~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/util/intel-pt.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * intel_pt.c: Intel Processor Trace support
  4  * Copyright (c) 2013-2015, Intel Corporation.
  5  */
  6 
  7 #include <inttypes.h>
  8 #include <linux/perf_event.h>
  9 #include <stdio.h>
 10 #include <stdbool.h>
 11 #include <errno.h>
 12 #include <linux/kernel.h>
 13 #include <linux/string.h>
 14 #include <linux/types.h>
 15 #include <linux/zalloc.h>
 16 
 17 #include "session.h"
 18 #include "machine.h"
 19 #include "memswap.h"
 20 #include "sort.h"
 21 #include "tool.h"
 22 #include "event.h"
 23 #include "evlist.h"
 24 #include "evsel.h"
 25 #include "map.h"
 26 #include "color.h"
 27 #include "thread.h"
 28 #include "thread-stack.h"
 29 #include "symbol.h"
 30 #include "callchain.h"
 31 #include "dso.h"
 32 #include "debug.h"
 33 #include "auxtrace.h"
 34 #include "tsc.h"
 35 #include "intel-pt.h"
 36 #include "config.h"
 37 #include "util/perf_api_probe.h"
 38 #include "util/synthetic-events.h"
 39 #include "time-utils.h"
 40 
 41 #include "../arch/x86/include/uapi/asm/perf_regs.h"
 42 
 43 #include "intel-pt-decoder/intel-pt-log.h"
 44 #include "intel-pt-decoder/intel-pt-decoder.h"
 45 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
 46 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
 47 
 48 #define MAX_TIMESTAMP (~0ULL)
 49 
 50 #define INTEL_PT_CFG_PASS_THRU  BIT_ULL(0)
 51 #define INTEL_PT_CFG_PWR_EVT_EN BIT_ULL(4)
 52 #define INTEL_PT_CFG_BRANCH_EN  BIT_ULL(13)
 53 #define INTEL_PT_CFG_EVT_EN     BIT_ULL(31)
 54 #define INTEL_PT_CFG_TNT_DIS    BIT_ULL(55)
 55 
 56 struct range {
 57         u64 start;
 58         u64 end;
 59 };
 60 
 61 struct intel_pt {
 62         struct auxtrace auxtrace;
 63         struct auxtrace_queues queues;
 64         struct auxtrace_heap heap;
 65         u32 auxtrace_type;
 66         struct perf_session *session;
 67         struct machine *machine;
 68         struct evsel *switch_evsel;
 69         struct thread *unknown_thread;
 70         bool timeless_decoding;
 71         bool sampling_mode;
 72         bool snapshot_mode;
 73         bool per_cpu_mmaps;
 74         bool have_tsc;
 75         bool data_queued;
 76         bool est_tsc;
 77         bool sync_switch;
 78         bool sync_switch_not_supported;
 79         bool mispred_all;
 80         bool use_thread_stack;
 81         bool callstack;
 82         bool cap_event_trace;
 83         bool have_guest_sideband;
 84         unsigned int br_stack_sz;
 85         unsigned int br_stack_sz_plus;
 86         int have_sched_switch;
 87         u32 pmu_type;
 88         u64 kernel_start;
 89         u64 switch_ip;
 90         u64 ptss_ip;
 91         u64 first_timestamp;
 92 
 93         struct perf_tsc_conversion tc;
 94         bool cap_user_time_zero;
 95 
 96         struct itrace_synth_opts synth_opts;
 97 
 98         bool sample_instructions;
 99         u64 instructions_sample_type;
100         u64 instructions_id;
101 
102         bool sample_cycles;
103         u64 cycles_sample_type;
104         u64 cycles_id;
105 
106         bool sample_branches;
107         u32 branches_filter;
108         u64 branches_sample_type;
109         u64 branches_id;
110 
111         bool sample_transactions;
112         u64 transactions_sample_type;
113         u64 transactions_id;
114 
115         bool sample_ptwrites;
116         u64 ptwrites_sample_type;
117         u64 ptwrites_id;
118 
119         bool sample_pwr_events;
120         u64 pwr_events_sample_type;
121         u64 mwait_id;
122         u64 pwre_id;
123         u64 exstop_id;
124         u64 pwrx_id;
125         u64 cbr_id;
126         u64 psb_id;
127 
128         bool single_pebs;
129         bool sample_pebs;
130         struct evsel *pebs_evsel;
131 
132         u64 evt_sample_type;
133         u64 evt_id;
134 
135         u64 iflag_chg_sample_type;
136         u64 iflag_chg_id;
137 
138         u64 tsc_bit;
139         u64 mtc_bit;
140         u64 mtc_freq_bits;
141         u32 tsc_ctc_ratio_n;
142         u32 tsc_ctc_ratio_d;
143         u64 cyc_bit;
144         u64 noretcomp_bit;
145         unsigned max_non_turbo_ratio;
146         unsigned cbr2khz;
147         int max_loops;
148 
149         unsigned long num_events;
150 
151         char *filter;
152         struct addr_filters filts;
153 
154         struct range *time_ranges;
155         unsigned int range_cnt;
156 
157         struct ip_callchain *chain;
158         struct branch_stack *br_stack;
159 
160         u64 dflt_tsc_offset;
161         struct rb_root vmcs_info;
162 };
163 
164 enum switch_state {
165         INTEL_PT_SS_NOT_TRACING,
166         INTEL_PT_SS_UNKNOWN,
167         INTEL_PT_SS_TRACING,
168         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
169         INTEL_PT_SS_EXPECTING_SWITCH_IP,
170 };
171 
172 /* applicable_counters is 64-bits */
173 #define INTEL_PT_MAX_PEBS 64
174 
175 struct intel_pt_pebs_event {
176         struct evsel *evsel;
177         u64 id;
178 };
179 
180 struct intel_pt_queue {
181         struct intel_pt *pt;
182         unsigned int queue_nr;
183         struct auxtrace_buffer *buffer;
184         struct auxtrace_buffer *old_buffer;
185         void *decoder;
186         const struct intel_pt_state *state;
187         struct ip_callchain *chain;
188         struct branch_stack *last_branch;
189         union perf_event *event_buf;
190         bool on_heap;
191         bool stop;
192         bool step_through_buffers;
193         bool use_buffer_pid_tid;
194         bool sync_switch;
195         bool sample_ipc;
196         pid_t pid, tid;
197         int cpu;
198         int switch_state;
199         pid_t next_tid;
200         struct thread *thread;
201         struct machine *guest_machine;
202         struct thread *guest_thread;
203         struct thread *unknown_guest_thread;
204         pid_t guest_machine_pid;
205         pid_t guest_pid;
206         pid_t guest_tid;
207         int vcpu;
208         bool exclude_kernel;
209         bool have_sample;
210         u64 time;
211         u64 timestamp;
212         u64 sel_timestamp;
213         bool sel_start;
214         unsigned int sel_idx;
215         u32 flags;
216         u16 insn_len;
217         u64 last_insn_cnt;
218         u64 ipc_insn_cnt;
219         u64 ipc_cyc_cnt;
220         u64 last_in_insn_cnt;
221         u64 last_in_cyc_cnt;
222         u64 last_cy_insn_cnt;
223         u64 last_cy_cyc_cnt;
224         u64 last_br_insn_cnt;
225         u64 last_br_cyc_cnt;
226         unsigned int cbr_seen;
227         char insn[INTEL_PT_INSN_BUF_SZ];
228         struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
229 };
230 
231 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
232                           unsigned char *buf, size_t len)
233 {
234         struct intel_pt_pkt packet;
235         size_t pos = 0;
236         int ret, pkt_len, i;
237         char desc[INTEL_PT_PKT_DESC_MAX];
238         const char *color = PERF_COLOR_BLUE;
239         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
240 
241         color_fprintf(stdout, color,
242                       ". ... Intel Processor Trace data: size %zu bytes\n",
243                       len);
244 
245         while (len) {
246                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
247                 if (ret > 0)
248                         pkt_len = ret;
249                 else
250                         pkt_len = 1;
251                 printf(".");
252                 color_fprintf(stdout, color, "  %08x: ", pos);
253                 for (i = 0; i < pkt_len; i++)
254                         color_fprintf(stdout, color, " %02x", buf[i]);
255                 for (; i < 16; i++)
256                         color_fprintf(stdout, color, "   ");
257                 if (ret > 0) {
258                         ret = intel_pt_pkt_desc(&packet, desc,
259                                                 INTEL_PT_PKT_DESC_MAX);
260                         if (ret > 0)
261                                 color_fprintf(stdout, color, " %s\n", desc);
262                 } else {
263                         color_fprintf(stdout, color, " Bad packet!\n");
264                 }
265                 pos += pkt_len;
266                 buf += pkt_len;
267                 len -= pkt_len;
268         }
269 }
270 
271 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
272                                 size_t len)
273 {
274         printf(".\n");
275         intel_pt_dump(pt, buf, len);
276 }
277 
278 static void intel_pt_log_event(union perf_event *event)
279 {
280         FILE *f = intel_pt_log_fp();
281 
282         if (!intel_pt_enable_logging || !f)
283                 return;
284 
285         perf_event__fprintf(event, NULL, f);
286 }
287 
288 static void intel_pt_dump_sample(struct perf_session *session,
289                                  struct perf_sample *sample)
290 {
291         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
292                                            auxtrace);
293 
294         printf("\n");
295         intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
296 }
297 
298 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
299 {
300         struct perf_time_interval *range = pt->synth_opts.ptime_range;
301         int n = pt->synth_opts.range_num;
302 
303         if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
304                 return true;
305 
306         if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
307                 return false;
308 
309         /* perf_time__ranges_skip_sample does not work if time is zero */
310         if (!tm)
311                 tm = 1;
312 
313         return !n || !perf_time__ranges_skip_sample(range, n, tm);
314 }
315 
316 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
317                                                         u64 vmcs,
318                                                         u64 dflt_tsc_offset)
319 {
320         struct rb_node **p = &rb_root->rb_node;
321         struct rb_node *parent = NULL;
322         struct intel_pt_vmcs_info *v;
323 
324         while (*p) {
325                 parent = *p;
326                 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
327 
328                 if (v->vmcs == vmcs)
329                         return v;
330 
331                 if (vmcs < v->vmcs)
332                         p = &(*p)->rb_left;
333                 else
334                         p = &(*p)->rb_right;
335         }
336 
337         v = zalloc(sizeof(*v));
338         if (v) {
339                 v->vmcs = vmcs;
340                 v->tsc_offset = dflt_tsc_offset;
341                 v->reliable = dflt_tsc_offset;
342 
343                 rb_link_node(&v->rb_node, parent, p);
344                 rb_insert_color(&v->rb_node, rb_root);
345         }
346 
347         return v;
348 }
349 
350 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
351 {
352         struct intel_pt_queue *ptq = data;
353         struct intel_pt *pt = ptq->pt;
354 
355         if (!vmcs && !pt->dflt_tsc_offset)
356                 return NULL;
357 
358         return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
359 }
360 
361 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
362 {
363         struct intel_pt_vmcs_info *v;
364         struct rb_node *n;
365 
366         n = rb_first(&pt->vmcs_info);
367         while (n) {
368                 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
369                 n = rb_next(n);
370                 rb_erase(&v->rb_node, &pt->vmcs_info);
371                 free(v);
372         }
373 }
374 
375 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
376                                    struct auxtrace_buffer *b)
377 {
378         bool consecutive = false;
379         void *start;
380 
381         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
382                                       pt->have_tsc, &consecutive,
383                                       pt->synth_opts.vm_time_correlation);
384         if (!start)
385                 return -EINVAL;
386         /*
387          * In the case of vm_time_correlation, the overlap might contain TSC
388          * packets that will not be fixed, and that will then no longer work for
389          * overlap detection. Avoid that by zeroing out the overlap.
390          */
391         if (pt->synth_opts.vm_time_correlation)
392                 memset(b->data, 0, start - b->data);
393         b->use_size = b->data + b->size - start;
394         b->use_data = start;
395         if (b->use_size && consecutive)
396                 b->consecutive = true;
397         return 0;
398 }
399 
400 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
401                                struct auxtrace_buffer *buffer,
402                                struct auxtrace_buffer *old_buffer,
403                                struct intel_pt_buffer *b)
404 {
405         bool might_overlap;
406 
407         if (!buffer->data) {
408                 int fd = perf_data__fd(ptq->pt->session->data);
409 
410                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
411                 if (!buffer->data)
412                         return -ENOMEM;
413         }
414 
415         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
416         if (might_overlap && !buffer->consecutive && old_buffer &&
417             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
418                 return -ENOMEM;
419 
420         if (buffer->use_data) {
421                 b->len = buffer->use_size;
422                 b->buf = buffer->use_data;
423         } else {
424                 b->len = buffer->size;
425                 b->buf = buffer->data;
426         }
427         b->ref_timestamp = buffer->reference;
428 
429         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
430                 b->consecutive = false;
431                 b->trace_nr = buffer->buffer_nr + 1;
432         } else {
433                 b->consecutive = true;
434         }
435 
436         return 0;
437 }
438 
439 /* Do not drop buffers with references - refer intel_pt_get_trace() */
440 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
441                                            struct auxtrace_buffer *buffer)
442 {
443         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
444                 return;
445 
446         auxtrace_buffer__drop_data(buffer);
447 }
448 
449 /* Must be serialized with respect to intel_pt_get_trace() */
450 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
451                               void *cb_data)
452 {
453         struct intel_pt_queue *ptq = data;
454         struct auxtrace_buffer *buffer = ptq->buffer;
455         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
456         struct auxtrace_queue *queue;
457         int err = 0;
458 
459         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
460 
461         while (1) {
462                 struct intel_pt_buffer b = { .len = 0 };
463 
464                 buffer = auxtrace_buffer__next(queue, buffer);
465                 if (!buffer)
466                         break;
467 
468                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
469                 if (err)
470                         break;
471 
472                 if (b.len) {
473                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
474                         old_buffer = buffer;
475                 } else {
476                         intel_pt_lookahead_drop_buffer(ptq, buffer);
477                         continue;
478                 }
479 
480                 err = cb(&b, cb_data);
481                 if (err)
482                         break;
483         }
484 
485         if (buffer != old_buffer)
486                 intel_pt_lookahead_drop_buffer(ptq, buffer);
487         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
488 
489         return err;
490 }
491 
492 /*
493  * This function assumes data is processed sequentially only.
494  * Must be serialized with respect to intel_pt_lookahead()
495  */
496 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
497 {
498         struct intel_pt_queue *ptq = data;
499         struct auxtrace_buffer *buffer = ptq->buffer;
500         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
501         struct auxtrace_queue *queue;
502         int err;
503 
504         if (ptq->stop) {
505                 b->len = 0;
506                 return 0;
507         }
508 
509         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
510 
511         buffer = auxtrace_buffer__next(queue, buffer);
512         if (!buffer) {
513                 if (old_buffer)
514                         auxtrace_buffer__drop_data(old_buffer);
515                 b->len = 0;
516                 return 0;
517         }
518 
519         ptq->buffer = buffer;
520 
521         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
522         if (err)
523                 return err;
524 
525         if (ptq->step_through_buffers)
526                 ptq->stop = true;
527 
528         if (b->len) {
529                 if (old_buffer)
530                         auxtrace_buffer__drop_data(old_buffer);
531                 ptq->old_buffer = buffer;
532         } else {
533                 auxtrace_buffer__drop_data(buffer);
534                 return intel_pt_get_trace(b, data);
535         }
536 
537         return 0;
538 }
539 
540 struct intel_pt_cache_entry {
541         struct auxtrace_cache_entry     entry;
542         u64                             insn_cnt;
543         u64                             byte_cnt;
544         enum intel_pt_insn_op           op;
545         enum intel_pt_insn_branch       branch;
546         bool                            emulated_ptwrite;
547         int                             length;
548         int32_t                         rel;
549         char                            insn[INTEL_PT_INSN_BUF_SZ];
550 };
551 
552 static int intel_pt_config_div(const char *var, const char *value, void *data)
553 {
554         int *d = data;
555         long val;
556 
557         if (!strcmp(var, "intel-pt.cache-divisor")) {
558                 val = strtol(value, NULL, 0);
559                 if (val > 0 && val <= INT_MAX)
560                         *d = val;
561         }
562 
563         return 0;
564 }
565 
566 static int intel_pt_cache_divisor(void)
567 {
568         static int d;
569 
570         if (d)
571                 return d;
572 
573         perf_config(intel_pt_config_div, &d);
574 
575         if (!d)
576                 d = 64;
577 
578         return d;
579 }
580 
581 static unsigned int intel_pt_cache_size(struct dso *dso,
582                                         struct machine *machine)
583 {
584         off_t size;
585 
586         size = dso__data_size(dso, machine);
587         size /= intel_pt_cache_divisor();
588         if (size < 1000)
589                 return 10;
590         if (size > (1 << 21))
591                 return 21;
592         return 32 - __builtin_clz(size);
593 }
594 
595 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
596                                              struct machine *machine)
597 {
598         struct auxtrace_cache *c;
599         unsigned int bits;
600 
601         if (dso__auxtrace_cache(dso))
602                 return dso__auxtrace_cache(dso);
603 
604         bits = intel_pt_cache_size(dso, machine);
605 
606         /* Ignoring cache creation failure */
607         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
608 
609         dso__set_auxtrace_cache(dso, c);
610 
611         return c;
612 }
613 
614 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
615                               u64 offset, u64 insn_cnt, u64 byte_cnt,
616                               struct intel_pt_insn *intel_pt_insn)
617 {
618         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
619         struct intel_pt_cache_entry *e;
620         int err;
621 
622         if (!c)
623                 return -ENOMEM;
624 
625         e = auxtrace_cache__alloc_entry(c);
626         if (!e)
627                 return -ENOMEM;
628 
629         e->insn_cnt = insn_cnt;
630         e->byte_cnt = byte_cnt;
631         e->op = intel_pt_insn->op;
632         e->branch = intel_pt_insn->branch;
633         e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
634         e->length = intel_pt_insn->length;
635         e->rel = intel_pt_insn->rel;
636         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
637 
638         err = auxtrace_cache__add(c, offset, &e->entry);
639         if (err)
640                 auxtrace_cache__free_entry(c, e);
641 
642         return err;
643 }
644 
645 static struct intel_pt_cache_entry *
646 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
647 {
648         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
649 
650         if (!c)
651                 return NULL;
652 
653         return auxtrace_cache__lookup(dso__auxtrace_cache(dso), offset);
654 }
655 
656 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
657                                       u64 offset)
658 {
659         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
660 
661         if (!c)
662                 return;
663 
664         auxtrace_cache__remove(dso__auxtrace_cache(dso), offset);
665 }
666 
667 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
668 {
669         /* Assumes 64-bit kernel */
670         return ip & (1ULL << 63);
671 }
672 
673 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
674 {
675         if (nr) {
676                 return intel_pt_guest_kernel_ip(ip) ?
