 { 1668 char buf[256]; 1669 struct io io; 1670 int c, i; 1671 1672 io__init(&io, fd, buf, sizeof(buf)); 1673 if (io__get_dec(&io, val) != ' ') 1674 return -EINVAL; 1675 if (field == 1) 1676 return 0; 1677 1678 /* Skip comm. */ 1679 if (io__get_char(&io) != '(' || !read_until_char(&io, ')')) 1680 return -EINVAL; 1681 if (field == 2) 1682 return -EINVAL; /* String can't be returned. */ 1683 1684 /* Skip state */ 1685 if (io__get_char(&io) != ' ' || io__get_char(&io) == -1) 1686 return -EINVAL; 1687 if (field == 3) 1688 return -EINVAL; /* String can't be returned. */ 1689 1690 /* Loop over numeric fields*/ 1691 if (io__get_char(&io) != ' ') 1692 return -EINVAL; 1693 1694 i = 4; 1695 while (true) { 1696 c = io__get_dec(&io, val); 1697 if (c == -1) 1698 return -EINVAL; 1699 if (c == -2) { 1700 /* Assume a -ve was read */ 1701 c = io__get_dec(&io, val); 1702 *val *= -1; 1703 } 1704 if (c != ' ') 1705 return -EINVAL; 1706 if (field == i) 1707 return 0; 1708 i++; 1709 } 1710 return -EINVAL; 1711 } 1712 1713 static int evsel__read_tool(struct evsel *evsel, int cpu_map_idx, int thread) 1714 { 1715 __u64 *start_time, cur_time, delta_start; 1716 int fd, err = 0; 1717 struct perf_counts_values *count; 1718 bool adjust = false; 1719 1720 count = perf_counts(evsel->counts, cpu_map_idx, thread); 1721 1722 switch (evsel->tool_event) { 1723 case PERF_TOOL_DURATION_TIME: 1724 /* 1725 * Pretend duration_time is only on the first CPU and thread, or 1726 * else aggregation will scale duration_time by the number of 1727 * CPUs/threads. 1728 */ 1729 start_time = &evsel->start_time; 1730 if (cpu_map_idx == 0 && thread == 0) 1731 cur_time = rdclock(); 1732 else 1733 cur_time = *start_time; 1734 break; 1735 case PERF_TOOL_USER_TIME: 1736 case PERF_TOOL_SYSTEM_TIME: { 1737 bool system = evsel->tool_event == PERF_TOOL_SYSTEM_TIME; 1738 1739 start_time = xyarray__entry(evsel->start_times, cpu_map_idx, thread); 1740 fd = FD(evsel, cpu_map_idx, thread); 1741 lseek(fd, SEEK_SET, 0); 1742 if (evsel->pid_stat) { 1743 /* The event exists solely on 1 CPU. */ 1744 if (cpu_map_idx == 0) 1745 err = read_pid_stat_field(fd, system ? 15 : 14, &cur_time); 1746 else 1747 cur_time = 0; 1748 } else { 1749 /* The event is for all threads. */ 1750 if (thread == 0) { 1751 struct perf_cpu cpu = perf_cpu_map__cpu(evsel->core.cpus, 1752 cpu_map_idx); 1753 1754 err = read_stat_field(fd, cpu, system ? 3 : 1, &cur_time); 1755 } else { 1756 cur_time = 0; 1757 } 1758 } 1759 adjust = true; 1760 break; 1761 } 1762 case PERF_TOOL_NONE: 1763 case PERF_TOOL_MAX: 1764 default: 1765 err = -EINVAL; 1766 } 1767 if (err) 1768 return err; 1769 1770 delta_start = cur_time - *start_time; 1771 if (adjust) { 1772 __u64 ticks_per_sec = sysconf(_SC_CLK_TCK); 1773 1774 delta_start *= 1000000000 / ticks_per_sec; 1775 } 1776 count->val = delta_start; 1777 count->ena = count->run = delta_start; 1778 count->lost = 0; 1779 return 0; 1780 } 1781 1782 int evsel__read_counter(struct evsel *evsel, int cpu_map_idx, int thread) 1783 { 1784 if (evsel__is_tool(evsel)) 1785 return evsel__read_tool(evsel, cpu_map_idx, thread); 1786 1787 if (evsel->core.attr.read_format & PERF_FORMAT_GROUP) 1788 return evsel__read_group(evsel, cpu_map_idx, thread); 1789 1790 return evsel__read_one(evsel, cpu_map_idx, thread); 1791 } 1792 1793 int __evsel__read_on_cpu(struct evsel *evsel, int cpu_map_idx, int thread, bool scale) 1794 { 1795 struct perf_counts_values count; 1796 size_t nv = scale ? 3 : 1; 1797 1798 if (FD(evsel, cpu_map_idx, thread) < 0) 1799 return -EINVAL; 1800 1801 if (evsel->counts == NULL && evsel__alloc_counts(evsel) < 0) 1802 return -ENOMEM; 1803 1804 if (readn(FD(evsel, cpu_map_idx, thread), &count, nv * sizeof(u64)) <= 0) 1805 return -errno; 1806 1807 evsel__compute_deltas(evsel, cpu_map_idx, thread, &count); 1808 perf_counts_values__scale(&count, scale, NULL); 1809 *perf_counts(evsel->counts, cpu_map_idx, thread) = count; 1810 return 0; 1811 } 1812 1813 static int evsel__match_other_cpu(struct evsel *evsel, struct evsel *other, 1814 int cpu_map_idx) 1815 { 1816 struct perf_cpu cpu; 1817 1818 cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx); 1819 return perf_cpu_map__idx(other->core.cpus, cpu); 1820 } 1821 1822 static int evsel__hybrid_group_cpu_map_idx(struct evsel *evsel, int cpu_map_idx) 1823 { 1824 struct evsel *leader = evsel__leader(evsel); 1825 1826 if ((evsel__is_hybrid(evsel) && !evsel__is_hybrid(leader)) || 1827 (!evsel__is_hybrid(evsel) && evsel__is_hybrid(leader))) { 1828 return evsel__match_other_cpu(evsel, leader, cpu_map_idx); 1829 } 1830 1831 return cpu_map_idx; 1832 } 1833 1834 static int get_group_fd(struct evsel *evsel, int cpu_map_idx, int thread) 1835 { 1836 struct evsel *leader = evsel__leader(evsel); 1837 int fd; 1838 1839 if (evsel__is_group_leader(evsel)) 1840 return -1; 1841 1842 /* 1843 * Leader must be already processed/open, 1844 * if not it's a bug. 1845 */ 1846 BUG_ON(!leader->core.fd); 1847 1848 cpu_map_idx = evsel__hybrid_group_cpu_map_idx(evsel, cpu_map_idx); 1849 if (cpu_map_idx == -1) 1850 return -1; 1851 1852 fd = FD(leader, cpu_map_idx, thread); 1853 BUG_ON(fd == -1 && !leader->skippable); 1854 1855 /* 1856 * When the leader has been skipped, return -2 to distinguish from no 1857 * group leader case. 1858 */ 1859 return fd == -1 ? -2 : fd; 1860 } 1861 1862 static void evsel__remove_fd(struct evsel *pos, int nr_cpus, int nr_threads, int thread_idx) 1863 { 1864 for (int cpu = 0; cpu < nr_cpus; cpu++) 1865 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1866 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1867 } 1868 1869 static int update_fds(struct evsel *evsel, 1870 int nr_cpus, int cpu_map_idx, 1871 int nr_threads, int thread_idx) 1872 { 1873 struct evsel *pos; 1874 1875 if (cpu_map_idx >= nr_cpus || thread_idx >= nr_threads) 1876 return -EINVAL; 1877 1878 evlist__for_each_entry(evsel->evlist, pos) { 1879 nr_cpus = pos != evsel ? nr_cpus : cpu_map_idx; 1880 1881 evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1882 1883 /* 1884 * Since fds for next evsel has not been created, 1885 * there is no need to iterate whole event list. 1886 */ 1887 if (pos == evsel) 1888 break; 1889 } 1890 return 0; 1891 } 1892 1893 static bool evsel__ignore_missing_thread(struct evsel *evsel, 1894 int nr_cpus, int cpu_map_idx, 1895 struct perf_thread_map *threads, 1896 int thread, int err) 1897 { 1898 pid_t ignore_pid = perf_thread_map__pid(threads, thread); 1899 1900 if (!evsel->ignore_missing_thread) 1901 return false; 1902 1903 /* The system wide setup does not work with threads. */ 1904 if (evsel->core.system_wide) 1905 return false; 1906 1907 