~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/util/header.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 #include <errno.h>
  3 #include <inttypes.h>
  4 #include "string2.h"
  5 #include <sys/param.h>
  6 #include <sys/types.h>
  7 #include <byteswap.h>
  8 #include <unistd.h>
  9 #include <regex.h>
 10 #include <stdio.h>
 11 #include <stdlib.h>
 12 #include <linux/compiler.h>
 13 #include <linux/list.h>
 14 #include <linux/kernel.h>
 15 #include <linux/bitops.h>
 16 #include <linux/string.h>
 17 #include <linux/stringify.h>
 18 #include <linux/zalloc.h>
 19 #include <sys/stat.h>
 20 #include <sys/utsname.h>
 21 #include <linux/time64.h>
 22 #include <dirent.h>
 23 #ifdef HAVE_LIBBPF_SUPPORT
 24 #include <bpf/libbpf.h>
 25 #endif
 26 #include <perf/cpumap.h>
 27 #include <tools/libc_compat.h> // reallocarray
 28 
 29 #include "dso.h"
 30 #include "evlist.h"
 31 #include "evsel.h"
 32 #include "util/evsel_fprintf.h"
 33 #include "header.h"
 34 #include "memswap.h"
 35 #include "trace-event.h"
 36 #include "session.h"
 37 #include "symbol.h"
 38 #include "debug.h"
 39 #include "cpumap.h"
 40 #include "pmu.h"
 41 #include "pmus.h"
 42 #include "vdso.h"
 43 #include "strbuf.h"
 44 #include "build-id.h"
 45 #include "data.h"
 46 #include <api/fs/fs.h>
 47 #include "asm/bug.h"
 48 #include "tool.h"
 49 #include "time-utils.h"
 50 #include "units.h"
 51 #include "util/util.h" // perf_exe()
 52 #include "cputopo.h"
 53 #include "bpf-event.h"
 54 #include "bpf-utils.h"
 55 #include "clockid.h"
 56 
 57 #include <linux/ctype.h>
 58 #include <internal/lib.h>
 59 
 60 #ifdef HAVE_LIBTRACEEVENT
 61 #include <traceevent/event-parse.h>
 62 #endif
 63 
 64 /*
 65  * magic2 = "PERFILE2"
 66  * must be a numerical value to let the endianness
 67  * determine the memory layout. That way we are able
 68  * to detect endianness when reading the perf.data file
 69  * back.
 70  *
 71  * we check for legacy (PERFFILE) format.
 72  */
 73 static const char *__perf_magic1 = "PERFFILE";
 74 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
 75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
 76 
 77 #define PERF_MAGIC      __perf_magic2
 78 
 79 const char perf_version_string[] = PERF_VERSION;
 80 
 81 struct perf_file_attr {
 82         struct perf_event_attr  attr;
 83         struct perf_file_section        ids;
 84 };
 85 
 86 void perf_header__set_feat(struct perf_header *header, int feat)
 87 {
 88         __set_bit(feat, header->adds_features);
 89 }
 90 
 91 void perf_header__clear_feat(struct perf_header *header, int feat)
 92 {
 93         __clear_bit(feat, header->adds_features);
 94 }
 95 
 96 bool perf_header__has_feat(const struct perf_header *header, int feat)
 97 {
 98         return test_bit(feat, header->adds_features);
 99 }
100 
101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102 {
103         ssize_t ret = writen(ff->fd, buf, size);
104 
105         if (ret != (ssize_t)size)
106                 return ret < 0 ? (int)ret : -1;
107         return 0;
108 }
109 
110 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
111 {
112         /* struct perf_event_header::size is u16 */
113         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114         size_t new_size = ff->size;
115         void *addr;
116 
117         if (size + ff->offset > max_size)
118                 return -E2BIG;
119 
120         while (size > (new_size - ff->offset))
121                 new_size <<= 1;
122         new_size = min(max_size, new_size);
123 
124         if (ff->size < new_size) {
125                 addr = realloc(ff->buf, new_size);
126                 if (!addr)
127                         return -ENOMEM;
128                 ff->buf = addr;
129                 ff->size = new_size;
130         }
131 
132         memcpy(ff->buf + ff->offset, buf, size);
133         ff->offset += size;
134 
135         return 0;
136 }
137 
138 /* Return: 0 if succeeded, -ERR if failed. */
139 int do_write(struct feat_fd *ff, const void *buf, size_t size)
140 {
141         if (!ff->buf)
142                 return __do_write_fd(ff, buf, size);
143         return __do_write_buf(ff, buf, size);
144 }
145 
146 /* Return: 0 if succeeded, -ERR if failed. */
147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148 {
149         u64 *p = (u64 *) set;
150         int i, ret;
151 
152         ret = do_write(ff, &size, sizeof(size));
153         if (ret < 0)
154                 return ret;
155 
156         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157                 ret = do_write(ff, p + i, sizeof(*p));
158                 if (ret < 0)
159                         return ret;
160         }
161 
162         return 0;
163 }
164 
165 /* Return: 0 if succeeded, -ERR if failed. */
166 int write_padded(struct feat_fd *ff, const void *bf,
167                  size_t count, size_t count_aligned)
168 {
169         static const char zero_buf[NAME_ALIGN];
170         int err = do_write(ff, bf, count);
171 
172         if (!err)
173                 err = do_write(ff, zero_buf, count_aligned - count);
174 
175         return err;
176 }
177 
178 #define string_size(str)                                                \
179         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180 
181 /* Return: 0 if succeeded, -ERR if failed. */
182 static int do_write_string(struct feat_fd *ff, const char *str)
183 {
184         u32 len, olen;
185         int ret;
186 
187         olen = strlen(str) + 1;
188         len = PERF_ALIGN(olen, NAME_ALIGN);
189 
190         /* write len, incl. \0 */
191         ret = do_write(ff, &len, sizeof(len));
192         if (ret < 0)
193                 return ret;
194 
195         return write_padded(ff, str, olen, len);
196 }
197 
198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199 {
200         ssize_t ret = readn(ff->fd, addr, size);
201 
202         if (ret != size)
203                 return ret < 0 ? (int)ret : -1;
204         return 0;
205 }
206 
207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208 {
209         if (size > (ssize_t)ff->size - ff->offset)
210                 return -1;
211 
212         memcpy(addr, ff->buf + ff->offset, size);
213         ff->offset += size;
214 
215         return 0;
216 
217 }
218 
219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220 {
221         if (!ff->buf)
222                 return __do_read_fd(ff, addr, size);
223         return __do_read_buf(ff, addr, size);
224 }
225 
226 static int do_read_u32(struct feat_fd *ff, u32 *addr)
227 {
228         int ret;
229 
230         ret = __do_read(ff, addr, sizeof(*addr));
231         if (ret)
232                 return ret;
233 
234         if (ff->ph->needs_swap)
235                 *addr = bswap_32(*addr);
236         return 0;
237 }
238 
239 static int do_read_u64(struct feat_fd *ff, u64 *addr)
240 {
241         int ret;
242 
243         ret = __do_read(ff, addr, sizeof(*addr));
244         if (ret)
245                 return ret;
246 
247         if (ff->ph->needs_swap)
248                 *addr = bswap_64(*addr);
249         return 0;
250 }
251 
252 static char *do_read_string(struct feat_fd *ff)
253 {
254         u32 len;
255         char *buf;
256 
257         if (do_read_u32(ff, &len))
258                 return NULL;
259 
260         buf = malloc(len);
261         if (!buf)
262                 return NULL;
263 
264         if (!__do_read(ff, buf, len)) {
265                 /*
266                  * strings are padded by zeroes
267                  * thus the actual strlen of buf
268                  * may be less than len
269                  */
270                 return buf;
271         }
272 
273         free(buf);
274         return NULL;
275 }
276 
277 /* Return: 0 if succeeded, -ERR if failed. */
278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279 {
280         unsigned long *set;
281         u64 size, *p;
282         int i, ret;
283 
284         ret = do_read_u64(ff, &size);
285         if (ret)
286                 return ret;
287 
288         set = bitmap_zalloc(size);
289         if (!set)
290                 return -ENOMEM;
291 
292         p = (u64 *) set;
293 
294         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295                 ret = do_read_u64(ff, p + i);
296                 if (ret < 0) {
297                         free(set);
298                         return ret;
299                 }
300         }
301 
302         *pset  = set;
303         *psize = size;
304         return 0;
305 }
306 
307 #ifdef HAVE_LIBTRACEEVENT
308 static int write_tracing_data(struct feat_fd *ff,
309                               struct evlist *evlist)
310 {
311         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312                 return -1;
313 
314         return read_tracing_data(ff->fd, &evlist->core.entries);
315 }
316 #endif
317 
318 static int write_build_id(struct feat_fd *ff,
319                           struct evlist *evlist __maybe_unused)
320 {
321         struct perf_session *session;
322         int err;
323 
324         session = container_of(ff->ph, struct perf_session, header);
325 
326         if (!perf_session__read_build_ids(session, true))
327                 return -1;
328 
329         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330                 return -1;
331 
332         err = perf_session__write_buildid_table(session, ff);
333         if (err < 0) {
334                 pr_debug("failed to write buildid table\n");
335                 return err;
336         }
337         perf_session__cache_build_ids(session);
338 
339         return 0;
340 }
341 
342 static int write_hostname(struct feat_fd *ff,
343                           struct evlist *evlist __maybe_unused)
344 {
345         struct utsname uts;
346         int ret;
347 
348         ret = uname(&uts);
349         if (ret < 0)
350                 return -1;
351 
352         return do_write_string(ff, uts.nodename);
353 }
354 
355 static int write_osrelease(struct feat_fd *ff,
356                            struct evlist *evlist __maybe_unused)
357 {
358         struct utsname uts;
359         int ret;
360 
361         ret = uname(&uts);
362         if (ret < 0)
363                 return -1;
364 
365         return do_write_string(ff, uts.release);
366 }
367 
368 static int write_arch(struct feat_fd *ff,
369                       struct evlist *evlist __maybe_unused)
370 {
371         struct utsname uts;
372         int ret;
373 
374         ret = uname(&uts);
375         if (ret < 0)
376                 return -1;
377 
378         return do_write_string(ff, uts.machine);
379 }
380 
381 static int write_version(struct feat_fd *ff,
382                          struct evlist *evlist __maybe_unused)
383 {
384         return do_write_string(ff, perf_version_string);
385 }
386 
387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388 {
389         FILE *file;
390         char *buf = NULL;
391         char *s, *p;
392         const char *search = cpuinfo_proc;
393         size_t len = 0;
394         int ret = -1;
395 
396         if (!search)
397                 return -1;
398 
399         file = fopen("/proc/cpuinfo", "r");
400         if (!file)
401                 return -1;
402 
403         while (getline(&buf, &len, file) > 0) {
404                 ret = strncmp(buf, search, strlen(search));
405                 if (!ret)
406                         break;
407         }
408 
409         if (ret) {
410                 ret = -1;
411                 goto done;
412         }
413 
414         s = buf;
415 
416         p = strchr(buf, ':');
417         if (p && *(p+1) == ' ' && *(p+2))
418                 s = p + 2;
419         p = strchr(s, '\n');
420         if (p)
421                 *p = '\0';
422 
423         /* squash extra space characters (branding string) */
424         p = s;
425         while (*p) {
426                 if (isspace(*p)) {
427                         char *r = p + 1;
428                         char *q = skip_spaces(r);
429                         *p = ' ';
430                         if (q != (p+1))
431                                 while ((*r++ = *q++));
432                 }
433                 p++;
434         }
435         ret = do_write_string(ff, s);
436 done:
437         free(buf);
438         fclose(file);
439         return ret;
440 }
441 
442 static int write_cpudesc(struct feat_fd *ff,
443                        struct evlist *evlist __maybe_unused)
444 {
445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446 #define CPUINFO_PROC    { "cpu", }
447 #elif defined(__s390__)
448 #define CPUINFO_PROC    { "vendor_id", }
449 #elif defined(__sh__)
450 #define CPUINFO_PROC    { "cpu type", }
451 #elif defined(__alpha__) || defined(__mips__)
452 #define CPUINFO_PROC    { "cpu model", }
453 #elif defined(__arm__)
454 #define CPUINFO_PROC    { "model name", "Processor", }
455 #elif defined(__arc__)
456 #define CPUINFO_PROC    { "Processor", }
457 #elif defined(__xtensa__)
458 #define CPUINFO_PROC    { "core ID", }
459 #elif defined(__loongarch__)
460 #define CPUINFO_PROC    { "Model Name", }
461 #else
462 #define CPUINFO_PROC    { "model name", }
463 #endif
464         const char *cpuinfo_procs[] = CPUINFO_PROC;
465 #undef CPUINFO_PROC
466         unsigned int i;
467 
468         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
469                 int ret;
470                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
471                 if (ret >= 0)
472                         return ret;
473         }
474         return -1;
475 }
476 
477 
478 static int write_nrcpus(struct feat_fd *ff,
479                         struct evlist *evlist __maybe_unused)
480 {
481         long nr;
482         u32 nrc, nra;
483         int ret;
484 
485         nrc = cpu__max_present_cpu().cpu;
486 
487         nr = sysconf(_SC_NPROCESSORS_ONLN);
488         if (nr < 0)
489                 return -1;
490 
491         nra = (u32)(nr & UINT_MAX);
492 
493         ret = do_write(ff, &nrc, sizeof(nrc));
494         if (ret < 0)
495                 return ret;
496 
497         return do_write(ff, &nra, sizeof(nra));
498 }
499 
500 static int write_event_desc(struct feat_fd *ff,
501                             struct evlist *evlist)
502 {
503         struct evsel *evsel;
504         u32 nre, nri, sz;
505         int ret;
506 
507         nre = evlist->core.nr_entries;
508 
509         /*
510          * write number of events
511          */
512         ret = do_write(ff, &nre, sizeof(nre));
513         if (ret < 0)
514                 return ret;
515 
516         /*
517          * size of perf_event_attr struct
518          */
519         sz = (u32)sizeof(evsel->core.attr);
520         ret = do_write(ff, &sz, sizeof(sz));
521         if (ret < 0)
522                 return ret;
523 
524         evlist__for_each_entry(evlist, evsel) {
525                 ret = do_write(ff, &evsel->core.attr, sz);
526                 if (ret < 0)
527                         return ret;
528                 /*
529                  * write number of unique id per event
530                  * there is one id per instance of an event
531                  *
532                  * copy into an nri to be independent of the
533                  * type of ids,
534                  */
535                 nri = evsel->core.ids;
536                 ret = do_write(ff, &nri, sizeof(nri));
537                 if (ret < 0)
538                         return ret;
539 
540                 /*
541                  * write event string as passed on cmdline
542                  */
543                 ret = do_write_string(ff, evsel__name(evsel));
544                 if (ret < 0)
545                         return ret;
546                 /*
547                  * write unique ids for this event
548                  */
549                 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
550                 if (ret < 0)
551                         return ret;
552         }
553         return 0;
554 }
555 
556 static int write_cmdline(struct feat_fd *ff,
557                          struct evlist *evlist __maybe_unused)
558 {
559         char pbuf[MAXPATHLEN], *buf;
560         int i, ret, n;
561 
562         /* actual path to perf binary */
563         buf = perf_exe(pbuf, MAXPATHLEN);
564 
565         /* account for binary path */
566         n = perf_env.nr_cmdline + 1;
567 
568         ret = do_write(ff, &n, sizeof(n));
569         if (ret < 0)
570                 return ret;
571 
572         ret = do_write_string(ff, buf);
573         if (ret < 0)
574                 return ret;
575 
576         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
577                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
578                 if (ret < 0)
579                         return ret;
580         }
581         return 0;
582 }
583 
584 
585 static int write_cpu_topology(struct feat_fd *ff,
586                               struct evlist *evlist __maybe_unused)
587 {
588         struct cpu_topology *tp;
589         u32 i;
590         int ret, j;
591 
592         tp = cpu_topology__new();
593         if (!tp)
594                 return -1;
595 
596         ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
597         if (ret < 0)
598                 goto done;
599 
600         for (i = 0; i < tp->package_cpus_lists; i++) {
601                 ret = do_write_string(ff, tp->package_cpus_list[i]);
602                 if (ret < 0)
603                         goto done;
604         }
605         ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
606         if (ret < 0)
607                 goto done;
608 
609         for (i = 0; i < tp->core_cpus_lists; i++) {
610                 ret = do_write_string(ff, tp->core_cpus_list[i]);
611                 if (ret < 0)
612                         break;
613         }
614 
615         ret = perf_env__read_cpu_topology_map(&perf_env);
616         if (ret < 0)
617                 goto done;
618 
619         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
620                 ret = do_write(ff, &perf_env.cpu[j].core_id,
621                                sizeof(perf_env.cpu[j].core_id));
622                 if (ret < 0)
623                         return ret;
624                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
625                                sizeof(perf_env.cpu[j].socket_id));
626                 if (ret < 0)
627                         return ret;
628         }
629 
630         if (!tp->die_cpus_lists)
631                 goto done;
632 
633         ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
634         if (ret < 0)
635                 goto done;
636 
637         for (i = 0; i < tp->die_cpus_lists; i++) {
638                 ret = do_write_string(ff, tp->die_cpus_list[i]);
639                 if (ret < 0)
640                         goto done;
641         }
642 
643         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
644                 ret = do_write(ff, &perf_env.cpu[j].die_id,
645                                sizeof(perf_env.cpu[j].die_id));
646                 if (ret < 0)
647                         return ret;
648         }
649 
650 done:
651         cpu_topology__delete(tp);
652         return ret;
653 }
654 
655 
656 
657 static int write_total_mem(struct feat_fd *ff,
658                            struct evlist *evlist __maybe_unused)
659 {
660         char *buf = NULL;
661         FILE *fp;
662         size_t len = 0;
663         int ret = -1, n;
664         uint64_t mem;
665 
666         fp = fopen("/proc/meminfo", "r");
667         if (!fp)
668                 return -1;
669 
670         while (getline(&buf, &len, fp) > 0) {
671                 ret = strncmp(buf, "MemTotal:", 9);
672                 if (!ret)
673                         break;
674         }
675         if (!ret) {
676                 n = sscanf(buf, "%*s %"PRIu64, &mem);
677                 if (n == 1)
678                         ret = do_write(ff, &mem, sizeof(mem));
679         } else
680                 ret = -1;
681         free(buf);
682         fclose(fp);
683         return ret;
684 }
685 
686 static int write_numa_topology(struct feat_fd *ff,
687                                struct evlist *evlist __maybe_unused)
688 {
689         struct numa_topology *tp;
690         int ret = -1;
691         u32 i;
692 
693         tp = numa_topology__new();
694         if (!tp)
695                 return -ENOMEM;
696 
697         ret = do_write(ff, &tp->nr, sizeof(u32));
698         if (ret < 0)
699                 goto err;
700 
701         for (i = 0; i < tp->nr; i++) {
702                 struct numa_topology_node *n = &tp->nodes[i];
703 
704                 ret = do_write(ff, &n->node, sizeof(u32));
705                 if (ret < 0)
706                         goto err;
707 
708                 ret = do_write(ff, &n->mem_total, sizeof(u64));
709                 if (ret)
710                         goto err;
711 
712                 ret = do_write(ff, &n->mem_free, sizeof(u64));
713                 if (ret)
714                         goto err;
715 
716                 ret = do_write_string(ff, n->cpus);
717                 if (ret < 0)
718                         goto err;
719         }
720 
721         ret = 0;
722 
723 err:
724         numa_topology__delete(tp);
725         return ret;
726 }
727 
728 /*
729  * File format:
730  *
731  * struct pmu_mappings {
732  *      u32     pmu_num;
733  *      struct pmu_map {
734  *              u32     type;
735  *              char    name[];
736  *      }[pmu_num];
737  * };
738  */
739 
740 static int write_pmu_mappings(struct feat_fd *ff,
741                               struct evlist *evlist __maybe_unused)
742 {
743         struct perf_pmu *pmu = NULL;
744         u32 pmu_num = 0;
745         int ret;
746 
747         /*
748          * Do a first pass to count number of pmu to avoid lseek so this
749          * works in pipe mode as well.