677                        PERF_RECORD_MISC_GUEST_KERNEL :
678                        PERF_RECORD_MISC_GUEST_USER;
679         }
680 
681         return ip >= ptq->pt->kernel_start ?
682                PERF_RECORD_MISC_KERNEL :
683                PERF_RECORD_MISC_USER;
684 }
685 
686 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
687 {
688         /* No support for non-zero CS base */
689         if (from_ip)
690                 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
691         return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
692 }
693 
694 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
695 {
696         struct machines *machines = &ptq->pt->session->machines;
697         struct machine *machine;
698         pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
699 
700         if (ptq->guest_machine && pid == ptq->guest_machine->pid)
701                 return 0;
702 
703         ptq->guest_machine = NULL;
704         thread__zput(ptq->unknown_guest_thread);
705 
706         if (symbol_conf.guest_code) {
707                 thread__zput(ptq->guest_thread);
708                 ptq->guest_thread = machines__findnew_guest_code(machines, pid);
709         }
710 
711         machine = machines__find_guest(machines, pid);
712         if (!machine)
713                 return -1;
714 
715         ptq->unknown_guest_thread = machine__idle_thread(machine);
716         if (!ptq->unknown_guest_thread)
717                 return -1;
718 
719         ptq->guest_machine = machine;
720 
721         return 0;
722 }
723 
724 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
725 {
726         return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
727 }
728 
729 #define PTWRITE_MAGIC           "\x0f\x0bperf,ptwrite  "
730 #define PTWRITE_MAGIC_LEN       16
731 
732 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
733 {
734         unsigned char buf[PTWRITE_MAGIC_LEN];
735         ssize_t len;
736 
737         len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
738         if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
739                 intel_pt_log("Emulated ptwrite signature found\n");
740                 return true;
741         }
742         intel_pt_log("Emulated ptwrite signature not found\n");
743         return false;
744 }
745 
746 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
747                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
748                                    uint64_t to_ip, uint64_t max_insn_cnt,
749                                    void *data)
750 {
751         struct intel_pt_queue *ptq = data;
752         struct machine *machine = ptq->pt->machine;
753         struct thread *thread;
754         struct addr_location al;
755         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
756         ssize_t len;
757         int x86_64, ret = 0;
758         u8 cpumode;
759         u64 offset, start_offset, start_ip;
760         u64 insn_cnt = 0;
761         bool one_map = true;
762         bool nr;
763 
764 
765         addr_location__init(&al);
766         intel_pt_insn->length = 0;
767         intel_pt_insn->op = INTEL_PT_OP_OTHER;
768 
769         if (to_ip && *ip == to_ip)
770                 goto out_no_cache;
771 
772         nr = ptq->state->to_nr;
773         cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
774 
775         if (nr) {
776                 if (ptq->pt->have_guest_sideband) {
777                         if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
778                                 intel_pt_log("ERROR: guest sideband but no guest machine\n");
779                                 ret = -EINVAL;
780                                 goto out_ret;
781                         }
782                 } else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
783                            intel_pt_get_guest(ptq)) {
784                         intel_pt_log("ERROR: no guest machine\n");
785                         ret = -EINVAL;
786                         goto out_ret;
787                 }
788                 machine = ptq->guest_machine;
789                 thread = ptq->guest_thread;
790                 if (!thread) {
791                         if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
792                                 intel_pt_log("ERROR: no guest thread\n");
793                                 ret = -EINVAL;
794                                 goto out_ret;
795                         }
796                         thread = ptq->unknown_guest_thread;
797                 }
798         } else {
799                 thread = ptq->thread;
800                 if (!thread) {
801                         if (cpumode != PERF_RECORD_MISC_KERNEL) {
802                                 intel_pt_log("ERROR: no thread\n");
803                                 ret = -EINVAL;
804                                 goto out_ret;
805                         }
806                         thread = ptq->pt->unknown_thread;
807                 }
808         }
809 
810         while (1) {
811                 struct dso *dso;
812 
813                 if (!thread__find_map(thread, cpumode, *ip, &al) || !map__dso(al.map)) {
814                         if (al.map)
815                                 intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
816                         else
817                                 intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
818                         addr_location__exit(&al);
819                         ret = -EINVAL;
820                         goto out_ret;
821                 }
822                 dso = map__dso(al.map);
823 
824                 if (dso__data(dso)->status == DSO_DATA_STATUS_ERROR &&
825                     dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) {
826                         ret = -ENOENT;
827                         goto out_ret;
828                 }
829 
830                 offset = map__map_ip(al.map, *ip);
831 
832                 if (!to_ip && one_map) {
833                         struct intel_pt_cache_entry *e;
834 
835                         e = intel_pt_cache_lookup(dso, machine, offset);
836                         if (e &&
837                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
838                                 *insn_cnt_ptr = e->insn_cnt;
839                                 *ip += e->byte_cnt;
840                                 intel_pt_insn->op = e->op;
841                                 intel_pt_insn->branch = e->branch;
842                                 intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
843                                 intel_pt_insn->length = e->length;
844                                 intel_pt_insn->rel = e->rel;
845                                 memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ);
846                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
847                                 ret = 0;
848                                 goto out_ret;
849                         }
850                 }
851 
852                 start_offset = offset;
853                 start_ip = *ip;
854 
855                 /* Load maps to ensure dso->is_64_bit has been updated */
856                 map__load(al.map);
857 
858                 x86_64 = dso__is_64_bit(dso);
859 
860                 while (1) {
861                         len = dso__data_read_offset(dso, machine,
862                                                     offset, buf,
863                                                     INTEL_PT_INSN_BUF_SZ);
864                         if (len <= 0) {
865                                 intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
866                                              offset);
867                                 if (intel_pt_enable_logging)
868                                         dso__fprintf(dso, intel_pt_log_fp());
869                                 ret = -EINVAL;
870                                 goto out_ret;
871                         }
872 
873                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) {
874                                 ret = -EINVAL;
875                                 goto out_ret;
876                         }
877 
878                         intel_pt_log_insn(intel_pt_insn, *ip);
879 
880                         insn_cnt += 1;
881 
882                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
883                                 bool eptw;
884                                 u64 offs;
885 
886                                 if (!intel_pt_jmp_16(intel_pt_insn))
887                                         goto out;
888                                 /* Check for emulated ptwrite */
889                                 offs = offset + intel_pt_insn->length;
890                                 eptw = intel_pt_emulated_ptwrite(dso, machine, offs);
891                                 intel_pt_insn->emulated_ptwrite = eptw;
892                                 goto out;
893                         }
894 
895                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
896                                 goto out_no_cache;
897 
898                         *ip += intel_pt_insn->length;
899 
900                         if (to_ip && *ip == to_ip) {
901                                 intel_pt_insn->length = 0;
902                                 intel_pt_insn->op = INTEL_PT_OP_OTHER;
903                                 goto out_no_cache;
904                         }
905 
906                         if (*ip >= map__end(al.map))
907                                 break;
908 
909                         offset += intel_pt_insn->length;
910                 }
911                 one_map = false;
912         }
913 out:
914         *insn_cnt_ptr = insn_cnt;
915 
916         if (!one_map)
917                 goto out_no_cache;
918 
919         /*
920          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
921          * entries.
922          */
923         if (to_ip) {
924                 struct intel_pt_cache_entry *e;
925 
926                 e = intel_pt_cache_lookup(map__dso(al.map), machine, start_offset);
927                 if (e)
928                         goto out_ret;
929         }
930 
931         /* Ignore cache errors */
932         intel_pt_cache_add(map__dso(al.map), machine, start_offset, insn_cnt,
933                            *ip - start_ip, intel_pt_insn);
934 
935 out_ret:
936         addr_location__exit(&al);
937         return ret;
938 
939 out_no_cache:
940         *insn_cnt_ptr = insn_cnt;
941         addr_location__exit(&al);
942         return 0;
943 }
944 
945 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
946                                   uint64_t offset, const char *filename)
947 {
948         struct addr_filter *filt;
949         bool have_filter   = false;
950         bool hit_tracestop = false;
951         bool hit_filter    = false;
952 
953         list_for_each_entry(filt, &pt->filts.head, list) {
954                 if (filt->start)
955                         have_filter = true;
956 
957                 if ((filename && !filt->filename) ||
958                     (!filename && filt->filename) ||
959                     (filename && strcmp(filename, filt->filename)))
960                         continue;
961 
962                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
963                         continue;
964 
965                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
966                              ip, offset, filename ? filename : "[kernel]",
967                              filt->start ? "filter" : "stop",
968                              filt->addr, filt->size);
969 
970                 if (filt->start)
971                         hit_filter = true;
972                 else
973                         hit_tracestop = true;
974         }
975 
976         if (!hit_tracestop && !hit_filter)
977                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
978                              ip, offset, filename ? filename : "[kernel]");
979 
980         return hit_tracestop || (have_filter && !hit_filter);
981 }
982 
983 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
984 {
985         struct intel_pt_queue *ptq = data;
986         struct thread *thread;
987         struct addr_location al;
988         u8 cpumode;
989         u64 offset;
990         int res;
991 
992         if (ptq->state->to_nr) {
993                 if (intel_pt_guest_kernel_ip(ip))
994                         return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
995                 /* No support for decoding guest user space */
996                 return -EINVAL;
997         } else if (ip >= ptq->pt->kernel_start) {
998                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
999         }
1000 
1001         cpumode = PERF_RECORD_MISC_USER;
1002 
1003         thread = ptq->thread;
1004         if (!thread)
1005                 return -EINVAL;
1006 
1007         addr_location__init(&al);
1008         if (!thread__find_map(thread, cpumode, ip, &al) || !map__dso(al.map))
1009                 return -EINVAL;
1010 
1011         offset = map__map_ip(al.map, ip);
1012 
1013         res = intel_pt_match_pgd_ip(ptq->pt, ip, offset, dso__long_name(map__dso(al.map)));
1014         addr_location__exit(&al);
1015         return res;
1016 }
1017 
1018 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
1019 {
1020         return __intel_pt_pgd_ip(ip, data) > 0;
1021 }
1022 
1023 static bool intel_pt_get_config(struct intel_pt *pt,
1024                                 struct perf_event_attr *attr, u64 *config)
1025 {
1026         if (attr->type == pt->pmu_type) {
1027                 if (config)
1028                         *config = attr->config;
1029                 return true;
1030         }
1031 
1032         return false;
1033 }
1034 
1035 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1036 {
1037         struct evsel *evsel;
1038 
1039         evlist__for_each_entry(pt->session->evlist, evsel) {
1040                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1041                     !evsel->core.attr.exclude_kernel)
1042                         return false;
1043         }
1044         return true;
1045 }
1046 
1047 static bool intel_pt_return_compression(struct intel_pt *pt)
1048 {
1049         struct evsel *evsel;
1050         u64 config;
1051 
1052         if (!pt->noretcomp_bit)
1053                 return true;
1054 
1055         evlist__for_each_entry(pt->session->evlist, evsel) {
1056                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1057                     (config & pt->noretcomp_bit))
1058                         return false;
1059         }
1060         return true;
1061 }
1062 
1063 static bool intel_pt_branch_enable(struct intel_pt *pt)
1064 {
1065         struct evsel *evsel;
1066         u64 config;
1067 
1068         evlist__for_each_entry(pt->session->evlist, evsel) {
1069                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1070                     (config & INTEL_PT_CFG_PASS_THRU) &&
1071                     !(config & INTEL_PT_CFG_BRANCH_EN))
1072                         return false;
1073         }
1074         return true;
1075 }
1076 
1077 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1078 {
1079         struct evsel *evsel;
1080         u64 config;
1081 
1082         evlist__for_each_entry(pt->session->evlist, evsel) {
1083                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1084                     config & INTEL_PT_CFG_TNT_DIS)
1085                         return true;
1086         }
1087         return false;
1088 }
1089 
1090 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1091 {
1092         struct evsel *evsel;
1093         unsigned int shift;
1094         u64 config;
1095 
1096         if (!pt->mtc_freq_bits)
1097                 return 0;
1098 
1099         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1100                 config >>= 1;
1101 
1102         evlist__for_each_entry(pt->session->evlist, evsel) {
1103                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1104                         return (config & pt->mtc_freq_bits) >> shift;
1105         }
1106         return 0;
1107 }
1108 
1109 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1110 {
1111         struct evsel *evsel;
1112         bool timeless_decoding = true;
1113         u64 config;
1114 
1115         if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1116                 return true;
1117 
1118         evlist__for_each_entry(pt->session->evlist, evsel) {
1119                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1120                         return true;
1121                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1122                         if (config & pt->tsc_bit)
1123                                 timeless_decoding = false;
1124                         else
1125                                 return true;
1126                 }
1127         }
1128         return timeless_decoding;
1129 }
1130 
1131 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1132 {
1133         struct evsel *evsel;
1134 
1135         evlist__for_each_entry(pt->session->evlist, evsel) {
1136                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1137                     !evsel->core.attr.exclude_kernel)
1138                         return true;
1139         }
1140         return false;
1141 }
1142 
1143 static bool intel_pt_have_tsc(struct intel_pt *pt)
1144 {
1145         struct evsel *evsel;
1146         bool have_tsc = false;
1147         u64 config;
1148 
1149         if (!pt->tsc_bit)
1150                 return false;
1151 
1152         evlist__for_each_entry(pt->session->evlist, evsel) {
1153                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1154                         if (config & pt->tsc_bit)
1155                                 have_tsc = true;
1156                         else
1157                                 return false;
1158                 }
1159         }
1160         return have_tsc;
1161 }
1162 
1163 static bool intel_pt_have_mtc(struct intel_pt *pt)
1164 {
1165         struct evsel *evsel;
1166         u64 config;
1167 
1168         evlist__for_each_entry(pt->session->evlist, evsel) {
1169                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1170                     (config & pt->mtc_bit))
1171                         return true;
1172         }
1173         return false;
1174 }
1175 
1176 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1177 {
1178         struct evsel *evsel;
1179 
1180         evlist__for_each_entry(pt->session->evlist, evsel) {
1181                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1182                     evsel->core.attr.aux_sample_size)
1183                         return true;
1184         }
1185         return false;
1186 }
1187 
1188 static u64 intel_pt_ctl(struct intel_pt *pt)
1189 {
1190         struct evsel *evsel;
1191         u64 config;
1192 
1193         evlist__for_each_entry(pt->session->evlist, evsel) {
1194                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1195                         return config;
1196         }
1197         return 0;
1198 }
1199 
1200 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1201 {
1202         u64 quot, rem;
1203 
1204         quot = ns / pt->tc.time_mult;
1205         rem  = ns % pt->tc.time_mult;
1206         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1207                 pt->tc.time_mult;
1208 }
1209 
1210 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1211 {
1212         size_t sz = sizeof(struct ip_callchain);
1213 
1214         /* Add 1 to callchain_sz for callchain context */
1215         sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1216         return zalloc(sz);
1217 }
1218 
1219 static int intel_pt_callchain_init(struct intel_pt *pt)
1220 {
1221         struct evsel *evsel;
1222 
1223         evlist__for_each_entry(pt->session->evlist, evsel) {
1224                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1225                         evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1226         }
1227 
1228         pt->chain = intel_pt_alloc_chain(pt);
1229         if (!pt->chain)
1230                 return -ENOMEM;
1231 
1232         return 0;
1233 }
1234 
1235 static void intel_pt_add_callchain(struct intel_pt *pt,
1236                                    struct perf_sample *sample)
1237 {
1238         struct thread *thread = machine__findnew_thread(pt->machine,
1239                                                         sample->pid,
1240                                                         sample->tid);
1241 
1242         thread_stack__sample_late(thread, sample->cpu, pt->chain,
1243                                   pt->synth_opts.callchain_sz + 1, sample->ip,
1244                                   pt->kernel_start);
1245 
1246         sample->callchain = pt->chain;
1247 }
1248 
1249 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1250 {
1251         size_t sz = sizeof(struct branch_stack);
1252 
