1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "mem-info.h" 20 #include "path.h" 21 #include "srcline.h" 22 #include "symbol.h" 23 #include "sort.h" 24 #include "strlist.h" 25 #include "target.h" 26 #include "thread.h" 27 #include "util.h" 28 #include "vdso.h" 29 #include <stdbool.h> 30 #include <sys/types.h> 31 #include <sys/stat.h> 32 #include <unistd.h> 33 #include "unwind.h" 34 #include "linux/hash.h" 35 #include "asm/bug.h" 36 #include "bpf-event.h" 37 #include <internal/lib.h> // page_size 38 #include "cgroup.h" 39 #include "arm64-frame-pointer-unwind-support.h" 40 41 #include <linux/ctype.h> 42 #include <symbol/kallsyms.h> 43 #include <linux/mman.h> 44 #include <linux/string.h> 45 #include <linux/zalloc.h> 46 47 static struct dso *machine__kernel_dso(struct machine *machine) 48 { 49 return map__dso(machine->vmlinux_map); 50 } 51 52 static int machine__set_mmap_name(struct machine *machine) 53 { 54 if (machine__is_host(machine)) 55 machine->mmap_name = strdup("[kernel.kallsyms]"); 56 else if (machine__is_default_guest(machine)) 57 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 58 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 59 machine->pid) < 0) 60 machine->mmap_name = NULL; 61 62 return machine->mmap_name ? 0 : -ENOMEM; 63 } 64 65 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 66 { 67 char comm[64]; 68 69 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 70 thread__set_comm(thread, comm, 0); 71 } 72 73 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 74 { 75 int err = -ENOMEM; 76 77 memset(machine, 0, sizeof(*machine)); 78 machine->kmaps = maps__new(machine); 79 if (machine->kmaps == NULL) 80 return -ENOMEM; 81 82 RB_CLEAR_NODE(&machine->rb_node); 83 dsos__init(&machine->dsos); 84 85 threads__init(&machine->threads); 86 87 machine->vdso_info = NULL; 88 machine->env = NULL; 89 90 machine->pid = pid; 91 92 machine->id_hdr_size = 0; 93 machine->kptr_restrict_warned = false; 94 machine->comm_exec = false; 95 machine->kernel_start = 0; 96 machine->vmlinux_map = NULL; 97 98 machine->root_dir = strdup(root_dir); 99 if (machine->root_dir == NULL) 100 goto out; 101 102 if (machine__set_mmap_name(machine)) 103 goto out; 104 105 if (pid != HOST_KERNEL_ID) { 106 struct thread *thread = machine__findnew_thread(machine, -1, 107 pid); 108 109 if (thread == NULL) 110 goto out; 111 112 thread__set_guest_comm(thread, pid); 113 thread__put(thread); 114 } 115 116 machine->current_tid = NULL; 117 err = 0; 118 119 out: 120 if (err) { 121 zfree(&machine->kmaps); 122 zfree(&machine->root_dir); 123 zfree(&machine->mmap_name); 124 } 125 return 0; 126 } 127 128 struct machine *machine__new_host(void) 129 { 130 struct machine *machine = malloc(sizeof(*machine)); 131 132 if (machine != NULL) { 133 machine__init(machine, "", HOST_KERNEL_ID); 134 135 if (machine__create_kernel_maps(machine) < 0) 136 goto out_delete; 137 } 138 139 return machine; 140 out_delete: 141 free(machine); 142 return NULL; 143 } 144 145 struct machine *machine__new_kallsyms(void) 146 { 147 struct machine *machine = machine__new_host(); 148 /* 149 * FIXME: 150 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 151 * ask for not using the kcore parsing code, once this one is fixed 152 * to create a map per module. 153 */ 154 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 155 machine__delete(machine); 156 machine = NULL; 157 } 158 159 return machine; 160 } 161 162 void machine__delete_threads(struct machine *machine) 163 { 164 threads__remove_all_threads(&machine->threads); 165 } 166 167 void machine__exit(struct machine *machine) 168 { 169 if (machine == NULL) 170 return; 171 172 machine__destroy_kernel_maps(machine); 173 maps__zput(machine->kmaps); 174 dsos__exit(&machine->dsos); 175 machine__exit_vdso(machine); 176 zfree(&machine->root_dir); 177 zfree(&machine->mmap_name); 178 zfree(&machine->current_tid); 179 zfree(&machine->kallsyms_filename); 180 181 threads__exit(&machine->threads); 182 } 183 184 void machine__delete(struct machine *machine) 185 { 186 if (machine) { 187 machine__exit(machine); 188 free(machine); 189 } 190 } 191 192 void machines__init(struct machines *machines) 193 { 194 machine__init(&machines->host, "", HOST_KERNEL_ID); 195 machines->guests = RB_ROOT_CACHED; 196 } 197 198 void machines__exit(struct machines *machines) 199 { 200 machine__exit(&machines->host); 201 /* XXX exit guest */ 202 } 203 204 struct machine *machines__add(struct machines *machines, pid_t pid, 205 const char *root_dir) 206 { 207 struct rb_node **p = &machines->guests.rb_root.rb_node; 208 struct rb_node *parent = NULL; 209 struct machine *pos, *machine = malloc(sizeof(*machine)); 210 bool leftmost = true; 211 212 if (machine == NULL) 213 return NULL; 214 215 if (machine__init(machine, root_dir, pid) != 0) { 216 free(machine); 217 return NULL; 218 } 219 220 while (*p != NULL) { 221 parent = *p; 222 pos = rb_entry(parent, struct machine, rb_node); 223 if (pid < pos->pid) 224 p = &(*p)->rb_left; 225 else { 226 p = &(*p)->rb_right; 227 leftmost = false; 228 } 229 } 230 231 rb_link_node(&machine->rb_node, parent, p); 232 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 233 234 machine->machines = machines; 235 236 return machine; 237 } 238 239 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 240 { 241 struct rb_node *nd; 242 243 machines->host.comm_exec = comm_exec; 244 245 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 246 struct machine *machine = rb_entry(nd, struct machine, rb_node); 247 248 machine->comm_exec = comm_exec; 249 } 250 } 251 252 struct machine *machines__find(struct machines *machines, pid_t pid) 253 { 254 struct rb_node **p = &machines->guests.rb_root.rb_node; 255 struct rb_node *parent = NULL; 256 struct machine *machine; 257 struct machine *default_machine = NULL; 258 259 if (pid == HOST_KERNEL_ID) 260 return &machines->host; 261 262 while (*p != NULL) { 263 parent = *p; 264 machine = rb_entry(parent, struct machine, rb_node); 265 if (pid < machine->pid) 266 p = &(*p)->rb_left; 267 else if (pid > machine->pid) 268 p = &(*p)->rb_right; 269 else 270 return machine; 271 if (!machine->pid) 272 default_machine = machine; 273 } 274 275 return default_machine; 276 } 277 278 struct machine *machines__findnew(struct machines *machines, pid_t pid) 279 { 280 char path[PATH_MAX]; 281 const char *root_dir = ""; 282 struct machine *machine = machines__find(machines, pid); 283 284 if (machine && (machine->pid == pid)) 285 goto out; 286 287 if ((pid != HOST_KERNEL_ID) && 288 (pid != DEFAULT_GUEST_KERNEL_ID) && 289 (symbol_conf.guestmount)) { 290 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 291 if (access(path, R_OK)) { 292 static struct strlist *seen; 293 294 if (!seen) 295 seen = strlist__new(NULL, NULL); 296 297 if (!strlist__has_entry(seen, path)) { 298 pr_err("Can't access file %s\n", path); 299 strlist__add(seen, path); 300 } 301 machine = NULL; 302 goto out; 303 } 304 root_dir = path; 305 } 306 307 machine = machines__add(machines, pid, root_dir); 308 out: 309 return machine; 310 } 311 312 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 313 { 314 struct machine *machine = machines__find(machines, pid); 315 316 if (!machine) 317 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 318 return machine; 319 } 320 321 /* 322 * A common case for KVM test programs is that the test program acts as the 323 * hypervisor, creating, running and destroying the virtual machine, and 324 * providing the guest object code from its own object code. In this case, 325 * the VM is not running an OS, but only the functions loaded into it by the 326 * hypervisor test program, and conveniently, loaded at the same virtual 327 * addresses. 328 * 329 * Normally to resolve addresses, MMAP events are needed to map addresses 330 * back to the object code and debug symbols for that object code. 331 * 332 * Currently, there is no way to get such mapping information from guests 333 * but, in the scenario described above, the guest has the same mappings 334 * as the hypervisor, so support for that scenario can be achieved. 335 * 336 * To support that, copy the host thread's maps to the guest thread's maps. 337 * Note, we do not discover the guest until we encounter a guest event, 338 * which works well because it is not until then that we know that the host 339 * thread's maps have been set up. 340 * 341 * This function returns the guest thread. Apart from keeping the data 342 * structures sane, using a thread belonging to the guest machine, instead 343 * of the host thread, allows it to have its own comm (refer 344 * thread__set_guest_comm()). 345 */ 346 static struct thread *findnew_guest_code(struct machine *machine, 347 struct machine *host_machine, 348 pid_t pid) 349 { 350 struct thread *host_thread; 351 struct thread *thread; 352 int err; 353 354 if (!machine) 355 return NULL; 356 357 thread = machine__findnew_thread(machine, -1, pid); 358 if (!thread) 359 return NULL; 360 361 /* Assume maps are set up if there are any */ 362 if (!maps__empty(thread__maps(thread))) 363 return thread; 364 365 host_thread = machine__find_thread(host_machine, -1, pid); 366 if (!host_thread) 367 goto out_err; 368 369 thread__set_guest_comm(thread, pid); 370 371 /* 372 * Guest code can be found in hypervisor process at the same address 373 * so copy host maps. 374 */ 375 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread)); 376 thread__put(host_thread); 377 if (err) 378 goto out_err; 379 380 return thread; 381 382 out_err: 383 thread__zput(thread); 384 return NULL; 385 } 386 387 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 388 { 389 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 390 struct machine *machine = machines__findnew(machines, pid); 391 392 return findnew_guest_code(machine, host_machine, pid); 393 } 394 395 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 396 { 397 struct machines *machines = machine->machines; 398 struct machine *host_machine; 399 400 if (!machines) 401 return NULL; 402 403 host_machine = machines__find(machines, HOST_KERNEL_ID); 404 405 return findnew_guest_code(machine, host_machine, pid); 406 } 407 408 void machines__process_guests(struct machines *machines, 409 machine__process_t process, void *data) 410 { 411 struct rb_node *nd; 412 413 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 414 struct machine *pos = rb_entry(nd, struct machine, rb_node); 415 process(pos, data); 416 } 417 } 418 419 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 420 { 421 struct rb_node *node; 422 struct machine *machine; 423 424 machines->host.id_hdr_size = id_hdr_size; 425 426 for (node = rb_first_cached(&machines->guests); node; 427 node = rb_next(node)) { 428 machine = rb_entry(node, struct machine, rb_node); 429 machine->id_hdr_size = id_hdr_size; 430 } 431 432 return; 433 } 434 435 static void machine__update_thread_pid(struct machine *machine, 436 struct thread *th, pid_t pid) 437 { 438 struct thread *leader; 439 440 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1) 441 return; 442 443 thread__set_pid(th, pid); 444 445 if (thread__pid(th) == thread__tid(th)) 446 return; 447 448 leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th)); 449 if (!leader) 450 goto out_err; 451 452 if (!thread__maps(leader)) 453 thread__set_maps(leader, maps__new(machine)); 454 455 if (!thread__maps(leader)) 456 goto out_err; 457 458 if (thread__maps(th) == thread__maps(leader)) 459 goto out_put; 460 461 if (thread__maps(th)) { 462 /* 463 * Maps are created from MMAP events which provide the pid and 464 * tid. Consequently there never should be any maps on a thread 465 * with an unknown pid. Just print an error if there are. 466 */ 467 if (!maps__empty(thread__maps(th))) 468 pr_err("Discarding thread maps for %d:%d\n", 469 thread__pid(th), thread__tid(th)); 470 maps__put(thread__maps(th)); 471 } 472 473 thread__set_maps(th, maps__get(thread__maps(leader))); 474 out_put: 475 thread__put(leader); 476 return; 477 out_err: 478 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th)); 479 goto out_put; 480 } 481 482 /* 483 * Caller must eventually drop thread->refcnt returned with a successful 484 * lookup/new thread inserted. 