750          */
751         while ((pmu = perf_pmus__scan(pmu)))
752                 pmu_num++;
753 
754         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755         if (ret < 0)
756                 return ret;
757 
758         while ((pmu = perf_pmus__scan(pmu))) {
759                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
760                 if (ret < 0)
761                         return ret;
762 
763                 ret = do_write_string(ff, pmu->name);
764                 if (ret < 0)
765                         return ret;
766         }
767 
768         return 0;
769 }
770 
771 /*
772  * File format:
773  *
774  * struct group_descs {
775  *      u32     nr_groups;
776  *      struct group_desc {
777  *              char    name[];
778  *              u32     leader_idx;
779  *              u32     nr_members;
780  *      }[nr_groups];
781  * };
782  */
783 static int write_group_desc(struct feat_fd *ff,
784                             struct evlist *evlist)
785 {
786         u32 nr_groups = evlist__nr_groups(evlist);
787         struct evsel *evsel;
788         int ret;
789 
790         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
791         if (ret < 0)
792                 return ret;
793 
794         evlist__for_each_entry(evlist, evsel) {
795                 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
796                         const char *name = evsel->group_name ?: "{anon_group}";
797                         u32 leader_idx = evsel->core.idx;
798                         u32 nr_members = evsel->core.nr_members;
799 
800                         ret = do_write_string(ff, name);
801                         if (ret < 0)
802                                 return ret;
803 
804                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
805                         if (ret < 0)
806                                 return ret;
807 
808                         ret = do_write(ff, &nr_members, sizeof(nr_members));
809                         if (ret < 0)
810                                 return ret;
811                 }
812         }
813         return 0;
814 }
815 
816 /*
817  * Return the CPU id as a raw string.
818  *
819  * Each architecture should provide a more precise id string that
820  * can be use to match the architecture's "mapfile".
821  */
822 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
823 {
824         return NULL;
825 }
826 
827 /* Return zero when the cpuid from the mapfile.csv matches the
828  * cpuid string generated on this platform.
829  * Otherwise return non-zero.
830  */
831 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
832 {
833         regex_t re;
834         regmatch_t pmatch[1];
835         int match;
836 
837         if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
838                 /* Warn unable to generate match particular string. */
839                 pr_info("Invalid regular expression %s\n", mapcpuid);
840                 return 1;
841         }
842 
843         match = !regexec(&re, cpuid, 1, pmatch, 0);
844         regfree(&re);
845         if (match) {
846                 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
847 
848                 /* Verify the entire string matched. */
849                 if (match_len == strlen(cpuid))
850                         return 0;
851         }
852         return 1;
853 }
854 
855 /*
856  * default get_cpuid(): nothing gets recorded
857  * actual implementation must be in arch/$(SRCARCH)/util/header.c
858  */
859 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
860 {
861         return ENOSYS; /* Not implemented */
862 }
863 
864 static int write_cpuid(struct feat_fd *ff,
865                        struct evlist *evlist __maybe_unused)
866 {
867         char buffer[64];
868         int ret;
869 
870         ret = get_cpuid(buffer, sizeof(buffer));
871         if (ret)
872                 return -1;
873 
874         return do_write_string(ff, buffer);
875 }
876 
877 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
878                               struct evlist *evlist __maybe_unused)
879 {
880         return 0;
881 }
882 
883 static int write_auxtrace(struct feat_fd *ff,
884                           struct evlist *evlist __maybe_unused)
885 {
886         struct perf_session *session;
887         int err;
888 
889         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
890                 return -1;
891 
892         session = container_of(ff->ph, struct perf_session, header);
893 
894         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
895         if (err < 0)
896                 pr_err("Failed to write auxtrace index\n");
897         return err;
898 }
899 
900 static int write_clockid(struct feat_fd *ff,
901                          struct evlist *evlist __maybe_unused)
902 {
903         return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
904                         sizeof(ff->ph->env.clock.clockid_res_ns));
905 }
906 
907 static int write_clock_data(struct feat_fd *ff,
908                             struct evlist *evlist __maybe_unused)
909 {
910         u64 *data64;
911         u32 data32;
912         int ret;
913 
914         /* version */
915         data32 = 1;
916 
917         ret = do_write(ff, &data32, sizeof(data32));
918         if (ret < 0)
919                 return ret;
920 
921         /* clockid */
922         data32 = ff->ph->env.clock.clockid;
923 
924         ret = do_write(ff, &data32, sizeof(data32));
925         if (ret < 0)
926                 return ret;
927 
928         /* TOD ref time */
929         data64 = &ff->ph->env.clock.tod_ns;
930 
931         ret = do_write(ff, data64, sizeof(*data64));
932         if (ret < 0)
933                 return ret;
934 
935         /* clockid ref time */
936         data64 = &ff->ph->env.clock.clockid_ns;
937 
938         return do_write(ff, data64, sizeof(*data64));
939 }
940 
941 static int write_hybrid_topology(struct feat_fd *ff,
942                                  struct evlist *evlist __maybe_unused)
943 {
944         struct hybrid_topology *tp;
945         int ret;
946         u32 i;
947 
948         tp = hybrid_topology__new();
949         if (!tp)
950                 return -ENOENT;
951 
952         ret = do_write(ff, &tp->nr, sizeof(u32));
953         if (ret < 0)
954                 goto err;
955 
956         for (i = 0; i < tp->nr; i++) {
957                 struct hybrid_topology_node *n = &tp->nodes[i];
958 
959                 ret = do_write_string(ff, n->pmu_name);
960                 if (ret < 0)
961                         goto err;
962 
963                 ret = do_write_string(ff, n->cpus);
964                 if (ret < 0)
965                         goto err;
966         }
967 
968         ret = 0;
969 
970 err:
971         hybrid_topology__delete(tp);
972         return ret;
973 }
974 
975 static int write_dir_format(struct feat_fd *ff,
976                             struct evlist *evlist __maybe_unused)
977 {
978         struct perf_session *session;
979         struct perf_data *data;
980 
981         session = container_of(ff->ph, struct perf_session, header);
982         data = session->data;
983 
984         if (WARN_ON(!perf_data__is_dir(data)))
985                 return -1;
986 
987         return do_write(ff, &data->dir.version, sizeof(data->dir.version));
988 }
989 
990 /*
991  * Check whether a CPU is online
992  *
993  * Returns:
994  *     1 -> if CPU is online
995  *     0 -> if CPU is offline
996  *    -1 -> error case
997  */
998 int is_cpu_online(unsigned int cpu)
999 {
1000         char *str;
1001         size_t strlen;
1002         char buf[256];
1003         int status = -1;
1004         struct stat statbuf;
1005 
1006         snprintf(buf, sizeof(buf),
1007                 "/sys/devices/system/cpu/cpu%d", cpu);
1008         if (stat(buf, &statbuf) != 0)
1009                 return 0;
1010 
1011         /*
1012          * Check if /sys/devices/system/cpu/cpux/online file
1013          * exists. Some cases cpu0 won't have online file since
1014          * it is not expected to be turned off generally.
1015          * In kernels without CONFIG_HOTPLUG_CPU, this
1016          * file won't exist
1017          */
1018         snprintf(buf, sizeof(buf),
1019                 "/sys/devices/system/cpu/cpu%d/online", cpu);
1020         if (stat(buf, &statbuf) != 0)
1021                 return 1;
1022 
1023         /*
1024          * Read online file using sysfs__read_str.
1025          * If read or open fails, return -1.
1026          * If read succeeds, return value from file
1027          * which gets stored in "str"
1028          */
1029         snprintf(buf, sizeof(buf),
1030                 "devices/system/cpu/cpu%d/online", cpu);
1031 
1032         if (sysfs__read_str(buf, &str, &strlen) < 0)
1033                 return status;
1034 
1035         status = atoi(str);
1036 
1037         free(str);
1038         return status;
1039 }
1040 
1041 #ifdef HAVE_LIBBPF_SUPPORT
1042 static int write_bpf_prog_info(struct feat_fd *ff,
1043                                struct evlist *evlist __maybe_unused)
1044 {
1045         struct perf_env *env = &ff->ph->env;
1046         struct rb_root *root;
1047         struct rb_node *next;
1048         int ret;
1049 
1050         down_read(&env->bpf_progs.lock);
1051 
1052         ret = do_write(ff, &env->bpf_progs.infos_cnt,
1053                        sizeof(env->bpf_progs.infos_cnt));
1054         if (ret < 0)
1055                 goto out;
1056 
1057         root = &env->bpf_progs.infos;
1058         next = rb_first(root);
1059         while (next) {
1060                 struct bpf_prog_info_node *node;
1061                 size_t len;
1062 
1063                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1064                 next = rb_next(&node->rb_node);
1065                 len = sizeof(struct perf_bpil) +
1066                         node->info_linear->data_len;
1067 
1068                 /* before writing to file, translate address to offset */
1069                 bpil_addr_to_offs(node->info_linear);
1070                 ret = do_write(ff, node->info_linear, len);
1071                 /*
1072                  * translate back to address even when do_write() fails,
1073                  * so that this function never changes the data.
1074                  */
1075                 bpil_offs_to_addr(node->info_linear);
1076                 if (ret < 0)
1077                         goto out;
1078         }
1079 out:
1080         up_read(&env->bpf_progs.lock);
1081         return ret;
1082 }
1083 
1084 static int write_bpf_btf(struct feat_fd *ff,
1085                          struct evlist *evlist __maybe_unused)
1086 {
1087         struct perf_env *env = &ff->ph->env;
1088         struct rb_root *root;
1089         struct rb_node *next;
1090         int ret;
1091 
1092         down_read(&env->bpf_progs.lock);
1093 
1094         ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1095                        sizeof(env->bpf_progs.btfs_cnt));
1096 
1097         if (ret < 0)
1098                 goto out;
1099 
1100         root = &env->bpf_progs.btfs;
1101         next = rb_first(root);
1102         while (next) {
1103                 struct btf_node *node;
1104 
1105                 node = rb_entry(next, struct btf_node, rb_node);
1106                 next = rb_next(&node->rb_node);
1107                 ret = do_write(ff, &node->id,
1108                                sizeof(u32) * 2 + node->data_size);
1109                 if (ret < 0)
1110                         goto out;
1111         }
1112 out:
1113         up_read(&env->bpf_progs.lock);
1114         return ret;
1115 }
1116 #endif // HAVE_LIBBPF_SUPPORT
1117 
1118 static int cpu_cache_level__sort(const void *a, const void *b)
1119 {
1120         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1121         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1122 
1123         return cache_a->level - cache_b->level;
1124 }
1125 
1126 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1127 {
1128         if (a->level != b->level)
1129                 return false;
1130 
1131         if (a->line_size != b->line_size)
1132                 return false;
1133 
1134         if (a->sets != b->sets)
1135                 return false;
1136 
1137         if (a->ways != b->ways)
1138                 return false;
1139 
1140         if (strcmp(a->type, b->type))
1141                 return false;
1142 
1143         if (strcmp(a->size, b->size))
1144                 return false;
1145 
1146         if (strcmp(a->map, b->map))
1147                 return false;
1148 
1149         return true;
1150 }
1151 
1152 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1153 {
1154         char path[PATH_MAX], file[PATH_MAX];
1155         struct stat st;
1156         size_t len;
1157 
1158         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1159         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1160 
1161         if (stat(file, &st))
1162                 return 1;
1163 
1164         scnprintf(file, PATH_MAX, "%s/level", path);
1165         if (sysfs__read_int(file, (int *) &cache->level))
1166                 return -1;
1167 
1168         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1169         if (sysfs__read_int(file, (int *) &cache->line_size))
1170                 return -1;
1171 
1172         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1173         if (sysfs__read_int(file, (int *) &cache->sets))
1174                 return -1;
1175 
1176         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1177         if (sysfs__read_int(file, (int *) &cache->ways))
1178                 return -1;
1179 
1180         scnprintf(file, PATH_MAX, "%s/type", path);
1181         if (sysfs__read_str(file, &cache->type, &len))
1182                 return -1;
1183 
1184         cache->type[len] = 0;
1185         cache->type = strim(cache->type);
1186 
1187         scnprintf(file, PATH_MAX, "%s/size", path);
1188         if (sysfs__read_str(file, &cache->size, &len)) {
1189                 zfree(&cache->type);
1190                 return -1;
1191         }
1192 
1193         cache->size[len] = 0;
1194         cache->size = strim(cache->size);
1195 
1196         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1197         if (sysfs__read_str(file, &cache->map, &len)) {
1198                 zfree(&cache->size);
1199                 zfree(&cache->type);
1200                 return -1;
1201         }
1202 
1203         cache->map[len] = 0;
1204         cache->map = strim(cache->map);
1205         return 0;
1206 }
1207 
1208 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1209 {
1210         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1211 }
1212 
1213 /*
1214  * Build caches levels for a particular CPU from the data in
1215  * /sys/devices/system/cpu/cpu<cpu>/cache/
1216  * The cache level data is stored in caches[] from index at
1217  * *cntp.