1253         sz += entry_cnt * sizeof(struct branch_entry);
1254         return zalloc(sz);
1255 }
1256 
1257 static int intel_pt_br_stack_init(struct intel_pt *pt)
1258 {
1259         struct evsel *evsel;
1260 
1261         evlist__for_each_entry(pt->session->evlist, evsel) {
1262                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1263                         evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1264         }
1265 
1266         pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1267         if (!pt->br_stack)
1268                 return -ENOMEM;
1269 
1270         return 0;
1271 }
1272 
1273 static void intel_pt_add_br_stack(struct intel_pt *pt,
1274                                   struct perf_sample *sample)
1275 {
1276         struct thread *thread = machine__findnew_thread(pt->machine,
1277                                                         sample->pid,
1278                                                         sample->tid);
1279 
1280         thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1281                                      pt->br_stack_sz, sample->ip,
1282                                      pt->kernel_start);
1283 
1284         sample->branch_stack = pt->br_stack;
1285         thread__put(thread);
1286 }
1287 
1288 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1289 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1290 
1291 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1292                                                    unsigned int queue_nr)
1293 {
1294         struct intel_pt_params params = { .get_trace = 0, };
1295         struct perf_env *env = pt->machine->env;
1296         struct intel_pt_queue *ptq;
1297 
1298         ptq = zalloc(sizeof(struct intel_pt_queue));
1299         if (!ptq)
1300                 return NULL;
1301 
1302         if (pt->synth_opts.callchain) {
1303                 ptq->chain = intel_pt_alloc_chain(pt);
1304                 if (!ptq->chain)
1305                         goto out_free;
1306         }
1307 
1308         if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1309                 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1310 
1311                 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1312                 if (!ptq->last_branch)
1313                         goto out_free;
1314         }
1315 
1316         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1317         if (!ptq->event_buf)
1318                 goto out_free;
1319 
1320         ptq->pt = pt;
1321         ptq->queue_nr = queue_nr;
1322         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1323         ptq->pid = -1;
1324         ptq->tid = -1;
1325         ptq->cpu = -1;
1326         ptq->next_tid = -1;
1327 
1328         params.get_trace = intel_pt_get_trace;
1329         params.walk_insn = intel_pt_walk_next_insn;
1330         params.lookahead = intel_pt_lookahead;
1331         params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1332         params.data = ptq;
1333         params.return_compression = intel_pt_return_compression(pt);
1334         params.branch_enable = intel_pt_branch_enable(pt);
1335         params.ctl = intel_pt_ctl(pt);
1336         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1337         params.mtc_period = intel_pt_mtc_period(pt);
1338         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1339         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1340         params.quick = pt->synth_opts.quick;
1341         params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1342         params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1343         params.first_timestamp = pt->first_timestamp;
1344         params.max_loops = pt->max_loops;
1345 
1346         /* Cannot walk code without TNT, so force 'quick' mode */
1347         if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1348                 params.quick = 1;
1349 
1350         if (pt->filts.cnt > 0)
1351                 params.pgd_ip = intel_pt_pgd_ip;
1352 
1353         if (pt->synth_opts.instructions || pt->synth_opts.cycles) {
1354                 if (pt->synth_opts.period) {
1355                         switch (pt->synth_opts.period_type) {
1356                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1357                                 params.period_type =
1358                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
1359                                 params.period = pt->synth_opts.period;
1360                                 break;
1361                         case PERF_ITRACE_PERIOD_TICKS:
1362                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1363                                 params.period = pt->synth_opts.period;
1364                                 break;
1365                         case PERF_ITRACE_PERIOD_NANOSECS:
1366                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1367                                 params.period = intel_pt_ns_to_ticks(pt,
1368                                                         pt->synth_opts.period);
1369                                 break;
1370                         default:
1371                                 break;
1372                         }
1373                 }
1374 
1375                 if (!params.period) {
1376                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1377                         params.period = 1;
1378                 }
1379         }
1380 
1381         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1382                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1383 
1384         ptq->decoder = intel_pt_decoder_new(&params);
1385         if (!ptq->decoder)
1386                 goto out_free;
1387 
1388         return ptq;
1389 
1390 out_free:
1391         zfree(&ptq->event_buf);
1392         zfree(&ptq->last_branch);
1393         zfree(&ptq->chain);
1394         free(ptq);
1395         return NULL;
1396 }
1397 
1398 static void intel_pt_free_queue(void *priv)
1399 {
1400         struct intel_pt_queue *ptq = priv;
1401 
1402         if (!ptq)
1403                 return;
1404         thread__zput(ptq->thread);
1405         thread__zput(ptq->guest_thread);
1406         thread__zput(ptq->unknown_guest_thread);
1407         intel_pt_decoder_free(ptq->decoder);
1408         zfree(&ptq->event_buf);
1409         zfree(&ptq->last_branch);
1410         zfree(&ptq->chain);
1411         free(ptq);
1412 }
1413 
1414 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1415 {
1416         unsigned int i;
1417 
1418         pt->first_timestamp = timestamp;
1419 
1420         for (i = 0; i < pt->queues.nr_queues; i++) {
1421                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1422                 struct intel_pt_queue *ptq = queue->priv;
1423 
1424                 if (ptq && ptq->decoder)
1425                         intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1426         }
1427 }
1428 
1429 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1430 {
1431         struct machines *machines = &ptq->pt->session->machines;
1432         struct machine *machine;
1433         pid_t machine_pid = ptq->pid;
1434         pid_t tid;
1435         int vcpu;
1436 
1437         if (machine_pid <= 0)
1438                 return 0; /* Not a guest machine */
1439 
1440         machine = machines__find(machines, machine_pid);
1441         if (!machine)
1442                 return 0; /* Not a guest machine */
1443 
1444         if (ptq->guest_machine != machine) {
1445                 ptq->guest_machine = NULL;
1446                 thread__zput(ptq->guest_thread);
1447                 thread__zput(ptq->unknown_guest_thread);
1448 
1449                 ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1450                 if (!ptq->unknown_guest_thread)
1451                         return -1;
1452                 ptq->guest_machine = machine;
1453         }
1454 
1455         vcpu = ptq->thread ? thread__guest_cpu(ptq->thread) : -1;
1456         if (vcpu < 0)
1457                 return -1;
1458 
1459         tid = machine__get_current_tid(machine, vcpu);
1460 
1461         if (ptq->guest_thread && thread__tid(ptq->guest_thread) != tid)
1462                 thread__zput(ptq->guest_thread);
1463 
1464         if (!ptq->guest_thread) {
1465                 ptq->guest_thread = machine__find_thread(machine, -1, tid);
1466                 if (!ptq->guest_thread)
1467                         return -1;
1468         }
1469 
1470         ptq->guest_machine_pid = machine_pid;
1471         ptq->guest_pid = thread__pid(ptq->guest_thread);
1472         ptq->guest_tid = tid;
1473         ptq->vcpu = vcpu;
1474 
1475         return 0;
1476 }
1477 
1478 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1479                                      struct auxtrace_queue *queue)
1480 {
1481         struct intel_pt_queue *ptq = queue->priv;
1482 
1483         if (queue->tid == -1 || pt->have_sched_switch) {
1484                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1485                 if (ptq->tid == -1)
1486                         ptq->pid = -1;
1487                 thread__zput(ptq->thread);
1488         }
1489 
1490         if (!ptq->thread && ptq->tid != -1)
1491                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1492 
1493         if (ptq->thread) {
1494                 ptq->pid = thread__pid(ptq->thread);
1495                 if (queue->cpu == -1)
1496                         ptq->cpu = thread__cpu(ptq->thread);
1497         }
1498 
1499         if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1500                 ptq->guest_machine_pid = 0;
1501                 ptq->guest_pid = -1;
1502                 ptq->guest_tid = -1;
1503                 ptq->vcpu = -1;
1504         }
1505 }
1506 
1507 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1508 {
1509         struct intel_pt *pt = ptq->pt;
1510 
1511         ptq->insn_len = 0;
1512         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1513                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1514         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1515                 if (!ptq->state->to_ip)
1516                         ptq->flags = PERF_IP_FLAG_BRANCH |
1517                                      PERF_IP_FLAG_ASYNC |
1518                                      PERF_IP_FLAG_TRACE_END;
1519                 else if (ptq->state->from_nr && !ptq->state->to_nr)
1520                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1521                                      PERF_IP_FLAG_ASYNC |
1522                                      PERF_IP_FLAG_VMEXIT;
1523                 else
1524                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1525                                      PERF_IP_FLAG_ASYNC |
1526                                      PERF_IP_FLAG_INTERRUPT;
1527         } else {
1528                 if (ptq->state->from_ip)
1529                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1530                 else
1531                         ptq->flags = PERF_IP_FLAG_BRANCH |
1532                                      PERF_IP_FLAG_TRACE_BEGIN;
1533                 if (ptq->state->flags & INTEL_PT_IN_TX)
1534                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1535                 ptq->insn_len = ptq->state->insn_len;
1536                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1537         }
1538 
1539         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1540                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1541         if (ptq->state->type & INTEL_PT_TRACE_END)
1542                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1543 
1544         if (pt->cap_event_trace) {
1545                 if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1546                         if (!ptq->state->from_iflag)
1547                                 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1548                         if (ptq->state->from_iflag != ptq->state->to_iflag)
1549                                 ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1550                 } else if (!ptq->state->to_iflag) {
1551                         ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1552                 }
1553         }
1554 }
1555 
1556 static void intel_pt_setup_time_range(struct intel_pt *pt,
1557                                       struct intel_pt_queue *ptq)
1558 {
1559         if (!pt->range_cnt)
1560                 return;
1561 
1562         ptq->sel_timestamp = pt->time_ranges[0].start;
1563         ptq->sel_idx = 0;
1564 
1565         if (ptq->sel_timestamp) {
1566                 ptq->sel_start = true;
1567         } else {
1568                 ptq->sel_timestamp = pt->time_ranges[0].end;
1569                 ptq->sel_start = false;
1570         }
1571 }
1572 
1573 static int intel_pt_setup_queue(struct intel_pt *pt,
1574                                 struct auxtrace_queue *queue,
1575                                 unsigned int queue_nr)
1576 {
1577         struct intel_pt_queue *ptq = queue->priv;
1578 
1579         if (list_empty(&queue->head))
1580                 return 0;
1581 
1582         if (!ptq) {
1583                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1584                 if (!ptq)
1585                         return -ENOMEM;
1586                 queue->priv = ptq;
1587 
1588                 if (queue->cpu != -1)
1589                         ptq->cpu = queue->cpu;
1590                 ptq->tid = queue->tid;
1591 
1592                 ptq->cbr_seen = UINT_MAX;
1593 
1594                 if (pt->sampling_mode && !pt->snapshot_mode &&
1595                     pt->timeless_decoding)
1596                         ptq->step_through_buffers = true;
1597 
1598                 ptq->sync_switch = pt->sync_switch;
1599 
1600                 intel_pt_setup_time_range(pt, ptq);
1601         }
1602 
1603         if (!ptq->on_heap &&
1604             (!ptq->sync_switch ||
1605              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1606                 const struct intel_pt_state *state;
1607                 int ret;
1608 
1609                 if (pt->timeless_decoding)
1610                         return 0;
1611 
1612                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1613                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1614                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1615 
1616                 if (ptq->sel_start && ptq->sel_timestamp) {
1617                         ret = intel_pt_fast_forward(ptq->decoder,
1618                                                     ptq->sel_timestamp);
1619                         if (ret)
1620                                 return ret;
1621                 }
1622 
1623                 while (1) {
1624                         state = intel_pt_decode(ptq->decoder);
1625                         if (state->err) {
1626                                 if (state->err == INTEL_PT_ERR_NODATA) {
1627                                         intel_pt_log("queue %u has no timestamp\n",
1628                                                      queue_nr);
1629                                         return 0;
1630                                 }
1631                                 continue;
1632                         }
1633                         if (state->timestamp)
1634                                 break;
1635                 }
1636 
1637                 ptq->timestamp = state->timestamp;
1638                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1639                              queue_nr, ptq->timestamp);
1640                 ptq->state = state;
1641                 ptq->have_sample = true;
1642                 if (ptq->sel_start && ptq->sel_timestamp &&
1643                     ptq->timestamp < ptq->sel_timestamp)
1644                         ptq->have_sample = false;
1645                 intel_pt_sample_flags(ptq);
1646                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1647                 if (ret)
1648                         return ret;
1649                 ptq->on_heap = true;
1650         }
1651 
1652         return 0;
1653 }
1654 
1655 static int intel_pt_setup_queues(struct intel_pt *pt)
1656 {
1657         unsigned int i;
1658         int ret;
1659 
1660         for (i = 0; i < pt->queues.nr_queues; i++) {
1661                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1662                 if (ret)
1663                         return ret;
1664         }
1665         return 0;
1666 }
1667 
1668 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1669 {
1670         return pt->synth_opts.initial_skip &&
1671                pt->num_events++ < pt->synth_opts.initial_skip;
1672 }
1673 
1674 /*
1675  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1676  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1677  * from this decoder state.
1678  */
1679 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1680 {
1681         return pt->synth_opts.initial_skip &&
1682                pt->num_events + 4 < pt->synth_opts.initial_skip;
1683 }
1684 
1685 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1686                                    union perf_event *event,
1687                                    struct perf_sample *sample)
1688 {
1689         event->sample.header.type = PERF_RECORD_SAMPLE;
1690         event->sample.header.size = sizeof(struct perf_event_header);
1691 
1692         sample->pid = ptq->pid;
1693         sample->tid = ptq->tid;
1694 
1695         if (ptq->pt->have_guest_sideband) {
1696                 if ((ptq->state->from_ip && ptq->state->from_nr) ||
1697                     (ptq->state->to_ip && ptq->state->to_nr)) {
1698                         sample->pid = ptq->guest_pid;
1699                         sample->tid = ptq->guest_tid;
1700                         sample->machine_pid = ptq->guest_machine_pid;
1701                         sample->vcpu = ptq->vcpu;
1702                 }
1703         }
1704 
1705         sample->cpu = ptq->cpu;
1706         sample->insn_len = ptq->insn_len;
1707         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1708 }
1709 
1710 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1711                                    struct intel_pt_queue *ptq,
1712                                    union perf_event *event,
1713                                    struct perf_sample *sample)
1714 {
1715         intel_pt_prep_a_sample(ptq, event, sample);
1716 
1717         if (!pt->timeless_decoding)
1718                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1719 
1720         sample->ip = ptq->state->from_ip;
1721         sample->addr = ptq->state->to_ip;
1722         sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1723         sample->period = 1;
1724         sample->flags = ptq->flags;
1725 
1726         event->sample.header.misc = sample->cpumode;
1727 }
1728 
1729 static int intel_pt_inject_event(union perf_event *event,
1730                                  struct perf_sample *sample, u64 type)
1731 {
1732         event->header.size = perf_event__sample_event_size(sample, type, 0);
1733         return perf_event__synthesize_sample(event, type, 0, sample);
1734 }
1735 
1736 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1737                                       union perf_event *event,
1738                                       struct perf_sample *sample, u64 type)
1739 {
1740         if (!pt->synth_opts.inject)
1741                 return 0;
1742 
1743         return intel_pt_inject_event(event, sample, type);
1744 }
1745 
1746 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1747                                         union perf_event *event,
1748                                         struct perf_sample *sample, u64 type)
1749 {
1750         int ret;
1751 
1752         ret = intel_pt_opt_inject(pt, event, sample, type);
1753         if (ret)
1754                 return ret;
1755 
1756         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1757         if (ret)
1758                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1759 
1760         return ret;
1761 }
1762 
1763 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1764 {
1765         struct intel_pt *pt = ptq->pt;
1766         union perf_event *event = ptq->event_buf;
1767         struct perf_sample sample = { .ip = 0, };
1768         struct dummy_branch_stack {
1769                 u64                     nr;
1770                 u64                     hw_idx;
1771                 struct branch_entry     entries;
1772         } dummy_bs;
1773 
1774         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1775                 return 0;
1776 
1777         if (intel_pt_skip_event(pt))
1778                 return 0;
1779 
1780         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1781 
1782         sample.id = ptq->pt->branches_id;
1783         sample.stream_id = ptq->pt->branches_id;
1784 
1785         /*
1786          * perf report cannot handle events without a branch stack when using
1787          * SORT_MODE__BRANCH so make a dummy one.