485 */ 486 static struct thread *__machine__findnew_thread(struct machine *machine, 487 pid_t pid, 488 pid_t tid, 489 bool create) 490 { 491 struct thread *th = threads__find(&machine->threads, tid); 492 bool created; 493 494 if (th) { 495 machine__update_thread_pid(machine, th, pid); 496 return th; 497 } 498 if (!create) 499 return NULL; 500 501 th = threads__findnew(&machine->threads, pid, tid, &created); 502 if (created) { 503 /* 504 * We have to initialize maps separately after rb tree is 505 * updated. 506 * 507 * The reason is that we call machine__findnew_thread within 508 * thread__init_maps to find the thread leader and that would 509 * screwed the rb tree. 510 */ 511 if (thread__init_maps(th, machine)) { 512 pr_err("Thread init failed thread %d\n", pid); 513 threads__remove(&machine->threads, th); 514 thread__put(th); 515 return NULL; 516 } 517 } else 518 machine__update_thread_pid(machine, th, pid); 519 520 return th; 521 } 522 523 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 524 { 525 return __machine__findnew_thread(machine, pid, tid, /*create=*/true); 526 } 527 528 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 529 pid_t tid) 530 { 531 return __machine__findnew_thread(machine, pid, tid, /*create=*/false); 532 } 533 534 /* 535 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 536 * So here a single thread is created for that, but actually there is a separate 537 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 538 * is only 1. That causes problems for some tools, requiring workarounds. For 539 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 540 */ 541 struct thread *machine__idle_thread(struct machine *machine) 542 { 543 struct thread *thread = machine__findnew_thread(machine, 0, 0); 544 545 if (!thread || thread__set_comm(thread, "swapper", 0) || 546 thread__set_namespaces(thread, 0, NULL)) 547 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 548 549 return thread; 550 } 551 552 struct comm *machine__thread_exec_comm(struct machine *machine, 553 struct thread *thread) 554 { 555 if (machine->comm_exec) 556 return thread__exec_comm(thread); 557 else 558 return thread__comm(thread); 559 } 560 561 int machine__process_comm_event(struct machine *machine, union perf_event *event, 562 struct perf_sample *sample) 563 { 564 struct thread *thread = machine__findnew_thread(machine, 565 event->comm.pid, 566 event->comm.tid); 567 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 568 int err = 0; 569 570 if (exec) 571 machine->comm_exec = true; 572 573 if (dump_trace) 574 perf_event__fprintf_comm(event, stdout); 575 576 if (thread == NULL || 577 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 578 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 579 err = -1; 580 } 581 582 thread__put(thread); 583 584 return err; 585 } 586 587 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 588 union perf_event *event, 589 struct perf_sample *sample __maybe_unused) 590 { 591 struct thread *thread = machine__findnew_thread(machine, 592 event->namespaces.pid, 593 event->namespaces.tid); 594 int err = 0; 595 596 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 597 "\nWARNING: kernel seems to support more namespaces than perf" 598 " tool.\nTry updating the perf tool..\n\n"); 599 600 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 601 "\nWARNING: perf tool seems to support more namespaces than" 602 " the kernel.\nTry updating the kernel..\n\n"); 603 604 if (dump_trace) 605 perf_event__fprintf_namespaces(event, stdout); 606 607 if (thread == NULL || 608 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 609 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 610 err = -1; 611 } 612 613 thread__put(thread); 614 615 return err; 616 } 617 618 int machine__process_cgroup_event(struct machine *machine, 619 union perf_event *event, 620 struct perf_sample *sample __maybe_unused) 621 { 622 struct cgroup *cgrp; 623 624 if (dump_trace) 625 perf_event__fprintf_cgroup(event, stdout); 626 627 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 628 if (cgrp == NULL) 629 return -ENOMEM; 630 631 return 0; 632 } 633 634 int machine__process_lost_event(struct machine *machine __maybe_unused, 635 union perf_event *event, struct perf_sample *sample __maybe_unused) 636 { 637 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 638 event->lost.id, event->lost.lost); 639 return 0; 640 } 641 642 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 643 union perf_event *event, struct perf_sample *sample) 644 { 645 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 646 sample->id, event->lost_samples.lost); 647 return 0; 648 } 649 650 int machine__process_aux_event(struct machine *machine __maybe_unused, 651 union perf_event *event) 652 { 653 if (dump_trace) 654 perf_event__fprintf_aux(event, stdout); 655 return 0; 656 } 657 658 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 659 union perf_event *event) 660 { 661 if (dump_trace) 662 perf_event__fprintf_itrace_start(event, stdout); 663 return 0; 664 } 665 666 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 667 union perf_event *event) 668 { 669 if (dump_trace) 670 perf_event__fprintf_aux_output_hw_id(event, stdout); 671 return 0; 672 } 673 674 int machine__process_switch_event(struct machine *machine __maybe_unused, 675 union perf_event *event) 676 { 677 if (dump_trace) 678 perf_event__fprintf_switch(event, stdout); 679 return 0; 680 } 681 682 static int machine__process_ksymbol_register(struct machine *machine, 683 union perf_event *event, 684 struct perf_sample *sample __maybe_unused) 685 { 686 struct symbol *sym; 687 struct dso *dso = NULL; 688 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 689 int err = 0; 690 691 if (!map) { 692 dso = dso__new(event->ksymbol.name); 693 694 if (!dso) { 695 err = -ENOMEM; 696 goto out; 697 } 698 dso__set_kernel(dso, DSO_SPACE__KERNEL); 699 map = map__new2(0, dso); 700 if (!map) { 701 err = -ENOMEM; 702 goto out; 703 } 704 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 705 dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL); 706 dso__data(dso)->file_size = event->ksymbol.len; 707 dso__set_loaded(dso); 708 } 709 710 map__set_start(map, event->ksymbol.addr); 711 map__set_end(map, map__start(map) + event->ksymbol.len); 712 err = maps__insert(machine__kernel_maps(machine), map); 713 if (err) { 714 err = -ENOMEM; 715 goto out; 716 } 717 718 dso__set_loaded(dso); 719 720 if (is_bpf_image(event->ksymbol.name)) { 721 dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE); 722 dso__set_long_name(dso, "", false); 723 } 724 } else { 725 dso = dso__get(map__dso(map)); 726 } 727 728 sym = symbol__new(map__map_ip(map, map__start(map)), 729 event->ksymbol.len, 730 0, 0, event->ksymbol.name); 731 if (!sym) { 732 err = -ENOMEM; 733 goto out; 734 } 735 dso__insert_symbol(dso, sym); 736 out: 737 map__put(map); 738 dso__put(dso); 739 return err; 740 } 741 742 static int machine__process_ksymbol_unregister(struct machine *machine, 743 union perf_event *event, 744 struct perf_sample *sample __maybe_unused) 745 { 746 struct symbol *sym; 747 struct map *map; 748 749 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 750 if (!map) 751 return 0; 752 753 if (!RC_CHK_EQUAL(map, machine->vmlinux_map)) 754 maps__remove(machine__kernel_maps(machine), map); 755 else { 756 struct dso *dso = map__dso(map); 757 758 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map))); 759 if (sym) 760 dso__delete_symbol(dso, sym); 761 } 762 map__put(map); 763 return 0; 764 } 765 766 int machine__process_ksymbol(struct machine *machine __maybe_unused, 767 union perf_event *event, 768 struct perf_sample *sample) 769 { 770 if (dump_trace) 771 perf_event__fprintf_ksymbol(event, stdout); 772 773 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 774 return machine__process_ksymbol_unregister(machine, event, 775 sample); 776 return machine__process_ksymbol_register(machine, event, sample); 777 } 778 779 int machine__process_text_poke(struct machine *machine, union perf_event *event, 780 struct perf_sample *sample __maybe_unused) 781 { 782 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 783 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 784 struct dso *dso = map ? map__dso(map) : NULL; 785 786 if (dump_trace) 787 perf_event__fprintf_text_poke(event, machine, stdout); 788 789 if (!event->text_poke.new_len) 790 goto out; 791 792 if (cpumode != PERF_RECORD_MISC_KERNEL) { 793 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 794 goto out; 795 } 796 797 if (dso) { 798 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 799 int ret; 800 801 /* 802 * Kernel maps might be changed when loading symbols so loading 803 * must be done prior to using kernel maps. 804 */ 805 map__load(map); 806 ret = dso__data_write_cache_addr(dso, map, machine, 807 event->text_poke.addr, 808 new_bytes, 809 event->text_poke.new_len); 810 if (ret != event->text_poke.new_len) 811 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 812 event->text_poke.addr); 813 } else { 814 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 815 event->text_poke.addr); 816 } 817 out: 818 map__put(map); 819 return 0; 820 } 821 822 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 823 const char *filename) 824 { 825 struct map *map = NULL; 826 struct kmod_path m; 827 struct dso *dso; 828 int err; 829 830 if (kmod_path__parse_name(&m, filename)) 831 return NULL; 832 833 dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename); 834 if (dso == NULL) 835 goto out; 836 837 map = map__new2(start, dso); 838 if (map == NULL) 839 goto out; 840 841 err = maps__insert(machine__kernel_maps(machine), map); 842 /* If maps__insert failed, return NULL. */ 843 if (err) { 844 map__put(map); 845 map = NULL; 846 } 847 out: 848 /* put the dso here, corresponding to machine__findnew_module_dso */ 849 dso__put(dso); 850 zfree(&m.name); 851 return map; 852 } 853 854 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 855 { 856 struct rb_node *nd; 857 size_t ret = dsos__fprintf(&machines->host.dsos, fp); 