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1908 if (err != -ESRCH) 1909 return false; 1910 1911 /* If there's only one thread, let it fail. */ 1912 if (threads->nr == 1) 1913 return false; 1914 1915 /* 1916 * We should remove fd for missing_thread first 1917 * because thread_map__remove() will decrease threads->nr. 1918 */ 1919 if (update_fds(evsel, nr_cpus, cpu_map_idx, threads->nr, thread)) 1920 return false; 1921 1922 if (thread_map__remove(threads, thread)) 1923 return false; 1924 1925 pr_warning("WARNING: Ignored open failure for pid %d\n", 1926 ignore_pid); 1927 return true; 1928 } 1929 1930 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1931 void *priv __maybe_unused) 1932 { 1933 return fprintf(fp, " %-32s %s\n", name, val); 1934 } 1935 1936 static void display_attr(struct perf_event_attr *attr) 1937 { 1938 if (verbose >= 2 || debug_peo_args) { 1939 fprintf(stderr, "%.60s\n", graph_dotted_line); 1940 fprintf(stderr, "perf_event_attr:\n"); 1941 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL); 1942 fprintf(stderr, "%.60s\n", graph_dotted_line); 1943 } 1944 } 1945 1946 bool evsel__precise_ip_fallback(struct evsel *evsel) 1947 { 1948 /* Do not try less precise if not requested. */ 1949 if (!evsel->precise_max) 1950 return false; 1951 1952 /* 1953 * We tried all the precise_ip values, and it's 1954 * still failing, so leave it to standard fallback. 1955 */ 1956 if (!evsel->core.attr.precise_ip) { 1957 evsel->core.attr.precise_ip = evsel->precise_ip_original; 1958 return false; 1959 } 1960 1961 if (!evsel->precise_ip_original) 1962 evsel->precise_ip_original = evsel->core.attr.precise_ip; 1963 1964 evsel->core.attr.precise_ip--; 1965 pr_debug2_peo("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip); 1966 display_attr(&evsel->core.attr); 1967 return true; 1968 } 1969 1970 static struct perf_cpu_map *empty_cpu_map; 1971 static struct perf_thread_map *empty_thread_map; 1972 1973 static int __evsel__prepare_open(struct evsel *evsel, struct perf_cpu_map *cpus, 1974 struct perf_thread_map *threads) 1975 { 1976 int nthreads = perf_thread_map__nr(threads); 1977 1978 if ((perf_missing_features.write_backward && evsel->core.attr.write_backward) || 1979 (perf_missing_features.aux_output && evsel->core.attr.aux_output)) 1980 return -EINVAL; 1981 1982 if (cpus == NULL) { 1983 if (empty_cpu_map == NULL) { 1984 empty_cpu_map = perf_cpu_map__new_any_cpu(); 1985 if (empty_cpu_map == NULL) 1986 return -ENOMEM; 1987 } 1988 1989 cpus = empty_cpu_map; 1990 } 1991 1992 if (threads == NULL) { 1993 if (empty_thread_map == NULL) { 1994 empty_thread_map = thread_map__new_by_tid(-1); 1995 if (empty_thread_map == NULL) 1996 return -ENOMEM; 1997 } 1998 1999 threads = empty_thread_map; 2000 } 2001 2002 if (evsel->core.fd == NULL && 2003 perf_evsel__alloc_fd(&evsel->core, perf_cpu_map__nr(cpus), nthreads) < 0) 2004 return -ENOMEM; 2005 2006 if ((evsel->tool_event == PERF_TOOL_SYSTEM_TIME || 2007 evsel->tool_event == PERF_TOOL_USER_TIME) && 2008 !evsel->start_times) { 2009 evsel->start_times = xyarray__new(perf_cpu_map__nr(cpus), nthreads, sizeof(__u64)); 2010 if (!evsel->start_times) 2011 return -ENOMEM; 2012 } 2013 2014 evsel->open_flags = PERF_FLAG_FD_CLOEXEC; 2015 if (evsel->cgrp) 2016 evsel->open_flags |= PERF_FLAG_PID_CGROUP; 2017 2018 return 0; 2019 } 2020 2021 static void evsel__disable_missing_features(struct evsel *evsel) 2022 { 2023 if (perf_missing_features.branch_counters) 2024 evsel->core.attr.branch_sample_type &= ~PERF_SAMPLE_BRANCH_COUNTERS; 2025 if (perf_missing_features.read_lost) 2026 evsel->core.attr.read_format &= ~PERF_FORMAT_LOST; 2027 if (perf_missing_features.weight_struct) { 2028 evsel__set_sample_bit(evsel, WEIGHT); 2029 evsel__reset_sample_bit(evsel, WEIGHT_STRUCT); 2030 } 2031 if (perf_missing_features.clockid_wrong) 2032 evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */ 2033 if (perf_missing_features.clockid) { 2034 evsel->core.attr.use_clockid = 0; 2035 evsel->core.attr.clockid = 0; 2036 } 2037 if (perf_missing_features.cloexec) 2038 evsel->open_flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 2039 if (perf_missing_features.mmap2) 2040 evsel->core.attr.mmap2 = 0; 2041 if (evsel->pmu && evsel->pmu->missing_features.exclude_guest) 2042 evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0; 2043 if (perf_missing_features.lbr_flags) 2044 evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 2045 PERF_SAMPLE_BRANCH_NO_CYCLES); 2046 if (perf_missing_features.group_read && evsel->core.attr.inherit) 2047 evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 2048 if (perf_missing_features.ksymbol) 2049 evsel->core.attr.ksymbol = 0; 2050 if (perf_missing_features.bpf) 2051 evsel->core.attr.bpf_event = 0; 2052 if (perf_missing_features.branch_hw_idx) 2053 evsel->core.attr.branch_sample_type &= ~PERF_SAMPLE_BRANCH_HW_INDEX; 2054 if (perf_missing_features.sample_id_all) 2055 evsel->core.attr.sample_id_all = 0; 2056 } 2057 2058 int evsel__prepare_open(struct evsel *evsel, struct perf_cpu_map *cpus, 2059 struct perf_thread_map *threads) 2060 { 2061 int err; 2062 2063 err = __evsel__prepare_open(evsel, cpus, threads); 2064 if (err) 2065 return err; 2066 2067 evsel__disable_missing_features(evsel); 2068 2069 return err; 2070 } 2071 2072 bool evsel__detect_missing_features(struct evsel *evsel) 2073 { 2074 /* 2075 * Must probe features in the order they were added to the 2076 * perf_event_attr interface. 2077 */ 2078 if (!perf_missing_features.branch_counters && 2079 (evsel->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS)) { 2080 perf_missing_features.branch_counters = true; 2081 pr_debug2("switching off branch counters support\n"); 2082 return true; 2083 } else if (!perf_missing_features.read_lost && 2084 (evsel->core.attr.read_format & PERF_FORMAT_LOST)) { 2085 perf_missing_features.read_lost = true; 2086 pr_debug2("switching off PERF_FORMAT_LOST support\n"); 2087 return true; 2088 } else if (!perf_missing_features.weight_struct && 2089 (evsel->core.attr.sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) { 2090 perf_missing_features.weight_struct = true; 2091 pr_debug2("switching off weight struct support\n"); 2092 return true; 2093 } else if (!perf_missing_features.code_page_size && 2094 (evsel->core.attr.sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)) { 2095 perf_missing_features.code_page_size = true; 2096 pr_debug2_peo("Kernel has no PERF_SAMPLE_CODE_PAGE_SIZE support, bailing out\n"); 2097 return false; 2098 } else if (!perf_missing_features.data_page_size && 2099 (evsel->core.attr.sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)) { 2100 perf_missing_features.data_page_size = true; 2101 pr_debug2_peo("Kernel has no PERF_SAMPLE_DATA_PAGE_SIZE support, bailing out\n"); 2102 return false; 2103 } else if (!perf_missing_features.cgroup && evsel->core.attr.cgroup) { 2104 perf_missing_features.cgroup = true; 2105 pr_debug2_peo("Kernel has no cgroup sampling support, bailing out\n"); 2106 return false; 2107 } else if (!perf_missing_features.branch_hw_idx && 2108 (evsel->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX)) { 2109 perf_missing_features.branch_hw_idx = true; 2110 pr_debug2("switching off branch HW index support\n"); 2111 return true; 2112 } else if (!perf_missing_features.aux_output && evsel->core.attr.aux_output) { 2113 perf_missing_features.aux_output = true; 2114 pr_debug2_peo("Kernel has no attr.aux_output support, bailing out\n"); 2115 return false; 2116 } else if (!perf_missing_features.bpf && evsel->core.attr.bpf_event) { 2117 perf_missing_features.bpf = true; 2118 pr_debug2_peo("switching off bpf_event\n"); 2119 return true; 2120 } else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) { 2121 perf_missing_features.ksymbol = true; 2122 pr_debug2_peo("switching off ksymbol\n"); 2123 return true; 2124 } else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) { 2125 perf_missing_features.write_backward = true; 2126 pr_debug2_peo("switching off write_backward\n"); 2127 return false; 2128 } else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) { 2129 perf_missing_features.clockid_wrong = true; 2130 pr_debug2_peo("switching off clockid\n"); 2131 return true; 2132 } else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) { 2133 perf_missing_features.clockid = true; 2134 pr_debug2_peo("switching off use_clockid\n"); 2135 return true; 2136 } else if (!perf_missing_features.cloexec && (evsel->open_flags & PERF_FLAG_FD_CLOEXEC)) { 2137 perf_missing_features.cloexec = true; 2138 pr_debug2_peo("switching off cloexec flag\n"); 2139 return true; 2140 } else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) { 2141 perf_missing_features.mmap2 = true; 2142 pr_debug2_peo("switching off mmap2\n"); 2143 return true; 2144 } else if (evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host) { 2145 if (evsel->pmu == NULL) 2146 evsel->pmu = evsel__find_pmu(evsel); 2147 2148 if (evsel->pmu) 2149 evsel->pmu->missing_features.exclude_guest = true; 2150 else { 2151 /* we cannot find PMU, disable attrs now */ 2152 evsel->core.attr.exclude_host = false; 2153 evsel->core.attr.exclude_guest = false; 2154 } 2155 2156 if (evsel->exclude_GH) { 2157 pr_debug2_peo("PMU has no exclude_host/guest support, bailing out\n"); 2158 return false; 2159 } 2160 if (!perf_missing_features.exclude_guest) { 2161 perf_missing_features.exclude_guest = true; 2162 pr_debug2_peo("switching off exclude_guest, exclude_host\n"); 2163 } 2164 return true; 2165 } else if (!perf_missing_features.sample_id_all) { 2166 perf_missing_features.sample_id_all = true; 2167 pr_debug2_peo("switching off sample_id_all\n"); 2168 return true; 2169 } else if (!perf_missing_features.lbr_flags && 2170 (evsel->core.attr.branch_sample_type & 2171 (PERF_SAMPLE_BRANCH_NO_CYCLES | 2172 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 2173 perf_missing_features.lbr_flags = true; 2174 pr_debug2_peo("switching off branch sample type no (cycles/flags)\n"); 2175 return true; 2176 } else if (!perf_missing_features.group_read && 2177 evsel->core.attr.inherit && 2178 (evsel->core.attr.read_format & PERF_FORMAT_GROUP) && 2179 evsel__is_group_leader(evsel)) { 2180 perf_missing_features.group_read = true; 2181 pr_debug2_peo("switching off group read\n"); 2182 return true; 2183 } else { 2184 return false; 2185 } 2186 } 2187 2188 static int evsel__open_cpu(struct evsel *evsel, struct perf_cpu_map *cpus, 2189 struct perf_thread_map *threads, 2190 int start_cpu_map_idx, int end_cpu_map_idx) 2191 { 2192 int idx, thread, nthreads; 2193 int pid = -1, err, old_errno; 2194 enum rlimit_action set_rlimit = NO_CHANGE; 2195 2196 if (evsel->tool_event == PERF_TOOL_DURATION_TIME) { 2197 if (evsel->core.attr.sample_period) /* no sampling */ 2198 return -EINVAL; 2199 evsel->start_time = rdclock(); 2200 return 0; 2201 } 2202 2203 err = __evsel__prepare_open(evsel, cpus, threads); 2204 if (err) 2205 return err; 2206 2207 if (cpus == NULL) 2208 cpus = empty_cpu_map; 2209 2210 if (threads == NULL) 2211 threads = empty_thread_map; 2212 2213 nthreads = perf_thread_map__nr(threads); 2214 2215 if (evsel->cgrp) 2216 pid = evsel->cgrp->fd; 2217 2218 fallback_missing_features: 2219 evsel__disable_missing_features(evsel); 2220 2221 pr_debug3("Opening: %s\n", evsel__name(evsel)); 2222 display_attr(&evsel->core.attr); 2223 2224 for (idx = start_cpu_map_idx; idx < end_cpu_map_idx; idx++) { 2225 2226 for (thread = 0; thread < nthreads; thread++) { 2227 int fd, group_fd; 2228 retry_open: 2229 if (thread >= nthreads) 2230 break; 2231 2232 if (!evsel->cgrp && !evsel->core.system_wide) 2233 pid = perf_thread_map__pid(threads, thread); 2234 2235 if (evsel->tool_event == PERF_TOOL_USER_TIME || 2236 evsel->tool_event == PERF_TOOL_SYSTEM_TIME) { 2237 bool system = evsel->tool_event == PERF_TOOL_SYSTEM_TIME; 2238 __u64 *start_time = NULL; 2239 2240 if (evsel->core.attr.sample_period) { 2241 /* no sampling */ 2242 err = -EINVAL; 2243 goto out_close; 2244 } 2245 if (pid > -1) { 2246 char buf[64]; 2247 2248 snprintf(buf, sizeof(buf), "/proc/%d/stat", pid); 2249 fd = open(buf, O_RDONLY); 2250 evsel->pid_stat = true; 2251 } else { 2252 fd = open("/proc/stat", O_RDONLY); 2253 } 2254 FD(evsel, idx, thread) = fd; 2255 if (fd < 0) { 2256 err = -errno; 2257 goto out_close; 2258 } 2259 start_time = xyarray__entry(evsel->start_times, idx, thread); 2260 if (pid > -1) { 2261 err = read_pid_stat_field(fd, system ? 15 : 14, 2262 start_time); 2263 } else { 2264 struct perf_cpu cpu; 2265 2266 cpu = perf_cpu_map__cpu(evsel->core.cpus, idx); 2267 err = read_stat_field(fd, cpu, system ? 