1788          */
1789         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1790                 dummy_bs = (struct dummy_branch_stack){
1791                         .nr = 1,
1792                         .hw_idx = -1ULL,
1793                         .entries = {
1794                                 .from = sample.ip,
1795                                 .to = sample.addr,
1796                         },
1797                 };
1798                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1799         }
1800 
1801         if (ptq->sample_ipc)
1802                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1803         if (sample.cyc_cnt) {
1804                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1805                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1806                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1807         }
1808 
1809         return intel_pt_deliver_synth_event(pt, event, &sample,
1810                                             pt->branches_sample_type);
1811 }
1812 
1813 static void intel_pt_prep_sample(struct intel_pt *pt,
1814                                  struct intel_pt_queue *ptq,
1815                                  union perf_event *event,
1816                                  struct perf_sample *sample)
1817 {
1818         intel_pt_prep_b_sample(pt, ptq, event, sample);
1819 
1820         if (pt->synth_opts.callchain) {
1821                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1822                                      pt->synth_opts.callchain_sz + 1,
1823                                      sample->ip, pt->kernel_start);
1824                 sample->callchain = ptq->chain;
1825         }
1826 
1827         if (pt->synth_opts.last_branch) {
1828                 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1829                                         pt->br_stack_sz);
1830                 sample->branch_stack = ptq->last_branch;
1831         }
1832 }
1833 
1834 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1835 {
1836         struct intel_pt *pt = ptq->pt;
1837         union perf_event *event = ptq->event_buf;
1838         struct perf_sample sample = { .ip = 0, };
1839 
1840         if (intel_pt_skip_event(pt))
1841                 return 0;
1842 
1843         intel_pt_prep_sample(pt, ptq, event, &sample);
1844 
1845         sample.id = ptq->pt->instructions_id;
1846         sample.stream_id = ptq->pt->instructions_id;
1847         if (pt->synth_opts.quick)
1848                 sample.period = 1;
1849         else
1850                 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1851 
1852         if (ptq->sample_ipc)
1853                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1854         if (sample.cyc_cnt) {
1855                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1856                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1857                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1858         }
1859 
1860         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1861 
1862         return intel_pt_deliver_synth_event(pt, event, &sample,
1863                                             pt->instructions_sample_type);
1864 }
1865 
1866 static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq)
1867 {
1868         struct intel_pt *pt = ptq->pt;
1869         union perf_event *event = ptq->event_buf;
1870         struct perf_sample sample = { .ip = 0, };
1871         u64 period = 0;
1872 
1873         if (ptq->sample_ipc)
1874                 period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt;
1875 
1876         if (!period || intel_pt_skip_event(pt))
1877                 return 0;
1878 
1879         intel_pt_prep_sample(pt, ptq, event, &sample);
1880 
1881         sample.id = ptq->pt->cycles_id;
1882         sample.stream_id = ptq->pt->cycles_id;
1883         sample.period = period;
1884 
1885         sample.cyc_cnt = period;
1886         sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt;
1887         ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt;
1888         ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt;
1889 
1890         return intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type);
1891 }
1892 
1893 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1894 {
1895         struct intel_pt *pt = ptq->pt;
1896         union perf_event *event = ptq->event_buf;
1897         struct perf_sample sample = { .ip = 0, };
1898 
1899         if (intel_pt_skip_event(pt))
1900                 return 0;
1901 
1902         intel_pt_prep_sample(pt, ptq, event, &sample);
1903 
1904         sample.id = ptq->pt->transactions_id;
1905         sample.stream_id = ptq->pt->transactions_id;
1906 
1907         return intel_pt_deliver_synth_event(pt, event, &sample,
1908                                             pt->transactions_sample_type);
1909 }
1910 
1911 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1912                                    struct intel_pt_queue *ptq,
1913                                    union perf_event *event,
1914                                    struct perf_sample *sample)
1915 {
1916         intel_pt_prep_sample(pt, ptq, event, sample);
1917 
1918         /*
1919          * Zero IP is used to mean "trace start" but that is not the case for
1920          * power or PTWRITE events with no IP, so clear the flags.
1921          */
1922         if (!sample->ip)
1923                 sample->flags = 0;
1924 }
1925 
1926 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1927 {
1928         struct intel_pt *pt = ptq->pt;
1929         union perf_event *event = ptq->event_buf;
1930         struct perf_sample sample = { .ip = 0, };
1931         struct perf_synth_intel_ptwrite raw;
1932 
1933         if (intel_pt_skip_event(pt))
1934                 return 0;
1935 
1936         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1937 
1938         sample.id = ptq->pt->ptwrites_id;
1939         sample.stream_id = ptq->pt->ptwrites_id;
1940 
1941         raw.flags = 0;
1942         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1943         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1944 
1945         sample.raw_size = perf_synth__raw_size(raw);
1946         sample.raw_data = perf_synth__raw_data(&raw);
1947 
1948         return intel_pt_deliver_synth_event(pt, event, &sample,
1949                                             pt->ptwrites_sample_type);
1950 }
1951 
1952 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1953 {
1954         struct intel_pt *pt = ptq->pt;
1955         union perf_event *event = ptq->event_buf;
1956         struct perf_sample sample = { .ip = 0, };
1957         struct perf_synth_intel_cbr raw;
1958         u32 flags;
1959 
1960         if (intel_pt_skip_cbr_event(pt))
1961                 return 0;
1962 
1963         ptq->cbr_seen = ptq->state->cbr;
1964 
1965         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1966 
1967         sample.id = ptq->pt->cbr_id;
1968         sample.stream_id = ptq->pt->cbr_id;
1969 
1970         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1971         raw.flags = cpu_to_le32(flags);
1972         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1973         raw.reserved3 = 0;
1974 
1975         sample.raw_size = perf_synth__raw_size(raw);
1976         sample.raw_data = perf_synth__raw_data(&raw);
1977 
1978         return intel_pt_deliver_synth_event(pt, event, &sample,
1979                                             pt->pwr_events_sample_type);
1980 }
1981 
1982 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1983 {
1984         struct intel_pt *pt = ptq->pt;
1985         union perf_event *event = ptq->event_buf;
1986         struct perf_sample sample = { .ip = 0, };
1987         struct perf_synth_intel_psb raw;
1988 
1989         if (intel_pt_skip_event(pt))
1990                 return 0;
1991 
1992         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1993 
1994         sample.id = ptq->pt->psb_id;
1995         sample.stream_id = ptq->pt->psb_id;
1996         sample.flags = 0;
1997 
1998         raw.reserved = 0;
1999         raw.offset = ptq->state->psb_offset;
2000 
2001         sample.raw_size = perf_synth__raw_size(raw);
2002         sample.raw_data = perf_synth__raw_data(&raw);
2003 
2004         return intel_pt_deliver_synth_event(pt, event, &sample,
2005                                             pt->pwr_events_sample_type);
2006 }
2007 
2008 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
2009 {
2010         struct intel_pt *pt = ptq->pt;
2011         union perf_event *event = ptq->event_buf;
2012         struct perf_sample sample = { .ip = 0, };
2013         struct perf_synth_intel_mwait raw;
2014 
2015         if (intel_pt_skip_event(pt))
2016                 return 0;
2017 
2018         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2019 
2020         sample.id = ptq->pt->mwait_id;
2021         sample.stream_id = ptq->pt->mwait_id;
2022 
2023         raw.reserved = 0;
2024         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
2025 
2026         sample.raw_size = perf_synth__raw_size(raw);
2027         sample.raw_data = perf_synth__raw_data(&raw);
2028 
2029         return intel_pt_deliver_synth_event(pt, event, &sample,
2030                                             pt->pwr_events_sample_type);
2031 }
2032 
2033 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
2034 {
2035         struct intel_pt *pt = ptq->pt;
2036         union perf_event *event = ptq->event_buf;
2037         struct perf_sample sample = { .ip = 0, };
2038         struct perf_synth_intel_pwre raw;
2039 
2040         if (intel_pt_skip_event(pt))
2041                 return 0;
2042 
2043         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2044 
2045         sample.id = ptq->pt->pwre_id;
2046         sample.stream_id = ptq->pt->pwre_id;
2047 
2048         raw.reserved = 0;
2049         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
2050 
2051         sample.raw_size = perf_synth__raw_size(raw);
2052         sample.raw_data = perf_synth__raw_data(&raw);
2053 
2054         return intel_pt_deliver_synth_event(pt, event, &sample,
2055                                             pt->pwr_events_sample_type);
2056 }
2057 
2058 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2059 {
2060         struct intel_pt *pt = ptq->pt;
2061         union perf_event *event = ptq->event_buf;
2062         struct perf_sample sample = { .ip = 0, };
2063         struct perf_synth_intel_exstop raw;
2064 
2065         if (intel_pt_skip_event(pt))
2066                 return 0;
2067 
2068         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2069 
2070         sample.id = ptq->pt->exstop_id;
2071         sample.stream_id = ptq->pt->exstop_id;
2072 
2073         raw.flags = 0;
2074         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2075 
2076         sample.raw_size = perf_synth__raw_size(raw);
2077         sample.raw_data = perf_synth__raw_data(&raw);
2078 
2079         return intel_pt_deliver_synth_event(pt, event, &sample,
2080                                             pt->pwr_events_sample_type);
2081 }
2082 
2083 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2084 {
2085         struct intel_pt *pt = ptq->pt;
2086         union perf_event *event = ptq->event_buf;
2087         struct perf_sample sample = { .ip = 0, };
2088         struct perf_synth_intel_pwrx raw;
2089 
2090         if (intel_pt_skip_event(pt))
2091                 return 0;
2092 
2093         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2094 
2095         sample.id = ptq->pt->pwrx_id;
2096         sample.stream_id = ptq->pt->pwrx_id;
2097 
2098         raw.reserved = 0;
2099         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2100 
2101         sample.raw_size = perf_synth__raw_size(raw);
2102         sample.raw_data = perf_synth__raw_data(&raw);
2103 
2104         return intel_pt_deliver_synth_event(pt, event, &sample,
2105                                             pt->pwr_events_sample_type);
2106 }
2107 
2108 /*
2109  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2110  * intel_pt_add_gp_regs().
2111  */
2112 static const int pebs_gp_regs[] = {
2113         [PERF_REG_X86_FLAGS]    = 1,
2114         [PERF_REG_X86_IP]       = 2,
2115         [PERF_REG_X86_AX]       = 3,
2116         [PERF_REG_X86_CX]       = 4,
2117         [PERF_REG_X86_DX]       = 5,
2118         [PERF_REG_X86_BX]       = 6,
2119         [PERF_REG_X86_SP]       = 7,
2120         [PERF_REG_X86_BP]       = 8,
2121         [PERF_REG_X86_SI]       = 9,
2122         [PERF_REG_X86_DI]       = 10,
2123         [PERF_REG_X86_R8]       = 11,
2124         [PERF_REG_X86_R9]       = 12,
2125         [PERF_REG_X86_R10]      = 13,
2126         [PERF_REG_X86_R11]      = 14,
2127         [PERF_REG_X86_R12]      = 15,
2128         [PERF_REG_X86_R13]      = 16,
2129         [PERF_REG_X86_R14]      = 17,
2130         [PERF_REG_X86_R15]      = 18,
2131 };
2132 
2133 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2134                                  const struct intel_pt_blk_items *items,
2135                                  u64 regs_mask)
2136 {
2137         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2138         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2139         u32 bit;
2140         int i;
2141 
2142         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2143                 /* Get the PEBS gp_regs array index */
2144                 int n = pebs_gp_regs[i] - 1;
2145 
2146                 if (n < 0)
2147                         continue;
2148                 /*
2149                  * Add only registers that were requested (i.e. 'regs_mask') and
2150                  * that were provided (i.e. 'mask'), and update the resulting
2151                  * mask (i.e. 'intr_regs->mask') accordingly.
2152                  */
2153                 if (mask & 1 << n && regs_mask & bit) {
2154                         intr_regs->mask |= bit;
2155                         *pos++ = gp_regs[n];
2156                 }
2157         }
2158 
2159         return pos;
2160 }
2161 
2162 #ifndef PERF_REG_X86_XMM0
2163 #define PERF_REG_X86_XMM0 32
2164 #endif
2165 
2166 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2167                              const struct intel_pt_blk_items *items,
2168                              u64 regs_mask)
2169 {
2170         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2171         const u64 *xmm = items->xmm;
2172 
2173         /*
2174          * If there are any XMM registers, then there should be all of them.
2175          * Nevertheless, follow the logic to add only registers that were
2176          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2177          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2178          */
2179         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2180 
2181         for (; mask; mask >>= 1, xmm++) {
2182                 if (mask & 1)
2183                         *pos++ = *xmm;
2184         }
2185 }
2186 
2187 #define LBR_INFO_MISPRED        (1ULL << 63)
2188 #define LBR_INFO_IN_TX          (1ULL << 62)
2189 #define LBR_INFO_ABORT          (1ULL << 61)
2190 #define LBR_INFO_CYCLES         0xffff
2191 
2192 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
2193 static u64 intel_pt_lbr_flags(u64 info)
2194 {
2195         union {
2196                 struct branch_flags flags;
2197                 u64 result;
2198         } u;
2199 
2200         u.result          = 0;
2201         u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
2202         u.flags.predicted = !(info & LBR_INFO_MISPRED);
2203         u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
2204         u.flags.abort     = !!(info & LBR_INFO_ABORT);
2205         u.flags.cycles    = info & LBR_INFO_CYCLES;
2206 
2207         return u.result;
2208 }
2209 
2210 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2211                               const struct intel_pt_blk_items *items)
2212 {
2213         u64 *to;
2214         int i;
2215 
2216         br_stack->nr = 0;
2217 
2218         to = &br_stack->entries[0].from;
2219 
2220         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2221                 u32 mask = items->mask[i];
2222                 const u64 *from = items->val[i];
2223 
2224                 for (; mask; mask >>= 3, from += 3) {
2225                         if ((mask & 7) == 7) {
2226                                 *to++ = from[0];
2227                                 *to++ = from[1];
2228                                 *to++ = intel_pt_lbr_flags(from[2]);
2229                                 br_stack->nr += 1;
2230                         }
2231                 }
2232         }
2233 }
2234 
2235 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2236 {
2237         const struct intel_pt_blk_items *items = &ptq->state->items;
2238         struct perf_sample sample = { .ip = 0, };
2239         union perf_event *event = ptq->event_buf;
2240         struct intel_pt *pt = ptq->pt;
2241         u64 sample_type = evsel->core.attr.sample_type;
2242         u8 cpumode;
2243         u64 regs[8 * sizeof(sample.intr_regs.mask)];
2244 
2245         if (intel_pt_skip_event(pt))
2246                 return 0;
2247 
2248         intel_pt_prep_a_sample(ptq, event, &sample);
2249 
2250         sample.id = id;
2251         sample.stream_id = id;
2252 
2253         if (!evsel->core.attr.freq)
2254                 sample.period = evsel->core.attr.sample_period;
2255 
2256         /* No support for non-zero CS base */
2257         if (items->has_ip)
2258                 sample.ip = items->ip;
2259         else if (items->has_rip)
2260                 sample.ip = items->rip;
2261         else
2262                 sample.ip = ptq->state->from_ip;
2263 
2264         cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2265 
2266         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2267 
2268         sample.cpumode = cpumode;
2269 
2270         if (sample_type & PERF_SAMPLE_TIME) {
2271                 u64 timestamp = 0;
2272 
2273                 if (items->has_timestamp)
2274                         timestamp = items->timestamp;
2275                 else if (!pt->timeless_decoding)
2276                         timestamp = ptq->timestamp;
2277                 if (timestamp)
2278                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2279         }
2280 
2281         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2282             pt->synth_opts.callchain) {
2283                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2284                                      pt->synth_opts.callchain_sz, sample.ip,
2285                                      pt->kernel_start);
2286                 sample.callchain = ptq->chain;
2287         }
2288 
2289         if (sample_type & PERF_SAMPLE_REGS_INTR &&
2290             (items->mask[INTEL_PT_GP_REGS_POS] ||
2291              items->mask[INTEL_PT_XMM_POS])) {
2292                 u64 regs_mask = evsel->core.attr.sample_regs_intr;
2293                 u64 *pos;
2294 
2295                 sample.intr_regs.abi = items->is_32_bit ?