858 859 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 860 struct machine *pos = rb_entry(nd, struct machine, rb_node); 861 ret += dsos__fprintf(&pos->dsos, fp); 862 } 863 864 return ret; 865 } 866 867 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 868 bool (skip)(struct dso *dso, int parm), int parm) 869 { 870 return dsos__fprintf_buildid(&m->dsos, fp, skip, parm); 871 } 872 873 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 874 bool (skip)(struct dso *dso, int parm), int parm) 875 { 876 struct rb_node *nd; 877 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 878 879 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 880 struct machine *pos = rb_entry(nd, struct machine, rb_node); 881 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 882 } 883 return ret; 884 } 885 886 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 887 { 888 int i; 889 size_t printed = 0; 890 struct dso *kdso = machine__kernel_dso(machine); 891 892 if (dso__has_build_id(kdso)) { 893 char filename[PATH_MAX]; 894 895 if (dso__build_id_filename(kdso, filename, sizeof(filename), false)) 896 printed += fprintf(fp, "[0] %s\n", filename); 897 } 898 899 for (i = 0; i < vmlinux_path__nr_entries; ++i) { 900 printed += fprintf(fp, "[%d] %s\n", i + dso__has_build_id(kdso), 901 vmlinux_path[i]); 902 } 903 return printed; 904 } 905 906 struct machine_fprintf_cb_args { 907 FILE *fp; 908 size_t printed; 909 }; 910 911 static int machine_fprintf_cb(struct thread *thread, void *data) 912 { 913 struct machine_fprintf_cb_args *args = data; 914 915 /* TODO: handle fprintf errors. */ 916 args->printed += thread__fprintf(thread, args->fp); 917 return 0; 918 } 919 920 size_t machine__fprintf(struct machine *machine, FILE *fp) 921 { 922 struct machine_fprintf_cb_args args = { 923 .fp = fp, 924 .printed = 0, 925 }; 926 size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads)); 927 928 machine__for_each_thread(machine, machine_fprintf_cb, &args); 929 return ret + args.printed; 930 } 931 932 static struct dso *machine__get_kernel(struct machine *machine) 933 { 934 const char *vmlinux_name = machine->mmap_name; 935 struct dso *kernel; 936 937 if (machine__is_host(machine)) { 938 if (symbol_conf.vmlinux_name) 939 vmlinux_name = symbol_conf.vmlinux_name; 940 941 kernel = machine__findnew_kernel(machine, vmlinux_name, 942 "[kernel]", DSO_SPACE__KERNEL); 943 } else { 944 if (symbol_conf.default_guest_vmlinux_name) 945 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 946 947 kernel = machine__findnew_kernel(machine, vmlinux_name, 948 "[guest.kernel]", 949 DSO_SPACE__KERNEL_GUEST); 950 } 951 952 if (kernel != NULL && (!dso__has_build_id(kernel))) 953 dso__read_running_kernel_build_id(kernel, machine); 954 955 return kernel; 956 } 957 958 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 959 size_t bufsz) 960 { 961 if (machine__is_default_guest(machine)) 962 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 963 else 964 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 965 } 966 967 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 968 969 /* Figure out the start address of kernel map from /proc/kallsyms. 970 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 971 * symbol_name if it's not that important. 972 */ 973 static int machine__get_running_kernel_start(struct machine *machine, 974 const char **symbol_name, 975 u64 *start, u64 *end) 976 { 977 char filename[PATH_MAX]; 978 int i, err = -1; 979 const char *name; 980 u64 addr = 0; 981 982 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 983 984 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 985 return 0; 986 987 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 988 err = kallsyms__get_function_start(filename, name, &addr); 989 if (!err) 990 break; 991 } 992 993 if (err) 994 return -1; 995 996 if (symbol_name) 997 *symbol_name = name; 998 999 *start = addr; 1000 1001 err = kallsyms__get_symbol_start(filename, "_edata", &addr); 1002 if (err) 1003 err = kallsyms__get_function_start(filename, "_etext", &addr); 1004 if (!err) 1005 *end = addr; 1006 1007 return 0; 1008 } 1009 1010 int machine__create_extra_kernel_map(struct machine *machine, 1011 struct dso *kernel, 1012 struct extra_kernel_map *xm) 1013 { 1014 struct kmap *kmap; 1015 struct map *map; 1016 int err; 1017 1018 map = map__new2(xm->start, kernel); 1019 if (!map) 1020 return -ENOMEM; 1021 1022 map__set_end(map, xm->end); 1023 map__set_pgoff(map, xm->pgoff); 1024 1025 kmap = map__kmap(map); 1026 1027 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1028 1029 err = maps__insert(machine__kernel_maps(machine), map); 1030 1031 if (!err) { 1032 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1033 kmap->name, map__start(map), map__end(map)); 1034 } 1035 1036 map__put(map); 1037 1038 return err; 1039 } 1040 1041 static u64 find_entry_trampoline(struct dso *dso) 1042 { 1043 /* Duplicates are removed so lookup all aliases */ 1044 const char *syms[] = { 1045 "_entry_trampoline", 1046 "__entry_trampoline_start", 1047 "entry_SYSCALL_64_trampoline", 1048 }; 1049 struct symbol *sym = dso__first_symbol(dso); 1050 unsigned int i; 1051 1052 for (; sym; sym = dso__next_symbol(sym)) { 1053 if (sym->binding != STB_GLOBAL) 1054 continue; 1055 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1056 if (!strcmp(sym->name, syms[i])) 1057 return sym->start; 1058 } 1059 } 1060 1061 return 0; 1062 } 1063 1064 /* 1065 * These values can be used for kernels that do not have symbols for the entry 1066 * trampolines in kallsyms. 1067 */ 1068 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1069 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1070 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1071 1072 struct machine__map_x86_64_entry_trampolines_args { 1073 struct maps *kmaps; 1074 bool found; 1075 }; 1076 1077 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data) 1078 { 1079 struct machine__map_x86_64_entry_trampolines_args *args = data; 1080 struct map *dest_map; 1081 struct kmap *kmap = __map__kmap(map); 1082 1083 if (!kmap || !is_entry_trampoline(kmap->name)) 1084 return 0; 1085 1086 dest_map = maps__find(args->kmaps, map__pgoff(map)); 1087 if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map)) 1088 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map))); 1089 1090 map__put(dest_map); 1091 args->found = true; 1092 return 0; 1093 } 1094 1095 /* Map x86_64 PTI entry trampolines */ 1096 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1097 struct dso *kernel) 1098 { 1099 struct machine__map_x86_64_entry_trampolines_args args = { 1100 .kmaps = machine__kernel_maps(machine), 1101 .found = false, 1102 }; 1103 int nr_cpus_avail, cpu; 1104 u64 pgoff; 1105 1106 /* 1107 * In the vmlinux case, pgoff is a virtual address which must now be 1108 * mapped to a vmlinux offset. 1109 */ 1110 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args); 1111 1112 if (args.found || machine->trampolines_mapped) 1113 return 0; 1114 1115 pgoff = find_entry_trampoline(kernel); 1116 if (!pgoff) 1117 return 0; 1118 1119 nr_cpus_avail = machine__nr_cpus_avail(machine); 1120 1121 /* Add a 1 page map for each CPU's entry trampoline */ 1122 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1123 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1124 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1125 X86_64_ENTRY_TRAMPOLINE; 1126 struct extra_kernel_map xm = { 1127 .start = va, 1128 .end = va + page_size, 1129 .pgoff = pgoff, 1130 }; 1131 1132 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1133 1134 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1135 return -1; 1136 } 1137 1138 machine->trampolines_mapped = nr_cpus_avail; 1139 1140 return 0; 1141 } 1142 1143 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1144 struct dso *kernel __maybe_unused) 1145 { 1146 return 0; 1147 } 1148 1149 static int 1150 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1151 { 1152 /* In case of renewal the kernel map, destroy previous one */ 1153 machine__destroy_kernel_maps(machine); 1154 1155 map__put(machine->vmlinux_map); 1156 machine->vmlinux_map = map__new2(0, kernel); 1157 if (machine->vmlinux_map == NULL) 1158 return -ENOMEM; 1159 1160 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY); 1161 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1162 } 1163 1164 void machine__destroy_kernel_maps(struct machine *machine) 1165 { 1166 struct kmap *kmap; 1167 struct map *map = machine__kernel_map(machine); 1168 1169 if (map == NULL) 1170 return; 1171 1172 kmap = map__kmap(map); 1173 maps__remove(machine__kernel_maps(machine), map); 1174 if (kmap && kmap->ref_reloc_sym) { 1175 zfree((char **)&kmap->ref_reloc_sym->name); 1176 zfree(&kmap->ref_reloc_sym); 1177 } 1178 1179 map__zput(machine->vmlinux_map); 1180 } 1181 1182 int machines__create_guest_kernel_maps(struct machines *machines) 1183 { 1184 int ret = 0; 1185 struct dirent **namelist = NULL; 1186 int i, items = 0; 1187 char path[PATH_MAX]; 1188 pid_t pid; 1189 char *endp; 1190 1191 if (symbol_conf.default_guest_vmlinux_name || 1192 symbol_conf.default_guest_modules || 1193 symbol_conf.default_guest_kallsyms) { 1194 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1195 } 1196 1197 if (symbol_conf.guestmount) { 1198 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1199 if (items <= 0) 1200 return -ENOENT; 1201 for (i = 0; i < items; i++) { 1202 if (!isdigit(namelist[i]->d_name[0])) { 1203 /* Filter out . and .. */ 1204 continue; 1205 } 1206 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1207 if ((*endp != '\0') || 1208 (endp == namelist[i]->d_name) || 1209 (errno == ERANGE)) { 1210 pr_debug("invalid directory (%s). Skipping.\n", 1211 namelist[i]->d_name); 1212 continue; 1213 } 1214 sprintf(path, "%s/%s/proc/kallsyms", 1215 symbol_conf.guestmount, 1216 namelist[i]->d_name); 1217 ret = access(path, R_OK); 1218 if (ret) { 1219 pr_debug("Can't access file %s\n", path); 1220 goto failure; 1221 } 1222 machines__create_kernel_maps(machines, pid); 1223 } 1224 failure: 1225 free(namelist); 1226 } 1227 1228 return ret; 1229 } 1230 1231 void machines__destroy_kernel_maps(struct machines *machines) 1232 { 1233 struct rb_node *next = rb_first_cached(&machines->guests); 1234 1235 machine__destroy_kernel_maps(&machines->host); 1236 1237 while (next) { 1238 struct machine *pos = rb_entry(next, struct machine, rb_node); 1239 1240 next = rb_next(&pos->rb_node); 1241 rb_erase_cached(&pos->rb_node, &machines->guests); 1242 machine__delete(pos); 1243 } 1244 } 1245 1246 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1247 { 1248 struct machine *machine = machines__findnew(machines, pid); 1249 1250 if (machine == NULL) 1251 return -1; 1252 1253 return machine__create_kernel_maps(machine); 1254 } 1255 1256 int machine__load_kallsyms(struct machine *machine, const char *filename) 1257 { 1258 struct map *map = machine__kernel_map(machine); 1259 struct dso *dso = map__dso(map); 1260 int ret = __dso__load_kallsyms(dso, filename, map, true); 1261 1262 if (ret > 0) { 1263 dso__set_loaded(dso); 1264 /* 1265 * Since /proc/kallsyms will have multiple sessions for the 1266 * kernel, with modules between them, fixup the end of all 1267 * sections. 