1218  */
1219 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1220 {
1221         u16 level;
1222 
1223         for (level = 0; level < MAX_CACHE_LVL; level++) {
1224                 struct cpu_cache_level c;
1225                 int err;
1226                 u32 i;
1227 
1228                 err = cpu_cache_level__read(&c, cpu, level);
1229                 if (err < 0)
1230                         return err;
1231 
1232                 if (err == 1)
1233                         break;
1234 
1235                 for (i = 0; i < *cntp; i++) {
1236                         if (cpu_cache_level__cmp(&c, &caches[i]))
1237                                 break;
1238                 }
1239 
1240                 if (i == *cntp) {
1241                         caches[*cntp] = c;
1242                         *cntp = *cntp + 1;
1243                 } else
1244                         cpu_cache_level__free(&c);
1245         }
1246 
1247         return 0;
1248 }
1249 
1250 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1251 {
1252         u32 nr, cpu, cnt = 0;
1253 
1254         nr = cpu__max_cpu().cpu;
1255 
1256         for (cpu = 0; cpu < nr; cpu++) {
1257                 int ret = build_caches_for_cpu(cpu, caches, &cnt);
1258 
1259                 if (ret)
1260                         return ret;
1261         }
1262         *cntp = cnt;
1263         return 0;
1264 }
1265 
1266 static int write_cache(struct feat_fd *ff,
1267                        struct evlist *evlist __maybe_unused)
1268 {
1269         u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1270         struct cpu_cache_level caches[max_caches];
1271         u32 cnt = 0, i, version = 1;
1272         int ret;
1273 
1274         ret = build_caches(caches, &cnt);
1275         if (ret)
1276                 goto out;
1277 
1278         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1279 
1280         ret = do_write(ff, &version, sizeof(u32));
1281         if (ret < 0)
1282                 goto out;
1283 
1284         ret = do_write(ff, &cnt, sizeof(u32));
1285         if (ret < 0)
1286                 goto out;
1287 
1288         for (i = 0; i < cnt; i++) {
1289                 struct cpu_cache_level *c = &caches[i];
1290 
1291                 #define _W(v)                                   \
1292                         ret = do_write(ff, &c->v, sizeof(u32)); \
1293                         if (ret < 0)                            \
1294                                 goto out;
1295 
1296                 _W(level)
1297                 _W(line_size)
1298                 _W(sets)
1299                 _W(ways)
1300                 #undef _W
1301 
1302                 #define _W(v)                                           \
1303                         ret = do_write_string(ff, (const char *) c->v); \
1304                         if (ret < 0)                                    \
1305                                 goto out;
1306 
1307                 _W(type)
1308                 _W(size)
1309                 _W(map)
1310                 #undef _W
1311         }
1312 
1313 out:
1314         for (i = 0; i < cnt; i++)
1315                 cpu_cache_level__free(&caches[i]);
1316         return ret;
1317 }
1318 
1319 static int write_stat(struct feat_fd *ff __maybe_unused,
1320                       struct evlist *evlist __maybe_unused)
1321 {
1322         return 0;
1323 }
1324 
1325 static int write_sample_time(struct feat_fd *ff,
1326                              struct evlist *evlist)
1327 {
1328         int ret;
1329 
1330         ret = do_write(ff, &evlist->first_sample_time,
1331                        sizeof(evlist->first_sample_time));
1332         if (ret < 0)
1333                 return ret;
1334 
1335         return do_write(ff, &evlist->last_sample_time,
1336                         sizeof(evlist->last_sample_time));
1337 }
1338 
1339 
1340 static int memory_node__read(struct memory_node *n, unsigned long idx)
1341 {
1342         unsigned int phys, size = 0;
1343         char path[PATH_MAX];
1344         struct dirent *ent;
1345         DIR *dir;
1346 
1347 #define for_each_memory(mem, dir)                                       \
1348         while ((ent = readdir(dir)))                                    \
1349                 if (strcmp(ent->d_name, ".") &&                         \
1350                     strcmp(ent->d_name, "..") &&                        \
1351                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1352 
1353         scnprintf(path, PATH_MAX,
1354                   "%s/devices/system/node/node%lu",
1355                   sysfs__mountpoint(), idx);
1356 
1357         dir = opendir(path);
1358         if (!dir) {
1359                 pr_warning("failed: can't open memory sysfs data\n");
1360                 return -1;
1361         }
1362 
1363         for_each_memory(phys, dir) {
1364                 size = max(phys, size);
1365         }
1366 
1367         size++;
1368 
1369         n->set = bitmap_zalloc(size);
1370         if (!n->set) {
1371                 closedir(dir);
1372                 return -ENOMEM;
1373         }
1374 
1375         n->node = idx;
1376         n->size = size;
1377 
1378         rewinddir(dir);
1379 
1380         for_each_memory(phys, dir) {
1381                 __set_bit(phys, n->set);
1382         }
1383 
1384         closedir(dir);
1385         return 0;
1386 }
1387 
1388 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1389 {
1390         for (u64 i = 0; i < cnt; i++)
1391                 bitmap_free(nodesp[i].set);
1392 
1393         free(nodesp);
1394 }
1395 
1396 static int memory_node__sort(const void *a, const void *b)
1397 {
1398         const struct memory_node *na = a;
1399         const struct memory_node *nb = b;
1400 
1401         return na->node - nb->node;
1402 }
1403 
1404 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1405 {
1406         char path[PATH_MAX];
1407         struct dirent *ent;
1408         DIR *dir;
1409         int ret = 0;
1410         size_t cnt = 0, size = 0;
1411         struct memory_node *nodes = NULL;
1412 
1413         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1414                   sysfs__mountpoint());
1415 
1416         dir = opendir(path);
1417         if (!dir) {
1418                 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1419                           __func__, path);
1420                 return -1;
1421         }
1422 
1423         while (!ret && (ent = readdir(dir))) {
1424                 unsigned int idx;
1425                 int r;
1426 
1427                 if (!strcmp(ent->d_name, ".") ||
1428                     !strcmp(ent->d_name, ".."))
1429                         continue;
1430 
1431                 r = sscanf(ent->d_name, "node%u", &idx);
1432                 if (r != 1)
1433                         continue;
1434 
1435                 if (cnt >= size) {
1436                         struct memory_node *new_nodes =
1437                                 reallocarray(nodes, cnt + 4, sizeof(*nodes));
1438 
1439                         if (!new_nodes) {
1440                                 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1441                                 ret = -ENOMEM;
1442                                 goto out;
1443                         }
1444                         nodes = new_nodes;
1445                         size += 4;
1446                 }
1447                 ret = memory_node__read(&nodes[cnt], idx);
1448                 if (!ret)
1449                         cnt += 1;
1450         }
1451 out:
1452         closedir(dir);
1453         if (!ret) {
1454                 *cntp = cnt;
1455                 *nodesp = nodes;
1456                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1457         } else
1458                 memory_node__delete_nodes(nodes, cnt);
1459 
1460         return ret;
1461 }
1462 
1463 /*
1464  * The MEM_TOPOLOGY holds physical memory map for every
1465  * node in system. The format of data is as follows:
1466  *
1467  *  0 - version          | for future changes
1468  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1469  * 16 - count            | number of nodes
1470  *
1471  * For each node we store map of physical indexes for
1472  * each node:
1473  *
1474  * 32 - node id          | node index
1475  * 40 - size             | size of bitmap
1476  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1477  */
1478 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1479                               struct evlist *evlist __maybe_unused)
1480 {
1481         struct memory_node *nodes = NULL;
1482         u64 bsize, version = 1, i, nr = 0;
1483         int ret;
1484 
1485         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1486                               (unsigned long long *) &bsize);
1487         if (ret)
1488                 return ret;
1489 
1490         ret = build_mem_topology(&nodes, &nr);
1491         if (ret)
1492                 return ret;
1493 
1494         ret = do_write(ff, &version, sizeof(version));
1495         if (ret < 0)
1496                 goto out;
1497 
1498         ret = do_write(ff, &bsize, sizeof(bsize));
1499         if (ret < 0)
1500                 goto out;
1501 
1502         ret = do_write(ff, &nr, sizeof(nr));
1503         if (ret < 0)
1504                 goto out;
1505 
1506         for (i = 0; i < nr; i++) {
1507                 struct memory_node *n = &nodes[i];
1508 
1509                 #define _W(v)                                           \
1510                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1511                         if (ret < 0)                                    \
1512                                 goto out;
1513 
1514                 _W(node)
1515                 _W(size)
1516 
1517                 #undef _W
1518 
1519                 ret = do_write_bitmap(ff, n->set, n->size);
1520                 if (ret < 0)
1521                         goto out;
1522         }
1523 
1524 out:
1525         memory_node__delete_nodes(nodes, nr);
1526         return ret;
1527 }
1528 
1529 static int write_compressed(struct feat_fd *ff __maybe_unused,
1530                             struct evlist *evlist __maybe_unused)
1531 {
1532         int ret;
1533 
1534         ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1535         if (ret)
1536                 return ret;
1537 
1538         ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1539         if (ret)
1540                 return ret;
1541 
1542         ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1543         if (ret)
1544                 return ret;
1545 
1546         ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1547         if (ret)
1548                 return ret;
1549 
1550         return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1551 }
1552 
1553 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1554                             bool write_pmu)
1555 {
1556         struct perf_pmu_caps *caps = NULL;
1557         int ret;
1558 
1559         ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1560         if (ret < 0)
1561                 return ret;
1562 
1563         list_for_each_entry(caps, &pmu->caps, list) {
1564                 ret = do_write_string(ff, caps->name);
1565                 if (ret < 0)
1566                         return ret;
1567 
1568                 ret = do_write_string(ff, caps->value);
1569                 if (ret < 0)
1570                         return ret;
1571         }
1572 
1573         if (write_pmu) {
1574                 ret = do_write_string(ff, pmu->name);
1575                 if (ret < 0)
1576                         return ret;
1577         }
1578 
1579         return ret;
1580 }
1581 
1582 static int write_cpu_pmu_caps(struct feat_fd *ff,
1583                               struct evlist *evlist __maybe_unused)
1584 {
1585         struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1586         int ret;
1587 
1588         if (!cpu_pmu)
1589                 return -ENOENT;
1590 
1591         ret = perf_pmu__caps_parse(cpu_pmu);
1592         if (ret < 0)
1593                 return ret;
1594 
1595         return __write_pmu_caps(ff, cpu_pmu, false);
1596 }
1597 
1598 static int write_pmu_caps(struct feat_fd *ff,
1599                           struct evlist *evlist __maybe_unused)
1600 {
1601         struct perf_pmu *pmu = NULL;
1602         int nr_pmu = 0;
1603         int ret;
1604 
1605         while ((pmu = perf_pmus__scan(pmu))) {
1606                 if (!strcmp(pmu->name, "cpu")) {
1607                         /*
1608                          * The "cpu" PMU is special and covered by
1609                          * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1610                          * counted/written here for ARM, s390 and Intel hybrid.
1611                          */
1612                         continue;
1613                 }
1614                 if (perf_pmu__caps_parse(pmu) <= 0)
1615                         continue;
1616                 nr_pmu++;
1617         }
1618 
1619         ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1620         if (ret < 0)
1621                 return ret;
1622 
1623         if (!nr_pmu)
1624                 return 0;
1625 
1626         /*
1627          * Note older perf tools assume core PMUs come first, this is a property
1628          * of perf_pmus__scan.