3 : 1, 2268 start_time); 2269 } 2270 if (err) 2271 goto out_close; 2272 continue; 2273 } 2274 2275 group_fd = get_group_fd(evsel, idx, thread); 2276 2277 if (group_fd == -2) { 2278 pr_debug("broken group leader for %s\n", evsel->name); 2279 err = -EINVAL; 2280 goto out_close; 2281 } 2282 2283 test_attr__ready(); 2284 2285 /* Debug message used by test scripts */ 2286 pr_debug2_peo("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 2287 pid, perf_cpu_map__cpu(cpus, idx).cpu, group_fd, evsel->open_flags); 2288 2289 fd = sys_perf_event_open(&evsel->core.attr, pid, 2290 perf_cpu_map__cpu(cpus, idx).cpu, 2291 group_fd, evsel->open_flags); 2292 2293 FD(evsel, idx, thread) = fd; 2294 2295 if (fd < 0) { 2296 err = -errno; 2297 2298 pr_debug2_peo("\nsys_perf_event_open failed, error %d\n", 2299 err); 2300 goto try_fallback; 2301 } 2302 2303 bpf_counter__install_pe(evsel, idx, fd); 2304 2305 if (unlikely(test_attr__enabled)) { 2306 test_attr__open(&evsel->core.attr, pid, 2307 perf_cpu_map__cpu(cpus, idx), 2308 fd, group_fd, evsel->open_flags); 2309 } 2310 2311 /* Debug message used by test scripts */ 2312 pr_debug2_peo(" = %d\n", fd); 2313 2314 if (evsel->bpf_fd >= 0) { 2315 int evt_fd = fd; 2316 int bpf_fd = evsel->bpf_fd; 2317 2318 err = ioctl(evt_fd, 2319 PERF_EVENT_IOC_SET_BPF, 2320 bpf_fd); 2321 if (err && errno != EEXIST) { 2322 pr_err("failed to attach bpf fd %d: %s\n", 2323 bpf_fd, strerror(errno)); 2324 err = -EINVAL; 2325 goto out_close; 2326 } 2327 } 2328 2329 set_rlimit = NO_CHANGE; 2330 2331 /* 2332 * If we succeeded but had to kill clockid, fail and 2333 * have evsel__open_strerror() print us a nice error. 2334 */ 2335 if (perf_missing_features.clockid || 2336 perf_missing_features.clockid_wrong) { 2337 err = -EINVAL; 2338 goto out_close; 2339 } 2340 } 2341 } 2342 2343 return 0; 2344 2345 try_fallback: 2346 if (evsel__precise_ip_fallback(evsel)) 2347 goto retry_open; 2348 2349 if (evsel__ignore_missing_thread(evsel, perf_cpu_map__nr(cpus), 2350 idx, threads, thread, err)) { 2351 /* We just removed 1 thread, so lower the upper nthreads limit. */ 2352 nthreads--; 2353 2354 /* ... and pretend like nothing have happened. */ 2355 err = 0; 2356 goto retry_open; 2357 } 2358 /* 2359 * perf stat needs between 5 and 22 fds per CPU. When we run out 2360 * of them try to increase the limits. 2361 */ 2362 if (err == -EMFILE && rlimit__increase_nofile(&set_rlimit)) 2363 goto retry_open; 2364 2365 if (err != -EINVAL || idx > 0 || thread > 0) 2366 goto out_close; 2367 2368 if (evsel__detect_missing_features(evsel)) 2369 goto fallback_missing_features; 2370 out_close: 2371 if (err) 2372 threads->err_thread = thread; 2373 2374 old_errno = errno; 2375 do { 2376 while (--thread >= 0) { 2377 if (FD(evsel, idx, thread) >= 0) 2378 close(FD(evsel, idx, thread)); 2379 FD(evsel, idx, thread) = -1; 2380 } 2381 thread = nthreads; 2382 } while (--idx >= 0); 2383 errno = old_errno; 2384 return err; 2385 } 2386 2387 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus, 2388 struct perf_thread_map *threads) 2389 { 2390 return evsel__open_cpu(evsel, cpus, threads, 0, perf_cpu_map__nr(cpus)); 2391 } 2392 2393 void evsel__close(struct evsel *evsel) 2394 { 2395 perf_evsel__close(&evsel->core); 2396 perf_evsel__free_id(&evsel->core); 2397 } 2398 2399 int evsel__open_per_cpu(struct evsel *evsel, struct perf_cpu_map *cpus, int cpu_map_idx) 2400 { 2401 if (cpu_map_idx == -1) 2402 return evsel__open_cpu(evsel, cpus, NULL, 0, perf_cpu_map__nr(cpus)); 2403 2404 return evsel__open_cpu(evsel, cpus, NULL, cpu_map_idx, cpu_map_idx + 1); 2405 } 2406 2407 int evsel__open_per_thread(struct evsel *evsel, struct perf_thread_map *threads) 2408 { 2409 return evsel__open(evsel, NULL, threads); 2410 } 2411 2412 static int perf_evsel__parse_id_sample(const struct evsel *evsel, 2413 const union perf_event *event, 2414 struct perf_sample *sample) 2415 { 2416 u64 type = evsel->core.attr.sample_type; 2417 const __u64 *array = event->sample.array; 2418 bool swapped = evsel->needs_swap; 2419 union u64_swap u; 2420 2421 array += ((event->header.size - 2422 sizeof(event->header)) / sizeof(u64)) - 1; 2423 2424 if (type & PERF_SAMPLE_IDENTIFIER) { 2425 sample->id = *array; 2426 array--; 2427 } 2428 2429 if (type & PERF_SAMPLE_CPU) { 2430 u.val64 = *array; 2431 if (swapped) { 2432 /* undo swap of u64, then swap on individual u32s */ 2433 u.val64 = bswap_64(u.val64); 2434 u.val32[0] = bswap_32(u.val32[0]); 2435 } 2436 2437 sample->cpu = u.val32[0]; 2438 array--; 2439 } 2440 2441 if (type & PERF_SAMPLE_STREAM_ID) { 2442 sample->stream_id = *array; 2443 array--; 2444 } 2445 2446 if (type & PERF_SAMPLE_ID) { 2447 sample->id = *array; 2448 array--; 2449 } 2450 2451 if (type & PERF_SAMPLE_TIME) { 2452 sample->time = *array; 2453 array--; 2454 } 2455 2456 if (type & PERF_SAMPLE_TID) { 2457 u.val64 = *array; 2458 if (swapped) { 2459 /* undo swap of u64, then swap on individual u32s */ 2460 u.val64 = bswap_64(u.val64); 2461 u.val32[0] = bswap_32(u.val32[0]); 2462 u.val32[1] = bswap_32(u.val32[1]); 2463 } 2464 2465 sample->pid = u.val32[0]; 2466 sample->tid = u.val32[1]; 2467 array--; 2468 } 2469 2470 return 0; 2471 } 2472 2473 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2474 u64 size) 2475 { 2476 return size > max_size || offset + size > endp; 2477 } 2478 2479 #define OVERFLOW_CHECK(offset, size, max_size) \ 2480 do { \ 2481 if (overflow(endp, (max_size), (offset), (size))) \ 2482 return -EFAULT; \ 2483 } while (0) 2484 2485 #define OVERFLOW_CHECK_u64(offset) \ 2486 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2487 2488 static int 2489 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2490 { 2491 /* 2492 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2493 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2494 * check the format does not go past the end of the event. 2495 */ 2496 if (sample_size + sizeof(event->header) > event->header.size) 2497 return -EFAULT; 2498 2499 return 0; 2500 } 2501 2502 void __weak arch_perf_parse_sample_weight(struct perf_sample *data, 2503 const __u64 *array, 2504 u64 type __maybe_unused) 2505 { 2506 data->weight = *array; 2507 } 2508 2509 u64 evsel__bitfield_swap_branch_flags(u64 value) 2510 { 2511 u64 new_val = 0; 2512 2513 /* 2514 * branch_flags 2515 * union { 2516 * u64 values; 2517 * struct { 2518 * mispred:1 //target mispredicted 2519 * predicted:1 //target predicted 2520 * in_tx:1 //in transaction 2521 * abort:1 //transaction abort 2522 * cycles:16 //cycle count to last branch 2523 * type:4 //branch type 2524 * spec:2 //branch speculation info 2525 * new_type:4 //additional branch type 2526 * priv:3 //privilege level 2527 * reserved:31 2528 * } 2529 * } 2530 * 2531 * Avoid bswap64() the entire branch_flag.value, 2532 * as it has variable bit-field sizes. Instead the 2533 * macro takes the bit-field position/size, 2534 * swaps it based on the host endianness. 