1268 */ 1269 maps__fixup_end(machine__kernel_maps(machine)); 1270 } 1271 1272 return ret; 1273 } 1274 1275 int machine__load_vmlinux_path(struct machine *machine) 1276 { 1277 struct map *map = machine__kernel_map(machine); 1278 struct dso *dso = map__dso(map); 1279 int ret = dso__load_vmlinux_path(dso, map); 1280 1281 if (ret > 0) 1282 dso__set_loaded(dso); 1283 1284 return ret; 1285 } 1286 1287 static char *get_kernel_version(const char *root_dir) 1288 { 1289 char version[PATH_MAX]; 1290 FILE *file; 1291 char *name, *tmp; 1292 const char *prefix = "Linux version "; 1293 1294 sprintf(version, "%s/proc/version", root_dir); 1295 file = fopen(version, "r"); 1296 if (!file) 1297 return NULL; 1298 1299 tmp = fgets(version, sizeof(version), file); 1300 fclose(file); 1301 if (!tmp) 1302 return NULL; 1303 1304 name = strstr(version, prefix); 1305 if (!name) 1306 return NULL; 1307 name += strlen(prefix); 1308 tmp = strchr(name, ' '); 1309 if (tmp) 1310 *tmp = '\0'; 1311 1312 return strdup(name); 1313 } 1314 1315 static bool is_kmod_dso(struct dso *dso) 1316 { 1317 return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1318 dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE; 1319 } 1320 1321 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1322 { 1323 char *long_name; 1324 struct dso *dso; 1325 struct map *map = maps__find_by_name(maps, m->name); 1326 1327 if (map == NULL) 1328 return 0; 1329 1330 long_name = strdup(path); 1331 if (long_name == NULL) { 1332 map__put(map); 1333 return -ENOMEM; 1334 } 1335 1336 dso = map__dso(map); 1337 dso__set_long_name(dso, long_name, true); 1338 dso__kernel_module_get_build_id(dso, ""); 1339 1340 /* 1341 * Full name could reveal us kmod compression, so 1342 * we need to update the symtab_type if needed. 1343 */ 1344 if (m->comp && is_kmod_dso(dso)) { 1345 dso__set_symtab_type(dso, dso__symtab_type(dso)); 1346 dso__set_comp(dso, m->comp); 1347 } 1348 map__put(map); 1349 return 0; 1350 } 1351 1352 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1353 { 1354 struct dirent *dent; 1355 DIR *dir = opendir(dir_name); 1356 int ret = 0; 1357 1358 if (!dir) { 1359 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1360 return -1; 1361 } 1362 1363 while ((dent = readdir(dir)) != NULL) { 1364 char path[PATH_MAX]; 1365 struct stat st; 1366 1367 /*sshfs might return bad dent->d_type, so we have to stat*/ 1368 path__join(path, sizeof(path), dir_name, dent->d_name); 1369 if (stat(path, &st)) 1370 continue; 1371 1372 if (S_ISDIR(st.st_mode)) { 1373 if (!strcmp(dent->d_name, ".") || 1374 !strcmp(dent->d_name, "..")) 1375 continue; 1376 1377 /* Do not follow top-level source and build symlinks */ 1378 if (depth == 0) { 1379 if (!strcmp(dent->d_name, "source") || 1380 !strcmp(dent->d_name, "build")) 1381 continue; 1382 } 1383 1384 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1385 if (ret < 0) 1386 goto out; 1387 } else { 1388 struct kmod_path m; 1389 1390 ret = kmod_path__parse_name(&m, dent->d_name); 1391 if (ret) 1392 goto out; 1393 1394 if (m.kmod) 1395 ret = maps__set_module_path(maps, path, &m); 1396 1397 zfree(&m.name); 1398 1399 if (ret) 1400 goto out; 1401 } 1402 } 1403 1404 out: 1405 closedir(dir); 1406 return ret; 1407 } 1408 1409 static int machine__set_modules_path(struct machine *machine) 1410 { 1411 char *version; 1412 char modules_path[PATH_MAX]; 1413 1414 version = get_kernel_version(machine->root_dir); 1415 if (!version) 1416 return -1; 1417 1418 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1419 machine->root_dir, version); 1420 free(version); 1421 1422 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1423 } 1424 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1425 u64 *size __maybe_unused, 1426 const char *name __maybe_unused) 1427 { 1428 return 0; 1429 } 1430 1431 static int machine__create_module(void *arg, const char *name, u64 start, 1432 u64 size) 1433 { 1434 struct machine *machine = arg; 1435 struct map *map; 1436 1437 if (arch__fix_module_text_start(&start, &size, name) < 0) 1438 return -1; 1439 1440 map = machine__addnew_module_map(machine, start, name); 1441 if (map == NULL) 1442 return -1; 1443 map__set_end(map, start + size); 1444 1445 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir); 1446 map__put(map); 1447 return 0; 1448 } 1449 1450 static int machine__create_modules(struct machine *machine) 1451 { 1452 const char *modules; 1453 char path[PATH_MAX]; 1454 1455 if (machine__is_default_guest(machine)) { 1456 modules = symbol_conf.default_guest_modules; 1457 } else { 1458 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1459 modules = path; 1460 } 1461 1462 if (symbol__restricted_filename(modules, "/proc/modules")) 1463 return -1; 1464 1465 if (modules__parse(modules, machine, machine__create_module)) 1466 return -1; 1467 1468 if (!machine__set_modules_path(machine)) 1469 return 0; 1470 1471 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1472 1473 return 0; 1474 } 1475 1476 static void machine__set_kernel_mmap(struct machine *machine, 1477 u64 start, u64 end) 1478 { 1479 map__set_start(machine->vmlinux_map, start); 1480 map__set_end(machine->vmlinux_map, end); 1481 /* 1482 * Be a bit paranoid here, some perf.data file came with 1483 * a zero sized synthesized MMAP event for the kernel. 1484 */ 1485 if (start == 0 && end == 0) 1486 map__set_end(machine->vmlinux_map, ~0ULL); 1487 } 1488 1489 static int machine__update_kernel_mmap(struct machine *machine, 1490 u64 start, u64 end) 1491 { 1492 struct map *orig, *updated; 1493 int err; 1494 1495 orig = machine->vmlinux_map; 1496 updated = map__get(orig); 1497 1498 machine->vmlinux_map = updated; 1499 maps__remove(machine__kernel_maps(machine), orig); 1500 machine__set_kernel_mmap(machine, start, end); 1501 err = maps__insert(machine__kernel_maps(machine), updated); 1502 map__put(orig); 1503 1504 return err; 1505 } 1506 1507 int machine__create_kernel_maps(struct machine *machine) 1508 { 1509 struct dso *kernel = machine__get_kernel(machine); 1510 const char *name = NULL; 1511 u64 start = 0, end = ~0ULL; 1512 int ret; 1513 1514 if (kernel == NULL) 1515 return -1; 1516 1517 ret = __machine__create_kernel_maps(machine, kernel); 1518 if (ret < 0) 1519 goto out_put; 1520 1521 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1522 if (machine__is_host(machine)) 1523 pr_debug("Problems creating module maps, " 1524 "continuing anyway...\n"); 1525 else 1526 pr_debug("Problems creating module maps for guest %d, " 1527 "continuing anyway...\n", machine->pid); 1528 } 1529 1530 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1531 if (name && 1532 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1533 machine__destroy_kernel_maps(machine); 1534 ret = -1; 1535 goto out_put; 1536 } 1537 1538 /* 1539 * we have a real start address now, so re-order the kmaps 1540 * assume it's the last in the kmaps 1541 */ 1542 ret = machine__update_kernel_mmap(machine, start, end); 1543 if (ret < 0) 1544 goto out_put; 1545 } 1546 1547 if (machine__create_extra_kernel_maps(machine, kernel)) 1548 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1549 1550 if (end == ~0ULL) { 1551 /* update end address of the kernel map using adjacent module address */ 1552 struct map *next = maps__find_next_entry(machine__kernel_maps(machine), 1553 machine__kernel_map(machine)); 1554 1555 if (next) { 1556 machine__set_kernel_mmap(machine, start, map__start(next)); 1557 map__put(next); 1558 } 1559 } 1560 1561 out_put: 1562 dso__put(kernel); 1563 return ret; 1564 } 1565 1566 static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused) 1567 { 1568 return dso__is_kcore(dso) ? 1 : 0; 1569 } 1570 1571 static bool machine__uses_kcore(struct machine *machine) 1572 { 1573 return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false; 1574 } 1575 1576 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1577 struct extra_kernel_map *xm) 1578 { 1579 return machine__is(machine, "x86_64") && 1580 is_entry_trampoline(xm->name); 1581 } 1582 1583 static int machine__process_extra_kernel_map(struct machine *machine, 1584 struct extra_kernel_map *xm) 1585 { 1586 struct dso *kernel = machine__kernel_dso(machine); 1587 1588 if (kernel == NULL) 1589 return -1; 1590 1591 return machine__create_extra_kernel_map(machine, kernel, xm); 1592 } 1593 1594 static int machine__process_kernel_mmap_event(struct machine *machine, 1595 struct extra_kernel_map *xm, 1596 struct build_id *bid) 1597 { 1598 enum dso_space_type dso_space; 1599 bool is_kernel_mmap; 1600 const char *mmap_name = machine->mmap_name; 1601 1602 /* If we have maps from kcore then we do not need or want any others */ 1603 if (machine__uses_kcore(machine)) 1604 return 0; 1605 1606 if (machine__is_host(machine)) 1607 dso_space = DSO_SPACE__KERNEL; 1608 else 1609 dso_space = DSO_SPACE__KERNEL_GUEST; 1610 1611 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1612 if (!is_kernel_mmap && !machine__is_host(machine)) { 1613 /* 1614 * If the event was recorded inside the guest and injected into 1615 * the host perf.data file, then it will match a host mmap_name, 1616 * so try that - see machine__set_mmap_name(). 1617 */ 1618 mmap_name = "[kernel.kallsyms]"; 1619 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1620 } 1621 if (xm->name[0] == '/' || 1622 (!is_kernel_mmap && xm->name[0] == '[')) { 1623 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name); 1624 1625 if (map == NULL) 1626 goto out_problem; 1627 1628 map__set_end(map, map__start(map) + xm->end - xm->start); 1629 1630 if (build_id__is_defined(bid)) 1631 dso__set_build_id(map__dso(map), bid); 1632 1633 map__put(map); 1634 } else if (is_kernel_mmap) { 1635 const char *symbol_name = xm->name + strlen(mmap_name); 1636 /* 1637 * Should be there already, from the build-id table in 1638 * the header. 