1629          */
1630         pmu = NULL;
1631         while ((pmu = perf_pmus__scan(pmu))) {
1632                 if (!strcmp(pmu->name, "cpu")) {
1633                         /* Skip as above. */
1634                         continue;
1635                 }
1636                 if (perf_pmu__caps_parse(pmu) <= 0)
1637                         continue;
1638                 ret = __write_pmu_caps(ff, pmu, true);
1639                 if (ret < 0)
1640                         return ret;
1641         }
1642         return 0;
1643 }
1644 
1645 static void print_hostname(struct feat_fd *ff, FILE *fp)
1646 {
1647         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1648 }
1649 
1650 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1651 {
1652         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1653 }
1654 
1655 static void print_arch(struct feat_fd *ff, FILE *fp)
1656 {
1657         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1658 }
1659 
1660 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1661 {
1662         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1663 }
1664 
1665 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1666 {
1667         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1668         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1669 }
1670 
1671 static void print_version(struct feat_fd *ff, FILE *fp)
1672 {
1673         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1674 }
1675 
1676 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1677 {
1678         int nr, i;
1679 
1680         nr = ff->ph->env.nr_cmdline;
1681 
1682         fprintf(fp, "# cmdline : ");
1683 
1684         for (i = 0; i < nr; i++) {
1685                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1686                 if (!argv_i) {
1687                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1688                 } else {
1689                         char *mem = argv_i;
1690                         do {
1691                                 char *quote = strchr(argv_i, '\'');
1692                                 if (!quote)
1693                                         break;
1694                                 *quote++ = '\0';
1695                                 fprintf(fp, "%s\\\'", argv_i);
1696                                 argv_i = quote;
1697                         } while (1);
1698                         fprintf(fp, "%s ", argv_i);
1699                         free(mem);
1700                 }
1701         }
1702         fputc('\n', fp);
1703 }
1704 
1705 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1706 {
1707         struct perf_header *ph = ff->ph;
1708         int cpu_nr = ph->env.nr_cpus_avail;
1709         int nr, i;
1710         char *str;
1711 
1712         nr = ph->env.nr_sibling_cores;
1713         str = ph->env.sibling_cores;
1714 
1715         for (i = 0; i < nr; i++) {
1716                 fprintf(fp, "# sibling sockets : %s\n", str);
1717                 str += strlen(str) + 1;
1718         }
1719 
1720         if (ph->env.nr_sibling_dies) {
1721                 nr = ph->env.nr_sibling_dies;
1722                 str = ph->env.sibling_dies;
1723 
1724                 for (i = 0; i < nr; i++) {
1725                         fprintf(fp, "# sibling dies    : %s\n", str);
1726                         str += strlen(str) + 1;
1727                 }
1728         }
1729 
1730         nr = ph->env.nr_sibling_threads;
1731         str = ph->env.sibling_threads;
1732 
1733         for (i = 0; i < nr; i++) {
1734                 fprintf(fp, "# sibling threads : %s\n", str);
1735                 str += strlen(str) + 1;
1736         }
1737 
1738         if (ph->env.nr_sibling_dies) {
1739                 if (ph->env.cpu != NULL) {
1740                         for (i = 0; i < cpu_nr; i++)
1741                                 fprintf(fp, "# CPU %d: Core ID %d, "
1742                                             "Die ID %d, Socket ID %d\n",
1743                                             i, ph->env.cpu[i].core_id,
1744                                             ph->env.cpu[i].die_id,
1745                                             ph->env.cpu[i].socket_id);
1746                 } else
1747                         fprintf(fp, "# Core ID, Die ID and Socket ID "
1748                                     "information is not available\n");
1749         } else {
1750                 if (ph->env.cpu != NULL) {
1751                         for (i = 0; i < cpu_nr; i++)
1752                                 fprintf(fp, "# CPU %d: Core ID %d, "
1753                                             "Socket ID %d\n",
1754                                             i, ph->env.cpu[i].core_id,
1755                                             ph->env.cpu[i].socket_id);
1756                 } else
1757                         fprintf(fp, "# Core ID and Socket ID "
1758                                     "information is not available\n");
1759         }
1760 }
1761 
1762 static void print_clockid(struct feat_fd *ff, FILE *fp)
1763 {
1764         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1765                 ff->ph->env.clock.clockid_res_ns * 1000);
1766 }
1767 
1768 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1769 {
1770         struct timespec clockid_ns;
1771         char tstr[64], date[64];
1772         struct timeval tod_ns;
1773         clockid_t clockid;
1774         struct tm ltime;
1775         u64 ref;
1776 
1777         if (!ff->ph->env.clock.enabled) {
1778                 fprintf(fp, "# reference time disabled\n");
1779                 return;
1780         }
1781 
1782         /* Compute TOD time. */
1783         ref = ff->ph->env.clock.tod_ns;
1784         tod_ns.tv_sec = ref / NSEC_PER_SEC;
1785         ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1786         tod_ns.tv_usec = ref / NSEC_PER_USEC;
1787 
1788         /* Compute clockid time. */
1789         ref = ff->ph->env.clock.clockid_ns;
1790         clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1791         ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1792         clockid_ns.tv_nsec = ref;
1793 
1794         clockid = ff->ph->env.clock.clockid;
1795 
1796         if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1797                 snprintf(tstr, sizeof(tstr), "<error>");
1798         else {
1799                 strftime(date, sizeof(date), "%F %T", &ltime);
1800                 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1801                           date, (int) tod_ns.tv_usec);
1802         }
1803 
1804         fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1805         fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1806                     tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1807                     (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1808                     clockid_name(clockid));
1809 }
1810 
1811 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1812 {
1813         int i;
1814         struct hybrid_node *n;
1815 
1816         fprintf(fp, "# hybrid cpu system:\n");
1817         for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1818                 n = &ff->ph->env.hybrid_nodes[i];
1819                 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1820         }
1821 }
1822 
1823 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1824 {
1825         struct perf_session *session;
1826         struct perf_data *data;
1827 
1828         session = container_of(ff->ph, struct perf_session, header);
1829         data = session->data;
1830 
1831         fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1832 }
1833 
1834 #ifdef HAVE_LIBBPF_SUPPORT
1835 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1836 {
1837         struct perf_env *env = &ff->ph->env;
1838         struct rb_root *root;
1839         struct rb_node *next;
1840 
1841         down_read(&env->bpf_progs.lock);
1842 
1843         root = &env->bpf_progs.infos;
1844         next = rb_first(root);
1845 
1846         while (next) {
1847                 struct bpf_prog_info_node *node;
1848 
1849                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1850                 next = rb_next(&node->rb_node);
1851 
1852                 __bpf_event__print_bpf_prog_info(&node->info_linear->info,
1853                                                  env, fp);
1854         }
1855 
1856         up_read(&env->bpf_progs.lock);
1857 }
1858 
1859 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1860 {
1861         struct perf_env *env = &ff->ph->env;
1862         struct rb_root *root;
1863         struct rb_node *next;
1864 
1865         down_read(&env->bpf_progs.lock);
1866 
1867         root = &env->bpf_progs.btfs;
1868         next = rb_first(root);
1869 
1870         while (next) {
1871                 struct btf_node *node;
1872 
1873                 node = rb_entry(next, struct btf_node, rb_node);
1874                 next = rb_next(&node->rb_node);
1875                 fprintf(fp, "# btf info of id %u\n", node->id);
1876         }
1877 
1878         up_read(&env->bpf_progs.lock);
1879 }
1880 #endif // HAVE_LIBBPF_SUPPORT
1881 
1882 static void free_event_desc(struct evsel *events)
1883 {
1884         struct evsel *evsel;
1885 
1886         if (!events)
1887                 return;
1888 
1889         for (evsel = events; evsel->core.attr.size; evsel++) {
1890                 zfree(&evsel->name);
1891                 zfree(&evsel->core.id);
1892         }
1893 
1894         free(events);
1895 }
1896 
1897 static bool perf_attr_check(struct perf_event_attr *attr)
1898 {
1899         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1900                 pr_warning("Reserved bits are set unexpectedly. "
1901                            "Please update perf tool.\n");
1902                 return false;
1903         }
1904 
1905         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1906                 pr_warning("Unknown sample type (0x%llx) is detected. "
1907                            "Please update perf tool.\n",
1908                            attr->sample_type);
1909                 return false;
1910         }
1911 
1912         if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1913                 pr_warning("Unknown read format (0x%llx) is detected. "
1914                            "Please update perf tool.\n",
1915                            attr->read_format);
1916                 return false;
1917         }
1918 
1919         if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1920             (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1921                 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1922                            "Please update perf tool.\n",
1923                            attr->branch_sample_type);
1924 
1925                 return false;
1926         }
1927 
1928         return true;
1929 }
1930 
1931 static struct evsel *read_event_desc(struct feat_fd *ff)
1932 {
1933         struct evsel *evsel, *events = NULL;
1934         u64 *id;
1935         void *buf = NULL;
1936         u32 nre, sz, nr, i, j;
1937         size_t msz;
1938 
1939         /* number of events */
1940         if (do_read_u32(ff, &nre))
1941                 goto error;
1942 
1943         if (do_read_u32(ff, &sz))
1944                 goto error;
1945 
1946         /* buffer to hold on file attr struct */
1947         buf = malloc(sz);
1948         if (!buf)
1949                 goto error;
1950 
1951         /* the last event terminates with evsel->core.attr.size == 0: */
1952         events = calloc(nre + 1, sizeof(*events));
1953         if (!events)
1954                 goto error;
1955 
1956         msz = sizeof(evsel->core.attr);
1957         if (sz < msz)
1958                 msz = sz;
1959 
1960         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1961                 evsel->core.idx = i;
1962 
1963                 /*
1964                  * must read entire on-file attr struct to
1965                  * sync up with layout.
1966                  */
1967                 if (__do_read(ff, buf, sz))
1968                         goto error;
1969 
1970                 if (ff->ph->needs_swap)
1971                         perf_event__attr_swap(buf);
1972 
1973                 memcpy(&evsel->core.attr, buf, msz);
1974 
1975                 if (!perf_attr_check(&evsel->core.attr))
1976                         goto error;
1977 
1978                 if (do_read_u32(ff, &nr))
1979                         goto error;
1980 
1981                 if (ff->ph->needs_swap)
1982                         evsel->needs_swap = true;
1983 
1984                 evsel->name = do_read_string(ff);
1985                 if (!evsel->name)
1986                         goto error;
1987 
1988                 if (!nr)
1989                         continue;
1990 
1991                 id = calloc(nr, sizeof(*id));
1992                 if (!id)
1993                         goto error;
1994                 evsel->core.ids = nr;
1995                 evsel->core.id = id;
1996 
1997                 for (j = 0 ; j < nr; j++) {
1998                         if (do_read_u64(ff, id))
1999                                 goto error;
2000                         id++;
2001                 }
2002         }
2003 out:
2004         free(buf);
2005         return events;
2006 error:
2007         free_event_desc(events);
2008         events = NULL;
2009         goto out;
2010 }
2011 
2012 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
2013                                 void *priv __maybe_unused)
2014 {
2015         return fprintf(fp, ", %s = %s", name, val);
2016 }
2017 
2018 static void print_event_desc(struct feat_fd *ff, FILE *fp)
2019 {
2020         struct evsel *evsel, *events;
2021         u32 j;
2022         u64 *id;
2023 
2024         if (ff->events)
2025                 events = ff->events;
2026         else
2027                 events = read_event_desc(ff);
2028 
2029         if (!events) {
2030                 fprintf(fp, "# event desc: not available or unable to read\n");
2031                 return;
2032         }
2033 
2034         for (evsel = events; evsel->core.attr.size; evsel++) {
2035                 fprintf(fp, "# event : name = %s, ", evsel->name);
2036 
2037                 if (evsel->core.ids) {
2038                         fprintf(fp, ", id = {");
2039                         for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2040                                 if (j)
2041                                         fputc(',', fp);
2042                                 fprintf(fp, " %"PRIu64, *id);
2043                         }
2044                         fprintf(fp, " }");
2045                 }
2046 
2047                 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2048 
2049                 fputc('\n', fp);
2050         }
2051 
2052         free_event_desc(events);
2053         ff->events = NULL;
2054 }
2055 
2056 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2057 {
2058         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2059 }
2060 
2061 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2062 {
2063         int i;
2064         struct numa_node *n;
2065 
2066         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2067                 n = &ff->ph->env.numa_nodes[i];
2068 
2069                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2070                             " free = %"PRIu64" kB\n",
2071                         n->node, n->mem_total, n->mem_free);
2072 
2073                 fprintf(fp, "# node%u cpu list : ", n->node);
2074                 cpu_map__fprintf(n->map, fp);
2075         }
2076 }
2077 
2078 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2079 {
2080         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2081 }
2082 
2083 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2084 {
2085         fprintf(fp, "# contains samples with branch stack\n");
2086 }
2087 
2088 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2089 {
2090         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2091 }
2092 
2093 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2094 {
2095         fprintf(fp, "# contains stat data\n");
2096 }
2097 
2098 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2099 {
2100         int i;
2101 
2102         fprintf(fp, "# CPU cache info:\n");
2103         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2104                 fprintf(fp, "#  ");
2105                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2106         }
2107 }
2108 
2109 static void print_compressed(struct feat_fd *ff, FILE *fp)
2110 {
2111         fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2112                 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2113                 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2114 }
2115 
2116 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2117 {
2118         const char *delimiter = "";
2119         int i;
2120 
2121         if (!nr_caps) {
2122                 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2123                 return;
2124         }
2125 
2126         fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2127         for (i = 0; i < nr_caps; i++) {
2128                 fprintf(fp, "%s%s", delimiter, caps[i]);
2129                 delimiter = ", ";
2130         }
2131 
2132         fprintf(fp, "\n");
2133 }
2134 
2135 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2136 {
2137         __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2138                          ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2139 }
2140 
2141 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2142 {
2143         struct pmu_caps *pmu_caps;
2144 
2145         for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2146                 pmu_caps = &ff->ph->env.pmu_caps[i];
2147                 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2148                                  pmu_caps->pmu_name);
2149         }
2150 
2151         if (strcmp(perf_env__arch(&ff->ph->env), "x86") == 0 &&
2152             perf_env__has_pmu_mapping(&ff->ph->env, "ibs_op")) {
2153                 char *max_precise = perf_env__find_pmu_cap(&ff->ph->env, "cpu", "max_precise");
2154 
2155                 if (max_precise != NULL && atoi(max_precise) == 0)
2156                         fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n");
2157         }
2158 }
2159 
2160 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2161 {
2162         const char *delimiter = "# pmu mappings: ";
2163         char *str, *tmp;
2164         u32 pmu_num;
2165         u32 type;
2166 
2167         pmu_num = ff->ph->env.nr_pmu_mappings;
2168         if (!pmu_num) {
2169                 fprintf(fp, "# pmu mappings: not available\n");
2170                 return;
2171         }
2172 
2173         str = ff->ph->env.pmu_mappings;
2174 
2175         while (pmu_num) {
2176                 type = strtoul(str, &tmp, 0);
2177                 if (*tmp != ':')
2178                         goto error;
2179 
2180                 str = tmp + 1;
2181                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2182 
2183                 delimiter = ", ";
2184                 str += strlen(str) + 1;
2185                 pmu_num--;
2186         }
2187 
2188         fprintf(fp, "\n");
2189 
2190         if (!pmu_num)
2191                 return;
2192 error:
2193         fprintf(fp, "# pmu mappings: unable to read\n");
2194 }
2195 
2196 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2197 {
2198         struct perf_session *session;
2199         struct evsel *evsel;
2200         u32 nr = 0;
2201 
2202         session = container_of(ff->ph, struct perf_session, header);
2203 
2204         evlist__for_each_entry(session->evlist, evsel) {
2205                 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2206                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2207 
2208                         nr = evsel->core.nr_members - 1;
2209                 } else if (nr) {
2210                         fprintf(fp, ",%s", evsel__name(evsel));
2211 
2212                         if (--nr == 0)
2213                                 fprintf(fp, "}\n");
2214                 }
2215         }
2216 }
2217 
2218 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2219 {
2220         struct perf_session *session;
2221         char time_buf[32];
2222         double d;
2223 
2224         session = container_of(ff->ph, struct perf_session, header);
2225 
2226         timestamp__scnprintf_usec(session->evlist->first_sample_time,
2227                                   time_buf, sizeof(time_buf));
2228         fprintf(fp, "# time of first sample : %s\n", time_buf);
2229 
2230         timestamp__scnprintf_usec(session->evlist->last_sample_time,
2231                                   time_buf, sizeof(time_buf));
2232         fprintf(fp, "# time of last sample : %s\n", time_buf);
2233 
2234         d = (double)(session->evlist->last_sample_time -
2235                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2236 
2237         fprintf(fp, "# sample duration : %10.3f ms\n", d);
2238 }
2239 
2240 static void memory_node__fprintf(struct memory_node *n,
2241                                  unsigned long long bsize, FILE *fp)
2242 {
2243         char buf_map[100], buf_size[50];
2244         unsigned long long size;
2245 
2246         size = bsize * bitmap_weight(n->set, n->size);
2247         unit_number__scnprintf(buf_size, 50, size);
2248 
2249         bitmap_scnprintf(n->set, n->size, buf_map, 100);
2250         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2251 }
2252 
2253 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2254 {
2255         struct memory_node *nodes;
2256         int i, nr;
2257 
2258         nodes = ff->ph->env.memory_nodes;
2259         nr    = ff->ph->env.nr_memory_nodes;
2260 
2261         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2262                 nr, ff->ph->env.memory_bsize);
2263 
2264         for (i = 0; i < nr; i++) {
2265                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2266         }
2267 }
2268 
2269 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2270                                     char *filename,
2271                                     struct perf_session *session)
2272 {
2273         int err = -1;
2274         struct machine *machine;
2275         u16 cpumode;
2276         struct dso *dso;
2277         enum dso_space_type dso_space;
2278 
2279         machine = perf_session__findnew_machine(session, bev->pid);
2280         if (!machine)
2281                 goto out;
2282 
2283         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2284 
2285         switch (cpumode) {
2286         case PERF_RECORD_MISC_KERNEL:
2287                 dso_space = DSO_SPACE__KERNEL;
2288                 break;
2289         case PERF_RECORD_MISC_GUEST_KERNEL:
2290                 dso_space = DSO_SPACE__KERNEL_GUEST;
2291                 break;
2292         case PERF_RECORD_MISC_USER:
2293         case PERF_RECORD_MISC_GUEST_USER:
2294                 dso_space = DSO_SPACE__USER;
2295                 break;
2296         default:
2297                 goto out;
2298         }
2299 
2300         dso = machine__findnew_dso(machine, filename);
2301         if (dso != NULL) {
2302                 char sbuild_id[SBUILD_ID_SIZE];
2303                 struct build_id bid;
2304                 size_t size = BUILD_ID_SIZE;
2305 
2306                 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2307                         size = bev->size;
2308 
2309                 build_id__init(&bid, bev->data, size);
2310                 dso__set_build_id(dso, &bid);
2311                 dso__set_header_build_id(dso, true);
2312 
2313                 if (dso_space != DSO_SPACE__USER) {
2314                         struct kmod_path m = { .name = NULL, };
2315 
2316                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
2317                                 dso__set_module_info(dso, &m, machine);
2318 
2319                         dso__set_kernel(dso, dso_space);
2320                         free(m.name);
2321                 }
2322 
2323                 build_id__sprintf(dso__bid(dso), sbuild_id);
2324                 pr_debug("build id event received for %s: %s [%zu]\n",
2325                          dso__long_name(dso), sbuild_id, size);
2326                 dso__put(dso);
2327         }
2328 
2329         err = 0;
2330 out:
2331         return err;
2332 }
2333 
2334 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2335                                                  int input, u64 offset, u64 size)
2336 {
2337         struct perf_session *session = container_of(header, struct perf_session, header);
2338         struct {
2339                 struct perf_event_header   header;
2340                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2341                 char                       filename[0];
2342         } old_bev;
2343         struct perf_record_header_build_id bev;
2344         char filename[PATH_MAX];
2345         u64 limit = offset + size;
2346 
2347         while (offset < limit) {
2348                 ssize_t len;
2349 
2350                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2351                         return -1;
2352 
2353                 if (header->needs_swap)
2354                         perf_event_header__bswap(&old_bev.header);
2355 
2356                 len = old_bev.header.size - sizeof(old_bev);
2357                 if (readn(input, filename, len) != len)
2358                         return -1;
2359 
2360                 bev.header = old_bev.header;
2361 
2362                 /*
2363                  * As the pid is the missing value, we need to fill
2364                  * it properly. The header.misc value give us nice hint.