2296                                        PERF_SAMPLE_REGS_ABI_32 :
2297                                        PERF_SAMPLE_REGS_ABI_64;
2298                 sample.intr_regs.regs = regs;
2299 
2300                 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2301 
2302                 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2303         }
2304 
2305         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2306                 if (items->mask[INTEL_PT_LBR_0_POS] ||
2307                     items->mask[INTEL_PT_LBR_1_POS] ||
2308                     items->mask[INTEL_PT_LBR_2_POS]) {
2309                         intel_pt_add_lbrs(ptq->last_branch, items);
2310                 } else if (pt->synth_opts.last_branch) {
2311                         thread_stack__br_sample(ptq->thread, ptq->cpu,
2312                                                 ptq->last_branch,
2313                                                 pt->br_stack_sz);
2314                 } else {
2315                         ptq->last_branch->nr = 0;
2316                 }
2317                 sample.branch_stack = ptq->last_branch;
2318         }
2319 
2320         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2321                 sample.addr = items->mem_access_address;
2322 
2323         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2324                 /*
2325                  * Refer kernel's setup_pebs_adaptive_sample_data() and
2326                  * intel_hsw_weight().
2327                  */
2328                 if (items->has_mem_access_latency) {
2329                         u64 weight = items->mem_access_latency >> 32;
2330 
2331                         /*
2332                          * Starts from SPR, the mem access latency field
2333                          * contains both cache latency [47:32] and instruction
2334                          * latency [15:0]. The cache latency is the same as the
2335                          * mem access latency on previous platforms.
2336                          *
2337                          * In practice, no memory access could last than 4G
2338                          * cycles. Use latency >> 32 to distinguish the
2339                          * different format of the mem access latency field.
2340                          */
2341                         if (weight > 0) {
2342                                 sample.weight = weight & 0xffff;
2343                                 sample.ins_lat = items->mem_access_latency & 0xffff;
2344                         } else
2345                                 sample.weight = items->mem_access_latency;
2346                 }
2347                 if (!sample.weight && items->has_tsx_aux_info) {
2348                         /* Cycles last block */
2349                         sample.weight = (u32)items->tsx_aux_info;
2350                 }
2351         }
2352 
2353         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2354                 u64 ax = items->has_rax ? items->rax : 0;
2355                 /* Refer kernel's intel_hsw_transaction() */
2356                 u64 txn = (u8)(items->tsx_aux_info >> 32);
2357 
2358                 /* For RTM XABORTs also log the abort code from AX */
2359                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
2360                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2361                 sample.transaction = txn;
2362         }
2363 
2364         return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2365 }
2366 
2367 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2368 {
2369         struct intel_pt *pt = ptq->pt;
2370         struct evsel *evsel = pt->pebs_evsel;
2371         u64 id = evsel->core.id[0];
2372 
2373         return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2374 }
2375 
2376 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2377 {
2378         const struct intel_pt_blk_items *items = &ptq->state->items;
2379         struct intel_pt_pebs_event *pe;
2380         struct intel_pt *pt = ptq->pt;
2381         int err = -EINVAL;
2382         int hw_id;
2383 
2384         if (!items->has_applicable_counters || !items->applicable_counters) {
2385                 if (!pt->single_pebs)
2386                         pr_err("PEBS-via-PT record with no applicable_counters\n");
2387                 return intel_pt_synth_single_pebs_sample(ptq);
2388         }
2389 
2390         for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2391                 pe = &ptq->pebs[hw_id];
2392                 if (!pe->evsel) {
2393                         if (!pt->single_pebs)
2394                                 pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2395                                        hw_id);
2396                         return intel_pt_synth_single_pebs_sample(ptq);
2397                 }
2398                 err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2399                 if (err)
2400                         return err;
2401         }
2402 
2403         return err;
2404 }
2405 
2406 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2407 {
2408         struct intel_pt *pt = ptq->pt;
2409         union perf_event *event = ptq->event_buf;
2410         struct perf_sample sample = { .ip = 0, };
2411         struct {
2412                 struct perf_synth_intel_evt cfe;
2413                 struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2414         } raw;
2415         int i;
2416 
2417         if (intel_pt_skip_event(pt))
2418                 return 0;
2419 
2420         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2421 
2422         sample.id        = ptq->pt->evt_id;
2423         sample.stream_id = ptq->pt->evt_id;
2424 
2425         raw.cfe.type     = ptq->state->cfe_type;
2426         raw.cfe.reserved = 0;
2427         raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2428         raw.cfe.vector   = ptq->state->cfe_vector;
2429         raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2430 
2431         for (i = 0; i < ptq->state->evd_cnt; i++) {
2432                 raw.evd[i].et       = 0;
2433                 raw.evd[i].evd_type = ptq->state->evd[i].type;
2434                 raw.evd[i].payload  = ptq->state->evd[i].payload;
2435         }
2436 
2437         sample.raw_size = perf_synth__raw_size(raw) +
2438                           ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2439         sample.raw_data = perf_synth__raw_data(&raw);
2440 
2441         return intel_pt_deliver_synth_event(pt, event, &sample,
2442                                             pt->evt_sample_type);
2443 }
2444 
2445 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2446 {
2447         struct intel_pt *pt = ptq->pt;
2448         union perf_event *event = ptq->event_buf;
2449         struct perf_sample sample = { .ip = 0, };
2450         struct perf_synth_intel_iflag_chg raw;
2451 
2452         if (intel_pt_skip_event(pt))
2453                 return 0;
2454 
2455         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2456 
2457         sample.id = ptq->pt->iflag_chg_id;
2458         sample.stream_id = ptq->pt->iflag_chg_id;
2459 
2460         raw.flags = 0;
2461         raw.iflag = ptq->state->to_iflag;
2462 
2463         if (ptq->state->type & INTEL_PT_BRANCH) {
2464                 raw.via_branch = 1;
2465                 raw.branch_ip = ptq->state->to_ip;
2466         } else {
2467                 sample.addr = 0;
2468         }
2469         sample.flags = ptq->flags;
2470 
2471         sample.raw_size = perf_synth__raw_size(raw);
2472         sample.raw_data = perf_synth__raw_data(&raw);
2473 
2474         return intel_pt_deliver_synth_event(pt, event, &sample,
2475                                             pt->iflag_chg_sample_type);
2476 }
2477 
2478 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2479                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2480                                 pid_t machine_pid, int vcpu)
2481 {
2482         bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2483         bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2484         union perf_event event;
2485         char msg[MAX_AUXTRACE_ERROR_MSG];
2486         int err;
2487 
2488         if (pt->synth_opts.error_minus_flags) {
2489                 if (code == INTEL_PT_ERR_OVR &&
2490                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2491                         return 0;
2492                 if (code == INTEL_PT_ERR_LOST &&
2493                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2494                         return 0;
2495         }
2496 
2497         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2498 
2499         auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2500                                    code, cpu, pid, tid, ip, msg, timestamp,
2501                                    machine_pid, vcpu);
2502 
2503         if (intel_pt_enable_logging && !log_on_stdout) {
2504                 FILE *fp = intel_pt_log_fp();
2505 
2506                 if (fp)
2507                         perf_event__fprintf_auxtrace_error(&event, fp);
2508         }
2509 
2510         if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2511                 intel_pt_log_dump_buf();
2512 
2513         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2514         if (err)
2515                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2516                        err);
2517 
2518         return err;
2519 }
2520 
2521 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2522                                  const struct intel_pt_state *state)
2523 {
2524         struct intel_pt *pt = ptq->pt;
2525         u64 tm = ptq->timestamp;
2526         pid_t machine_pid = 0;
2527         pid_t pid = ptq->pid;
2528         pid_t tid = ptq->tid;
2529         int vcpu = -1;
2530 
2531         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2532 
2533         if (pt->have_guest_sideband && state->from_nr) {
2534                 machine_pid = ptq->guest_machine_pid;
2535                 vcpu = ptq->vcpu;
2536                 pid = ptq->guest_pid;
2537                 tid = ptq->guest_tid;
2538         }
2539 
2540         return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2541                                     state->from_ip, tm, machine_pid, vcpu);
2542 }
2543 
2544 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2545 {
2546         struct auxtrace_queue *queue;
2547         pid_t tid = ptq->next_tid;
2548         int err;
2549 
2550         if (tid == -1)
2551                 return 0;
2552 
2553         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2554 
2555         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2556 
2557         queue = &pt->queues.queue_array[ptq->queue_nr];
2558         intel_pt_set_pid_tid_cpu(pt, queue);
2559 
2560         ptq->next_tid = -1;
2561 
2562         return err;
2563 }
2564 
2565 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2566 {
2567         struct intel_pt *pt = ptq->pt;
2568 
2569         return ip == pt->switch_ip &&
2570                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2571                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2572                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2573 }
2574 
2575 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2576                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2577 
2578 static int intel_pt_sample(struct intel_pt_queue *ptq)
2579 {
2580         const struct intel_pt_state *state = ptq->state;
2581         struct intel_pt *pt = ptq->pt;
2582         int err;
2583 
2584         if (!ptq->have_sample)
2585                 return 0;
2586 
2587         ptq->have_sample = false;
2588 
2589         if (pt->synth_opts.approx_ipc) {
2590                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2591                 ptq->ipc_cyc_cnt = ptq->state->cycles;
2592                 ptq->sample_ipc = true;
2593         } else {
2594                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2595                 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2596                 ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2597         }
2598 
2599         /* Ensure guest code maps are set up */
2600         if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2601                 intel_pt_get_guest(ptq);
2602 
2603         /*
2604          * Do PEBS first to allow for the possibility that the PEBS timestamp
2605          * precedes the current timestamp.
2606          */
2607         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2608                 err = intel_pt_synth_pebs_sample(ptq);
2609                 if (err)
2610                         return err;
2611         }
2612 
2613         if (pt->synth_opts.intr_events) {
2614                 if (state->type & INTEL_PT_EVT) {
2615                         err = intel_pt_synth_events_sample(ptq);
2616                         if (err)
2617                                 return err;
2618                 }
2619                 if (state->type & INTEL_PT_IFLAG_CHG) {
2620                         err = intel_pt_synth_iflag_chg_sample(ptq);
2621                         if (err)
2622                                 return err;
2623                 }
2624         }
2625 
2626         if (pt->sample_pwr_events) {
2627                 if (state->type & INTEL_PT_PSB_EVT) {
2628                         err = intel_pt_synth_psb_sample(ptq);
2629                         if (err)
2630                                 return err;
2631                 }
2632                 if (ptq->state->cbr != ptq->cbr_seen) {
2633                         err = intel_pt_synth_cbr_sample(ptq);
2634                         if (err)
2635                                 return err;
2636                 }
2637                 if (state->type & INTEL_PT_PWR_EVT) {
2638                         if (state->type & INTEL_PT_MWAIT_OP) {
2639                                 err = intel_pt_synth_mwait_sample(ptq);
2640                                 if (err)
2641                                         return err;
2642                         }
2643                         if (state->type & INTEL_PT_PWR_ENTRY) {
2644                                 err = intel_pt_synth_pwre_sample(ptq);
2645                                 if (err)
2646                                         return err;
2647                         }
2648                         if (state->type & INTEL_PT_EX_STOP) {
2649                                 err = intel_pt_synth_exstop_sample(ptq);
2650                                 if (err)
2651                                         return err;
2652                         }
2653                         if (state->type & INTEL_PT_PWR_EXIT) {
2654                                 err = intel_pt_synth_pwrx_sample(ptq);
2655                                 if (err)
2656                                         return err;
2657                         }
2658                 }
2659         }
2660 
2661         if (state->type & INTEL_PT_INSTRUCTION) {
2662                 if (pt->sample_instructions) {
2663                         err = intel_pt_synth_instruction_sample(ptq);
2664                         if (err)
2665                                 return err;
2666                 }
2667                 if (pt->sample_cycles) {
2668                         err = intel_pt_synth_cycle_sample(ptq);
2669                         if (err)
2670                                 return err;
2671                 }
2672         }
2673 
2674         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2675                 err = intel_pt_synth_transaction_sample(ptq);
2676                 if (err)
2677                         return err;
2678         }
2679 
2680         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2681                 err = intel_pt_synth_ptwrite_sample(ptq);
2682                 if (err)
2683                         return err;
2684         }
2685 
2686         if (!(state->type & INTEL_PT_BRANCH))
2687                 return 0;
2688 
2689         if (pt->use_thread_stack) {
2690                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2691                                     state->from_ip, state->to_ip, ptq->insn_len,
2692                                     state->trace_nr, pt->callstack,
2693                                     pt->br_stack_sz_plus,
2694                                     pt->mispred_all);
2695         } else {
2696                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2697         }
2698 
2699         if (pt->sample_branches) {
2700                 if (state->from_nr != state->to_nr &&
2701                     state->from_ip && state->to_ip) {
2702                         struct intel_pt_state *st = (struct intel_pt_state *)state;
2703                         u64 to_ip = st->to_ip;
2704                         u64 from_ip = st->from_ip;
2705 
2706                         /*
2707                          * perf cannot handle having different machines for ip
2708                          * and addr, so create 2 branches.
2709                          */
2710                         st->to_ip = 0;
2711                         err = intel_pt_synth_branch_sample(ptq);
2712                         if (err)
2713                                 return err;
2714                         st->from_ip = 0;
2715                         st->to_ip = to_ip;
2716                         err = intel_pt_synth_branch_sample(ptq);
2717                         st->from_ip = from_ip;
2718                 } else {
2719                         err = intel_pt_synth_branch_sample(ptq);
2720                 }
2721                 if (err)
2722                         return err;
2723         }
2724 
2725         if (!ptq->sync_switch)
2726                 return 0;
2727 
2728         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2729                 switch (ptq->switch_state) {
2730                 case INTEL_PT_SS_NOT_TRACING:
2731                 case INTEL_PT_SS_UNKNOWN:
2732                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2733                         err = intel_pt_next_tid(pt, ptq);
2734                         if (err)
2735                                 return err;
2736                         ptq->switch_state = INTEL_PT_SS_TRACING;
2737                         break;
2738                 default:
2739                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2740                         return 1;
2741                 }
2742         } else if (!state->to_ip) {
2743                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2744         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2745                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2746         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2747                    state->to_ip == pt->ptss_ip &&
2748                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2749                 ptq->switch_state = INTEL_PT_SS_TRACING;
2750         }
2751 
2752         return 0;
2753 }
2754 
2755 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2756 {
2757         struct machine *machine = pt->machine;
2758         struct map *map;
2759         struct symbol *sym, *start;
2760         u64 ip, switch_ip = 0;
2761         const char *ptss;
2762 
2763         if (ptss_ip)
2764                 *ptss_ip = 0;
2765 
2766         map = machine__kernel_map(machine);
2767         if (!map)
2768                 return 0;
2769 
2770         if (map__load(map))
2771                 return 0;
2772 
2773         start = dso__first_symbol(map__dso(map));
2774 
2775         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2776                 if (sym->binding == STB_GLOBAL &&
2777                     !strcmp(sym->name, "__switch_to")) {
2778                         ip = map__unmap_ip(map, sym->start);
2779                         if (ip >= map__start(map) && ip < map__end(map)) {
2780                                 switch_ip = ip;
2781                                 break;
2782                         }
2783                 }
2784         }
2785 
2786         if (!switch_ip || !ptss_ip)
2787                 return 0;
2788 
2789         if (pt->have_sched_switch == 1)
2790                 ptss = "perf_trace_sched_switch";
2791         else
2792                 ptss = "__perf_event_task_sched_out";
2793 
2794         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2795                 if (!strcmp(sym->name, ptss)) {
2796                         ip = map__unmap_ip(map, sym->start);
2797                         if (ip >= map__start(map) && ip < map__end(map)) {
2798                                 *ptss_ip = ip;
2799                                 break;
2800                         }
2801                 }
2802         }
2803 
2804         return switch_ip;
2805 }
2806 
2807 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2808 {
2809         unsigned int i;
2810 
2811         if (pt->sync_switch_not_supported)
2812                 return;
2813 
2814         pt->sync_switch = true;
2815 
2816         for (i = 0; i < pt->queues.nr_queues; i++) {
2817                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2818                 struct intel_pt_queue *ptq = queue->priv;
2819 
2820                 if (ptq)
2821                         ptq->sync_switch = true;
2822         }
2823 }
2824 
2825 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2826 {
2827         unsigned int i;
2828 
2829         pt->sync_switch = false;
2830 
2831         for (i = 0; i < pt->queues.nr_queues; i++) {
2832                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2833                 struct intel_pt_queue *ptq = queue->priv;
2834 
2835                 if (ptq) {
2836                         ptq->sync_switch = false;
2837                         intel_pt_next_tid(pt, ptq);
2838                 }
2839         }
2840 }
2841 
2842 /*
2843  * To filter against time ranges, it is only necessary to look at the next start
2844  * or end time.