1639 */ 1640 struct dso *kernel = dsos__find_kernel_dso(&machine->dsos); 1641 1642 if (kernel == NULL) 1643 kernel = machine__findnew_dso(machine, machine->mmap_name); 1644 if (kernel == NULL) 1645 goto out_problem; 1646 1647 dso__set_kernel(kernel, dso_space); 1648 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1649 dso__put(kernel); 1650 goto out_problem; 1651 } 1652 1653 if (strstr(dso__long_name(kernel), "vmlinux")) 1654 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1655 1656 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) { 1657 dso__put(kernel); 1658 goto out_problem; 1659 } 1660 1661 if (build_id__is_defined(bid)) 1662 dso__set_build_id(kernel, bid); 1663 1664 /* 1665 * Avoid using a zero address (kptr_restrict) for the ref reloc 1666 * symbol. Effectively having zero here means that at record 1667 * time /proc/sys/kernel/kptr_restrict was non zero. 1668 */ 1669 if (xm->pgoff != 0) { 1670 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1671 symbol_name, 1672 xm->pgoff); 1673 } 1674 1675 if (machine__is_default_guest(machine)) { 1676 /* 1677 * preload dso of guest kernel and modules 1678 */ 1679 dso__load(kernel, machine__kernel_map(machine)); 1680 } 1681 dso__put(kernel); 1682 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1683 return machine__process_extra_kernel_map(machine, xm); 1684 } 1685 return 0; 1686 out_problem: 1687 return -1; 1688 } 1689 1690 int machine__process_mmap2_event(struct machine *machine, 1691 union perf_event *event, 1692 struct perf_sample *sample) 1693 { 1694 struct thread *thread; 1695 struct map *map; 1696 struct dso_id dso_id = { 1697 .maj = event->mmap2.maj, 1698 .min = event->mmap2.min, 1699 .ino = event->mmap2.ino, 1700 .ino_generation = event->mmap2.ino_generation, 1701 }; 1702 struct build_id __bid, *bid = NULL; 1703 int ret = 0; 1704 1705 if (dump_trace) 1706 perf_event__fprintf_mmap2(event, stdout); 1707 1708 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1709 bid = &__bid; 1710 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1711 } 1712 1713 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1714 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1715 struct extra_kernel_map xm = { 1716 .start = event->mmap2.start, 1717 .end = event->mmap2.start + event->mmap2.len, 1718 .pgoff = event->mmap2.pgoff, 1719 }; 1720 1721 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1722 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1723 if (ret < 0) 1724 goto out_problem; 1725 return 0; 1726 } 1727 1728 thread = machine__findnew_thread(machine, event->mmap2.pid, 1729 event->mmap2.tid); 1730 if (thread == NULL) 1731 goto out_problem; 1732 1733 map = map__new(machine, event->mmap2.start, 1734 event->mmap2.len, event->mmap2.pgoff, 1735 &dso_id, event->mmap2.prot, 1736 event->mmap2.flags, bid, 1737 event->mmap2.filename, thread); 1738 1739 if (map == NULL) 1740 goto out_problem_map; 1741 1742 ret = thread__insert_map(thread, map); 1743 if (ret) 1744 goto out_problem_insert; 1745 1746 thread__put(thread); 1747 map__put(map); 1748 return 0; 1749 1750 out_problem_insert: 1751 map__put(map); 1752 out_problem_map: 1753 thread__put(thread); 1754 out_problem: 1755 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1756 return 0; 1757 } 1758 1759 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1760 struct perf_sample *sample) 1761 { 1762 struct thread *thread; 1763 struct map *map; 1764 u32 prot = 0; 1765 int ret = 0; 1766 1767 if (dump_trace) 1768 perf_event__fprintf_mmap(event, stdout); 1769 1770 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1771 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1772 struct extra_kernel_map xm = { 1773 .start = event->mmap.start, 1774 .end = event->mmap.start + event->mmap.len, 1775 .pgoff = event->mmap.pgoff, 1776 }; 1777 1778 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1779 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1780 if (ret < 0) 1781 goto out_problem; 1782 return 0; 1783 } 1784 1785 thread = machine__findnew_thread(machine, event->mmap.pid, 1786 event->mmap.tid); 1787 if (thread == NULL) 1788 goto out_problem; 1789 1790 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1791 prot = PROT_EXEC; 1792 1793 map = map__new(machine, event->mmap.start, 1794 event->mmap.len, event->mmap.pgoff, 1795 NULL, prot, 0, NULL, event->mmap.filename, thread); 1796 1797 if (map == NULL) 1798 goto out_problem_map; 1799 1800 ret = thread__insert_map(thread, map); 1801 if (ret) 1802 goto out_problem_insert; 1803 1804 thread__put(thread); 1805 map__put(map); 1806 return 0; 1807 1808 out_problem_insert: 1809 map__put(map); 1810 out_problem_map: 1811 thread__put(thread); 1812 out_problem: 1813 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1814 return 0; 1815 } 1816 1817 void machine__remove_thread(struct machine *machine, struct thread *th) 1818 { 1819 return threads__remove(&machine->threads, th); 1820 } 1821 1822 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1823 struct perf_sample *sample) 1824 { 1825 struct thread *thread = machine__find_thread(machine, 1826 event->fork.pid, 1827 event->fork.tid); 1828 struct thread *parent = machine__findnew_thread(machine, 1829 event->fork.ppid, 1830 event->fork.ptid); 1831 bool do_maps_clone = true; 1832 int err = 0; 1833 1834 if (dump_trace) 1835 perf_event__fprintf_task(event, stdout); 1836 1837 /* 1838 * There may be an existing thread that is not actually the parent, 1839 * either because we are processing events out of order, or because the 1840 * (fork) event that would have removed the thread was lost. Assume the 1841 * latter case and continue on as best we can. 1842 */ 1843 if (thread__pid(parent) != (pid_t)event->fork.ppid) { 1844 dump_printf("removing erroneous parent thread %d/%d\n", 1845 thread__pid(parent), thread__tid(parent)); 1846 machine__remove_thread(machine, parent); 1847 thread__put(parent); 1848 parent = machine__findnew_thread(machine, event->fork.ppid, 1849 event->fork.ptid); 1850 } 1851 1852 /* if a thread currently exists for the thread id remove it */ 1853 if (thread != NULL) { 1854 machine__remove_thread(machine, thread); 1855 thread__put(thread); 1856 } 1857 1858 thread = machine__findnew_thread(machine, event->fork.pid, 1859 event->fork.tid); 1860 /* 1861 * When synthesizing FORK events, we are trying to create thread 1862 * objects for the already running tasks on the machine. 1863 * 1864 * Normally, for a kernel FORK event, we want to clone the parent's 1865 * maps because that is what the kernel just did. 1866 * 1867 * But when synthesizing, this should not be done. If we do, we end up 1868 * with overlapping maps as we process the synthesized MMAP2 events that 1869 * get delivered shortly thereafter. 1870 * 1871 * Use the FORK event misc flags in an internal way to signal this 1872 * situation, so we can elide the map clone when appropriate. 1873 */ 1874 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1875 do_maps_clone = false; 1876 1877 if (thread == NULL || parent == NULL || 1878 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1879 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1880 err = -1; 1881 } 1882 thread__put(thread); 1883 thread__put(parent); 1884 1885 return err; 1886 } 1887 1888 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1889 struct perf_sample *sample __maybe_unused) 1890 { 1891 struct thread *thread = machine__find_thread(machine, 1892 event->fork.pid, 1893 event->fork.tid); 1894 1895 if (dump_trace) 1896 perf_event__fprintf_task(event, stdout); 1897 1898 if (thread != NULL) { 1899 if (symbol_conf.keep_exited_threads) 1900 thread__set_exited(thread, /*exited=*/true); 1901 else 1902 machine__remove_thread(machine, thread); 1903 } 1904 thread__put(thread); 1905 return 0; 1906 } 1907 1908 int machine__process_event(struct machine *machine, union perf_event *event, 1909 struct perf_sample *sample) 1910 { 1911 int ret; 1912 1913 switch (event->header.type) { 1914 case PERF_RECORD_COMM: 1915 ret = machine__process_comm_event(machine, event, sample); break; 1916 case PERF_RECORD_MMAP: 1917 ret = machine__process_mmap_event(machine, event, sample); break; 1918 case PERF_RECORD_NAMESPACES: 1919 ret = machine__process_namespaces_event(machine, event, sample); break; 1920 case PERF_RECORD_CGROUP: 1921 ret = machine__process_cgroup_event(machine, event, sample); break; 1922 case PERF_RECORD_MMAP2: 1923 ret = machine__process_mmap2_event(machine, event, sample); break; 1924 case PERF_RECORD_FORK: 1925 ret = machine__process_fork_event(machine, event, sample); break; 1926 case PERF_RECORD_EXIT: 1927 ret = machine__process_exit_event(machine, event, sample); break; 1928 case PERF_RECORD_LOST: 1929 ret = machine__process_lost_event(machine, event, sample); break; 1930 case PERF_RECORD_AUX: 1931 ret = machine__process_aux_event(machine, event); break; 1932 case PERF_RECORD_ITRACE_START: 1933 ret = machine__process_itrace_start_event(machine, event); break; 1934 case PERF_RECORD_LOST_SAMPLES: 1935 ret = machine__process_lost_samples_event(machine, event, sample); break; 1936 case PERF_RECORD_SWITCH: 1937 case PERF_RECORD_SWITCH_CPU_WIDE: 1938 ret = machine__process_switch_event(machine, event); break; 1939 case PERF_RECORD_KSYMBOL: 1940 ret = machine__process_ksymbol(machine, event, sample); break; 1941 case PERF_RECORD_BPF_EVENT: 1942 ret = machine__process_bpf(machine, event, sample); break; 1943 case PERF_RECORD_TEXT_POKE: 1944 ret = machine__process_text_poke(machine, event, sample); break; 1945 case PERF_RECORD_AUX_OUTPUT_HW_ID: 1946 ret = machine__process_aux_output_hw_id_event(machine, event); break; 1947 default: 1948 ret = -1; 1949 break; 1950 } 1951 1952 return ret; 1953 } 1954 1955 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1956 { 1957 return regexec(regex, sym->name, 0, NULL, 0) == 0; 1958 } 1959 1960 static void ip__resolve_ams(struct thread *thread, 1961 struct addr_map_symbol *ams, 1962 u64 ip) 1963 { 1964 struct addr_location al; 1965 1966 addr_location__init(&al); 1967 /* 1968 * We cannot use the header.misc hint to determine whether a 1969 * branch stack address is user, kernel, guest, hypervisor. 1970 * Branches may straddle the kernel/user/hypervisor boundaries. 1971 * Thus, we have to try consecutively until we find a match 1972 * or else, the symbol is unknown 1973 */ 1974 thread__find_cpumode_addr_location(thread, ip, &al); 1975 1976 ams->addr = ip; 1977 ams->al_addr = al.addr; 1978 ams->al_level = al.level; 1979 ams->ms.maps = maps__get(al.maps); 1980 ams->ms.sym = al.sym; 1981 ams->ms.map = map__get(al.map); 1982 ams->phys_addr = 0; 1983 ams->data_page_size = 0; 1984 addr_location__exit(&al); 1985 } 1986 1987 static void ip__resolve_data(struct thread *thread, 1988 u8 m, struct addr_map_symbol *ams, 1989 u64 addr, u64 phys_addr, u64 daddr_page_size) 1990 { 1991 struct addr_location al; 1992 1993 addr_location__init(&al); 1994 1995 thread__find_symbol(thread, m, addr, &al); 1996 1997 ams->addr = addr; 1998 ams->al_addr = al.addr; 1999 ams->al_level = al.level; 2000 ams->ms.maps = maps__get(al.maps); 2001 ams->ms.sym = al.sym; 2002 ams->ms.map = map__get(al.map); 2003 ams->phys_addr = phys_addr; 2004 ams->data_page_size = daddr_page_size; 2005 addr_location__exit(&al); 2006 } 2007 2008 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2009 struct addr_location *al) 2010 { 2011 struct mem_info *mi = mem_info__new(); 2012 2013 if (!mi) 2014 return NULL; 2015 2016 ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip); 2017 ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi), 2018 sample->addr, sample->phys_addr, 2019 sample->data_page_size); 2020 mem_info__data_src(mi)->val = sample->data_src; 2021 2022 return mi; 2023 } 2024 2025 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2026 { 2027 struct map *map = ms->map; 2028 char *srcline = NULL; 2029 struct dso *dso; 2030 2031 if (!map || callchain_param.key == CCKEY_FUNCTION) 2032 return srcline; 2033 2034 dso = map__dso(map); 2035 srcline = srcline__tree_find(dso__srclines(dso), ip); 2036 if (!srcline) { 2037 bool show_sym = false; 2038 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2039 2040 srcline = get_srcline(dso, map__rip_2objdump(map, ip), 2041 ms->sym, show_sym, show_addr, ip); 2042 srcline__tree_insert(dso__srclines(dso), ip, srcline); 2043 } 2044 2045 return srcline; 2046 } 2047 2048 struct iterations { 2049 int nr_loop_iter; 2050 u64 cycles; 2051 }; 2052 2053 static int add_callchain_ip(struct thread *thread, 2054 struct callchain_cursor *cursor, 2055 struct symbol **parent, 2056 struct addr_location *root_al, 2057 u8 *cpumode, 2058 u64 ip, 2059 bool branch, 2060 struct branch_flags *flags, 2061 struct iterations *iter, 2062 u64 branch_from) 2063 { 2064 struct map_symbol ms = {}; 2065 struct addr_location al; 2066 int nr_loop_iter = 0, err = 0; 2067 u64 iter_cycles = 0; 2068 const char *srcline = NULL; 2069 2070 addr_location__init(&al); 2071 al.filtered = 0; 2072 al.sym = NULL; 2073 al.srcline = NULL; 2074 if (!cpumode) { 2075 thread__find_cpumode_addr_location(thread, ip, &al); 2076 } else { 2077 if (ip >= PERF_CONTEXT_MAX) { 2078 switch (ip) { 2079 case PERF_CONTEXT_HV: 2080 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2081 break; 2082 case PERF_CONTEXT_KERNEL: 2083 *cpumode = PERF_RECORD_MISC_KERNEL; 2084 break; 2085 case PERF_CONTEXT_USER: 2086 *cpumode = PERF_RECORD_MISC_USER; 2087 break; 2088 default: 2089 pr_debug("invalid callchain context: " 2090 "%"PRId64"\n", (s64) ip); 2091 /* 2092 * It seems the callchain is corrupted. 