2365                  */
2366                 bev.pid = HOST_KERNEL_ID;
2367                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2368                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2369                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
2370 
2371                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2372                 __event_process_build_id(&bev, filename, session);
2373 
2374                 offset += bev.header.size;
2375         }
2376 
2377         return 0;
2378 }
2379 
2380 static int perf_header__read_build_ids(struct perf_header *header,
2381                                        int input, u64 offset, u64 size)
2382 {
2383         struct perf_session *session = container_of(header, struct perf_session, header);
2384         struct perf_record_header_build_id bev;
2385         char filename[PATH_MAX];
2386         u64 limit = offset + size, orig_offset = offset;
2387         int err = -1;
2388 
2389         while (offset < limit) {
2390                 ssize_t len;
2391 
2392                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2393                         goto out;
2394 
2395                 if (header->needs_swap)
2396                         perf_event_header__bswap(&bev.header);
2397 
2398                 len = bev.header.size - sizeof(bev);
2399                 if (readn(input, filename, len) != len)
2400                         goto out;
2401                 /*
2402                  * The a1645ce1 changeset:
2403                  *
2404                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
2405                  *
2406                  * Added a field to struct perf_record_header_build_id that broke the file
2407                  * format.
2408                  *
2409                  * Since the kernel build-id is the first entry, process the
2410                  * table using the old format if the well known
2411                  * '[kernel.kallsyms]' string for the kernel build-id has the
2412                  * first 4 characters chopped off (where the pid_t sits).
2413                  */
2414                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2415                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2416                                 return -1;
2417                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2418                 }
2419 
2420                 __event_process_build_id(&bev, filename, session);
2421 
2422                 offset += bev.header.size;
2423         }
2424         err = 0;
2425 out:
2426         return err;
2427 }
2428 
2429 /* Macro for features that simply need to read and store a string. */
2430 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2431 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2432 {\
2433         free(ff->ph->env.__feat_env);                \
2434         ff->ph->env.__feat_env = do_read_string(ff); \
2435         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2436 }
2437 
2438 FEAT_PROCESS_STR_FUN(hostname, hostname);
2439 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2440 FEAT_PROCESS_STR_FUN(version, version);
2441 FEAT_PROCESS_STR_FUN(arch, arch);
2442 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2443 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2444 
2445 #ifdef HAVE_LIBTRACEEVENT
2446 static int process_tracing_data(struct feat_fd *ff, void *data)
2447 {
2448         ssize_t ret = trace_report(ff->fd, data, false);
2449 
2450         return ret < 0 ? -1 : 0;
2451 }
2452 #endif
2453 
2454 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2455 {
2456         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2457                 pr_debug("Failed to read buildids, continuing...\n");
2458         return 0;
2459 }
2460 
2461 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2462 {
2463         int ret;
2464         u32 nr_cpus_avail, nr_cpus_online;
2465 
2466         ret = do_read_u32(ff, &nr_cpus_avail);
2467         if (ret)
2468                 return ret;
2469 
2470         ret = do_read_u32(ff, &nr_cpus_online);
2471         if (ret)
2472                 return ret;
2473         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2474         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2475         return 0;
2476 }
2477 
2478 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2479 {
2480         u64 total_mem;
2481         int ret;
2482 
2483         ret = do_read_u64(ff, &total_mem);
2484         if (ret)
2485                 return -1;
2486         ff->ph->env.total_mem = (unsigned long long)total_mem;
2487         return 0;
2488 }
2489 
2490 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2491 {
2492         struct evsel *evsel;
2493 
2494         evlist__for_each_entry(evlist, evsel) {
2495                 if (evsel->core.idx == idx)
2496                         return evsel;
2497         }
2498 
2499         return NULL;
2500 }
2501 
2502 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2503 {
2504         struct evsel *evsel;
2505 
2506         if (!event->name)
2507                 return;
2508 
2509         evsel = evlist__find_by_index(evlist, event->core.idx);
2510         if (!evsel)
2511                 return;
2512 
2513         if (evsel->name)
2514                 return;
2515 
2516         evsel->name = strdup(event->name);
2517 }
2518 
2519 static int
2520 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2521 {
2522         struct perf_session *session;
2523         struct evsel *evsel, *events = read_event_desc(ff);
2524 
2525         if (!events)
2526                 return 0;
2527 
2528         session = container_of(ff->ph, struct perf_session, header);
2529 
2530         if (session->data->is_pipe) {
2531                 /* Save events for reading later by print_event_desc,
2532                  * since they can't be read again in pipe mode. */
2533                 ff->events = events;
2534         }
2535 
2536         for (evsel = events; evsel->core.attr.size; evsel++)
2537                 evlist__set_event_name(session->evlist, evsel);
2538 
2539         if (!session->data->is_pipe)
2540                 free_event_desc(events);
2541 
2542         return 0;
2543 }
2544 
2545 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2546 {
2547         char *str, *cmdline = NULL, **argv = NULL;
2548         u32 nr, i, len = 0;
2549 
2550         if (do_read_u32(ff, &nr))
2551                 return -1;
2552 
2553         ff->ph->env.nr_cmdline = nr;
2554 
2555         cmdline = zalloc(ff->size + nr + 1);
2556         if (!cmdline)
2557                 return -1;
2558 
2559         argv = zalloc(sizeof(char *) * (nr + 1));
2560         if (!argv)
2561                 goto error;
2562 
2563         for (i = 0; i < nr; i++) {
2564                 str = do_read_string(ff);
2565                 if (!str)
2566                         goto error;
2567 
2568                 argv[i] = cmdline + len;
2569                 memcpy(argv[i], str, strlen(str) + 1);
2570                 len += strlen(str) + 1;
2571                 free(str);
2572         }
2573         ff->ph->env.cmdline = cmdline;
2574         ff->ph->env.cmdline_argv = (const char **) argv;
2575         return 0;
2576 
2577 error:
2578         free(argv);
2579         free(cmdline);
2580         return -1;
2581 }
2582 
2583 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2584 {
2585         u32 nr, i;
2586         char *str = NULL;
2587         struct strbuf sb;
2588         int cpu_nr = ff->ph->env.nr_cpus_avail;
2589         u64 size = 0;
2590         struct perf_header *ph = ff->ph;
2591         bool do_core_id_test = true;
2592 
2593         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2594         if (!ph->env.cpu)
2595                 return -1;
2596 
2597         if (do_read_u32(ff, &nr))
2598                 goto free_cpu;
2599 
2600         ph->env.nr_sibling_cores = nr;
2601         size += sizeof(u32);
2602         if (strbuf_init(&sb, 128) < 0)
2603                 goto free_cpu;
2604 
2605         for (i = 0; i < nr; i++) {
2606                 str = do_read_string(ff);
2607                 if (!str)
2608                         goto error;
2609 
2610                 /* include a NULL character at the end */
2611                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2612                         goto error;
2613                 size += string_size(str);
2614                 zfree(&str);
2615         }
2616         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2617 
2618         if (do_read_u32(ff, &nr))
2619                 return -1;
2620 
2621         ph->env.nr_sibling_threads = nr;
2622         size += sizeof(u32);
2623 
2624         for (i = 0; i < nr; i++) {
2625                 str = do_read_string(ff);
2626                 if (!str)
2627                         goto error;
2628 
2629                 /* include a NULL character at the end */
2630                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2631                         goto error;
2632                 size += string_size(str);
2633                 zfree(&str);
2634         }
2635         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2636 
2637         /*
2638          * The header may be from old perf,
2639          * which doesn't include core id and socket id information.
2640          */
2641         if (ff->size <= size) {
2642                 zfree(&ph->env.cpu);
2643                 return 0;
2644         }
2645 
2646         /* On s390 the socket_id number is not related to the numbers of cpus.
2647          * The socket_id number might be higher than the numbers of cpus.
2648          * This depends on the configuration.
2649          * AArch64 is the same.
2650          */
2651         if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2652                           || !strncmp(ph->env.arch, "aarch64", 7)))
2653                 do_core_id_test = false;
2654 
2655         for (i = 0; i < (u32)cpu_nr; i++) {
2656                 if (do_read_u32(ff, &nr))
2657                         goto free_cpu;
2658 
2659                 ph->env.cpu[i].core_id = nr;
2660                 size += sizeof(u32);
2661 
2662                 if (do_read_u32(ff, &nr))
2663                         goto free_cpu;
2664 
2665                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2666                         pr_debug("socket_id number is too big."
2667                                  "You may need to upgrade the perf tool.\n");
2668                         goto free_cpu;
2669                 }
2670 
2671                 ph->env.cpu[i].socket_id = nr;
2672                 size += sizeof(u32);
2673         }
2674 
2675         /*
2676          * The header may be from old perf,
2677          * which doesn't include die information.
2678          */
2679         if (ff->size <= size)
2680                 return 0;
2681 
2682         if (do_read_u32(ff, &nr))
2683                 return -1;
2684 
2685         ph->env.nr_sibling_dies = nr;
2686         size += sizeof(u32);
2687 
2688         for (i = 0; i < nr; i++) {
2689                 str = do_read_string(ff);
2690                 if (!str)
2691                         goto error;
2692 
2693                 /* include a NULL character at the end */
2694                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2695                         goto error;
2696                 size += string_size(str);
2697                 zfree(&str);
2698         }
2699         ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2700 
2701         for (i = 0; i < (u32)cpu_nr; i++) {
2702                 if (do_read_u32(ff, &nr))
2703                         goto free_cpu;
2704 
2705                 ph->env.cpu[i].die_id = nr;
2706         }
2707 
2708         return 0;
2709 
2710 error:
2711         strbuf_release(&sb);
2712         zfree(&str);
2713 free_cpu:
2714         zfree(&ph->env.cpu);
2715         return -1;
2716 }
2717 
2718 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2719 {
2720         struct numa_node *nodes, *n;
2721         u32 nr, i;
2722         char *str;
2723 
2724         /* nr nodes */
2725         if (do_read_u32(ff, &nr))
2726                 return -1;
2727 
2728         nodes = zalloc(sizeof(*nodes) * nr);
2729         if (!nodes)
2730                 return -ENOMEM;
2731 
2732         for (i = 0; i < nr; i++) {
2733                 n = &nodes[i];
2734 
2735                 /* node number */
2736                 if (do_read_u32(ff, &n->node))
2737                         goto error;
2738 
2739                 if (do_read_u64(ff, &n->mem_total))
2740                         goto error;
2741 
2742                 if (do_read_u64(ff, &n->mem_free))
2743                         goto error;
2744 
2745                 str = do_read_string(ff);
2746                 if (!str)
2747                         goto error;
2748 
2749                 n->map = perf_cpu_map__new(str);
2750                 free(str);
2751                 if (!n->map)
2752                         goto error;
2753         }
2754         ff->ph->env.nr_numa_nodes = nr;
2755         ff->ph->env.numa_nodes = nodes;
2756         return 0;
2757 
2758 error:
2759         free(nodes);
2760         return -1;
2761 }
2762 
2763 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2764 {
2765         char *name;
2766         u32 pmu_num;
2767         u32 type;
2768         struct strbuf sb;
2769 
2770         if (do_read_u32(ff, &pmu_num))
2771                 return -1;
2772 
2773         if (!pmu_num) {
2774                 pr_debug("pmu mappings not available\n");
2775                 return 0;
2776         }
2777 
2778         ff->ph->env.nr_pmu_mappings = pmu_num;
2779         if (strbuf_init(&sb, 128) < 0)
2780                 return -1;
2781 
2782         while (pmu_num) {
2783                 if (do_read_u32(ff, &type))
2784                         goto error;
2785 
2786                 name = do_read_string(ff);
2787                 if (!name)
2788                         goto error;
2789 
2790                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2791                         goto error;
2792                 /* include a NULL character at the end */
2793                 if (strbuf_add(&sb, "", 1) < 0)
2794                         goto error;
2795 
2796                 if (!strcmp(name, "msr"))
2797                         ff->ph->env.msr_pmu_type = type;
2798 
2799                 free(name);
2800                 pmu_num--;
2801         }
2802         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2803         return 0;
2804 
2805 error:
2806         strbuf_release(&sb);
2807         return -1;
2808 }
2809 
2810 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2811 {
2812         size_t ret = -1;
2813         u32 i, nr, nr_groups;
2814         struct perf_session *session;
2815         struct evsel *evsel, *leader = NULL;
2816         struct group_desc {
2817                 char *name;
2818                 u32 leader_idx;
2819                 u32 nr_members;
2820         } *desc;
2821 
2822         if (do_read_u32(ff, &nr_groups))
2823                 return -1;
2824 
2825         ff->ph->env.nr_groups = nr_groups;
2826         if (!nr_groups) {
2827                 pr_debug("group desc not available\n");
2828                 return 0;
2829         }
2830 
2831         desc = calloc(nr_groups, sizeof(*desc));
2832         if (!desc)
2833                 return -1;
2834 
2835         for (i = 0; i < nr_groups; i++) {
2836                 desc[i].name = do_read_string(ff);
2837                 if (!desc[i].name)
2838                         goto out_free;
2839 
2840                 if (do_read_u32(ff, &desc[i].leader_idx))
2841                         goto out_free;
2842 
2843                 if (do_read_u32(ff, &desc[i].nr_members))
2844                         goto out_free;
2845         }
2846 
2847         /*
2848          * Rebuild group relationship based on the group_desc
2849          */
2850         session = container_of(ff->ph, struct perf_session, header);
2851 
2852         i = nr = 0;
2853         evlist__for_each_entry(session->evlist, evsel) {
2854                 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2855                         evsel__set_leader(evsel, evsel);
2856                         /* {anon_group} is a dummy name */
2857                         if (strcmp(desc[i].name, "{anon_group}")) {
2858                                 evsel->group_name = desc[i].name;
2859                                 desc[i].name = NULL;
2860                         }
2861                         evsel->core.nr_members = desc[i].nr_members;
2862 
2863                         if (i >= nr_groups || nr > 0) {
2864                                 pr_debug("invalid group desc\n");
2865                                 goto out_free;
2866                         }
2867 
2868                         leader = evsel;
2869                         nr = evsel->core.nr_members - 1;
2870                         i++;
2871                 } else if (nr) {
2872                         /* This is a group member */
2873                         evsel__set_leader(evsel, leader);
2874 
2875                         nr--;
2876                 }
2877         }
2878 
2879         if (i != nr_groups || nr != 0) {
2880                 pr_debug("invalid group desc\n");
2881                 goto out_free;
2882         }
2883 
2884         ret = 0;
2885 out_free:
2886         for (i = 0; i < nr_groups; i++)
2887                 zfree(&desc[i].name);
2888         free(desc);
2889 
2890         return ret;
2891 }
2892 
2893 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2894 {
2895         struct perf_session *session;
2896         int err;
2897 
2898         session = container_of(ff->ph, struct perf_session, header);
2899 
2900         err = auxtrace_index__process(ff->fd, ff->size, session,
2901                                       ff->ph->needs_swap);
2902         if (err < 0)
2903                 pr_err("Failed to process auxtrace index\n");
2904         return err;
2905 }
2906 
2907 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2908 {
2909         struct cpu_cache_level *caches;
2910         u32 cnt, i, version;
2911 
2912         if (do_read_u32(ff, &version))
2913                 return -1;
2914 
2915         if (version != 1)
2916                 return -1;
2917 
2918         if (do_read_u32(ff, &cnt))
2919                 return -1;
2920 
2921         caches = zalloc(sizeof(*caches) * cnt);
2922         if (!caches)
2923                 return -1;
2924 
2925         for (i = 0; i < cnt; i++) {
2926                 struct cpu_cache_level *c = &caches[i];
2927 
2928                 #define _R(v)                                           \
2929                         if (do_read_u32(ff, &c->v))                     \
2930                                 goto out_free_caches;                   \
2931 
2932                 _R(level)
2933                 _R(line_size)
2934                 _R(sets)
2935                 _R(ways)
2936                 #undef _R
2937 
2938                 #define _R(v)                                   \
2939                         c->v = do_read_string(ff);              \
2940                         if (!c->v)                              \
2941                                 goto out_free_caches;           \
2942 
2943                 _R(type)
2944                 _R(size)
2945                 _R(map)
2946                 #undef _R
2947         }
2948 
2949         ff->ph->env.caches = caches;
2950         ff->ph->env.caches_cnt = cnt;
2951         return 0;
2952 out_free_caches:
2953         for (i = 0; i < cnt; i++) {
2954                 free(caches[i].type);
2955                 free(caches[i].size);
2956                 free(caches[i].map);
2957         }
2958         free(caches);
2959         return -1;
2960 }
2961 
2962 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2963 {
2964         struct perf_session *session;
2965         u64 first_sample_time, last_sample_time;
2966         int ret;
2967 
2968         session = container_of(ff->ph, struct perf_session, header);
2969 
2970         ret = do_read_u64(ff, &first_sample_time);
2971         if (ret)
2972                 return -1;
2973 
2974         ret = do_read_u64(ff, &last_sample_time);
2975         if (ret)
2976                 return -1;
2977 
2978         session->evlist->first_sample_time = first_sample_time;
2979         session->evlist->last_sample_time = last_sample_time;
2980         return 0;
2981 }
2982 
2983 static int process_mem_topology(struct feat_fd *ff,
2984                                 void *data __maybe_unused)
2985 {
2986         struct memory_node *nodes;