2845  */
2846 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2847 {
2848         struct intel_pt *pt = ptq->pt;
2849 
2850         if (ptq->sel_start) {
2851                 /* Next time is an end time */
2852                 ptq->sel_start = false;
2853                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2854                 return true;
2855         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2856                 /* Next time is a start time */
2857                 ptq->sel_start = true;
2858                 ptq->sel_idx += 1;
2859                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2860                 return true;
2861         }
2862 
2863         /* No next time */
2864         return false;
2865 }
2866 
2867 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2868 {
2869         int err;
2870 
2871         while (1) {
2872                 if (ptq->sel_start) {
2873                         if (ptq->timestamp >= ptq->sel_timestamp) {
2874                                 /* After start time, so consider next time */
2875                                 intel_pt_next_time(ptq);
2876                                 if (!ptq->sel_timestamp) {
2877                                         /* No end time */
2878                                         return 0;
2879                                 }
2880                                 /* Check against end time */
2881                                 continue;
2882                         }
2883                         /* Before start time, so fast forward */
2884                         ptq->have_sample = false;
2885                         if (ptq->sel_timestamp > *ff_timestamp) {
2886                                 if (ptq->sync_switch) {
2887                                         intel_pt_next_tid(ptq->pt, ptq);
2888                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2889                                 }
2890                                 *ff_timestamp = ptq->sel_timestamp;
2891                                 err = intel_pt_fast_forward(ptq->decoder,
2892                                                             ptq->sel_timestamp);
2893                                 if (err)
2894                                         return err;
2895                         }
2896                         return 0;
2897                 } else if (ptq->timestamp > ptq->sel_timestamp) {
2898                         /* After end time, so consider next time */
2899                         if (!intel_pt_next_time(ptq)) {
2900                                 /* No next time range, so stop decoding */
2901                                 ptq->have_sample = false;
2902                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2903                                 return 1;
2904                         }
2905                         /* Check against next start time */
2906                         continue;
2907                 } else {
2908                         /* Before end time */
2909                         return 0;
2910                 }
2911         }
2912 }
2913 
2914 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2915 {
2916         const struct intel_pt_state *state = ptq->state;
2917         struct intel_pt *pt = ptq->pt;
2918         u64 ff_timestamp = 0;
2919         int err;
2920 
2921         if (!pt->kernel_start) {
2922                 pt->kernel_start = machine__kernel_start(pt->machine);
2923                 if (pt->per_cpu_mmaps &&
2924                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2925                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2926                     !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2927                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2928                         if (pt->switch_ip) {
2929                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2930                                              pt->switch_ip, pt->ptss_ip);
2931                                 intel_pt_enable_sync_switch(pt);
2932                         }
2933                 }
2934         }
2935 
2936         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2937                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2938         while (1) {
2939                 err = intel_pt_sample(ptq);
2940                 if (err)
2941                         return err;
2942 
2943                 state = intel_pt_decode(ptq->decoder);
2944                 if (state->err) {
2945                         if (state->err == INTEL_PT_ERR_NODATA)
2946                                 return 1;
2947                         if (ptq->sync_switch &&
2948                             state->from_ip >= pt->kernel_start) {
2949                                 ptq->sync_switch = false;
2950                                 intel_pt_next_tid(pt, ptq);
2951                         }
2952                         ptq->timestamp = state->est_timestamp;
2953                         if (pt->synth_opts.errors) {
2954                                 err = intel_ptq_synth_error(ptq, state);
2955                                 if (err)
2956                                         return err;
2957                         }
2958                         continue;
2959                 }
2960 
2961                 ptq->state = state;
2962                 ptq->have_sample = true;
2963                 intel_pt_sample_flags(ptq);
2964 
2965                 /* Use estimated TSC upon return to user space */
2966                 if (pt->est_tsc &&
2967                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2968                     state->to_ip && state->to_ip < pt->kernel_start) {
2969                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2970                                      state->timestamp, state->est_timestamp);
2971                         ptq->timestamp = state->est_timestamp;
2972                 /* Use estimated TSC in unknown switch state */
2973                 } else if (ptq->sync_switch &&
2974                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2975                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
2976                            ptq->next_tid == -1) {
2977                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2978                                      state->timestamp, state->est_timestamp);
2979                         ptq->timestamp = state->est_timestamp;
2980                 } else if (state->timestamp > ptq->timestamp) {
2981                         ptq->timestamp = state->timestamp;
2982                 }
2983 
2984                 if (ptq->sel_timestamp) {
2985                         err = intel_pt_time_filter(ptq, &ff_timestamp);
2986                         if (err)
2987                                 return err;
2988                 }
2989 
2990                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2991                         *timestamp = ptq->timestamp;
2992                         return 0;
2993                 }
2994         }
2995         return 0;
2996 }
2997 
2998 static inline int intel_pt_update_queues(struct intel_pt *pt)
2999 {
3000         if (pt->queues.new_data) {
3001                 pt->queues.new_data = false;
3002                 return intel_pt_setup_queues(pt);
3003         }
3004         return 0;
3005 }
3006 
3007 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
3008 {
3009         unsigned int queue_nr;
3010         u64 ts;
3011         int ret;
3012 
3013         while (1) {
3014                 struct auxtrace_queue *queue;
3015                 struct intel_pt_queue *ptq;
3016 
3017                 if (!pt->heap.heap_cnt)
3018                         return 0;
3019 
3020                 if (pt->heap.heap_array[0].ordinal >= timestamp)
3021                         return 0;
3022 
3023                 queue_nr = pt->heap.heap_array[0].queue_nr;
3024                 queue = &pt->queues.queue_array[queue_nr];
3025                 ptq = queue->priv;
3026 
3027                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
3028                              queue_nr, pt->heap.heap_array[0].ordinal,
3029                              timestamp);
3030 
3031                 auxtrace_heap__pop(&pt->heap);
3032 
3033                 if (pt->heap.heap_cnt) {
3034                         ts = pt->heap.heap_array[0].ordinal + 1;
3035                         if (ts > timestamp)
3036                                 ts = timestamp;
3037                 } else {
3038                         ts = timestamp;
3039                 }
3040 
3041                 intel_pt_set_pid_tid_cpu(pt, queue);
3042 
3043                 ret = intel_pt_run_decoder(ptq, &ts);
3044 
3045                 if (ret < 0) {
3046                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
3047                         return ret;
3048                 }
3049 
3050                 if (!ret) {
3051                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
3052                         if (ret < 0)
3053                                 return ret;
3054                 } else {
3055                         ptq->on_heap = false;
3056                 }
3057         }
3058 
3059         return 0;
3060 }
3061 
3062 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
3063                                             u64 time_)
3064 {
3065         struct auxtrace_queues *queues = &pt->queues;
3066         unsigned int i;
3067         u64 ts = 0;
3068 
3069         for (i = 0; i < queues->nr_queues; i++) {
3070                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3071                 struct intel_pt_queue *ptq = queue->priv;
3072 
3073                 if (ptq && (tid == -1 || ptq->tid == tid)) {
3074                         ptq->time = time_;
3075                         intel_pt_set_pid_tid_cpu(pt, queue);
3076                         intel_pt_run_decoder(ptq, &ts);
3077                 }
3078         }
3079         return 0;
3080 }
3081 
3082 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3083                                             struct auxtrace_queue *queue,
3084                                             struct perf_sample *sample)
3085 {
3086         struct machine *m = ptq->pt->machine;
3087 
3088         ptq->pid = sample->pid;
3089         ptq->tid = sample->tid;
3090         ptq->cpu = queue->cpu;
3091 
3092         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3093                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3094 
3095         thread__zput(ptq->thread);
3096 
3097         if (ptq->tid == -1)
3098                 return;
3099 
3100         if (ptq->pid == -1) {
3101                 ptq->thread = machine__find_thread(m, -1, ptq->tid);
3102                 if (ptq->thread)
3103                         ptq->pid = thread__pid(ptq->thread);
3104                 return;
3105         }
3106 
3107         ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3108 }
3109 
3110 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3111                                             struct perf_sample *sample)
3112 {
3113         struct auxtrace_queue *queue;
3114         struct intel_pt_queue *ptq;
3115         u64 ts = 0;
3116 
3117         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3118         if (!queue)
3119                 return -EINVAL;
3120 
3121         ptq = queue->priv;
3122         if (!ptq)
3123                 return 0;
3124 
3125         ptq->stop = false;
3126         ptq->time = sample->time;
3127         intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3128         intel_pt_run_decoder(ptq, &ts);
3129         return 0;
3130 }
3131 
3132 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3133 {
3134         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3135                                     sample->pid, sample->tid, 0, sample->time,
3136                                     sample->machine_pid, sample->vcpu);
3137 }
3138 
3139 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3140 {
3141         unsigned i, j;
3142 
3143         if (cpu < 0 || !pt->queues.nr_queues)
3144                 return NULL;
3145 
3146         if ((unsigned)cpu >= pt->queues.nr_queues)
3147                 i = pt->queues.nr_queues - 1;
3148         else
3149                 i = cpu;
3150 
3151         if (pt->queues.queue_array[i].cpu == cpu)
3152                 return pt->queues.queue_array[i].priv;
3153 
3154         for (j = 0; i > 0; j++) {
3155                 if (pt->queues.queue_array[--i].cpu == cpu)
3156                         return pt->queues.queue_array[i].priv;
3157         }
3158 
3159         for (; j < pt->queues.nr_queues; j++) {
3160                 if (pt->queues.queue_array[j].cpu == cpu)
3161                         return pt->queues.queue_array[j].priv;
3162         }
3163 
3164         return NULL;
3165 }
3166 
3167 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3168                                 u64 timestamp)
3169 {
3170         struct intel_pt_queue *ptq;
3171         int err;
3172 
3173         if (!pt->sync_switch)
3174                 return 1;
3175 
3176         ptq = intel_pt_cpu_to_ptq(pt, cpu);
3177         if (!ptq || !ptq->sync_switch)
3178                 return 1;
3179 
3180         switch (ptq->switch_state) {
3181         case INTEL_PT_SS_NOT_TRACING:
3182                 break;
3183         case INTEL_PT_SS_UNKNOWN:
3184         case INTEL_PT_SS_TRACING:
3185                 ptq->next_tid = tid;
3186                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3187                 return 0;
3188         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3189                 if (!ptq->on_heap) {
3190                         ptq->timestamp = perf_time_to_tsc(timestamp,
3191                                                           &pt->tc);
3192                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3193                                                  ptq->timestamp);
3194                         if (err)
3195                                 return err;
3196                         ptq->on_heap = true;
3197                 }
3198                 ptq->switch_state = INTEL_PT_SS_TRACING;
3199                 break;
3200         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3201                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3202                 break;
3203         default:
3204                 break;
3205         }
3206 
3207         ptq->next_tid = -1;
3208 
3209         return 1;
3210 }
3211 
3212 #ifdef HAVE_LIBTRACEEVENT
3213 static int intel_pt_process_switch(struct intel_pt *pt,
3214                                    struct perf_sample *sample)
3215 {
3216         pid_t tid;
3217         int cpu, ret;
3218         struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3219 
3220         if (evsel != pt->switch_evsel)
3221                 return 0;
3222 
3223         tid = evsel__intval(evsel, sample, "next_pid");
3224         cpu = sample->cpu;
3225 
3226         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3227                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3228                      &pt->tc));
3229 
3230         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3231         if (ret <= 0)
3232                 return ret;
3233 
3234         return machine__set_current_tid(pt->machine, cpu, -1, tid);
3235 }
3236 #endif /* HAVE_LIBTRACEEVENT */
3237 
3238 static int intel_pt_context_switch_in(struct intel_pt *pt,
3239                                       struct perf_sample *sample)
3240 {
3241         pid_t pid = sample->pid;
3242         pid_t tid = sample->tid;
3243         int cpu = sample->cpu;
3244 
3245         if (pt->sync_switch) {
3246                 struct intel_pt_queue *ptq;
3247 
3248                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
3249                 if (ptq && ptq->sync_switch) {
3250                         ptq->next_tid = -1;
3251                         switch (ptq->switch_state) {
3252                         case INTEL_PT_SS_NOT_TRACING:
3253                         case INTEL_PT_SS_UNKNOWN:
3254                         case INTEL_PT_SS_TRACING:
3255                                 break;
3256                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3257                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3258                                 ptq->switch_state = INTEL_PT_SS_TRACING;
3259                                 break;
3260                         default:
3261                                 break;
3262                         }
3263                 }
3264         }
3265 
3266         /*
3267          * If the current tid has not been updated yet, ensure it is now that
3268          * a "switch in" event has occurred.
3269          */
3270         if (machine__get_current_tid(pt->machine, cpu) == tid)
3271                 return 0;
3272 
3273         return machine__set_current_tid(pt->machine, cpu, pid, tid);
3274 }
3275 
3276 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3277                                          union perf_event *event,
3278                                          struct perf_sample *sample)
3279 {
3280         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3281         struct machines *machines = &pt->session->machines;
3282         struct machine *machine = machines__find(machines, sample->machine_pid);
3283 
3284         pt->have_guest_sideband = true;
3285 
3286         /*
3287          * sync_switch cannot handle guest machines at present, so just disable
3288          * it.
3289          */
3290         pt->sync_switch_not_supported = true;
3291         if (pt->sync_switch)
3292                 intel_pt_disable_sync_switch(pt);
3293 
3294         if (out)
3295                 return 0;
3296 
3297         if (!machine)
3298                 return -EINVAL;
3299 
3300         return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3301 }
3302 
3303 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3304                                    struct perf_sample *sample)
3305 {
3306         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3307         pid_t pid, tid;
3308         int cpu, ret;
3309 
3310         if (perf_event__is_guest(event))
3311                 return intel_pt_guest_context_switch(pt, event, sample);
3312 
3313         cpu = sample->cpu;
3314 
3315         if (pt->have_sched_switch == 3) {
3316                 if (!out)
3317                         return intel_pt_context_switch_in(pt, sample);
3318                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3319                         pr_err("Expecting CPU-wide context switch event\n");
3320                         return -EINVAL;
3321                 }
3322                 pid = event->context_switch.next_prev_pid;
3323                 tid = event->context_switch.next_prev_tid;
3324         } else {
3325                 if (out)
3326                         return 0;
3327                 pid = sample->pid;
3328                 tid = sample->tid;
3329         }
3330 
3331         if (tid == -1)
3332                 intel_pt_log("context_switch event has no tid\n");
3333 
3334         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3335         if (ret <= 0)
3336                 return ret;
3337 
3338         return machine__set_current_tid(pt->machine, cpu, pid, tid);
3339 }
3340 
3341 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3342                                          union perf_event *event,
3343                                          struct perf_sample *sample)
3344 {
3345         if (!pt->per_cpu_mmaps)
3346                 return 0;
3347 
3348         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3349                      sample->cpu, event->itrace_start.pid,
3350                      event->itrace_start.tid, sample->time,
3351                      perf_time_to_tsc(sample->time, &pt->tc));
3352 
3353         return machine__set_current_tid(pt->machine, sample->cpu,
3354                                         event->itrace_start.pid,
3355                                         event->itrace_start.tid);
3356 }
3357 
3358 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3359                                              union perf_event *event,
3360                                              struct perf_sample *sample)
3361 {
3362         u64 hw_id = event->aux_output_hw_id.hw_id;
3363         struct auxtrace_queue *queue;
3364         struct intel_pt_queue *ptq;
3365         struct evsel *evsel;
3366 
3367         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3368         evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3369         if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3370                 pr_err("Bad AUX output hardware ID\n");
3371                 return -EINVAL;
3372         }
3373 
3374         ptq = queue->priv;
3375 
3376         ptq->pebs[hw_id].evsel = evsel;
3377         ptq->pebs[hw_id].id = sample->id;
3378 
3379         return 0;
3380 }
3381 
3382 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3383                              struct addr_location *al)
3384 {
3385         if (!al->map || addr < map__start(al->map) || addr >= map__end(al->map)) {
3386                 if (!thread__find_map(thread, cpumode, addr, al))
3387                         return -1;
3388         }
3389 
3390         return 0;
3391 }
3392 
3393 /* Invalidate all instruction cache entries that overlap the text poke */
3394 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3395 {
3396         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3397         u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3398         /* Assume text poke begins in a basic block no more than 4096 bytes */
3399         int cnt = 4096 + event->text_poke.new_len;
3400         struct thread *thread = pt->unknown_thread;
3401         struct addr_location al;
3402         struct machine *machine = pt->machine;
3403         struct intel_pt_cache_entry *e;
3404         u64 offset;
3405         int ret = 0;
3406 
3407         addr_location__init(&al);
3408         if (!event->text_poke.new_len)
3409                 goto out;
3410 
3411         for (; cnt; cnt--, addr--) {
3412                 struct dso *dso;
3413 
3414                 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3415                         if (addr < event->text_poke.addr)
3416                                 goto out;
3417                         continue;
3418                 }
3419 
3420                 dso = map__dso(al.map);
3421                 if (!dso || !dso__auxtrace_cache(dso))
3422                         continue;
3423 
3424                 offset = map__map_ip(al.map, addr);
3425 
3426                 e = intel_pt_cache_lookup(dso, machine, offset);
3427                 if (!e)
3428                         continue;
3429 
3430                 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3431                         /*
3432                          * No overlap. Working backwards there cannot be another
3433                          * basic block that overlaps the text poke if there is a
3434                          * branch instruction before the text poke address.