2535 */ 2536 if (host_is_bigendian()) { 2537 new_val = bitfield_swap(value, 0, 1); 2538 new_val |= bitfield_swap(value, 1, 1); 2539 new_val |= bitfield_swap(value, 2, 1); 2540 new_val |= bitfield_swap(value, 3, 1); 2541 new_val |= bitfield_swap(value, 4, 16); 2542 new_val |= bitfield_swap(value, 20, 4); 2543 new_val |= bitfield_swap(value, 24, 2); 2544 new_val |= bitfield_swap(value, 26, 4); 2545 new_val |= bitfield_swap(value, 30, 3); 2546 new_val |= bitfield_swap(value, 33, 31); 2547 } else { 2548 new_val = bitfield_swap(value, 63, 1); 2549 new_val |= bitfield_swap(value, 62, 1); 2550 new_val |= bitfield_swap(value, 61, 1); 2551 new_val |= bitfield_swap(value, 60, 1); 2552 new_val |= bitfield_swap(value, 44, 16); 2553 new_val |= bitfield_swap(value, 40, 4); 2554 new_val |= bitfield_swap(value, 38, 2); 2555 new_val |= bitfield_swap(value, 34, 4); 2556 new_val |= bitfield_swap(value, 31, 3); 2557 new_val |= bitfield_swap(value, 0, 31); 2558 } 2559 2560 return new_val; 2561 } 2562 2563 static inline bool evsel__has_branch_counters(const struct evsel *evsel) 2564 { 2565 struct evsel *cur, *leader = evsel__leader(evsel); 2566 2567 /* The branch counters feature only supports group */ 2568 if (!leader || !evsel->evlist) 2569 return false; 2570 2571 evlist__for_each_entry(evsel->evlist, cur) { 2572 if ((leader == evsel__leader(cur)) && 2573 (cur->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS)) 2574 return true; 2575 } 2576 return false; 2577 } 2578 2579 int evsel__parse_sample(struct evsel *evsel, union perf_event *event, 2580 struct perf_sample *data) 2581 { 2582 u64 type = evsel->core.attr.sample_type; 2583 bool swapped = evsel->needs_swap; 2584 const __u64 *array; 2585 u16 max_size = event->header.size; 2586 const void *endp = (void *)event + max_size; 2587 u64 sz; 2588 2589 /* 2590 * used for cross-endian analysis. See git commit 65014ab3 2591 * for why this goofiness is needed. 2592 */ 2593 union u64_swap u; 2594 2595 memset(data, 0, sizeof(*data)); 2596 data->cpu = data->pid = data->tid = -1; 2597 data->stream_id = data->id = data->time = -1ULL; 2598 data->period = evsel->core.attr.sample_period; 2599 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2600 data->misc = event->header.misc; 2601 data->data_src = PERF_MEM_DATA_SRC_NONE; 2602 data->vcpu = -1; 2603 2604 if (event->header.type != PERF_RECORD_SAMPLE) { 2605 if (!evsel->core.attr.sample_id_all) 2606 return 0; 2607 return perf_evsel__parse_id_sample(evsel, event, data); 2608 } 2609 2610 array = event->sample.array; 2611 2612 if (perf_event__check_size(event, evsel->sample_size)) 2613 return -EFAULT; 2614 2615 if (type & PERF_SAMPLE_IDENTIFIER) { 2616 data->id = *array; 2617 array++; 2618 } 2619 2620 if (type & PERF_SAMPLE_IP) { 2621 data->ip = *array; 2622 array++; 2623 } 2624 2625 if (type & PERF_SAMPLE_TID) { 2626 u.val64 = *array; 2627 if (swapped) { 2628 /* undo swap of u64, then swap on individual u32s */ 2629 u.val64 = bswap_64(u.val64); 2630 u.val32[0] = bswap_32(u.val32[0]); 2631 u.val32[1] = bswap_32(u.val32[1]); 2632 } 2633 2634 data->pid = u.val32[0]; 2635 data->tid = u.val32[1]; 2636 array++; 2637 } 2638 2639 if (type & PERF_SAMPLE_TIME) { 2640 data->time = *array; 2641 array++; 2642 } 2643 2644 if (type & PERF_SAMPLE_ADDR) { 2645 data->addr = *array; 2646 array++; 2647 } 2648 2649 if (type & PERF_SAMPLE_ID) { 2650 data->id = *array; 2651 array++; 2652 } 2653 2654 if (type & PERF_SAMPLE_STREAM_ID) { 2655 data->stream_id = *array; 2656 array++; 2657 } 2658 2659 if (type & PERF_SAMPLE_CPU) { 2660 2661 u.val64 = *array; 2662 if (swapped) { 2663 /* undo swap of u64, then swap on individual u32s */ 2664 u.val64 = bswap_64(u.val64); 2665 u.val32[0] = bswap_32(u.val32[0]); 2666 } 2667 2668 data->cpu = u.val32[0]; 2669 array++; 2670 } 2671 2672 if (type & PERF_SAMPLE_PERIOD) { 2673 data->period = *array; 2674 array++; 2675 } 2676 2677 if (type & PERF_SAMPLE_READ) { 2678 u64 read_format = evsel->core.attr.read_format; 2679 2680 OVERFLOW_CHECK_u64(array); 2681 if (read_format & PERF_FORMAT_GROUP) 2682 data->read.group.nr = *array; 2683 else 2684 data->read.one.value = *array; 2685 2686 array++; 2687 2688 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2689 OVERFLOW_CHECK_u64(array); 2690 data->read.time_enabled = *array; 2691 array++; 2692 } 2693 2694 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2695 OVERFLOW_CHECK_u64(array); 2696 data->read.time_running = *array; 2697 array++; 2698 } 2699 2700 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2701 if (read_format & PERF_FORMAT_GROUP) { 2702 const u64 max_group_nr = UINT64_MAX / 2703 sizeof(struct sample_read_value); 2704 2705 if (data->read.group.nr > max_group_nr) 2706 return -EFAULT; 2707 2708 sz = data->read.group.nr * sample_read_value_size(read_format); 2709 OVERFLOW_CHECK(array, sz, max_size); 2710 data->read.group.values = 2711 (struct sample_read_value *)array; 2712 array = (void *)array + sz; 2713 } else { 2714 OVERFLOW_CHECK_u64(array); 2715 data->read.one.id = *array; 2716 array++; 2717 2718 if (read_format & PERF_FORMAT_LOST) { 2719 OVERFLOW_CHECK_u64(array); 2720 data->read.one.lost = *array; 2721 array++; 2722 } 2723 } 2724 } 2725 2726 if (type & PERF_SAMPLE_CALLCHAIN) { 2727 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2728 2729 OVERFLOW_CHECK_u64(array); 2730 data->callchain = (struct ip_callchain *)array++; 2731 if (data->callchain->nr > max_callchain_nr) 2732 return -EFAULT; 2733 sz = data->callchain->nr * sizeof(u64); 2734 OVERFLOW_CHECK(array, sz, max_size); 2735 array = (void *)array + sz; 2736 } 2737 2738 if (type & PERF_SAMPLE_RAW) { 2739 OVERFLOW_CHECK_u64(array); 2740 u.val64 = *array; 2741 2742 /* 2743 * Undo swap of u64, then swap on individual u32s, 2744 * get the size of the raw area and undo all of the 2745 * swap. The pevent interface handles endianness by 2746 * itself. 2747 */ 2748 if (swapped) { 2749 u.val64 = bswap_64(u.val64); 2750 u.val32[0] = bswap_32(u.val32[0]); 2751 u.val32[1] = bswap_32(u.val32[1]); 2752 } 2753 data->raw_size = u.val32[0]; 2754 2755 /* 2756 * The raw data is aligned on 64bits including the 2757 * u32 size, so it's safe to use mem_bswap_64. 2758 */ 2759 if (swapped) 2760 mem_bswap_64((void *) array, data->raw_size); 2761 2762 array = (void *)array + sizeof(u32); 2763 2764 OVERFLOW_CHECK(array, data->raw_size, max_size); 2765 data->raw_data = (void *)array; 2766 array = (void *)array + data->raw_size; 2767 } 2768 2769 if (type & PERF_SAMPLE_BRANCH_STACK) { 2770 const u64 max_branch_nr = UINT64_MAX / 2771 sizeof(struct branch_entry); 2772 struct branch_entry *e; 2773 unsigned int i; 2774 2775 OVERFLOW_CHECK_u64(array); 2776 data->branch_stack = (struct branch_stack *)array++; 2777 2778 if (data->branch_stack->nr > max_branch_nr) 2779 return -EFAULT; 2780 2781 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2782 if (evsel__has_branch_hw_idx(evsel)) { 2783 sz += sizeof(u64); 2784 e = &data->branch_stack->entries[0]; 2785 } else { 2786 data->no_hw_idx = true; 2787 /* 2788 * if the PERF_SAMPLE_BRANCH_HW_INDEX is not applied, 2789 * only nr and entries[] will be output by kernel. 