2987         u64 version, i, nr, bsize;
2988         int ret = -1;
2989 
2990         if (do_read_u64(ff, &version))
2991                 return -1;
2992 
2993         if (version != 1)
2994                 return -1;
2995 
2996         if (do_read_u64(ff, &bsize))
2997                 return -1;
2998 
2999         if (do_read_u64(ff, &nr))
3000                 return -1;
3001 
3002         nodes = zalloc(sizeof(*nodes) * nr);
3003         if (!nodes)
3004                 return -1;
3005 
3006         for (i = 0; i < nr; i++) {
3007                 struct memory_node n;
3008 
3009                 #define _R(v)                           \
3010                         if (do_read_u64(ff, &n.v))      \
3011                                 goto out;               \
3012 
3013                 _R(node)
3014                 _R(size)
3015 
3016                 #undef _R
3017 
3018                 if (do_read_bitmap(ff, &n.set, &n.size))
3019                         goto out;
3020 
3021                 nodes[i] = n;
3022         }
3023 
3024         ff->ph->env.memory_bsize    = bsize;
3025         ff->ph->env.memory_nodes    = nodes;
3026         ff->ph->env.nr_memory_nodes = nr;
3027         ret = 0;
3028 
3029 out:
3030         if (ret)
3031                 free(nodes);
3032         return ret;
3033 }
3034 
3035 static int process_clockid(struct feat_fd *ff,
3036                            void *data __maybe_unused)
3037 {
3038         if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3039                 return -1;
3040 
3041         return 0;
3042 }
3043 
3044 static int process_clock_data(struct feat_fd *ff,
3045                               void *_data __maybe_unused)
3046 {
3047         u32 data32;
3048         u64 data64;
3049 
3050         /* version */
3051         if (do_read_u32(ff, &data32))
3052                 return -1;
3053 
3054         if (data32 != 1)
3055                 return -1;
3056 
3057         /* clockid */
3058         if (do_read_u32(ff, &data32))
3059                 return -1;
3060 
3061         ff->ph->env.clock.clockid = data32;
3062 
3063         /* TOD ref time */
3064         if (do_read_u64(ff, &data64))
3065                 return -1;
3066 
3067         ff->ph->env.clock.tod_ns = data64;
3068 
3069         /* clockid ref time */
3070         if (do_read_u64(ff, &data64))
3071                 return -1;
3072 
3073         ff->ph->env.clock.clockid_ns = data64;
3074         ff->ph->env.clock.enabled = true;
3075         return 0;
3076 }
3077 
3078 static int process_hybrid_topology(struct feat_fd *ff,
3079                                    void *data __maybe_unused)
3080 {
3081         struct hybrid_node *nodes, *n;
3082         u32 nr, i;
3083 
3084         /* nr nodes */
3085         if (do_read_u32(ff, &nr))
3086                 return -1;
3087 
3088         nodes = zalloc(sizeof(*nodes) * nr);
3089         if (!nodes)
3090                 return -ENOMEM;
3091 
3092         for (i = 0; i < nr; i++) {
3093                 n = &nodes[i];
3094 
3095                 n->pmu_name = do_read_string(ff);
3096                 if (!n->pmu_name)
3097                         goto error;
3098 
3099                 n->cpus = do_read_string(ff);
3100                 if (!n->cpus)
3101                         goto error;
3102         }
3103 
3104         ff->ph->env.nr_hybrid_nodes = nr;
3105         ff->ph->env.hybrid_nodes = nodes;
3106         return 0;
3107 
3108 error:
3109         for (i = 0; i < nr; i++) {
3110                 free(nodes[i].pmu_name);
3111                 free(nodes[i].cpus);
3112         }
3113 
3114         free(nodes);
3115         return -1;
3116 }
3117 
3118 static int process_dir_format(struct feat_fd *ff,
3119                               void *_data __maybe_unused)
3120 {
3121         struct perf_session *session;
3122         struct perf_data *data;
3123 
3124         session = container_of(ff->ph, struct perf_session, header);
3125         data = session->data;
3126 
3127         if (WARN_ON(!perf_data__is_dir(data)))
3128                 return -1;
3129 
3130         return do_read_u64(ff, &data->dir.version);
3131 }
3132 
3133 #ifdef HAVE_LIBBPF_SUPPORT
3134 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3135 {
3136         struct bpf_prog_info_node *info_node;
3137         struct perf_env *env = &ff->ph->env;
3138         struct perf_bpil *info_linear;
3139         u32 count, i;
3140         int err = -1;
3141 
3142         if (ff->ph->needs_swap) {
3143                 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3144                 return 0;
3145         }
3146 
3147         if (do_read_u32(ff, &count))
3148                 return -1;
3149 
3150         down_write(&env->bpf_progs.lock);
3151 
3152         for (i = 0; i < count; ++i) {
3153                 u32 info_len, data_len;
3154 
3155                 info_linear = NULL;
3156                 info_node = NULL;
3157                 if (do_read_u32(ff, &info_len))
3158                         goto out;
3159                 if (do_read_u32(ff, &data_len))
3160                         goto out;
3161 
3162                 if (info_len > sizeof(struct bpf_prog_info)) {
3163                         pr_warning("detected invalid bpf_prog_info\n");
3164                         goto out;
3165                 }
3166 
3167                 info_linear = malloc(sizeof(struct perf_bpil) +
3168                                      data_len);
3169                 if (!info_linear)
3170                         goto out;
3171                 info_linear->info_len = sizeof(struct bpf_prog_info);
3172                 info_linear->data_len = data_len;
3173                 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3174                         goto out;
3175                 if (__do_read(ff, &info_linear->info, info_len))
3176                         goto out;
3177                 if (info_len < sizeof(struct bpf_prog_info))
3178                         memset(((void *)(&info_linear->info)) + info_len, 0,
3179                                sizeof(struct bpf_prog_info) - info_len);
3180 
3181                 if (__do_read(ff, info_linear->data, data_len))
3182                         goto out;
3183 
3184                 info_node = malloc(sizeof(struct bpf_prog_info_node));
3185                 if (!info_node)
3186                         goto out;
3187 
3188                 /* after reading from file, translate offset to address */
3189                 bpil_offs_to_addr(info_linear);
3190                 info_node->info_linear = info_linear;
3191                 __perf_env__insert_bpf_prog_info(env, info_node);
3192         }
3193 
3194         up_write(&env->bpf_progs.lock);
3195         return 0;
3196 out:
3197         free(info_linear);
3198         free(info_node);
3199         up_write(&env->bpf_progs.lock);
3200         return err;
3201 }
3202 
3203 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3204 {
3205         struct perf_env *env = &ff->ph->env;
3206         struct btf_node *node = NULL;
3207         u32 count, i;
3208         int err = -1;
3209 
3210         if (ff->ph->needs_swap) {
3211                 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3212                 return 0;
3213         }
3214 
3215         if (do_read_u32(ff, &count))
3216                 return -1;
3217 
3218         down_write(&env->bpf_progs.lock);
3219 
3220         for (i = 0; i < count; ++i) {
3221                 u32 id, data_size;
3222 
3223                 if (do_read_u32(ff, &id))
3224                         goto out;
3225                 if (do_read_u32(ff, &data_size))
3226                         goto out;
3227 
3228                 node = malloc(sizeof(struct btf_node) + data_size);
3229                 if (!node)
3230                         goto out;
3231 
3232                 node->id = id;
3233                 node->data_size = data_size;
3234 
3235                 if (__do_read(ff, node->data, data_size))
3236                         goto out;
3237 
3238                 __perf_env__insert_btf(env, node);
3239                 node = NULL;
3240         }
3241 
3242         err = 0;
3243 out:
3244         up_write(&env->bpf_progs.lock);
3245         free(node);
3246         return err;
3247 }
3248 #endif // HAVE_LIBBPF_SUPPORT
3249 
3250 static int process_compressed(struct feat_fd *ff,
3251                               void *data __maybe_unused)
3252 {
3253         if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3254                 return -1;
3255 
3256         if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3257                 return -1;
3258 
3259         if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3260                 return -1;
3261 
3262         if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3263                 return -1;
3264 
3265         if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3266                 return -1;
3267 
3268         return 0;
3269 }
3270 
3271 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3272                               char ***caps, unsigned int *max_branches,
3273                               unsigned int *br_cntr_nr,
3274                               unsigned int *br_cntr_width)
3275 {
3276         char *name, *value, *ptr;
3277         u32 nr_pmu_caps, i;
3278 
3279         *nr_caps = 0;
3280         *caps = NULL;
3281 
3282         if (do_read_u32(ff, &nr_pmu_caps))
3283                 return -1;
3284 
3285         if (!nr_pmu_caps)
3286                 return 0;
3287 
3288         *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3289         if (!*caps)
3290                 return -1;
3291 
3292         for (i = 0; i < nr_pmu_caps; i++) {
3293                 name = do_read_string(ff);
3294                 if (!name)
3295                         goto error;
3296 
3297                 value = do_read_string(ff);
3298                 if (!value)
3299                         goto free_name;
3300 
3301                 if (asprintf(&ptr, "%s=%s", name, value) < 0)
3302                         goto free_value;
3303 
3304                 (*caps)[i] = ptr;
3305 
3306                 if (!strcmp(name, "branches"))
3307                         *max_branches = atoi(value);
3308 
3309                 if (!strcmp(name, "branch_counter_nr"))
3310                         *br_cntr_nr = atoi(value);
3311 
3312                 if (!strcmp(name, "branch_counter_width"))
3313                         *br_cntr_width = atoi(value);
3314 
3315                 free(value);
3316                 free(name);
3317         }
3318         *nr_caps = nr_pmu_caps;
3319         return 0;
3320 
3321 free_value:
3322         free(value);
3323 free_name:
3324         free(name);
3325 error:
3326         for (; i > 0; i--)
3327                 free((*caps)[i - 1]);
3328         free(*caps);
3329         *caps = NULL;
3330         *nr_caps = 0;
3331         return -1;
3332 }
3333 
3334 static int process_cpu_pmu_caps(struct feat_fd *ff,
3335                                 void *data __maybe_unused)
3336 {
3337         int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3338                                      &ff->ph->env.cpu_pmu_caps,
3339                                      &ff->ph->env.max_branches,
3340                                      &ff->ph->env.br_cntr_nr,
3341                                      &ff->ph->env.br_cntr_width);
3342 
3343         if (!ret && !ff->ph->env.cpu_pmu_caps)
3344                 pr_debug("cpu pmu capabilities not available\n");
3345         return ret;
3346 }
3347 
3348 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3349 {
3350         struct pmu_caps *pmu_caps;
3351         u32 nr_pmu, i;
3352         int ret;
3353         int j;
3354 
3355         if (do_read_u32(ff, &nr_pmu))
3356                 return -1;
3357 
3358         if (!nr_pmu) {
3359                 pr_debug("pmu capabilities not available\n");
3360                 return 0;
3361         }
3362 
3363         pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3364         if (!pmu_caps)
3365                 return -ENOMEM;
3366 
3367         for (i = 0; i < nr_pmu; i++) {
3368                 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3369                                          &pmu_caps[i].caps,
3370                                          &pmu_caps[i].max_branches,
3371                                          &pmu_caps[i].br_cntr_nr,
3372                                          &pmu_caps[i].br_cntr_width);
3373                 if (ret)
3374                         goto err;
3375 
3376                 pmu_caps[i].pmu_name = do_read_string(ff);
3377                 if (!pmu_caps[i].pmu_name) {
3378                         ret = -1;
3379                         goto err;
3380                 }
3381                 if (!pmu_caps[i].nr_caps) {
3382                         pr_debug("%s pmu capabilities not available\n",
3383                                  pmu_caps[i].pmu_name);
3384                 }
3385         }
3386 
3387         ff->ph->env.nr_pmus_with_caps = nr_pmu;
3388         ff->ph->env.pmu_caps = pmu_caps;
3389         return 0;
3390 
3391 err:
3392         for (i = 0; i < nr_pmu; i++) {
3393                 for (j = 0; j < pmu_caps[i].nr_caps; j++)
3394                         free(pmu_caps[i].caps[j]);
3395                 free(pmu_caps[i].caps);
3396                 free(pmu_caps[i].pmu_name);
3397         }
3398 
3399         free(pmu_caps);
3400         return ret;
3401 }
3402 
3403 #define FEAT_OPR(n, func, __full_only) \
3404         [HEADER_##n] = {                                        \
3405                 .name       = __stringify(n),                   \
3406                 .write      = write_##func,                     \
3407                 .print      = print_##func,                     \
3408                 .full_only  = __full_only,                      \
3409                 .process    = process_##func,                   \
3410                 .synthesize = true                              \
3411         }
3412 
3413 #define FEAT_OPN(n, func, __full_only) \
3414         [HEADER_##n] = {                                        \
3415                 .name       = __stringify(n),                   \
3416                 .write      = write_##func,                     \
3417                 .print      = print_##func,                     \
3418                 .full_only  = __full_only,                      \
3419                 .process    = process_##func                    \
3420         }
3421 
3422 /* feature_ops not implemented: */
3423 #define print_tracing_data      NULL
3424 #define print_build_id          NULL
3425 
3426 #define process_branch_stack    NULL
3427 #define process_stat            NULL
3428 
3429 // Only used in util/synthetic-events.c
3430 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3431 
3432 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3433 #ifdef HAVE_LIBTRACEEVENT
3434         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
3435 #endif
3436         FEAT_OPN(BUILD_ID,      build_id,       false),
3437         FEAT_OPR(HOSTNAME,      hostname,       false),
3438         FEAT_OPR(OSRELEASE,     osrelease,      false),
3439         FEAT_OPR(VERSION,       version,        false),
3440         FEAT_OPR(ARCH,          arch,           false),
3441         FEAT_OPR(NRCPUS,        nrcpus,         false),
3442         FEAT_OPR(CPUDESC,       cpudesc,        false),
3443         FEAT_OPR(CPUID,         cpuid,          false),
3444         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
3445         FEAT_OPR(EVENT_DESC,    event_desc,     false),
3446         FEAT_OPR(CMDLINE,       cmdline,        false),
3447         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
3448         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
3449         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
3450         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
3451         FEAT_OPR(GROUP_DESC,    group_desc,     false),
3452         FEAT_OPN(AUXTRACE,      auxtrace,       false),
3453         FEAT_OPN(STAT,          stat,           false),
3454         FEAT_OPN(CACHE,         cache,          true),
3455         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
3456         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
3457         FEAT_OPR(CLOCKID,       clockid,        false),
3458         FEAT_OPN(DIR_FORMAT,    dir_format,     false),
3459 #ifdef HAVE_LIBBPF_SUPPORT
3460         FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3461         FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3462 #endif
3463         FEAT_OPR(COMPRESSED,    compressed,     false),
3464         FEAT_OPR(CPU_PMU_CAPS,  cpu_pmu_caps,   false),
3465         FEAT_OPR(CLOCK_DATA,    clock_data,     false),
3466         FEAT_OPN(HYBRID_TOPOLOGY,       hybrid_topology,        true),
3467         FEAT_OPR(PMU_CAPS,      pmu_caps,       false),
3468 };
3469 
3470 struct header_print_data {
3471         FILE *fp;
3472         bool full; /* extended list of headers */
3473 };
3474 
3475 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3476                                            struct perf_header *ph,
3477                                            int feat, int fd, void *data)
3478 {
3479         struct header_print_data *hd = data;
3480         struct feat_fd ff;
3481 
3482         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3483                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3484                                 "%d, continuing...\n", section->offset, feat);
3485                 return 0;
3486         }
3487         if (feat >= HEADER_LAST_FEATURE) {
3488                 pr_warning("unknown feature %d\n", feat);
3489                 return 0;
3490         }
3491         if (!feat_ops[feat].print)
3492                 return 0;
3493 
3494         ff = (struct  feat_fd) {
3495                 .fd = fd,
3496                 .ph = ph,
3497         };
3498 
3499         if (!feat_ops[feat].full_only || hd->full)
3500                 feat_ops[feat].print(&ff, hd->fp);
3501         else
3502                 fprintf(hd->fp, "# %s info available, use -I to display\n",
3503                         feat_ops[feat].name);
3504 
3505         return 0;
3506 }
3507 
3508 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3509 {
3510         struct header_print_data hd;
3511         struct perf_header *header = &session->header;
3512         int fd = perf_data__fd(session->data);
3513         struct stat st;
3514         time_t stctime;
3515         int ret, bit;
3516 
3517         hd.fp = fp;
3518         hd.full = full;
3519 
3520         ret = fstat(fd, &st);
3521         if (ret == -1)
3522                 return -1;
3523 
3524         stctime = st.st_mtime;
3525         fprintf(fp, "# captured on    : %s", ctime(&stctime));
3526 
3527         fprintf(fp, "# header version : %u\n", header->version);
3528         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3529         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3530         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3531 
3532         perf_header__process_sections(header, fd, &hd,
3533                                       perf_file_section__fprintf_info);
3534 
3535         if (session->data->is_pipe)
3536                 return 0;
3537 
3538         fprintf(fp, "# missing features: ");
3539         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3540                 if (bit)
3541                         fprintf(fp, "%s ", feat_ops[bit].name);
3542         }
3543 
3544         fprintf(fp, "\n");
3545         return 0;
3546 }
3547 
3548 struct header_fw {
3549         struct feat_writer      fw;
3550         struct feat_fd          *ff;
3551 };
3552 
3553 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3554 {
3555         struct header_fw *h = container_of(fw, struct header_fw, fw);
3556 
3557         return do_write(h->ff, buf, sz);
3558 }
3559 
3560 static int do_write_feat(struct feat_fd *ff, int type,
3561                          struct perf_file_section **p,
3562                          struct evlist *evlist,
3563                          struct feat_copier *fc)
3564 {
3565         int err;
3566         int ret = 0;
3567 
3568         if (perf_header__has_feat(ff->ph, type)) {
3569                 if (!feat_ops[type].write)
3570                         return -1;
3571 
3572                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3573                         return -1;
3574 
3575                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3576 
3577                 /*
3578                  * Hook to let perf inject copy features sections from the input
3579                  * file.