3435                          */
3436                         if (e->branch != INTEL_PT_BR_NO_BRANCH)
3437                                 goto out;
3438                 } else {
3439                         intel_pt_cache_invalidate(dso, machine, offset);
3440                         intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3441                                      dso__long_name(dso), addr);
3442                 }
3443         }
3444 out:
3445         addr_location__exit(&al);
3446         return ret;
3447 }
3448 
3449 static int intel_pt_process_event(struct perf_session *session,
3450                                   union perf_event *event,
3451                                   struct perf_sample *sample,
3452                                   struct perf_tool *tool)
3453 {
3454         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3455                                            auxtrace);
3456         u64 timestamp;
3457         int err = 0;
3458 
3459         if (dump_trace)
3460                 return 0;
3461 
3462         if (!tool->ordered_events) {
3463                 pr_err("Intel Processor Trace requires ordered events\n");
3464                 return -EINVAL;
3465         }
3466 
3467         if (sample->time && sample->time != (u64)-1)
3468                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3469         else
3470                 timestamp = 0;
3471 
3472         if (timestamp || pt->timeless_decoding) {
3473                 err = intel_pt_update_queues(pt);
3474                 if (err)
3475                         return err;
3476         }
3477 
3478         if (pt->timeless_decoding) {
3479                 if (pt->sampling_mode) {
3480                         if (sample->aux_sample.size)
3481                                 err = intel_pt_process_timeless_sample(pt,
3482                                                                        sample);
3483                 } else if (event->header.type == PERF_RECORD_EXIT) {
3484                         err = intel_pt_process_timeless_queues(pt,
3485                                                                event->fork.tid,
3486                                                                sample->time);
3487                 }
3488         } else if (timestamp) {
3489                 if (!pt->first_timestamp)
3490                         intel_pt_first_timestamp(pt, timestamp);
3491                 err = intel_pt_process_queues(pt, timestamp);
3492         }
3493         if (err)
3494                 return err;
3495 
3496         if (event->header.type == PERF_RECORD_SAMPLE) {
3497                 if (pt->synth_opts.add_callchain && !sample->callchain)
3498                         intel_pt_add_callchain(pt, sample);
3499                 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3500                         intel_pt_add_br_stack(pt, sample);
3501         }
3502 
3503         if (event->header.type == PERF_RECORD_AUX &&
3504             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3505             pt->synth_opts.errors) {
3506                 err = intel_pt_lost(pt, sample);
3507                 if (err)
3508                         return err;
3509         }
3510 
3511 #ifdef HAVE_LIBTRACEEVENT
3512         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3513                 err = intel_pt_process_switch(pt, sample);
3514         else
3515 #endif
3516         if (event->header.type == PERF_RECORD_ITRACE_START)
3517                 err = intel_pt_process_itrace_start(pt, event, sample);
3518         else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3519                 err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3520         else if (event->header.type == PERF_RECORD_SWITCH ||
3521                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3522                 err = intel_pt_context_switch(pt, event, sample);
3523 
3524         if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3525                 err = intel_pt_text_poke(pt, event);
3526 
3527         if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3528                 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3529                              event->header.type, sample->cpu, sample->time, timestamp);
3530                 intel_pt_log_event(event);
3531         }
3532 
3533         return err;
3534 }
3535 
3536 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3537 {
3538         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3539                                            auxtrace);
3540         int ret;
3541 
3542         if (dump_trace)
3543                 return 0;
3544 
3545         if (!tool->ordered_events)
3546                 return -EINVAL;
3547 
3548         ret = intel_pt_update_queues(pt);
3549         if (ret < 0)
3550                 return ret;
3551 
3552         if (pt->timeless_decoding)
3553                 return intel_pt_process_timeless_queues(pt, -1,
3554                                                         MAX_TIMESTAMP - 1);
3555 
3556         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3557 }
3558 
3559 static void intel_pt_free_events(struct perf_session *session)
3560 {
3561         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3562                                            auxtrace);
3563         struct auxtrace_queues *queues = &pt->queues;
3564         unsigned int i;
3565 
3566         for (i = 0; i < queues->nr_queues; i++) {
3567                 intel_pt_free_queue(queues->queue_array[i].priv);
3568                 queues->queue_array[i].priv = NULL;
3569         }
3570         intel_pt_log_disable();
3571         auxtrace_queues__free(queues);
3572 }
3573 
3574 static void intel_pt_free(struct perf_session *session)
3575 {
3576         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3577                                            auxtrace);
3578 
3579         auxtrace_heap__free(&pt->heap);
3580         intel_pt_free_events(session);
3581         session->auxtrace = NULL;
3582         intel_pt_free_vmcs_info(pt);
3583         thread__put(pt->unknown_thread);
3584         addr_filters__exit(&pt->filts);
3585         zfree(&pt->chain);
3586         zfree(&pt->filter);
3587         zfree(&pt->time_ranges);
3588         zfree(&pt->br_stack);
3589         free(pt);
3590 }
3591 
3592 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3593                                        struct evsel *evsel)
3594 {
3595         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3596                                            auxtrace);
3597 
3598         return evsel->core.attr.type == pt->pmu_type;
3599 }
3600 
3601 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3602                                            union perf_event *event,
3603                                            struct perf_tool *tool __maybe_unused)
3604 {
3605         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3606                                            auxtrace);
3607 
3608         if (!pt->data_queued) {
3609                 struct auxtrace_buffer *buffer;
3610                 off_t data_offset;
3611                 int fd = perf_data__fd(session->data);
3612                 int err;
3613 
3614                 if (perf_data__is_pipe(session->data)) {
3615                         data_offset = 0;
3616                 } else {
3617                         data_offset = lseek(fd, 0, SEEK_CUR);
3618                         if (data_offset == -1)
3619                                 return -errno;
3620                 }
3621 
3622                 err = auxtrace_queues__add_event(&pt->queues, session, event,
3623                                                  data_offset, &buffer);
3624                 if (err)
3625                         return err;
3626 
3627                 /* Dump here now we have copied a piped trace out of the pipe */
3628                 if (dump_trace) {
3629                         if (auxtrace_buffer__get_data(buffer, fd)) {
3630                                 intel_pt_dump_event(pt, buffer->data,
3631                                                     buffer->size);
3632                                 auxtrace_buffer__put_data(buffer);
3633                         }
3634                 }
3635         }
3636 
3637         return 0;
3638 }
3639 
3640 static int intel_pt_queue_data(struct perf_session *session,
3641                                struct perf_sample *sample,
3642                                union perf_event *event, u64 data_offset)
3643 {
3644         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3645                                            auxtrace);
3646         u64 timestamp;
3647 
3648         if (event) {
3649                 return auxtrace_queues__add_event(&pt->queues, session, event,
3650                                                   data_offset, NULL);
3651         }
3652 
3653         if (sample->time && sample->time != (u64)-1)
3654                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3655         else
3656                 timestamp = 0;
3657 
3658         return auxtrace_queues__add_sample(&pt->queues, session, sample,
3659                                            data_offset, timestamp);
3660 }
3661 
3662 struct intel_pt_synth {
3663         struct perf_tool dummy_tool;
3664         struct perf_session *session;
3665 };
3666 
3667 static int intel_pt_event_synth(struct perf_tool *tool,
3668                                 union perf_event *event,
3669                                 struct perf_sample *sample __maybe_unused,
3670                                 struct machine *machine __maybe_unused)
3671 {
3672         struct intel_pt_synth *intel_pt_synth =
3673                         container_of(tool, struct intel_pt_synth, dummy_tool);
3674 
3675         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3676                                                  NULL);
3677 }
3678 
3679 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3680                                 struct perf_event_attr *attr, u64 id)
3681 {
3682         struct intel_pt_synth intel_pt_synth;
3683         int err;
3684 
3685         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3686                  name, id, (u64)attr->sample_type);
3687 
3688         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3689         intel_pt_synth.session = session;
3690 
3691         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3692                                           &id, intel_pt_event_synth);
3693         if (err)
3694                 pr_err("%s: failed to synthesize '%s' event type\n",
3695                        __func__, name);
3696 
3697         return err;
3698 }
3699 
3700 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3701                                     const char *name)
3702 {
3703         struct evsel *evsel;
3704 
3705         evlist__for_each_entry(evlist, evsel) {
3706                 if (evsel->core.id && evsel->core.id[0] == id) {
3707                         if (evsel->name)
3708                                 zfree(&evsel->name);
3709                         evsel->name = strdup(name);
3710                         break;
3711                 }
3712         }
3713 }
3714 
3715 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3716                                          struct evlist *evlist)
3717 {
3718         struct evsel *evsel;
3719 
3720         evlist__for_each_entry(evlist, evsel) {
3721                 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3722                         return evsel;
3723         }
3724 
3725         return NULL;
3726 }
3727 
3728 static int intel_pt_synth_events(struct intel_pt *pt,
3729                                  struct perf_session *session)
3730 {
3731         struct evlist *evlist = session->evlist;
3732         struct evsel *evsel = intel_pt_evsel(pt, evlist);
3733         struct perf_event_attr attr;
3734         u64 id;
3735         int err;
3736 
3737         if (!evsel) {
3738                 pr_debug("There are no selected events with Intel Processor Trace data\n");
3739                 return 0;
3740         }
3741 
3742         memset(&attr, 0, sizeof(struct perf_event_attr));
3743         attr.size = sizeof(struct perf_event_attr);
3744         attr.type = PERF_TYPE_HARDWARE;
3745         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3746         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3747                             PERF_SAMPLE_PERIOD;
3748         if (pt->timeless_decoding)
3749                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3750         else
3751                 attr.sample_type |= PERF_SAMPLE_TIME;
3752         if (!pt->per_cpu_mmaps)
3753                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3754         attr.exclude_user = evsel->core.attr.exclude_user;
3755         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3756         attr.exclude_hv = evsel->core.attr.exclude_hv;
3757         attr.exclude_host = evsel->core.attr.exclude_host;
3758         attr.exclude_guest = evsel->core.attr.exclude_guest;
3759         attr.sample_id_all = evsel->core.attr.sample_id_all;
3760         attr.read_format = evsel->core.attr.read_format;
3761 
3762         id = evsel->core.id[0] + 1000000000;
3763         if (!id)
3764                 id = 1;
3765 
3766         if (pt->synth_opts.branches) {
3767                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3768                 attr.sample_period = 1;
3769                 attr.sample_type |= PERF_SAMPLE_ADDR;
3770                 err = intel_pt_synth_event(session, "branches", &attr, id);
3771                 if (err)
3772                         return err;
3773                 pt->sample_branches = true;
3774                 pt->branches_sample_type = attr.sample_type;
3775                 pt->branches_id = id;
3776                 id += 1;
3777                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3778         }
3779 
3780         if (pt->synth_opts.callchain)
3781                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3782         if (pt->synth_opts.last_branch) {
3783                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3784                 /*
3785                  * We don't use the hardware index, but the sample generation
3786                  * code uses the new format branch_stack with this field,
3787                  * so the event attributes must indicate that it's present.
3788                  */
3789                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3790         }
3791 
3792         if (pt->synth_opts.instructions) {
3793                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3794                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3795                         attr.sample_period =
3796                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3797                 else
3798                         attr.sample_period = pt->synth_opts.period;
3799                 err = intel_pt_synth_event(session, "instructions", &attr, id);
3800                 if (err)
3801                         return err;
3802                 pt->sample_instructions = true;
3803                 pt->instructions_sample_type = attr.sample_type;
3804                 pt->instructions_id = id;
3805                 id += 1;
3806         }
3807 
3808         if (pt->synth_opts.cycles) {
3809                 attr.config = PERF_COUNT_HW_CPU_CYCLES;
3810                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3811                         attr.sample_period =
3812                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3813                 else
3814                         attr.sample_period = pt->synth_opts.period;
3815                 err = intel_pt_synth_event(session, "cycles", &attr, id);
3816                 if (err)
3817                         return err;
3818                 pt->sample_cycles = true;
3819                 pt->cycles_sample_type = attr.sample_type;
3820                 pt->cycles_id = id;
3821                 id += 1;
3822         }
3823 
3824         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3825         attr.sample_period = 1;
3826 
3827         if (pt->synth_opts.transactions) {
3828                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3829                 err = intel_pt_synth_event(session, "transactions", &attr, id);
3830                 if (err)
3831                         return err;
3832                 pt->sample_transactions = true;
3833                 pt->transactions_sample_type = attr.sample_type;
3834                 pt->transactions_id = id;
3835                 intel_pt_set_event_name(evlist, id, "transactions");
3836                 id += 1;
3837         }
3838 
3839         attr.type = PERF_TYPE_SYNTH;
3840         attr.sample_type |= PERF_SAMPLE_RAW;
3841 
3842         if (pt->synth_opts.ptwrites) {
3843                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3844                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3845                 if (err)
3846                         return err;
3847                 pt->sample_ptwrites = true;
3848                 pt->ptwrites_sample_type = attr.sample_type;
3849                 pt->ptwrites_id = id;
3850                 intel_pt_set_event_name(evlist, id, "ptwrite");
3851                 id += 1;
3852         }
3853 
3854         if (pt->synth_opts.pwr_events) {
3855                 pt->sample_pwr_events = true;
3856                 pt->pwr_events_sample_type = attr.sample_type;
3857 
3858                 attr.config = PERF_SYNTH_INTEL_CBR;
3859                 err = intel_pt_synth_event(session, "cbr", &attr, id);
3860                 if (err)
3861                         return err;
3862                 pt->cbr_id = id;
3863                 intel_pt_set_event_name(evlist, id, "cbr");
3864                 id += 1;
3865 
3866                 attr.config = PERF_SYNTH_INTEL_PSB;
3867                 err = intel_pt_synth_event(session, "psb", &attr, id);
3868                 if (err)
3869                         return err;
3870                 pt->psb_id = id;
3871                 intel_pt_set_event_name(evlist, id, "psb");
3872                 id += 1;
3873         }
3874 
3875         if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3876                 attr.config = PERF_SYNTH_INTEL_MWAIT;
3877                 err = intel_pt_synth_event(session, "mwait", &attr, id);
3878                 if (err)
3879                         return err;
3880                 pt->mwait_id = id;
3881                 intel_pt_set_event_name(evlist, id, "mwait");
3882                 id += 1;
3883 
3884                 attr.config = PERF_SYNTH_INTEL_PWRE;
3885                 err = intel_pt_synth_event(session, "pwre", &attr, id);
3886                 if (err)
3887                         return err;
3888                 pt->pwre_id = id;
3889                 intel_pt_set_event_name(evlist, id, "pwre");
3890                 id += 1;
3891 
3892                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3893                 err = intel_pt_synth_event(session, "exstop", &attr, id);
3894                 if (err)
3895                         return err;
3896                 pt->exstop_id = id;
3897                 intel_pt_set_event_name(evlist, id, "exstop");
3898                 id += 1;
3899 
3900                 attr.config = PERF_SYNTH_INTEL_PWRX;
3901                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3902                 if (err)
3903                         return err;
3904                 pt->pwrx_id = id;
3905                 intel_pt_set_event_name(evlist, id, "pwrx");
3906                 id += 1;
3907         }
3908 
3909         if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3910                 attr.config = PERF_SYNTH_INTEL_EVT;
3911                 err = intel_pt_synth_event(session, "evt", &attr, id);
3912                 if (err)
3913                         return err;
3914                 pt->evt_sample_type = attr.sample_type;
3915                 pt->evt_id = id;
3916                 intel_pt_set_event_name(evlist, id, "evt");
3917                 id += 1;
3918         }
3919 
3920         if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3921                 attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3922                 err = intel_pt_synth_event(session, "iflag", &attr, id);
3923                 if (err)
3924                         return err;
3925                 pt->iflag_chg_sample_type = attr.sample_type;
3926                 pt->iflag_chg_id = id;
3927                 intel_pt_set_event_name(evlist, id, "iflag");
3928                 id += 1;
3929         }
3930 
3931         return 0;
3932 }
3933 
3934 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3935 {
3936         struct evsel *evsel;
3937 
3938         if (!pt->synth_opts.other_events)
3939                 return;
3940 
3941         evlist__for_each_entry(pt->session->evlist, evsel) {
3942                 if (evsel->core.attr.aux_output && evsel->core.id) {
3943                         if (pt->single_pebs) {
3944                                 pt->single_pebs = false;
3945                                 return;
3946                         }
3947                         pt->single_pebs = true;
3948                         pt->sample_pebs = true;
3949                         pt->pebs_evsel = evsel;
3950                 }
3951         }
3952 }
3953 
3954 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3955 {
3956         struct evsel *evsel;
3957 
3958         evlist__for_each_entry_reverse(evlist, evsel) {
3959                 const char *name = evsel__name(evsel);
3960 
3961                 if (!strcmp(name, "sched:sched_switch"))
3962                         return evsel;
3963         }
3964 
3965         return NULL;
3966 }
3967 
3968 static bool intel_pt_find_switch(struct evlist *evlist)
3969 {
3970         struct evsel *evsel;
3971 
3972         evlist__for_each_entry(evlist, evsel) {
3973                 if (evsel->core.attr.context_switch)
3974                         return true;
3975         }
3976 
3977         return false;
3978 }
3979 
3980 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3981 {
3982         struct intel_pt *pt = data;
3983 
3984         if (!strcmp(var, "intel-pt.mispred-all"))
3985                 pt->mispred_all = perf_config_bool(var, value);
3986 
3987         if (!strcmp(var, "intel-pt.max-loops"))
3988                 perf_config_int(&pt->max_loops, var, value);
3989 
3990         return 0;
3991 }
3992 
3993 /* Find least TSC which converts to ns or later */
3994 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3995 {
3996         u64 tsc, tm;
3997 
3998         tsc = perf_time_to_tsc(ns, &pt->tc);
3999 
4000         while (1) {
4001                 tm = tsc_to_perf_time(tsc, &pt->tc);
4002                 if (tm < ns)
4003                         break;
4004                 tsc -= 1;
4005         }
4006 
4007         while (tm < ns)
4008                 tm = tsc_to_perf_time(++tsc, &pt->tc);
4009 
4010         return tsc;
4011 }
4012 
4013 /* Find greatest TSC which converts to ns or earlier */
4014 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
4015 {
4016         u64 tsc, tm;
4017 
4018         tsc = perf_time_to_tsc(ns, &pt->tc);
4019 
4020         while (1) {
4021                 tm = tsc_to_perf_time(tsc, &pt->tc);
4022                 if (tm > ns)
4023                         break;
4024                 tsc += 1;
4025         }
4026 
4027         while (tm > ns)
4028                 tm = tsc_to_perf_time(--tsc, &pt->tc);
4029 
4030         return tsc;
4031 }
4032 
4033 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
4034                                       struct itrace_synth_opts *opts)
4035 {
4036         struct perf_time_interval *p = opts->ptime_range;
4037         int n = opts->range_num;
4038         int i;
4039 
4040         if (!n || !p || pt->timeless_decoding)
4041                 return 0;
4042 
4043         pt->time_ranges = calloc(n, sizeof(struct range));
4044         if (!pt->time_ranges)
4045                 return -ENOMEM;
4046 
4047         pt->range_cnt = n;
4048 
4049         intel_pt_log("%s: %u range(s)\n", __func__, n);
4050 
4051         for (i = 0; i < n; i++) {
4052                 struct range *r = &pt->time_ranges[i];
4053                 u64 ts = p[i].start;
4054                 u64 te = p[i].end;
4055 
4056                 /*
4057                  * Take care to ensure the TSC range matches the perf-time range
4058                  * when converted back to perf-time.