2093 * Discard all. 2094 */ 2095 callchain_cursor_reset(cursor); 2096 err = 1; 2097 goto out; 2098 } 2099 goto out; 2100 } 2101 thread__find_symbol(thread, *cpumode, ip, &al); 2102 } 2103 2104 if (al.sym != NULL) { 2105 if (perf_hpp_list.parent && !*parent && 2106 symbol__match_regex(al.sym, &parent_regex)) 2107 *parent = al.sym; 2108 else if (have_ignore_callees && root_al && 2109 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2110 /* Treat this symbol as the root, 2111 forgetting its callees. */ 2112 addr_location__copy(root_al, &al); 2113 callchain_cursor_reset(cursor); 2114 } 2115 } 2116 2117 if (symbol_conf.hide_unresolved && al.sym == NULL) 2118 goto out; 2119 2120 if (iter) { 2121 nr_loop_iter = iter->nr_loop_iter; 2122 iter_cycles = iter->cycles; 2123 } 2124 2125 ms.maps = maps__get(al.maps); 2126 ms.map = map__get(al.map); 2127 ms.sym = al.sym; 2128 srcline = callchain_srcline(&ms, al.addr); 2129 err = callchain_cursor_append(cursor, ip, &ms, 2130 branch, flags, nr_loop_iter, 2131 iter_cycles, branch_from, srcline); 2132 out: 2133 addr_location__exit(&al); 2134 map_symbol__exit(&ms); 2135 return err; 2136 } 2137 2138 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2139 struct addr_location *al) 2140 { 2141 unsigned int i; 2142 const struct branch_stack *bs = sample->branch_stack; 2143 struct branch_entry *entries = perf_sample__branch_entries(sample); 2144 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2145 2146 if (!bi) 2147 return NULL; 2148 2149 for (i = 0; i < bs->nr; i++) { 2150 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2151 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2152 bi[i].flags = entries[i].flags; 2153 } 2154 return bi; 2155 } 2156 2157 static void save_iterations(struct iterations *iter, 2158 struct branch_entry *be, int nr) 2159 { 2160 int i; 2161 2162 iter->nr_loop_iter++; 2163 iter->cycles = 0; 2164 2165 for (i = 0; i < nr; i++) 2166 iter->cycles += be[i].flags.cycles; 2167 } 2168 2169 #define CHASHSZ 127 2170 #define CHASHBITS 7 2171 #define NO_ENTRY 0xff 2172 2173 #define PERF_MAX_BRANCH_DEPTH 127 2174 2175 /* Remove loops. */ 2176 static int remove_loops(struct branch_entry *l, int nr, 2177 struct iterations *iter) 2178 { 2179 int i, j, off; 2180 unsigned char chash[CHASHSZ]; 2181 2182 memset(chash, NO_ENTRY, sizeof(chash)); 2183 2184 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2185 2186 for (i = 0; i < nr; i++) { 2187 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2188 2189 /* no collision handling for now */ 2190 if (chash[h] == NO_ENTRY) { 2191 chash[h] = i; 2192 } else if (l[chash[h]].from == l[i].from) { 2193 bool is_loop = true; 2194 /* check if it is a real loop */ 2195 off = 0; 2196 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2197 if (l[j].from != l[i + off].from) { 2198 is_loop = false; 2199 break; 2200 } 2201 if (is_loop) { 2202 j = nr - (i + off); 2203 if (j > 0) { 2204 save_iterations(iter + i + off, 2205 l + i, off); 2206 2207 memmove(iter + i, iter + i + off, 2208 j * sizeof(*iter)); 2209 2210 memmove(l + i, l + i + off, 2211 j * sizeof(*l)); 2212 } 2213 2214 nr -= off; 2215 } 2216 } 2217 } 2218 return nr; 2219 } 2220 2221 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2222 struct callchain_cursor *cursor, 2223 struct perf_sample *sample, 2224 struct symbol **parent, 2225 struct addr_location *root_al, 2226 u64 branch_from, 2227 bool callee, int end) 2228 { 2229 struct ip_callchain *chain = sample->callchain; 2230 u8 cpumode = PERF_RECORD_MISC_USER; 2231 int err, i; 2232 2233 if (callee) { 2234 for (i = 0; i < end + 1; i++) { 2235 err = add_callchain_ip(thread, cursor, parent, 2236 root_al, &cpumode, chain->ips[i], 2237 false, NULL, NULL, branch_from); 2238 if (err) 2239 return err; 2240 } 2241 return 0; 2242 } 2243 2244 for (i = end; i >= 0; i--) { 2245 err = add_callchain_ip(thread, cursor, parent, 2246 root_al, &cpumode, chain->ips[i], 2247 false, NULL, NULL, branch_from); 2248 if (err) 2249 return err; 2250 } 2251 2252 return 0; 2253 } 2254 2255 static void save_lbr_cursor_node(struct thread *thread, 2256 struct callchain_cursor *cursor, 2257 int idx) 2258 { 2259 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2260 2261 if (!lbr_stitch) 2262 return; 2263 2264 if (cursor->pos == cursor->nr) { 2265 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2266 return; 2267 } 2268 2269 if (!cursor->curr) 2270 cursor->curr = cursor->first; 2271 else 2272 cursor->curr = cursor->curr->next; 2273 2274 map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms); 2275 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2276 sizeof(struct callchain_cursor_node)); 2277 lbr_stitch->prev_lbr_cursor[idx].ms.maps = maps__get(cursor->curr->ms.maps); 2278 lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map); 2279 2280 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2281 cursor->pos++; 2282 } 2283 2284 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2285 struct callchain_cursor *cursor, 2286 struct perf_sample *sample, 2287 struct symbol **parent, 2288 struct addr_location *root_al, 2289 u64 *branch_from, 2290 bool callee) 2291 { 2292 struct branch_stack *lbr_stack = sample->branch_stack; 2293 struct branch_entry *entries = perf_sample__branch_entries(sample); 2294 u8 cpumode = PERF_RECORD_MISC_USER; 2295 int lbr_nr = lbr_stack->nr; 2296 struct branch_flags *flags; 2297 int err, i; 2298 u64 ip; 2299 2300 /* 2301 * The curr and pos are not used in writing session. They are cleared 2302 * in callchain_cursor_commit() when the writing session is closed. 2303 * Using curr and pos to track the current cursor node. 2304 */ 2305 if (thread__lbr_stitch(thread)) { 2306 cursor->curr = NULL; 2307 cursor->pos = cursor->nr; 2308 if (cursor->nr) { 2309 cursor->curr = cursor->first; 2310 for (i = 0; i < (int)(cursor->nr - 1); i++) 2311 cursor->curr = cursor->curr->next; 2312 } 2313 } 2314 2315 if (callee) { 2316 /* Add LBR ip from first entries.to */ 2317 ip = entries[0].to; 2318 flags = &entries[0].flags; 2319 *branch_from = entries[0].from; 2320 err = add_callchain_ip(thread, cursor, parent, 2321 root_al, &cpumode, ip, 2322 true, flags, NULL, 2323 *branch_from); 2324 if (err) 2325 return err; 2326 2327 /* 2328 * The number of cursor node increases. 2329 * Move the current cursor node. 2330 * But does not need to save current cursor node for entry 0. 2331 * It's impossible to stitch the whole LBRs of previous sample. 2332 */ 2333 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) { 2334 if (!cursor->curr) 2335 cursor->curr = cursor->first; 2336 else 2337 cursor->curr = cursor->curr->next; 2338 cursor->pos++; 2339 } 2340 2341 /* Add LBR ip from entries.from one by one. */ 2342 for (i = 0; i < lbr_nr; i++) { 2343 ip = entries[i].from; 2344 flags = &entries[i].flags; 2345 err = add_callchain_ip(thread, cursor, parent, 2346 root_al, &cpumode, ip, 2347 true, flags, NULL, 2348 *branch_from); 2349 if (err) 2350 return err; 2351 save_lbr_cursor_node(thread, cursor, i); 2352 } 2353 return 0; 2354 } 2355 2356 /* Add LBR ip from entries.from one by one. */ 2357 for (i = lbr_nr - 1; i >= 0; i--) { 2358 ip = entries[i].from; 2359 flags = &entries[i].flags; 2360 err = add_callchain_ip(thread, cursor, parent, 2361 root_al, &cpumode, ip, 2362 true, flags, NULL, 2363 *branch_from); 2364 if (err) 2365 return err; 2366 save_lbr_cursor_node(thread, cursor, i); 2367 } 2368 2369 if (lbr_nr > 0) { 2370 /* Add LBR ip from first entries.to */ 2371 ip = entries[0].to; 2372 flags = &entries[0].flags; 2373 *branch_from = entries[0].from; 2374 err = add_callchain_ip(thread, cursor, parent, 2375 root_al, &cpumode, ip, 2376 true, flags, NULL, 2377 *branch_from); 2378 if (err) 2379 return err; 2380 } 2381 2382 return 0; 2383 } 2384 2385 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2386 struct callchain_cursor *cursor) 2387 { 2388 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2389 struct callchain_cursor_node *cnode; 2390 struct stitch_list *stitch_node; 2391 int err; 2392 2393 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2394 cnode = &stitch_node->cursor; 2395 2396 err = callchain_cursor_append(cursor, cnode->ip, 2397 &cnode->ms, 2398 cnode->branch, 2399 &cnode->branch_flags, 2400 cnode->nr_loop_iter, 2401 cnode->iter_cycles, 2402 cnode->branch_from, 2403 cnode->srcline); 2404 if (err) 2405 return err; 2406 } 2407 return 0; 2408 } 2409 2410 static struct stitch_list *get_stitch_node(struct thread *thread) 2411 { 2412 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2413 struct stitch_list *stitch_node; 2414 2415 if (!list_empty(&lbr_stitch->free_lists)) { 2416 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2417 struct stitch_list, node); 2418 list_del(&stitch_node->node); 2419 2420 return stitch_node; 2421 } 2422 2423 return malloc(sizeof(struct stitch_list)); 2424 } 2425 2426 static bool has_stitched_lbr(struct thread *thread, 2427 struct perf_sample *cur, 2428 struct perf_sample *prev, 2429 unsigned int max_lbr, 2430 bool callee) 2431 { 2432 struct branch_stack *cur_stack = cur->branch_stack; 2433 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2434 struct branch_stack *prev_stack = prev->branch_stack; 2435 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2436 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2437 int i, j, nr_identical_branches = 0; 2438 struct stitch_list *stitch_node; 2439 u64 cur_base, distance; 2440 2441 if (!cur_stack || !prev_stack) 2442 return false; 2443 2444 /* Find the physical index of the base-of-stack for current sample. */ 2445 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2446 2447 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2448 (max_lbr + prev_stack->hw_idx - cur_base); 2449 /* Previous sample has shorter stack. Nothing can be stitched. */ 2450 if (distance + 1 > prev_stack->nr) 2451 return false; 2452 2453 /* 2454 * Check if there are identical LBRs between two samples. 