3580                  */
3581                 if (fc && fc->copy) {
3582                         struct header_fw h = {
3583                                 .fw.write = feat_writer_cb,
3584                                 .ff = ff,
3585                         };
3586 
3587                         /* ->copy() returns 0 if the feature was not copied */
3588                         err = fc->copy(fc, type, &h.fw);
3589                 } else {
3590                         err = 0;
3591                 }
3592                 if (!err)
3593                         err = feat_ops[type].write(ff, evlist);
3594                 if (err < 0) {
3595                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
3596 
3597                         /* undo anything written */
3598                         lseek(ff->fd, (*p)->offset, SEEK_SET);
3599 
3600                         return -1;
3601                 }
3602                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3603                 (*p)++;
3604         }
3605         return ret;
3606 }
3607 
3608 static int perf_header__adds_write(struct perf_header *header,
3609                                    struct evlist *evlist, int fd,
3610                                    struct feat_copier *fc)
3611 {
3612         int nr_sections;
3613         struct feat_fd ff = {
3614                 .fd  = fd,
3615                 .ph = header,
3616         };
3617         struct perf_file_section *feat_sec, *p;
3618         int sec_size;
3619         u64 sec_start;
3620         int feat;
3621         int err;
3622 
3623         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3624         if (!nr_sections)
3625                 return 0;
3626 
3627         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3628         if (feat_sec == NULL)
3629                 return -ENOMEM;
3630 
3631         sec_size = sizeof(*feat_sec) * nr_sections;
3632 
3633         sec_start = header->feat_offset;
3634         lseek(fd, sec_start + sec_size, SEEK_SET);
3635 
3636         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3637                 if (do_write_feat(&ff, feat, &p, evlist, fc))
3638                         perf_header__clear_feat(header, feat);
3639         }
3640 
3641         lseek(fd, sec_start, SEEK_SET);
3642         /*
3643          * may write more than needed due to dropped feature, but
3644          * this is okay, reader will skip the missing entries
3645          */
3646         err = do_write(&ff, feat_sec, sec_size);
3647         if (err < 0)
3648                 pr_debug("failed to write feature section\n");
3649         free(ff.buf); /* TODO: added to silence clang-tidy. */
3650         free(feat_sec);
3651         return err;
3652 }
3653 
3654 int perf_header__write_pipe(int fd)
3655 {
3656         struct perf_pipe_file_header f_header;
3657         struct feat_fd ff = {
3658                 .fd = fd,
3659         };
3660         int err;
3661 
3662         f_header = (struct perf_pipe_file_header){
3663                 .magic     = PERF_MAGIC,
3664                 .size      = sizeof(f_header),
3665         };
3666 
3667         err = do_write(&ff, &f_header, sizeof(f_header));
3668         if (err < 0) {
3669                 pr_debug("failed to write perf pipe header\n");
3670                 return err;
3671         }
3672         free(ff.buf);
3673         return 0;
3674 }
3675 
3676 static int perf_session__do_write_header(struct perf_session *session,
3677                                          struct evlist *evlist,
3678                                          int fd, bool at_exit,
3679                                          struct feat_copier *fc)
3680 {
3681         struct perf_file_header f_header;
3682         struct perf_file_attr   f_attr;
3683         struct perf_header *header = &session->header;
3684         struct evsel *evsel;
3685         struct feat_fd ff = {
3686                 .fd = fd,
3687         };
3688         u64 attr_offset;
3689         int err;
3690 
3691         lseek(fd, sizeof(f_header), SEEK_SET);
3692 
3693         evlist__for_each_entry(session->evlist, evsel) {
3694                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3695                 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3696                 if (err < 0) {
3697                         pr_debug("failed to write perf header\n");
3698                         free(ff.buf);
3699                         return err;
3700                 }
3701         }
3702 
3703         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3704 
3705         evlist__for_each_entry(evlist, evsel) {
3706                 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3707                         /*
3708                          * We are likely in "perf inject" and have read
3709                          * from an older file. Update attr size so that
3710                          * reader gets the right offset to the ids.
3711                          */
3712                         evsel->core.attr.size = sizeof(evsel->core.attr);
3713                 }
3714                 f_attr = (struct perf_file_attr){
3715                         .attr = evsel->core.attr,
3716                         .ids  = {
3717                                 .offset = evsel->id_offset,
3718                                 .size   = evsel->core.ids * sizeof(u64),
3719                         }
3720                 };
3721                 err = do_write(&ff, &f_attr, sizeof(f_attr));
3722                 if (err < 0) {
3723                         pr_debug("failed to write perf header attribute\n");
3724                         free(ff.buf);
3725                         return err;
3726                 }
3727         }
3728 
3729         if (!header->data_offset)
3730                 header->data_offset = lseek(fd, 0, SEEK_CUR);
3731         header->feat_offset = header->data_offset + header->data_size;
3732 
3733         if (at_exit) {
3734                 err = perf_header__adds_write(header, evlist, fd, fc);
3735                 if (err < 0) {
3736                         free(ff.buf);
3737                         return err;
3738                 }
3739         }
3740 
3741         f_header = (struct perf_file_header){
3742                 .magic     = PERF_MAGIC,
3743                 .size      = sizeof(f_header),
3744                 .attr_size = sizeof(f_attr),
3745                 .attrs = {
3746                         .offset = attr_offset,
3747                         .size   = evlist->core.nr_entries * sizeof(f_attr),
3748                 },
3749                 .data = {
3750                         .offset = header->data_offset,
3751                         .size   = header->data_size,
3752                 },
3753                 /* event_types is ignored, store zeros */
3754         };
3755 
3756         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3757 
3758         lseek(fd, 0, SEEK_SET);
3759         err = do_write(&ff, &f_header, sizeof(f_header));
3760         free(ff.buf);
3761         if (err < 0) {
3762                 pr_debug("failed to write perf header\n");
3763                 return err;
3764         }
3765         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3766 
3767         return 0;
3768 }
3769 
3770 int perf_session__write_header(struct perf_session *session,
3771                                struct evlist *evlist,
3772                                int fd, bool at_exit)
3773 {
3774         return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3775 }
3776 
3777 size_t perf_session__data_offset(const struct evlist *evlist)
3778 {
3779         struct evsel *evsel;
3780         size_t data_offset;
3781 
3782         data_offset = sizeof(struct perf_file_header);
3783         evlist__for_each_entry(evlist, evsel) {
3784                 data_offset += evsel->core.ids * sizeof(u64);
3785         }
3786         data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3787 
3788         return data_offset;
3789 }
3790 
3791 int perf_session__inject_header(struct perf_session *session,
3792                                 struct evlist *evlist,
3793                                 int fd,
3794                                 struct feat_copier *fc)
3795 {
3796         return perf_session__do_write_header(session, evlist, fd, true, fc);
3797 }
3798 
3799 static int perf_header__getbuffer64(struct perf_header *header,
3800                                     int fd, void *buf, size_t size)
3801 {
3802         if (readn(fd, buf, size) <= 0)
3803                 return -1;
3804 
3805         if (header->needs_swap)
3806                 mem_bswap_64(buf, size);
3807 
3808         return 0;
3809 }
3810 
3811 int perf_header__process_sections(struct perf_header *header, int fd,
3812                                   void *data,
3813                                   int (*process)(struct perf_file_section *section,
3814                                                  struct perf_header *ph,
3815                                                  int feat, int fd, void *data))
3816 {
3817         struct perf_file_section *feat_sec, *sec;
3818         int nr_sections;
3819         int sec_size;
3820         int feat;
3821         int err;
3822 
3823         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3824         if (!nr_sections)
3825                 return 0;
3826 
3827         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3828         if (!feat_sec)
3829                 return -1;
3830 
3831         sec_size = sizeof(*feat_sec) * nr_sections;
3832 
3833         lseek(fd, header->feat_offset, SEEK_SET);
3834 
3835         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3836         if (err < 0)
3837                 goto out_free;
3838 
3839         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3840                 err = process(sec++, header, feat, fd, data);
3841                 if (err < 0)
3842                         goto out_free;
3843         }
3844         err = 0;
3845 out_free:
3846         free(feat_sec);
3847         return err;
3848 }
3849 
3850 static const int attr_file_abi_sizes[] = {
3851         [0] = PERF_ATTR_SIZE_VER0,
3852         [1] = PERF_ATTR_SIZE_VER1,
3853         [2] = PERF_ATTR_SIZE_VER2,
3854         [3] = PERF_ATTR_SIZE_VER3,
3855         [4] = PERF_ATTR_SIZE_VER4,
3856         0,
3857 };
3858 
3859 /*
3860  * In the legacy file format, the magic number is not used to encode endianness.
3861  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3862  * on ABI revisions, we need to try all combinations for all endianness to
3863  * detect the endianness.
3864  */
3865 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3866 {
3867         uint64_t ref_size, attr_size;
3868         int i;
3869 
3870         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3871                 ref_size = attr_file_abi_sizes[i]
3872                          + sizeof(struct perf_file_section);
3873                 if (hdr_sz != ref_size) {
3874                         attr_size = bswap_64(hdr_sz);
3875                         if (attr_size != ref_size)
3876                                 continue;
3877 
3878                         ph->needs_swap = true;
3879                 }
3880                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3881                          i,
3882                          ph->needs_swap);
3883                 return 0;
3884         }
3885         /* could not determine endianness */
3886         return -1;
3887 }
3888 
3889 #define PERF_PIPE_HDR_VER0      16
3890 
3891 static const size_t attr_pipe_abi_sizes[] = {
3892         [0] = PERF_PIPE_HDR_VER0,
3893         0,
3894 };
3895 
3896 /*
3897  * In the legacy pipe format, there is an implicit assumption that endianness
3898  * between host recording the samples, and host parsing the samples is the
3899  * same. This is not always the case given that the pipe output may always be
3900  * redirected into a file and analyzed on a different machine with possibly a
3901  * different endianness and perf_event ABI revisions in the perf tool itself.
3902  */
3903 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3904 {
3905         u64 attr_size;
3906         int i;
3907 
3908         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3909                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3910                         attr_size = bswap_64(hdr_sz);
3911                         if (attr_size != hdr_sz)
3912                                 continue;
3913 
3914                         ph->needs_swap = true;
3915                 }
3916                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3917                 return 0;
3918         }
3919         return -1;
3920 }
3921 
3922 bool is_perf_magic(u64 magic)
3923 {
3924         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3925                 || magic == __perf_magic2
3926                 || magic == __perf_magic2_sw)
3927                 return true;
3928 
3929         return false;
3930 }
3931 
3932 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3933                               bool is_pipe, struct perf_header *ph)
3934 {
3935         int ret;
3936 
3937         /* check for legacy format */
3938         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3939         if (ret == 0) {
3940                 ph->version = PERF_HEADER_VERSION_1;
3941                 pr_debug("legacy perf.data format\n");
3942                 if (is_pipe)
3943                         return try_all_pipe_abis(hdr_sz, ph);
3944 
3945                 return try_all_file_abis(hdr_sz, ph);
3946         }
3947         /*
3948          * the new magic number serves two purposes:
3949          * - unique number to identify actual perf.data files
3950          * - encode endianness of file
3951          */
3952         ph->version = PERF_HEADER_VERSION_2;
3953 
3954         /* check magic number with one endianness */
3955         if (magic == __perf_magic2)
3956                 return 0;
3957 
3958         /* check magic number with opposite endianness */
3959         if (magic != __perf_magic2_sw)
3960                 return -1;
3961 
3962         ph->needs_swap = true;
3963 
3964         return 0;
3965 }
3966 
3967 int perf_file_header__read(struct perf_file_header *header,
3968                            struct perf_header *ph, int fd)
3969 {
3970         ssize_t ret;
3971 
3972         lseek(fd, 0, SEEK_SET);
3973 
3974         ret = readn(fd, header, sizeof(*header));
3975         if (ret <= 0)
3976                 return -1;
3977 
3978         if (check_magic_endian(header->magic,
3979                                header->attr_size, false, ph) < 0) {
3980                 pr_debug("magic/endian check failed\n");
3981                 return -1;
3982         }
3983 
3984         if (ph->needs_swap) {
3985                 mem_bswap_64(header, offsetof(struct perf_file_header,
3986                              adds_features));
3987         }
3988 
3989         if (header->size != sizeof(*header)) {
3990                 /* Support the previous format */
3991                 if (header->size == offsetof(typeof(*header), adds_features))
3992                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3993                 else
3994                         return -1;
3995         } else if (ph->needs_swap) {
3996                 /*
3997                  * feature bitmap is declared as an array of unsigned longs --
3998                  * not good since its size can differ between the host that
3999                  * generated the data file and the host analyzing the file.
4000                  *
4001                  * We need to handle endianness, but we don't know the size of
4002                  * the unsigned long where the file was generated. Take a best
4003                  * guess at determining it: try 64-bit swap first (ie., file
4004                  * created on a 64-bit host), and check if the hostname feature
4005                  * bit is set (this feature bit is forced on as of fbe96f2).
4006                  * If the bit is not, undo the 64-bit swap and try a 32-bit
4007                  * swap. If the hostname bit is still not set (e.g., older data
4008                  * file), punt and fallback to the original behavior --
4009                  * clearing all feature bits and setting buildid.