4059                  */
4060                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
4061                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
4062 
4063                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
4064                              i, ts, te);
4065                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
4066                              i, r->start, r->end);
4067         }
4068 
4069         return 0;
4070 }
4071 
4072 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
4073 {
4074         struct intel_pt_vmcs_info *vmcs_info;
4075         u64 tsc_offset, vmcs;
4076         char *p = *args;
4077 
4078         errno = 0;
4079 
4080         p = skip_spaces(p);
4081         if (!*p)
4082                 return 1;
4083 
4084         tsc_offset = strtoull(p, &p, 0);
4085         if (errno)
4086                 return -errno;
4087         p = skip_spaces(p);
4088         if (*p != ':') {
4089                 pt->dflt_tsc_offset = tsc_offset;
4090                 *args = p;
4091                 return 0;
4092         }
4093         p += 1;
4094         while (1) {
4095                 vmcs = strtoull(p, &p, 0);
4096                 if (errno)
4097                         return -errno;
4098                 if (!vmcs)
4099                         return -EINVAL;
4100                 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4101                 if (!vmcs_info)
4102                         return -ENOMEM;
4103                 p = skip_spaces(p);
4104                 if (*p != ',')
4105                         break;
4106                 p += 1;
4107         }
4108         *args = p;
4109         return 0;
4110 }
4111 
4112 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4113 {
4114         char *args = pt->synth_opts.vm_tm_corr_args;
4115         int ret;
4116 
4117         if (!args)
4118                 return 0;
4119 
4120         do {
4121                 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4122         } while (!ret);
4123 
4124         if (ret < 0) {
4125                 pr_err("Failed to parse VM Time Correlation options\n");
4126                 return ret;
4127         }
4128 
4129         return 0;
4130 }
4131 
4132 static const char * const intel_pt_info_fmts[] = {
4133         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
4134         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
4135         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
4136         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
4137         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
4138         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
4139         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
4140         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
4141         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
4142         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
4143         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
4144         [INTEL_PT_MTC_FREQ_BITS]        = "  MTC freq bits       %#"PRIx64"\n",
4145         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
4146         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
4147         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
4148         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
4149         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
4150 };
4151 
4152 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4153 {
4154         int i;
4155 
4156         if (!dump_trace)
4157                 return;
4158 
4159         for (i = start; i <= finish; i++) {
4160                 const char *fmt = intel_pt_info_fmts[i];
4161 
4162                 if (fmt)
4163                         fprintf(stdout, fmt, arr[i]);
4164         }
4165 }
4166 
4167 static void intel_pt_print_info_str(const char *name, const char *str)
4168 {
4169         if (!dump_trace)
4170                 return;
4171 
4172         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4173 }
4174 
4175 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4176 {
4177         return auxtrace_info->header.size >=
4178                 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4179 }
4180 
4181 int intel_pt_process_auxtrace_info(union perf_event *event,
4182                                    struct perf_session *session)
4183 {
4184         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4185         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4186         struct intel_pt *pt;
4187         void *info_end;
4188         __u64 *info;
4189         int err;
4190 
4191         if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4192                                         min_sz)
4193                 return -EINVAL;
4194 
4195         pt = zalloc(sizeof(struct intel_pt));
4196         if (!pt)
4197                 return -ENOMEM;
4198 
4199         pt->vmcs_info = RB_ROOT;
4200 
4201         addr_filters__init(&pt->filts);
4202 
4203         err = perf_config(intel_pt_perf_config, pt);
4204         if (err)
4205                 goto err_free;
4206 
4207         err = auxtrace_queues__init(&pt->queues);
4208         if (err)
4209                 goto err_free;
4210 
4211         if (session->itrace_synth_opts->set) {
4212                 pt->synth_opts = *session->itrace_synth_opts;
4213         } else {
4214                 struct itrace_synth_opts *opts = session->itrace_synth_opts;
4215 
4216                 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4217                 if (!opts->default_no_sample && !opts->inject) {
4218                         pt->synth_opts.branches = false;
4219                         pt->synth_opts.callchain = true;
4220                         pt->synth_opts.add_callchain = true;
4221                 }
4222                 pt->synth_opts.thread_stack = opts->thread_stack;
4223         }
4224 
4225         if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4226                 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4227 
4228         pt->session = session;
4229         pt->machine = &session->machines.host; /* No kvm support */
4230         pt->auxtrace_type = auxtrace_info->type;
4231         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4232         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4233         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4234         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4235         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4236         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4237         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4238         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4239         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4240         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4241         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4242                             INTEL_PT_PER_CPU_MMAPS);
4243 
4244         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4245                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4246                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4247                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4248                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4249                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4250                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4251                                     INTEL_PT_CYC_BIT);
4252         }
4253 
4254         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4255                 pt->max_non_turbo_ratio =
4256                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4257                 intel_pt_print_info(&auxtrace_info->priv[0],
4258                                     INTEL_PT_MAX_NONTURBO_RATIO,
4259                                     INTEL_PT_MAX_NONTURBO_RATIO);
4260         }
4261 
4262         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4263         info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4264 
4265         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4266                 size_t len;
4267 
4268                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4269                 intel_pt_print_info(&auxtrace_info->priv[0],
4270                                     INTEL_PT_FILTER_STR_LEN,
4271                                     INTEL_PT_FILTER_STR_LEN);
4272                 if (len) {
4273                         const char *filter = (const char *)info;
4274 
4275                         len = roundup(len + 1, 8);
4276                         info += len >> 3;
4277                         if ((void *)info > info_end) {
4278                                 pr_err("%s: bad filter string length\n", __func__);
4279                                 err = -EINVAL;
4280                                 goto err_free_queues;
4281                         }
4282                         pt->filter = memdup(filter, len);
4283                         if (!pt->filter) {
4284                                 err = -ENOMEM;
4285                                 goto err_free_queues;
4286                         }
4287                         if (session->header.needs_swap)
4288                                 mem_bswap_64(pt->filter, len);
4289                         if (pt->filter[len - 1]) {
4290                                 pr_err("%s: filter string not null terminated\n", __func__);
4291                                 err = -EINVAL;
4292                                 goto err_free_queues;
4293                         }
4294                         err = addr_filters__parse_bare_filter(&pt->filts,
4295                                                               filter);
4296                         if (err)
4297                                 goto err_free_queues;
4298                 }
4299                 intel_pt_print_info_str("Filter string", pt->filter);
4300         }
4301 
4302         if ((void *)info < info_end) {
4303                 pt->cap_event_trace = *info++;
4304                 if (dump_trace)
4305                         fprintf(stdout, "  Cap Event Trace     %d\n",
4306                                 pt->cap_event_trace);
4307         }
4308 
4309         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4310         if (pt->timeless_decoding && !pt->tc.time_mult)
4311                 pt->tc.time_mult = 1;
4312         pt->have_tsc = intel_pt_have_tsc(pt);
4313         pt->sampling_mode = intel_pt_sampling_mode(pt);
4314         pt->est_tsc = !pt->timeless_decoding;
4315 
4316         if (pt->synth_opts.vm_time_correlation) {
4317                 if (pt->timeless_decoding) {
4318                         pr_err("Intel PT has no time information for VM Time Correlation\n");
4319                         err = -EINVAL;
4320                         goto err_free_queues;
4321                 }
4322                 if (session->itrace_synth_opts->ptime_range) {
4323                         pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4324                         err = -EINVAL;
4325                         goto err_free_queues;
4326                 }
4327                 /* Currently TSC Offset is calculated using MTC packets */
4328                 if (!intel_pt_have_mtc(pt)) {
4329                         pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4330                         err = -EINVAL;
4331                         goto err_free_queues;
4332                 }
4333                 err = intel_pt_parse_vm_tm_corr_args(pt);
4334                 if (err)
4335                         goto err_free_queues;
4336         }
4337 
4338         pt->unknown_thread = thread__new(999999999, 999999999);
4339         if (!pt->unknown_thread) {
4340                 err = -ENOMEM;
4341                 goto err_free_queues;
4342         }
4343 
4344         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4345         if (err)
4346                 goto err_delete_thread;
4347         if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4348                 err = -ENOMEM;
4349                 goto err_delete_thread;
4350         }
4351 
4352         pt->auxtrace.process_event = intel_pt_process_event;
4353         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4354         pt->auxtrace.queue_data = intel_pt_queue_data;
4355         pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4356         pt->auxtrace.flush_events = intel_pt_flush;
4357         pt->auxtrace.free_events = intel_pt_free_events;
4358         pt->auxtrace.free = intel_pt_free;
4359         pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4360         session->auxtrace = &pt->auxtrace;
4361 
4362         if (dump_trace)
4363                 return 0;
4364 
4365         if (pt->have_sched_switch == 1) {
4366                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4367                 if (!pt->switch_evsel) {
4368                         pr_err("%s: missing sched_switch event\n", __func__);
4369                         err = -EINVAL;
4370                         goto err_delete_thread;
4371                 }
4372         } else if (pt->have_sched_switch == 2 &&
4373                    !intel_pt_find_switch(session->evlist)) {
4374                 pr_err("%s: missing context_switch attribute flag\n", __func__);
4375                 err = -EINVAL;
4376                 goto err_delete_thread;
4377         }
4378 
4379         if (pt->synth_opts.log) {
4380                 bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4381                 unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4382 
4383                 intel_pt_log_enable(log_on_error, log_on_error_size);
4384         }
4385 
4386         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
4387         if (pt->tc.time_mult) {
4388                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4389 
4390                 if (!pt->max_non_turbo_ratio)
4391                         pt->max_non_turbo_ratio =
4392                                         (tsc_freq + 50000000) / 100000000;
4393                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4394                 intel_pt_log("Maximum non-turbo ratio %u\n",
4395                              pt->max_non_turbo_ratio);
4396                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4397         }
4398 
4399         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4400         if (err)
4401                 goto err_delete_thread;
4402 
4403         if (pt->synth_opts.calls)
4404                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4405                                        PERF_IP_FLAG_TRACE_END;
4406         if (pt->synth_opts.returns)
4407                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
4408                                        PERF_IP_FLAG_TRACE_BEGIN;
4409 
4410         if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4411             !symbol_conf.use_callchain) {
4412                 symbol_conf.use_callchain = true;
4413                 if (callchain_register_param(&callchain_param) < 0) {
4414                         symbol_conf.use_callchain = false;
4415                         pt->synth_opts.callchain = false;
4416                         pt->synth_opts.add_callchain = false;
4417                 }
4418         }
4419 
4420         if (pt->synth_opts.add_callchain) {
4421                 err = intel_pt_callchain_init(pt);
4422                 if (err)
4423                         goto err_delete_thread;
4424         }
4425 
4426         if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4427                 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4428                 pt->br_stack_sz_plus = pt->br_stack_sz;
4429         }
4430 
4431         if (pt->synth_opts.add_last_branch) {
4432                 err = intel_pt_br_stack_init(pt);
4433                 if (err)
4434                         goto err_delete_thread;
4435                 /*
4436                  * Additional branch stack size to cater for tracing from the
4437                  * actual sample ip to where the sample time is recorded.
4438                  * Measured at about 200 branches, but generously set to 1024.
4439                  * If kernel space is not being traced, then add just 1 for the
4440                  * branch to kernel space.
4441                  */
4442                 if (intel_pt_tracing_kernel(pt))
4443                         pt->br_stack_sz_plus += 1024;
4444                 else
4445                         pt->br_stack_sz_plus += 1;
4446         }
4447 
4448         pt->use_thread_stack = pt->synth_opts.callchain ||
4449                                pt->synth_opts.add_callchain ||
4450                                pt->synth_opts.thread_stack ||
4451                                pt->synth_opts.last_branch ||
4452                                pt->synth_opts.add_last_branch;
4453 
4454         pt->callstack = pt->synth_opts.callchain ||
4455                         pt->synth_opts.add_callchain ||
4456                         pt->synth_opts.thread_stack;
4457 
4458         err = intel_pt_synth_events(pt, session);
4459         if (err)
4460                 goto err_delete_thread;
4461 
4462         intel_pt_setup_pebs_events(pt);
4463 
4464         if (perf_data__is_pipe(session->data)) {
4465                 pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4466                            "         The output cannot relied upon.  In particular,\n"
4467                            "         timestamps and the order of events may be incorrect.\n");
4468         }
4469 
4470         if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4471                 err = auxtrace_queue_data(session, true, true);
4472         else
4473                 err = auxtrace_queues__process_index(&pt->queues, session);
4474         if (err)
4475                 goto err_delete_thread;
4476 
4477         if (pt->queues.populated)
4478                 pt->data_queued = true;
4479 
4480         if (pt->timeless_decoding)
4481                 pr_debug2("Intel PT decoding without timestamps\n");
4482 
4483         return 0;
4484 
4485 err_delete_thread:
4486         zfree(&pt->chain);
4487         thread__zput(pt->unknown_thread);
4488 err_free_queues:
4489         intel_pt_log_disable();
4490         auxtrace_queues__free(&pt->queues);
4491         session->auxtrace = NULL;
4492 err_free:
4493         addr_filters__exit(&pt->filts);
4494         zfree(&pt->filter);
4495         zfree(&pt->time_ranges);
4496         free(pt);
4497         return err;
4498 }
4499 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php