2790 */ 2791 e = (struct branch_entry *)&data->branch_stack->hw_idx; 2792 } 2793 2794 if (swapped) { 2795 /* 2796 * struct branch_flag does not have endian 2797 * specific bit field definition. And bswap 2798 * will not resolve the issue, since these 2799 * are bit fields. 2800 * 2801 * evsel__bitfield_swap_branch_flags() uses a 2802 * bitfield_swap macro to swap the bit position 2803 * based on the host endians. 2804 */ 2805 for (i = 0; i < data->branch_stack->nr; i++, e++) 2806 e->flags.value = evsel__bitfield_swap_branch_flags(e->flags.value); 2807 } 2808 2809 OVERFLOW_CHECK(array, sz, max_size); 2810 array = (void *)array + sz; 2811 2812 if (evsel__has_branch_counters(evsel)) { 2813 OVERFLOW_CHECK_u64(array); 2814 2815 data->branch_stack_cntr = (u64 *)array; 2816 sz = data->branch_stack->nr * sizeof(u64); 2817 2818 OVERFLOW_CHECK(array, sz, max_size); 2819 array = (void *)array + sz; 2820 } 2821 } 2822 2823 if (type & PERF_SAMPLE_REGS_USER) { 2824 OVERFLOW_CHECK_u64(array); 2825 data->user_regs.abi = *array; 2826 array++; 2827 2828 if (data->user_regs.abi) { 2829 u64 mask = evsel->core.attr.sample_regs_user; 2830 2831 sz = hweight64(mask) * sizeof(u64); 2832 OVERFLOW_CHECK(array, sz, max_size); 2833 data->user_regs.mask = mask; 2834 data->user_regs.regs = (u64 *)array; 2835 array = (void *)array + sz; 2836 } 2837 } 2838 2839 if (type & PERF_SAMPLE_STACK_USER) { 2840 OVERFLOW_CHECK_u64(array); 2841 sz = *array++; 2842 2843 data->user_stack.offset = ((char *)(array - 1) 2844 - (char *) event); 2845 2846 if (!sz) { 2847 data->user_stack.size = 0; 2848 } else { 2849 OVERFLOW_CHECK(array, sz, max_size); 2850 data->user_stack.data = (char *)array; 2851 array = (void *)array + sz; 2852 OVERFLOW_CHECK_u64(array); 2853 data->user_stack.size = *array++; 2854 if (WARN_ONCE(data->user_stack.size > sz, 2855 "user stack dump failure\n")) 2856 return -EFAULT; 2857 } 2858 } 2859 2860 if (type & PERF_SAMPLE_WEIGHT_TYPE) { 2861 OVERFLOW_CHECK_u64(array); 2862 arch_perf_parse_sample_weight(data, array, type); 2863 array++; 2864 } 2865 2866 if (type & PERF_SAMPLE_DATA_SRC) { 2867 OVERFLOW_CHECK_u64(array); 2868 data->data_src = *array; 2869 array++; 2870 } 2871 2872 if (type & PERF_SAMPLE_TRANSACTION) { 2873 OVERFLOW_CHECK_u64(array); 2874 data->transaction = *array; 2875 array++; 2876 } 2877 2878 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2879 if (type & PERF_SAMPLE_REGS_INTR) { 2880 OVERFLOW_CHECK_u64(array); 2881 data->intr_regs.abi = *array; 2882 array++; 2883 2884 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2885 u64 mask = evsel->core.attr.sample_regs_intr; 2886 2887 sz = hweight64(mask) * sizeof(u64); 2888 OVERFLOW_CHECK(array, sz, max_size); 2889 data->intr_regs.mask = mask; 2890 data->intr_regs.regs = (u64 *)array; 2891 array = (void *)array + sz; 2892 } 2893 } 2894 2895 data->phys_addr = 0; 2896 if (type & PERF_SAMPLE_PHYS_ADDR) { 2897 data->phys_addr = *array; 2898 array++; 2899 } 2900 2901 data->cgroup = 0; 2902 if (type & PERF_SAMPLE_CGROUP) { 2903 data->cgroup = *array; 2904 array++; 2905 } 2906 2907 data->data_page_size = 0; 2908 if (type & PERF_SAMPLE_DATA_PAGE_SIZE) { 2909 data->data_page_size = *array; 2910 array++; 2911 } 2912 2913 data->code_page_size = 0; 2914 if (type & PERF_SAMPLE_CODE_PAGE_SIZE) { 2915 data->code_page_size = *array; 2916 array++; 2917 } 2918 2919 if (type & PERF_SAMPLE_AUX) { 2920 OVERFLOW_CHECK_u64(array); 2921 sz = *array++; 2922 2923 OVERFLOW_CHECK(array, sz, max_size); 2924 /* Undo swap of data */ 2925 if (swapped) 2926 mem_bswap_64((char *)array, sz); 2927 data->aux_sample.size = sz; 2928 data->aux_sample.data = (char *)array; 2929 array = (void *)array + sz; 2930 } 2931 2932 return 0; 2933 } 2934 2935 int evsel__parse_sample_timestamp(struct evsel *evsel, union perf_event *event, 2936 u64 *timestamp) 2937 { 2938 u64 type = evsel->core.attr.sample_type; 2939 const __u64 *array; 2940 2941 if (!(type & PERF_SAMPLE_TIME)) 2942 return -1; 2943 2944 if (event->header.type != PERF_RECORD_SAMPLE) { 2945 struct perf_sample data = { 2946 .time = -1ULL, 2947 }; 2948 2949 if (!evsel->core.attr.sample_id_all) 2950 return -1; 2951 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2952 return -1; 2953 2954 *timestamp = data.time; 2955 return 0; 2956 } 2957 2958 array = event->sample.array; 2959 2960 if (perf_event__check_size(event, evsel->sample_size)) 2961 return -EFAULT; 2962 2963 if (type & PERF_SAMPLE_IDENTIFIER) 2964 array++; 2965 2966 if (type & PERF_SAMPLE_IP) 2967 array++; 2968 2969 if (type & PERF_SAMPLE_TID) 2970 array++; 2971 2972 if (type & PERF_SAMPLE_TIME) 2973 *timestamp = *array; 2974 2975 return 0; 2976 } 2977 2978 u16 evsel__id_hdr_size(struct evsel *evsel) 2979 { 2980 u64 sample_type = evsel->core.attr.sample_type; 2981 u16 size = 0; 2982 2983 if (sample_type & PERF_SAMPLE_TID) 2984 size += sizeof(u64); 2985 2986 if (sample_type & PERF_SAMPLE_TIME) 2987 size += sizeof(u64); 2988 2989 if (sample_type & PERF_SAMPLE_ID) 2990 size += sizeof(u64); 2991 2992 if (sample_type & PERF_SAMPLE_STREAM_ID) 2993 size += sizeof(u64); 2994 2995 if (sample_type & PERF_SAMPLE_CPU) 2996 size += sizeof(u64); 2997 2998 if (sample_type & PERF_SAMPLE_IDENTIFIER) 2999 size += sizeof(u64); 3000 3001 return size; 3002 } 3003 3004 #ifdef HAVE_LIBTRACEEVENT 3005 struct tep_format_field *evsel__field(struct evsel *evsel, const char *name) 3006 { 3007 return tep_find_field(evsel->tp_format, name); 3008 } 3009 3010 struct tep_format_field *evsel__common_field(struct evsel *evsel, const char *name) 3011 { 3012 return tep_find_common_field(evsel->tp_format, name); 3013 } 3014 3015 void *evsel__rawptr(struct evsel *evsel, struct perf_sample *sample, const char *name) 3016 { 3017 struct tep_format_field *field = evsel__field(evsel, name); 3018 int offset; 3019 3020 if (!field) 3021 return NULL; 3022 3023 offset = field->offset; 3024 3025 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 3026 offset = *(int *)(sample->raw_data + field->offset); 3027 offset &= 0xffff; 3028 if (tep_field_is_relative(field->flags)) 3029 offset += field->offset + field->size; 3030 } 3031 3032 return sample->raw_data + offset; 3033 } 3034 3035 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 3036 bool needs_swap) 3037 { 3038 u64 value; 3039 void *ptr = sample->raw_data + field->offset; 3040 3041 switch (field->size) { 3042 case 1: 3043 return *(u8 *)ptr; 3044 case 2: 3045 value = *(u16 *)ptr; 3046 break; 3047 case 4: 3048 value = *(u32 *)ptr; 3049 break; 3050 case 8: 3051 memcpy(&value, ptr, sizeof(u64)); 3052 break; 3053 default: 3054 return 0; 3055 } 3056 3057 if (!needs_swap) 3058 return value; 3059 3060 switch (field->size) { 