4010                  */
4011                 mem_bswap_64(&header->adds_features,
4012                             BITS_TO_U64(HEADER_FEAT_BITS));
4013 
4014                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4015                         /* unswap as u64 */
4016                         mem_bswap_64(&header->adds_features,
4017                                     BITS_TO_U64(HEADER_FEAT_BITS));
4018 
4019                         /* unswap as u32 */
4020                         mem_bswap_32(&header->adds_features,
4021                                     BITS_TO_U32(HEADER_FEAT_BITS));
4022                 }
4023 
4024                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4025                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4026                         __set_bit(HEADER_BUILD_ID, header->adds_features);
4027                 }
4028         }
4029 
4030         memcpy(&ph->adds_features, &header->adds_features,
4031                sizeof(ph->adds_features));
4032 
4033         ph->data_offset  = header->data.offset;
4034         ph->data_size    = header->data.size;
4035         ph->feat_offset  = header->data.offset + header->data.size;
4036         return 0;
4037 }
4038 
4039 static int perf_file_section__process(struct perf_file_section *section,
4040                                       struct perf_header *ph,
4041                                       int feat, int fd, void *data)
4042 {
4043         struct feat_fd fdd = {
4044                 .fd     = fd,
4045                 .ph     = ph,
4046                 .size   = section->size,
4047                 .offset = section->offset,
4048         };
4049 
4050         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4051                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4052                           "%d, continuing...\n", section->offset, feat);
4053                 return 0;
4054         }
4055 
4056         if (feat >= HEADER_LAST_FEATURE) {
4057                 pr_debug("unknown feature %d, continuing...\n", feat);
4058                 return 0;
4059         }
4060 
4061         if (!feat_ops[feat].process)
4062                 return 0;
4063 
4064         return feat_ops[feat].process(&fdd, data);
4065 }
4066 
4067 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4068                                        struct perf_header *ph,
4069                                        struct perf_data* data,
4070                                        bool repipe, int repipe_fd)
4071 {
4072         struct feat_fd ff = {
4073                 .fd = repipe_fd,
4074                 .ph = ph,
4075         };
4076         ssize_t ret;
4077 
4078         ret = perf_data__read(data, header, sizeof(*header));
4079         if (ret <= 0)
4080                 return -1;
4081 
4082         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4083                 pr_debug("endian/magic failed\n");
4084                 return -1;
4085         }
4086 
4087         if (ph->needs_swap)
4088                 header->size = bswap_64(header->size);
4089 
4090         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4091                 return -1;
4092 
4093         return 0;
4094 }
4095 
4096 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4097 {
4098         struct perf_header *header = &session->header;
4099         struct perf_pipe_file_header f_header;
4100 
4101         if (perf_file_header__read_pipe(&f_header, header, session->data,
4102                                         session->repipe, repipe_fd) < 0) {
4103                 pr_debug("incompatible file format\n");
4104                 return -EINVAL;
4105         }
4106 
4107         return f_header.size == sizeof(f_header) ? 0 : -1;
4108 }
4109 
4110 static int read_attr(int fd, struct perf_header *ph,
4111                      struct perf_file_attr *f_attr)
4112 {
4113         struct perf_event_attr *attr = &f_attr->attr;
4114         size_t sz, left;
4115         size_t our_sz = sizeof(f_attr->attr);
4116         ssize_t ret;
4117 
4118         memset(f_attr, 0, sizeof(*f_attr));
4119 
4120         /* read minimal guaranteed structure */
4121         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4122         if (ret <= 0) {
4123                 pr_debug("cannot read %d bytes of header attr\n",
4124                          PERF_ATTR_SIZE_VER0);
4125                 return -1;
4126         }
4127 
4128         /* on file perf_event_attr size */
4129         sz = attr->size;
4130 
4131         if (ph->needs_swap)
4132                 sz = bswap_32(sz);
4133 
4134         if (sz == 0) {
4135                 /* assume ABI0 */
4136                 sz =  PERF_ATTR_SIZE_VER0;
4137         } else if (sz > our_sz) {
4138                 pr_debug("file uses a more recent and unsupported ABI"
4139                          " (%zu bytes extra)\n", sz - our_sz);
4140                 return -1;
4141         }
4142         /* what we have not yet read and that we know about */
4143         left = sz - PERF_ATTR_SIZE_VER0;
4144         if (left) {
4145                 void *ptr = attr;
4146                 ptr += PERF_ATTR_SIZE_VER0;
4147 
4148                 ret = readn(fd, ptr, left);
4149         }
4150         /* read perf_file_section, ids are read in caller */
4151         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4152 
4153         return ret <= 0 ? -1 : 0;
4154 }
4155 
4156 #ifdef HAVE_LIBTRACEEVENT
4157 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4158 {
4159         struct tep_event *event;
4160         char bf[128];
4161 
4162         /* already prepared */
4163         if (evsel->tp_format)
4164                 return 0;
4165 
4166         if (pevent == NULL) {
4167                 pr_debug("broken or missing trace data\n");
4168                 return -1;
4169         }
4170 
4171         event = tep_find_event(pevent, evsel->core.attr.config);
4172         if (event == NULL) {
4173                 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4174                 return -1;
4175         }
4176 
4177         if (!evsel->name) {
4178                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4179                 evsel->name = strdup(bf);
4180                 if (evsel->name == NULL)
4181                         return -1;
4182         }
4183 
4184         evsel->tp_format = event;
4185         return 0;
4186 }
4187 
4188 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4189 {
4190         struct evsel *pos;
4191 
4192         evlist__for_each_entry(evlist, pos) {
4193                 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4194                     evsel__prepare_tracepoint_event(pos, pevent))
4195                         return -1;
4196         }
4197 
4198         return 0;
4199 }
4200 #endif
4201 
4202 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4203 {
4204         struct perf_data *data = session->data;
4205         struct perf_header *header = &session->header;
4206         struct perf_file_header f_header;
4207         struct perf_file_attr   f_attr;
4208         u64                     f_id;
4209         int nr_attrs, nr_ids, i, j, err;
4210         int fd = perf_data__fd(data);
4211 
4212         session->evlist = evlist__new();
4213         if (session->evlist == NULL)
4214                 return -ENOMEM;
4215 
4216         session->evlist->env = &header->env;
4217         session->machines.host.env = &header->env;
4218 
4219         /*
4220          * We can read 'pipe' data event from regular file,
4221          * check for the pipe header regardless of source.
4222          */
4223         err = perf_header__read_pipe(session, repipe_fd);
4224         if (!err || perf_data__is_pipe(data)) {
4225                 data->is_pipe = true;
4226                 return err;
4227         }
4228 
4229         if (perf_file_header__read(&f_header, header, fd) < 0)
4230                 return -EINVAL;
4231 
4232         if (header->needs_swap && data->in_place_update) {
4233                 pr_err("In-place update not supported when byte-swapping is required\n");
4234                 return -EINVAL;
4235         }
4236 
4237         /*
4238          * Sanity check that perf.data was written cleanly; data size is
4239          * initialized to 0 and updated only if the on_exit function is run.
4240          * If data size is still 0 then the file contains only partial
4241          * information.  Just warn user and process it as much as it can.
4242          */
4243         if (f_header.data.size == 0) {
4244                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4245                            "Was the 'perf record' command properly terminated?\n",
4246                            data->file.path);
4247         }
4248 
4249         if (f_header.attr_size == 0) {
4250                 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4251                        "Was the 'perf record' command properly terminated?\n",
4252                        data->file.path);
4253                 return -EINVAL;
4254         }
4255 
4256         nr_attrs = f_header.attrs.size / f_header.attr_size;
4257         lseek(fd, f_header.attrs.offset, SEEK_SET);
4258 
4259         for (i = 0; i < nr_attrs; i++) {
4260                 struct evsel *evsel;
4261                 off_t tmp;
4262 
4263                 if (read_attr(fd, header, &f_attr) < 0)
4264                         goto out_errno;
4265 
4266                 if (header->needs_swap) {
4267                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
4268                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4269                         perf_event__attr_swap(&f_attr.attr);
4270                 }
4271 
4272                 tmp = lseek(fd, 0, SEEK_CUR);
4273                 evsel = evsel__new(&f_attr.attr);
4274 
4275                 if (evsel == NULL)
4276                         goto out_delete_evlist;
4277 
4278                 evsel->needs_swap = header->needs_swap;
4279                 /*
4280                  * Do it before so that if perf_evsel__alloc_id fails, this
4281                  * entry gets purged too at evlist__delete().
4282                  */
4283                 evlist__add(session->evlist, evsel);
4284 
4285                 nr_ids = f_attr.ids.size / sizeof(u64);
4286                 /*
4287                  * We don't have the cpu and thread maps on the header, so
4288                  * for allocating the perf_sample_id table we fake 1 cpu and
4289                  * hattr->ids threads.
4290                  */
4291                 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4292                         goto out_delete_evlist;
4293 
4294                 lseek(fd, f_attr.ids.offset, SEEK_SET);
4295 
4296                 for (j = 0; j < nr_ids; j++) {
4297                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4298                                 goto out_errno;
4299 
4300                         perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4301                 }
4302 
4303                 lseek(fd, tmp, SEEK_SET);
4304         }
4305 
4306 #ifdef HAVE_LIBTRACEEVENT
4307         perf_header__process_sections(header, fd, &session->tevent,
4308                                       perf_file_section__process);
4309 
4310         if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4311                 goto out_delete_evlist;
4312 #else
4313         perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4314 #endif
4315 
4316         return 0;
4317 out_errno:
4318         return -errno;
4319 
4320 out_delete_evlist:
4321         evlist__delete(session->evlist);
4322         session->evlist = NULL;
4323         return -ENOMEM;
4324 }
4325 
4326 int perf_event__process_feature(struct perf_session *session,
4327                                 union perf_event *event)
4328 {
4329         struct perf_tool *tool = session->tool;
4330         struct feat_fd ff = { .fd = 0 };
4331         struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4332         int type = fe->header.type;
4333         u64 feat = fe->feat_id;
4334         int ret = 0;
4335 
4336         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4337                 pr_warning("invalid record type %d in pipe-mode\n", type);
4338                 return 0;
4339         }
4340         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4341                 pr_warning("invalid record type %d in pipe-mode\n", type);
4342                 return -1;
4343         }
4344 
4345         if (!feat_ops[feat].process)
4346                 return 0;
4347 
4348         ff.buf  = (void *)fe->data;
4349         ff.size = event->header.size - sizeof(*fe);
4350         ff.ph = &session->header;
4351 
4352         if (feat_ops[feat].process(&ff, NULL)) {
4353                 ret = -1;
4354                 goto out;
4355         }
4356 
4357         if (!feat_ops[feat].print || !tool->show_feat_hdr)
4358                 goto out;
4359 
4360         if (!feat_ops[feat].full_only ||
4361             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4362                 feat_ops[feat].print(&ff, stdout);
4363         } else {
4364                 fprintf(stdout, "# %s info available, use -I to display\n",
4365                         feat_ops[feat].name);
4366         }
4367 out:
4368         free_event_desc(ff.events);
4369         return ret;
4370 }
4371 
4372 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4373 {
4374         struct perf_record_event_update *ev = &event->event_update;
4375         struct perf_cpu_map *map;
4376         size_t ret;
4377 
4378         ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4379 
4380         switch (ev->type) {
4381         case PERF_EVENT_UPDATE__SCALE:
4382                 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4383                 break;
4384         case PERF_EVENT_UPDATE__UNIT:
4385                 ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4386                 break;
4387         case PERF_EVENT_UPDATE__NAME:
4388                 ret += fprintf(fp, "... name:  %s\n", ev->name);
4389                 break;
4390         case PERF_EVENT_UPDATE__CPUS:
4391                 ret += fprintf(fp, "... ");
4392 
4393                 map = cpu_map__new_data(&ev->cpus.cpus);
4394                 if (map) {
4395                         ret += cpu_map__fprintf(map, fp);
4396                         perf_cpu_map__put(map);
4397                 } else
4398                         ret += fprintf(fp, "failed to get cpus\n");
4399                 break;
4400         default:
4401                 ret += fprintf(fp, "... unknown type\n");
4402                 break;
4403         }
4404 
4405         return ret;
4406 }
4407 
4408 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4409                              union perf_event *event,
4410                              struct evlist **pevlist)
4411 {
4412         u32 i, n_ids;
4413         u64 *ids;
4414         struct evsel *evsel;
4415         struct evlist *evlist = *pevlist;
4416 
4417         if (evlist == NULL) {
4418                 *pevlist = evlist = evlist__new();
4419                 if (evlist == NULL)
4420                         return -ENOMEM;
4421         }
4422 
4423         evsel = evsel__new(&event->attr.attr);
4424         if (evsel == NULL)
4425                 return -ENOMEM;
4426 
4427         evlist__add(evlist, evsel);
4428 
4429         n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4430         n_ids = n_ids / sizeof(u64);
4431         /*
4432          * We don't have the cpu and thread maps on the header, so
4433          * for allocating the perf_sample_id table we fake 1 cpu and
4434          * hattr->ids threads.
4435          */
4436         if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4437                 return -ENOMEM;
4438 
4439         ids = perf_record_header_attr_id(event);
4440         for (i = 0; i < n_ids; i++) {
4441                 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4442         }
4443 
4444         return 0;
4445 }
4446 
4447 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4448                                      union perf_event *event,
4449                                      struct evlist **pevlist)
4450 {
4451         struct perf_record_event_update *ev = &event->event_update;
4452         struct evlist *evlist;
4453         struct evsel *evsel;
4454         struct perf_cpu_map *map;
4455 
4456         if (dump_trace)
4457                 perf_event__fprintf_event_update(event, stdout);
4458 
4459         if (!pevlist || *pevlist == NULL)
4460                 return -EINVAL;
4461 
4462         evlist = *pevlist;
4463 
4464         evsel = evlist__id2evsel(evlist, ev->id);
4465         if (evsel == NULL)
4466                 return -EINVAL;
4467 
4468         switch (ev->type) {
4469         case PERF_EVENT_UPDATE__UNIT:
4470                 free((char *)evsel->unit);
4471                 evsel->unit = strdup(ev->unit);
4472                 break;
4473         case PERF_EVENT_UPDATE__NAME:
4474                 free(evsel->name);
4475                 evsel->name = strdup(ev->name);
4476                 break;
4477         case PERF_EVENT_UPDATE__SCALE:
4478                 evsel->scale = ev->scale.scale;
4479                 break;
4480         case PERF_EVENT_UPDATE__CPUS:
4481                 map = cpu_map__new_data(&ev->cpus.cpus);
4482                 if (map) {
4483                         perf_cpu_map__put(evsel->core.own_cpus);
4484                         evsel->core.own_cpus = map;
4485                 } else
4486                         pr_err("failed to get event_update cpus\n");
4487         default:
4488                 break;
4489         }
4490 
4491         return 0;
4492 }
4493 
4494 #ifdef HAVE_LIBTRACEEVENT
4495 int perf_event__process_tracing_data(struct perf_session *session,
4496                                      union perf_event *event)
4497 {
4498         ssize_t size_read, padding, size = event->tracing_data.size;
4499         int fd = perf_data__fd(session->data);
4500         char buf[BUFSIZ];
4501 
4502         /*
4503          * The pipe fd is already in proper place and in any case
4504          * we can't move it, and we'd screw the case where we read
4505          * 'pipe' data from regular file. The trace_report reads
4506          * data from 'fd' so we need to set it directly behind the
4507          * event, where the tracing data starts.
4508          */
4509         if (!perf_data__is_pipe(session->data)) {
4510                 off_t offset = lseek(fd, 0, SEEK_CUR);
4511 
4512                 /* setup for reading amidst mmap */
4513                 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4514                       SEEK_SET);
4515         }
4516 
4517         size_read = trace_report(fd, &session->tevent,
4518                                  session->repipe);
4519         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4520 
4521         if (readn(fd, buf, padding) < 0) {
4522                 pr_err("%s: reading input file", __func__);
4523                 return -1;
4524         }
4525         if (session->repipe) {
4526                 int retw = write(STDOUT_FILENO, buf, padding);
4527                 if (retw <= 0 || retw != padding) {
4528                         pr_err("%s: repiping tracing data padding", __func__);
4529                         return -1;
4530                 }
4531         }
4532 
4533         if (size_read + padding != size) {
4534                 pr_err("%s: tracing data size mismatch", __func__);
4535                 return -1;
4536         }
4537 
4538         evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4539 
4540         return size_read + padding;
4541 }
4542 #endif
4543 
4544 int perf_event__process_build_id(struct perf_session *session,
4545                                  union perf_event *event)
4546 {
4547         __event_process_build_id(&event->build_id,
4548                                  event->build_id.filename,
4549                                  session);
4550         return 0;
4551 }
4552 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php