2455 * Identical LBRs must have same from, to and flags values. Also, 2456 * they have to be saved in the same LBR registers (same physical 2457 * index). 2458 * 2459 * Starts from the base-of-stack of current sample. 2460 */ 2461 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2462 if ((prev_entries[i].from != cur_entries[j].from) || 2463 (prev_entries[i].to != cur_entries[j].to) || 2464 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2465 break; 2466 nr_identical_branches++; 2467 } 2468 2469 if (!nr_identical_branches) 2470 return false; 2471 2472 /* 2473 * Save the LBRs between the base-of-stack of previous sample 2474 * and the base-of-stack of current sample into lbr_stitch->lists. 2475 * These LBRs will be stitched later. 2476 */ 2477 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2478 2479 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2480 continue; 2481 2482 stitch_node = get_stitch_node(thread); 2483 if (!stitch_node) 2484 return false; 2485 2486 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2487 sizeof(struct callchain_cursor_node)); 2488 2489 stitch_node->cursor.ms.maps = maps__get(lbr_stitch->prev_lbr_cursor[i].ms.maps); 2490 stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map); 2491 2492 if (callee) 2493 list_add(&stitch_node->node, &lbr_stitch->lists); 2494 else 2495 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2496 } 2497 2498 return true; 2499 } 2500 2501 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2502 { 2503 if (thread__lbr_stitch(thread)) 2504 return true; 2505 2506 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch))); 2507 if (!thread__lbr_stitch(thread)) 2508 goto err; 2509 2510 thread__lbr_stitch(thread)->prev_lbr_cursor = 2511 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2512 if (!thread__lbr_stitch(thread)->prev_lbr_cursor) 2513 goto free_lbr_stitch; 2514 2515 thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1; 2516 2517 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists); 2518 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists); 2519 2520 return true; 2521 2522 free_lbr_stitch: 2523 free(thread__lbr_stitch(thread)); 2524 thread__set_lbr_stitch(thread, NULL); 2525 err: 2526 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2527 thread__set_lbr_stitch_enable(thread, false); 2528 return false; 2529 } 2530 2531 /* 2532 * Resolve LBR callstack chain sample 2533 * Return: 2534 * 1 on success get LBR callchain information 2535 * 0 no available LBR callchain information, should try fp 2536 * negative error code on other errors. 2537 */ 2538 static int resolve_lbr_callchain_sample(struct thread *thread, 2539 struct callchain_cursor *cursor, 2540 struct perf_sample *sample, 2541 struct symbol **parent, 2542 struct addr_location *root_al, 2543 int max_stack, 2544 unsigned int max_lbr) 2545 { 2546 bool callee = (callchain_param.order == ORDER_CALLEE); 2547 struct ip_callchain *chain = sample->callchain; 2548 int chain_nr = min(max_stack, (int)chain->nr), i; 2549 struct lbr_stitch *lbr_stitch; 2550 bool stitched_lbr = false; 2551 u64 branch_from = 0; 2552 int err; 2553 2554 for (i = 0; i < chain_nr; i++) { 2555 if (chain->ips[i] == PERF_CONTEXT_USER) 2556 break; 2557 } 2558 2559 /* LBR only affects the user callchain */ 2560 if (i == chain_nr) 2561 return 0; 2562 2563 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx && 2564 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2565 lbr_stitch = thread__lbr_stitch(thread); 2566 2567 stitched_lbr = has_stitched_lbr(thread, sample, 2568 &lbr_stitch->prev_sample, 2569 max_lbr, callee); 2570 2571 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2572 struct stitch_list *stitch_node; 2573 2574 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) 2575 map_symbol__exit(&stitch_node->cursor.ms); 2576 2577 list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists); 2578 } 2579 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2580 } 2581 2582 if (callee) { 2583 /* Add kernel ip */ 2584 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2585 parent, root_al, branch_from, 2586 true, i); 2587 if (err) 2588 goto error; 2589 2590 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2591 root_al, &branch_from, true); 2592 if (err) 2593 goto error; 2594 2595 if (stitched_lbr) { 2596 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2597 if (err) 2598 goto error; 2599 } 2600 2601 } else { 2602 if (stitched_lbr) { 2603 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2604 if (err) 2605 goto error; 2606 } 2607 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2608 root_al, &branch_from, false); 2609 if (err) 2610 goto error; 2611 2612 /* Add kernel ip */ 2613 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2614 parent, root_al, branch_from, 2615 false, i); 2616 if (err) 2617 goto error; 2618 } 2619 return 1; 2620 2621 error: 2622 return (err < 0) ? err : 0; 2623 } 2624 2625 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2626 struct callchain_cursor *cursor, 2627 struct symbol **parent, 2628 struct addr_location *root_al, 2629 u8 *cpumode, int ent) 2630 { 2631 int err = 0; 2632 2633 while (--ent >= 0) { 2634 u64 ip = chain->ips[ent]; 2635 2636 if (ip >= PERF_CONTEXT_MAX) { 2637 err = add_callchain_ip(thread, cursor, parent, 2638 root_al, cpumode, ip, 2639 false, NULL, NULL, 0); 2640 break; 2641 } 2642 } 2643 return err; 2644 } 2645 2646 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2647 struct thread *thread, int usr_idx) 2648 { 2649 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64")) 2650 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2651 else 2652 return 0; 2653 } 2654 2655 static int thread__resolve_callchain_sample(struct thread *thread, 2656 struct callchain_cursor *cursor, 2657 struct evsel *evsel, 2658 struct perf_sample *sample, 2659 struct symbol **parent, 2660 struct addr_location *root_al, 2661 int max_stack) 2662 { 2663 struct branch_stack *branch = sample->branch_stack; 2664 struct branch_entry *entries = perf_sample__branch_entries(sample); 2665 struct ip_callchain *chain = sample->callchain; 2666 int chain_nr = 0; 2667 u8 cpumode = PERF_RECORD_MISC_USER; 2668 int i, j, err, nr_entries, usr_idx; 2669 int skip_idx = -1; 2670 int first_call = 0; 2671 u64 leaf_frame_caller; 2672 2673 if (chain) 2674 chain_nr = chain->nr; 2675 2676 if (evsel__has_branch_callstack(evsel)) { 2677 struct perf_env *env = evsel__env(evsel); 2678 2679 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2680 root_al, max_stack, 2681 !env ? 0 : env->max_branches); 2682 if (err) 2683 return (err < 0) ? err : 0; 2684 } 2685 2686 /* 2687 * Based on DWARF debug information, some architectures skip 2688 * a callchain entry saved by the kernel. 2689 */ 2690 skip_idx = arch_skip_callchain_idx(thread, chain); 2691 2692 /* 2693 * Add branches to call stack for easier browsing. This gives 2694 * more context for a sample than just the callers. 2695 * 2696 * This uses individual histograms of paths compared to the 2697 * aggregated histograms the normal LBR mode uses. 2698 * 2699 * Limitations for now: 2700 * - No extra filters 2701 * - No annotations (should annotate somehow) 2702 */ 2703 2704 if (branch && callchain_param.branch_callstack) { 2705 int nr = min(max_stack, (int)branch->nr); 2706 struct branch_entry be[nr]; 2707 struct iterations iter[nr]; 2708 2709 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2710 pr_warning("corrupted branch chain. skipping...\n"); 2711 goto check_calls; 2712 } 2713 2714 for (i = 0; i < nr; i++) { 2715 if (callchain_param.order == ORDER_CALLEE) { 2716 be[i] = entries[i]; 2717 2718 if (chain == NULL) 2719 continue; 2720 2721 /* 2722 * Check for overlap into the callchain. 2723 * The return address is one off compared to 2724 * the branch entry. To adjust for this 2725 * assume the calling instruction is not longer 2726 * than 8 bytes. 2727 */ 2728 if (i == skip_idx || 2729 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2730 first_call++; 2731 else if (be[i].from < chain->ips[first_call] && 2732 be[i].from >= chain->ips[first_call] - 8) 2733 first_call++; 2734 } else 2735 be[i] = entries[branch->nr - i - 1]; 2736 } 2737 2738 memset(iter, 0, sizeof(struct iterations) * nr); 2739 nr = remove_loops(be, nr, iter); 2740 2741 for (i = 0; i < nr; i++) { 2742 err = add_callchain_ip(thread, cursor, parent, 2743 root_al, 2744 NULL, be[i].to, 2745 true, &be[i].flags, 2746 NULL, be[i].from); 2747 2748 if (!err) 2749 err = add_callchain_ip(thread, cursor, parent, root_al, 2750 NULL, be[i].from, 2751 true, &be[i].flags, 2752 &iter[i], 0); 2753 if (err == -EINVAL) 2754 break; 2755 if (err) 2756 return err; 2757 } 2758 2759 if (chain_nr == 0) 2760 return 0; 2761 2762 chain_nr -= nr; 2763 } 2764 2765 check_calls: 2766 if (chain && callchain_param.order != ORDER_CALLEE) { 2767 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2768 &cpumode, chain->nr - first_call); 2769 if (err) 2770 return (err < 0) ? err : 0; 2771 } 2772 for (i = first_call, nr_entries = 0; 2773 i < chain_nr && nr_entries < max_stack; i++) { 2774 u64 ip; 2775 2776 if (callchain_param.order == ORDER_CALLEE) 2777 j = i; 2778 else 2779 j = chain->nr - i - 1; 2780 2781 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2782 if (j == skip_idx) 2783 continue; 2784 #endif 2785 ip = chain->ips[j]; 2786 if (ip < PERF_CONTEXT_MAX) 2787 ++nr_entries; 2788 else if (callchain_param.order != ORDER_CALLEE) { 2789 err = find_prev_cpumode(chain, thread, cursor, parent, 2790 root_al, &cpumode, j); 2791 if (err) 2792 return (err < 0) ? err : 0; 2793 continue; 2794 } 2795 2796 /* 2797 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 2798 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 2799 * the index will be different in order to add the missing frame 2800 * at the right place. 2801 */ 2802 2803 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 2804 2805 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 2806 2807 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 2808 2809 /* 2810 * check if leaf_frame_Caller != ip to not add the same 2811 * value twice. 