3061 case 2: 3062 return bswap_16(value); 3063 case 4: 3064 return bswap_32(value); 3065 case 8: 3066 return bswap_64(value); 3067 default: 3068 return 0; 3069 } 3070 3071 return 0; 3072 } 3073 3074 u64 evsel__intval(struct evsel *evsel, struct perf_sample *sample, const char *name) 3075 { 3076 struct tep_format_field *field = evsel__field(evsel, name); 3077 3078 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 3079 } 3080 3081 u64 evsel__intval_common(struct evsel *evsel, struct perf_sample *sample, const char *name) 3082 { 3083 struct tep_format_field *field = evsel__common_field(evsel, name); 3084 3085 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 3086 } 3087 3088 char evsel__taskstate(struct evsel *evsel, struct perf_sample *sample, const char *name) 3089 { 3090 static struct tep_format_field *prev_state_field; 3091 static const char *states; 3092 struct tep_format_field *field; 3093 unsigned long long val; 3094 unsigned int bit; 3095 char state = '?'; /* '?' denotes unknown task state */ 3096 3097 field = evsel__field(evsel, name); 3098 3099 if (!field) 3100 return state; 3101 3102 if (!states || field != prev_state_field) { 3103 states = parse_task_states(field); 3104 if (!states) 3105 return state; 3106 prev_state_field = field; 3107 } 3108 3109 /* 3110 * Note since the kernel exposes TASK_REPORT_MAX to userspace 3111 * to denote the 'preempted' state, we might as welll report 3112 * 'R' for this case, which make senses to users as well. 3113 * 3114 * We can change this if we have a good reason in the future. 3115 */ 3116 val = evsel__intval(evsel, sample, name); 3117 bit = val ? ffs(val) : 0; 3118 state = (!bit || bit > strlen(states)) ? 'R' : states[bit-1]; 3119 return state; 3120 } 3121 #endif 3122 3123 bool evsel__fallback(struct evsel *evsel, struct target *target, int err, 3124 char *msg, size_t msgsize) 3125 { 3126 int paranoid; 3127 3128 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 3129 evsel->core.attr.type == PERF_TYPE_HARDWARE && 3130 evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) { 3131 /* 3132 * If it's cycles then fall back to hrtimer based cpu-clock sw 3133 * counter, which is always available even if no PMU support. 3134 * 3135 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 3136 * b0a873e). 3137 */ 3138 evsel->core.attr.type = PERF_TYPE_SOFTWARE; 3139 evsel->core.attr.config = target__has_cpu(target) 3140 ? PERF_COUNT_SW_CPU_CLOCK 3141 : PERF_COUNT_SW_TASK_CLOCK; 3142 scnprintf(msg, msgsize, 3143 "The cycles event is not supported, trying to fall back to %s", 3144 target__has_cpu(target) ? "cpu-clock" : "task-clock"); 3145 3146 zfree(&evsel->name); 3147 return true; 3148 } else if (err == EACCES && !evsel->core.attr.exclude_kernel && 3149 (paranoid = perf_event_paranoid()) > 1) { 3150 const char *name = evsel__name(evsel); 3151 char *new_name; 3152 const char *sep = ":"; 3153 3154 /* If event has exclude user then don't exclude kernel. */ 3155 if (evsel->core.attr.exclude_user) 3156 return false; 3157 3158 /* Is there already the separator in the name. */ 3159 if (strchr(name, '/') || 3160 (strchr(name, ':') && !evsel->is_libpfm_event)) 3161 sep = ""; 3162 3163 if (asprintf(&new_name, "%s%su", name, sep) < 0) 3164 return false; 3165 3166 free(evsel->name); 3167 evsel->name = new_name; 3168 scnprintf(msg, msgsize, "kernel.perf_event_paranoid=%d, trying " 3169 "to fall back to excluding kernel and hypervisor " 3170 " samples", paranoid); 3171 evsel->core.attr.exclude_kernel = 1; 3172 evsel->core.attr.exclude_hv = 1; 3173 3174 return true; 3175 } 3176 3177 return false; 3178 } 3179 3180 static bool find_process(const char *name) 3181 { 3182 size_t len = strlen(name); 3183 DIR *dir; 3184 struct dirent *d; 3185 int ret = -1; 3186 3187 dir = opendir(procfs__mountpoint()); 3188 if (!dir) 3189 return false; 3190 3191 /* Walk through the directory. */ 3192 while (ret && (d = readdir(dir)) != NULL) { 3193 char path[PATH_MAX]; 3194 char *data; 3195 size_t size; 3196 3197 if ((d->d_type != DT_DIR) || 3198 !strcmp(".", d->d_name) || 3199 !strcmp("..", d->d_name)) 3200 continue; 3201 3202 scnprintf(path, sizeof(path), "%s/%s/comm", 3203 procfs__mountpoint(), d->d_name); 3204 3205 if (filename__read_str(path, &data, &size)) 3206 continue; 3207 3208 ret = strncmp(name, data, len); 3209 free(data); 3210 } 3211 3212 closedir(dir); 3213 return ret ? false : true; 3214 } 3215 3216 int __weak arch_evsel__open_strerror(struct evsel *evsel __maybe_unused, 3217 char *msg __maybe_unused, 3218 size_t size __maybe_unused) 3219 { 3220 return 0; 3221 } 3222 3223 int evsel__open_strerror(struct evsel *evsel, struct target *target, 3224 int err, char *msg, size_t size) 3225 { 3226 char sbuf[STRERR_BUFSIZE]; 3227 int printed = 0, enforced = 0; 3228 int ret; 3229 3230 switch (err) { 3231 case EPERM: 3232 case EACCES: 3233 printed += scnprintf(msg + printed, size - printed, 3234 "Access to performance monitoring and observability operations is limited.\n"); 3235 3236 if (!sysfs__read_int("fs/selinux/enforce", &enforced)) { 3237 if (enforced) { 3238 printed += scnprintf(msg + printed, size - printed, 3239 "Enforced MAC policy settings (SELinux) can limit access to performance\n" 3240 "monitoring and observability operations. Inspect system audit records for\n" 3241 "more perf_event access control information and adjusting the policy.\n"); 3242 } 3243 } 3244 3245 if (err == EPERM) 3246 printed += scnprintf(msg, size, 3247 "No permission to enable %s event.\n\n", evsel__name(evsel)); 3248 3249 return scnprintf(msg + printed, size - printed, 3250 "Consider adjusting /proc/sys/kernel/perf_event_paranoid setting to open\n" 3251 "access to performance monitoring and observability operations for processes\n" 3252 "without CAP_PERFMON, CAP_SYS_PTRACE or CAP_SYS_ADMIN Linux capability.\n" 3253 "More information can be found at 'Perf events and tool security' document:\n" 3254 "https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html\n" 3255 "perf_event_paranoid setting is %d:\n" 3256 " -1: Allow use of (almost) all events by all users\n" 3257 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 3258 ">= 0: Disallow raw and ftrace function tracepoint access\n" 3259 ">= 1: Disallow CPU event access\n" 3260 ">= 2: Disallow kernel profiling\n" 3261 "To make the adjusted perf_event_paranoid setting permanent preserve it\n" 3262 "in /etc/sysctl.conf (e.g. kernel.perf_event_paranoid = <setting>)", 3263 perf_event_paranoid()); 3264 case ENOENT: 3265 return scnprintf(msg, size, "The %s event is not supported.", evsel__name(evsel)); 3266 case EMFILE: 3267 return scnprintf(msg, size, "%s", 3268 "Too many events are opened.\n" 3269 "Probably the maximum number of open file descriptors has been reached.\n" 3270 "Hint: Try again after reducing the number of events.\n" 3271 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 3272 case ENOMEM: 3273 if (evsel__has_callchain(evsel) && 3274 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 3275 return scnprintf(msg, size, 3276 "Not enough memory to setup event with callchain.\n" 3277 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 3278 "Hint: Current value: %d", sysctl__max_stack()); 3279 break; 3280 case ENODEV: 3281 if (target->cpu_list) 3282 return scnprintf(msg, size, "%s", 3283 "No such device - did you specify an out-of-range profile CPU?"); 3284 break; 3285 case EOPNOTSUPP: 3286 if (evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK) 3287 return scnprintf(msg, size, 3288 "%s: PMU Hardware or event type doesn't support branch stack sampling.", 3289 evsel__name(evsel)); 3290 if (evsel->core.attr.aux_output) 3291 return scnprintf(msg, size, 3292 "%s: PMU Hardware doesn't support 'aux_output' feature", 3293 evsel__name(evsel)); 3294 if (evsel->core.attr.sample_period != 0) 3295 return scnprintf(msg, size, 3296 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 3297 evsel__name(evsel)); 3298 if (evsel->core.attr.precise_ip) 3299 return scnprintf(msg, size, "%s", 3300 "\'precise\' request may not be supported. Try removing 'p' modifier."); 3301 #if defined(__i386__) || defined(__x86_64__) 3302 if (evsel->core.attr.type == PERF_TYPE_HARDWARE) 3303 return scnprintf(msg, size, "%s", 3304 "No hardware sampling interrupt available.\n"); 3305 #endif 3306 break; 3307 case EBUSY: 3308 if (find_process("oprofiled")) 3309 return scnprintf(msg, size, 3310 "The PMU counters are busy/taken by another profiler.\n" 3311 "We found oprofile daemon running, please stop it and try again."); 3312 break; 3313 case EINVAL: 3314 if (evsel->core.attr.sample_type & PERF_SAMPLE_CODE_PAGE_SIZE && perf_missing_features.code_page_size) 3315 return scnprintf(msg, size, "Asking for the code page size isn't supported by this kernel."); 3316 if (evsel->core.attr.sample_type & PERF_SAMPLE_DATA_PAGE_SIZE && perf_missing_features.data_page_size) 3317 return scnprintf(msg, size, "Asking for the data page size isn't supported by this kernel."); 3318 if (evsel->core.attr.write_backward && perf_missing_features.write_backward) 3319 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 3320 if (perf_missing_features.clockid) 3321 return scnprintf(msg, size, "clockid feature not supported."); 3322 if (perf_missing_features.clockid_wrong) 3323 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 3324 if (perf_missing_features.aux_output) 3325 return scnprintf(msg, size, "The 'aux_output' feature is not supported, update the kernel."); 3326 if (!target__has_cpu(target)) 3327 return scnprintf(msg, size, 3328 "Invalid event (%s) in per-thread mode, enable system wide with '-a'.", 3329 evsel__name(evsel)); 3330 3331 break; 3332 case ENODATA: 3333 return scnprintf(msg, size, "Cannot collect data source with the load latency event alone. " 3334 "Please add an auxiliary event in front of the load latency event."); 3335 default: 3336 break; 3337 } 3338 3339 ret = arch_evsel__open_strerror(evsel, msg, size); 3340 if (ret) 3341 return ret; 3342 3343 return scnprintf(msg, size, 3344 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 3345 "/bin/dmesg | grep -i perf may provide additional information.\n", 3346 err, str_error_r(err, sbuf, sizeof(sbuf)), evsel__name(evsel)); 3347 } 3348 3349 struct perf_env *evsel__env(struct evsel *evsel) 3350 { 3351 if (evsel && evsel->evlist && evsel->evlist->env) 3352 return evsel->evlist->env; 3353 return &perf_env; 3354 } 3355 3356 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist) 3357 { 3358 int cpu_map_idx, thread; 3359 3360 for (cpu_map_idx = 0; cpu_map_idx < xyarray__max_x(evsel->core.fd); cpu_map_idx++) { 3361 for (thread = 0; thread < xyarray__max_y(evsel->core.fd); 3362 thread++) { 3363 int fd = FD(evsel, cpu_map_idx, thread); 3364 3365 if (perf_evlist__id_add_fd(&evlist->core, &evsel->core, 3366 cpu_map_idx, thread, fd) < 0) 3367 return -1; 3368 } 3369 } 3370 3371 return 0; 3372 } 3373 3374 int evsel__store_ids(struct evsel *evsel, struct evlist *evlist) 3375 { 3376 struct perf_cpu_map *cpus = evsel->core.cpus; 3377 struct perf_thread_map *threads = evsel->core.threads; 3378 3379 if (perf_evsel__alloc_id(&evsel->core, perf_cpu_map__nr(cpus), threads->nr)) 3380 return -ENOMEM; 3381 3382 return store_evsel_ids(evsel, evlist); 3383 } 3384 3385 void evsel__zero_per_pkg(struct evsel *evsel) 3386 { 3387 struct hashmap_entry *cur; 3388 size_t bkt; 3389 3390 if (evsel->per_pkg_mask) { 3391 hashmap__for_each_entry(evsel->per_pkg_mask, cur, bkt) 3392 zfree(&cur->pkey); 3393 3394 hashmap__clear(evsel->per_pkg_mask); 3395 } 3396 } 3397 3398 /** 3399 * evsel__is_hybrid - does the evsel have a known PMU that is hybrid. Note, this 3400 * will be false on hybrid systems for hardware and legacy 3401 * cache events. 3402 */ 3403 bool evsel__is_hybrid(const struct evsel *evsel) 3404 { 3405 if (perf_pmus__num_core_pmus() == 1) 3406 return false; 3407 3408 return evsel->core.is_pmu_core; 3409 } 3410 3411 struct evsel *evsel__leader(const struct evsel *evsel) 3412 { 3413 return container_of(evsel->core.leader, struct evsel, core); 3414 } 3415 3416 bool evsel__has_leader(struct evsel *evsel, struct evsel *leader) 3417 { 3418 return evsel->core.leader == &leader->core; 3419 } 3420 3421 bool evsel__is_leader(struct evsel *evsel) 3422 { 3423 return evsel__has_leader(evsel, evsel); 3424 } 3425 3426 void evsel__set_leader(struct evsel *evsel, struct evsel *leader) 3427 { 3428 evsel->core.leader = &leader->core; 3429 } 3430 3431 int evsel__source_count(const struct evsel *evsel) 3432 { 3433 struct evsel *pos; 3434 int count = 0; 3435 3436 evlist__for_each_entry(evsel->evlist, pos) { 3437 if (pos->metric_leader == evsel) 3438 count++; 3439 } 3440 return count; 3441 } 3442 3443 bool __weak arch_evsel__must_be_in_group(const struct evsel *evsel __maybe_unused) 3444 { 3445 return false; 3446 } 3447 3448 /* 3449 * Remove an event from a given group (leader). 3450 * Some events, e.g., perf metrics Topdown events, 3451 * must always be grouped. Ignore the events. 3452 */ 3453 void evsel__remove_from_group(struct evsel *evsel, struct evsel *leader) 3454 { 3455 if (!arch_evsel__must_be_in_group(evsel) && evsel != leader) { 3456 evsel__set_leader(evsel, evsel); 3457 evsel->core.nr_members = 0; 3458 leader->core.nr_members--; 3459 } 3460 } 3461
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.