2812 */ 2813 2814 if (leaf_frame_caller && leaf_frame_caller != ip) { 2815 2816 err = add_callchain_ip(thread, cursor, parent, 2817 root_al, &cpumode, leaf_frame_caller, 2818 false, NULL, NULL, 0); 2819 if (err) 2820 return (err < 0) ? err : 0; 2821 } 2822 } 2823 2824 err = add_callchain_ip(thread, cursor, parent, 2825 root_al, &cpumode, ip, 2826 false, NULL, NULL, 0); 2827 2828 if (err) 2829 return (err < 0) ? err : 0; 2830 } 2831 2832 return 0; 2833 } 2834 2835 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2836 { 2837 struct symbol *sym = ms->sym; 2838 struct map *map = ms->map; 2839 struct inline_node *inline_node; 2840 struct inline_list *ilist; 2841 struct dso *dso; 2842 u64 addr; 2843 int ret = 1; 2844 struct map_symbol ilist_ms; 2845 2846 if (!symbol_conf.inline_name || !map || !sym) 2847 return ret; 2848 2849 addr = map__dso_map_ip(map, ip); 2850 addr = map__rip_2objdump(map, addr); 2851 dso = map__dso(map); 2852 2853 inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr); 2854 if (!inline_node) { 2855 inline_node = dso__parse_addr_inlines(dso, addr, sym); 2856 if (!inline_node) 2857 return ret; 2858 inlines__tree_insert(dso__inlined_nodes(dso), inline_node); 2859 } 2860 2861 ilist_ms = (struct map_symbol) { 2862 .maps = maps__get(ms->maps), 2863 .map = map__get(map), 2864 }; 2865 list_for_each_entry(ilist, &inline_node->val, list) { 2866 ilist_ms.sym = ilist->symbol; 2867 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2868 NULL, 0, 0, 0, ilist->srcline); 2869 2870 if (ret != 0) 2871 return ret; 2872 } 2873 map_symbol__exit(&ilist_ms); 2874 2875 return ret; 2876 } 2877 2878 static int unwind_entry(struct unwind_entry *entry, void *arg) 2879 { 2880 struct callchain_cursor *cursor = arg; 2881 const char *srcline = NULL; 2882 u64 addr = entry->ip; 2883 2884 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2885 return 0; 2886 2887 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2888 return 0; 2889 2890 /* 2891 * Convert entry->ip from a virtual address to an offset in 2892 * its corresponding binary. 2893 */ 2894 if (entry->ms.map) 2895 addr = map__dso_map_ip(entry->ms.map, entry->ip); 2896 2897 srcline = callchain_srcline(&entry->ms, addr); 2898 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2899 false, NULL, 0, 0, 0, srcline); 2900 } 2901 2902 static int thread__resolve_callchain_unwind(struct thread *thread, 2903 struct callchain_cursor *cursor, 2904 struct evsel *evsel, 2905 struct perf_sample *sample, 2906 int max_stack) 2907 { 2908 /* Can we do dwarf post unwind? */ 2909 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2910 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2911 return 0; 2912 2913 /* Bail out if nothing was captured. */ 2914 if ((!sample->user_regs.regs) || 2915 (!sample->user_stack.size)) 2916 return 0; 2917 2918 return unwind__get_entries(unwind_entry, cursor, 2919 thread, sample, max_stack, false); 2920 } 2921 2922 int thread__resolve_callchain(struct thread *thread, 2923 struct callchain_cursor *cursor, 2924 struct evsel *evsel, 2925 struct perf_sample *sample, 2926 struct symbol **parent, 2927 struct addr_location *root_al, 2928 int max_stack) 2929 { 2930 int ret = 0; 2931 2932 if (cursor == NULL) 2933 return -ENOMEM; 2934 2935 callchain_cursor_reset(cursor); 2936 2937 if (callchain_param.order == ORDER_CALLEE) { 2938 ret = thread__resolve_callchain_sample(thread, cursor, 2939 evsel, sample, 2940 parent, root_al, 2941 max_stack); 2942 if (ret) 2943 return ret; 2944 ret = thread__resolve_callchain_unwind(thread, cursor, 2945 evsel, sample, 2946 max_stack); 2947 } else { 2948 ret = thread__resolve_callchain_unwind(thread, cursor, 2949 evsel, sample, 2950 max_stack); 2951 if (ret) 2952 return ret; 2953 ret = thread__resolve_callchain_sample(thread, cursor, 2954 evsel, sample, 2955 parent, root_al, 2956 max_stack); 2957 } 2958 2959 return ret; 2960 } 2961 2962 int machine__for_each_thread(struct machine *machine, 2963 int (*fn)(struct thread *thread, void *p), 2964 void *priv) 2965 { 2966 return threads__for_each_thread(&machine->threads, fn, priv); 2967 } 2968 2969 int machines__for_each_thread(struct machines *machines, 2970 int (*fn)(struct thread *thread, void *p), 2971 void *priv) 2972 { 2973 struct rb_node *nd; 2974 int rc = 0; 2975 2976 rc = machine__for_each_thread(&machines->host, fn, priv); 2977 if (rc != 0) 2978 return rc; 2979 2980 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2981 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2982 2983 rc = machine__for_each_thread(machine, fn, priv); 2984 if (rc != 0) 2985 return rc; 2986 } 2987 return rc; 2988 } 2989 2990 2991 static int thread_list_cb(struct thread *thread, void *data) 2992 { 2993 struct list_head *list = data; 2994 struct thread_list *entry = malloc(sizeof(*entry)); 2995 2996 if (!entry) 2997 return -ENOMEM; 2998 2999 entry->thread = thread__get(thread); 3000 list_add_tail(&entry->list, list); 3001 return 0; 3002 } 3003 3004 int machine__thread_list(struct machine *machine, struct list_head *list) 3005 { 3006 return machine__for_each_thread(machine, thread_list_cb, list); 3007 } 3008 3009 void thread_list__delete(struct list_head *list) 3010 { 3011 struct thread_list *pos, *next; 3012 3013 list_for_each_entry_safe(pos, next, list, list) { 3014 thread__zput(pos->thread); 3015 list_del(&pos->list); 3016 free(pos); 3017 } 3018 } 3019 3020 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3021 { 3022 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3023 return -1; 3024 3025 return machine->current_tid[cpu]; 3026 } 3027 3028 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3029 pid_t tid) 3030 { 3031 struct thread *thread; 3032 const pid_t init_val = -1; 3033 3034 if (cpu < 0) 3035 return -EINVAL; 3036 3037 if (realloc_array_as_needed(machine->current_tid, 3038 machine->current_tid_sz, 3039 (unsigned int)cpu, 3040 &init_val)) 3041 return -ENOMEM; 3042 3043 machine->current_tid[cpu] = tid; 3044 3045 thread = machine__findnew_thread(machine, pid, tid); 3046 if (!thread) 3047 return -ENOMEM; 3048 3049 thread__set_cpu(thread, cpu); 3050 thread__put(thread); 3051 3052 return 0; 3053 } 3054 3055 /* 3056 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3057 * machine__normalized_is() if a normalized arch is needed. 3058 */ 3059 bool machine__is(struct machine *machine, const char *arch) 3060 { 3061 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3062 } 3063 3064 bool machine__normalized_is(struct machine *machine, const char *arch) 3065 { 3066 return machine && !strcmp(perf_env__arch(machine->env), arch); 3067 } 3068 3069 int machine__nr_cpus_avail(struct machine *machine) 3070 { 3071 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3072 } 3073 3074 int machine__get_kernel_start(struct machine *machine) 3075 { 3076 struct map *map = machine__kernel_map(machine); 3077 int err = 0; 3078 3079 /* 3080 * The only addresses above 2^63 are kernel addresses of a 64-bit 3081 * kernel. Note that addresses are unsigned so that on a 32-bit system 3082 * all addresses including kernel addresses are less than 2^32. In 3083 * that case (32-bit system), if the kernel mapping is unknown, all 3084 * addresses will be assumed to be in user space - see 3085 * machine__kernel_ip(). 3086 */ 3087 machine->kernel_start = 1ULL << 63; 3088 if (map) { 3089 err = map__load(map); 3090 /* 3091 * On x86_64, PTI entry trampolines are less than the 3092 * start of kernel text, but still above 2^63. So leave 3093 * kernel_start = 1ULL << 63 for x86_64. 3094 */ 3095 if (!err && !machine__is(machine, "x86_64")) 3096 machine->kernel_start = map__start(map); 3097 } 3098 return err; 3099 } 3100 3101 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3102 { 3103 u8 addr_cpumode = cpumode; 3104 bool kernel_ip; 3105 3106 if (!machine->single_address_space) 3107 goto out; 3108 3109 kernel_ip = machine__kernel_ip(machine, addr); 3110 switch (cpumode) { 3111 case PERF_RECORD_MISC_KERNEL: 3112 case PERF_RECORD_MISC_USER: 3113 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3114 PERF_RECORD_MISC_USER; 3115 break; 3116 case PERF_RECORD_MISC_GUEST_KERNEL: 3117 case PERF_RECORD_MISC_GUEST_USER: 3118 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3119 PERF_RECORD_MISC_GUEST_USER; 3120 break; 3121 default: 3122 break; 3123 } 3124 out: 3125 return addr_cpumode; 3126 } 3127 3128 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3129 { 3130 return dsos__findnew_id(&machine->dsos, filename, id); 3131 } 3132 3133 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3134 { 3135 return machine__findnew_dso_id(machine, filename, NULL); 3136 } 3137 3138 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3139 { 3140 struct machine *machine = vmachine; 3141 struct map *map; 3142 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3143 3144 if (sym == NULL) 3145 return NULL; 3146 3147 *modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL; 3148 *addrp = map__unmap_ip(map, sym->start); 3149 return sym->name; 3150 } 3151 3152 struct machine__for_each_dso_cb_args { 3153 struct machine *machine; 3154 machine__dso_t fn; 3155 void *priv; 3156 }; 3157 3158 static int machine__for_each_dso_cb(struct dso *dso, void *data) 3159 { 3160 struct machine__for_each_dso_cb_args *args = data; 3161 3162 return args->fn(dso, args->machine, args->priv); 3163 } 3164 3165 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3166 { 3167 struct machine__for_each_dso_cb_args args = { 3168 .machine = machine, 3169 .fn = fn, 3170 .priv = priv, 3171 }; 3172 3173 return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args); 3174 } 3175 3176 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3177 { 3178 struct maps *maps = machine__kernel_maps(machine); 3179 3180 return maps__for_each_map(maps, fn, priv); 3181 } 3182 3183 bool machine__is_lock_function(struct machine *machine, u64 addr) 3184 { 3185 if (!machine->sched.text_start) { 3186 struct map *kmap; 3187 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); 3188 3189 if (!sym) { 3190 /* to avoid retry */ 3191 machine->sched.text_start = 1; 3192 return false; 3193 } 3194 3195 machine->sched.text_start = map__unmap_ip(kmap, sym->start); 3196 3197 /* should not fail from here */ 3198 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); 3199 machine->sched.text_end = map__unmap_ip(kmap, sym->start); 3200 3201 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); 3202 machine->lock.text_start = map__unmap_ip(kmap, sym->start); 3203 3204 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); 3205 machine->lock.text_end = map__unmap_ip(kmap, sym->start); 3206 3207 sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap); 3208 if (sym) { 3209 machine->traceiter.text_start = map__unmap_ip(kmap, sym->start); 3210 machine->traceiter.text_end = map__unmap_ip(kmap, sym->end); 3211 } 3212 sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap); 3213 if (sym) { 3214 machine->trace.text_start = map__unmap_ip(kmap, sym->start); 3215 machine->trace.text_end = map__unmap_ip(kmap, sym->end); 3216 } 3217 } 3218 3219 /* failed to get kernel symbols */ 3220 if (machine->sched.text_start == 1) 3221 return false; 3222 3223 /* mutex and rwsem functions are in sched text section */ 3224 if (machine->sched.text_start <= addr && addr < machine->sched.text_end) 3225 return true; 3226 3227 /* spinlock functions are in lock text section */ 3228 if (machine->lock.text_start <= addr && addr < machine->lock.text_end) 3229 return true; 3230 3231 /* traceiter functions currently don't have their own section 3232 * but we consider them lock functions 3233 */ 3234 if (machine->traceiter.text_start != 0) { 3235 if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end) 3236 return true; 3237 } 3238 3239 if (machine->trace.text_start != 0) { 3240 if (machine->trace.text_start <= addr && addr < machine->trace.text_end) 3241 return true; 3242 } 3243 3244 return false; 3245 } 3246 3247 int machine__hit_all_dsos(struct machine *machine) 3248 { 3249 return dsos__hit_all(&machine->dsos); 3250 } 3251
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.