1 // SPDX-License-Identifier: GPL-2.0 2 #include <stddef.h> 3 #include <stdlib.h> 4 #include <string.h> 5 #include <errno.h> 6 #include <sys/types.h> 7 #include <sys/stat.h> 8 #include <unistd.h> 9 #include <api/fs/fs.h> 10 #include <linux/kernel.h> 11 #include "cpumap.h" 12 #include "map_symbol.h" 13 #include "mem-events.h" 14 #include "mem-info.h" 15 #include "debug.h" 16 #include "evsel.h" 17 #include "symbol.h" 18 #include "pmu.h" 19 #include "pmus.h" 20 21 unsigned int perf_mem_events__loads_ldlat = 30; 22 23 #define E(t, n, s, l, a) { .tag = t, .name = n, .event_name = s, .ldlat = l, .aux_event = a } 24 25 struct perf_mem_event perf_mem_events[PERF_MEM_EVENTS__MAX] = { 26 E("ldlat-loads", "%s/mem-loads,ldlat=%u/P", "mem-loads", true, 0), 27 E("ldlat-stores", "%s/mem-stores/P", "mem-stores", false, 0), 28 E(NULL, NULL, NULL, false, 0), 29 }; 30 #undef E 31 32 bool perf_mem_record[PERF_MEM_EVENTS__MAX] = { 0 }; 33 34 static char mem_loads_name[100]; 35 static char mem_stores_name[100]; 36 37 struct perf_mem_event *perf_pmu__mem_events_ptr(struct perf_pmu *pmu, int i) 38 { 39 if (i >= PERF_MEM_EVENTS__MAX || !pmu) 40 return NULL; 41 42 return &pmu->mem_events[i]; 43 } 44 45 static struct perf_pmu *perf_pmus__scan_mem(struct perf_pmu *pmu) 46 { 47 while ((pmu = perf_pmus__scan(pmu)) != NULL) { 48 if (pmu->mem_events) 49 return pmu; 50 } 51 return NULL; 52 } 53 54 struct perf_pmu *perf_mem_events_find_pmu(void) 55 { 56 /* 57 * The current perf mem doesn't support per-PMU configuration. 58 * The exact same configuration is applied to all the 59 * mem_events supported PMUs. 60 * Return the first mem_events supported PMU. 61 * 62 * Notes: The only case which may support multiple mem_events 63 * supported PMUs is Intel hybrid. The exact same mem_events 64 * is shared among the PMUs. Only configure the first PMU 65 * is good enough as well. 66 */ 67 return perf_pmus__scan_mem(NULL); 68 } 69 70 /** 71 * perf_pmu__mem_events_num_mem_pmus - Get the number of mem PMUs since the given pmu 72 * @pmu: Start pmu. If it's NULL, search the entire PMU list. 73 */ 74 int perf_pmu__mem_events_num_mem_pmus(struct perf_pmu *pmu) 75 { 76 int num = 0; 77 78 while ((pmu = perf_pmus__scan_mem(pmu)) != NULL) 79 num++; 80 81 return num; 82 } 83 84 static const char *perf_pmu__mem_events_name(int i, struct perf_pmu *pmu) 85 { 86 struct perf_mem_event *e; 87 88 if (i >= PERF_MEM_EVENTS__MAX || !pmu) 89 return NULL; 90 91 e = &pmu->mem_events[i]; 92 if (!e || !e->name) 93 return NULL; 94 95 if (i == PERF_MEM_EVENTS__LOAD || i == PERF_MEM_EVENTS__LOAD_STORE) { 96 if (e->ldlat) { 97 if (!e->aux_event) { 98 /* ARM and Most of Intel */ 99 scnprintf(mem_loads_name, sizeof(mem_loads_name), 100 e->name, pmu->name, 101 perf_mem_events__loads_ldlat); 102 } else { 103 /* Intel with mem-loads-aux event */ 104 scnprintf(mem_loads_name, sizeof(mem_loads_name), 105 e->name, pmu->name, pmu->name, 106 perf_mem_events__loads_ldlat); 107 } 108 } else { 109 if (!e->aux_event) { 110 /* AMD and POWER */ 111 scnprintf(mem_loads_name, sizeof(mem_loads_name), 112 e->name, pmu->name); 113 } else 114 return NULL; 115 } 116 117 return mem_loads_name; 118 } 119 120 if (i == PERF_MEM_EVENTS__STORE) { 121 scnprintf(mem_stores_name, sizeof(mem_stores_name), 122 e->name, pmu->name); 123 return mem_stores_name; 124 } 125 126 return NULL; 127 } 128 129 bool is_mem_loads_aux_event(struct evsel *leader) 130 { 131 struct perf_pmu *pmu = leader->pmu; 132 struct perf_mem_event *e; 133 134 if (!pmu || !pmu->mem_events) 135 return false; 136 137 e = &pmu->mem_events[PERF_MEM_EVENTS__LOAD]; 138 if (!e->aux_event) 139 return false; 140 141 return leader->core.attr.config == e->aux_event; 142 } 143 144 int perf_pmu__mem_events_parse(struct perf_pmu *pmu, const char *str) 145 { 146 char *tok, *saveptr = NULL; 147 bool found = false; 148 char *buf; 149 int j; 150 151 /* We need buffer that we know we can write to. */ 152 buf = malloc(strlen(str) + 1); 153 if (!buf) 154 return -ENOMEM; 155 156 strcpy(buf, str); 157 158 tok = strtok_r((char *)buf, ",", &saveptr); 159 160 while (tok) { 161 for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) { 162 struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j); 163 164 if (!e->tag) 165 continue; 166 167 if (strstr(e->tag, tok)) 168 perf_mem_record[j] = found = true; 169 } 170 171 tok = strtok_r(NULL, ",", &saveptr); 172 } 173 174 free(buf); 175 176 if (found) 177 return 0; 178 179 pr_err("failed: event '%s' not found, use '-e list' to get list of available events\n", str); 180 return -1; 181 } 182 183 static bool perf_pmu__mem_events_supported(const char *mnt, struct perf_pmu *pmu, 184 struct perf_mem_event *e) 185 { 186 char path[PATH_MAX]; 187 struct stat st; 188 189 if (!e->event_name) 190 return true; 191 192 scnprintf(path, PATH_MAX, "%s/devices/%s/events/%s", mnt, pmu->name, e->event_name); 193 194 return !stat(path, &st); 195 } 196 197 static int __perf_pmu__mem_events_init(struct perf_pmu *pmu) 198 { 199 const char *mnt = sysfs__mount(); 200 bool found = false; 201 int j; 202 203 if (!mnt) 204 return -ENOENT; 205 206 for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) { 207 struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j); 208 209 /* 210 * If the event entry isn't valid, skip initialization 211 * and "e->supported" will keep false. 212 */ 213 if (!e->tag) 214 continue; 215 216 e->supported |= perf_pmu__mem_events_supported(mnt, pmu, e); 217 if (e->supported) 218 found = true; 219 } 220 221 return found ? 0 : -ENOENT; 222 } 223 224 int perf_pmu__mem_events_init(void) 225 { 226 struct perf_pmu *pmu = NULL; 227 228 while ((pmu = perf_pmus__scan_mem(pmu)) != NULL) { 229 if (__perf_pmu__mem_events_init(pmu)) 230 return -ENOENT; 231 } 232 233 return 0; 234 } 235 236 void perf_pmu__mem_events_list(struct perf_pmu *pmu) 237 { 238 int j; 239 240 for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) { 241 struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j); 242 243 fprintf(stderr, "%-*s%-*s%s", 244 e->tag ? 13 : 0, 245 e->tag ? : "", 246 e->tag && verbose > 0 ? 25 : 0, 247 e->tag && verbose > 0 ? perf_pmu__mem_events_name(j, pmu) : "", 248 e->supported ? ": available\n" : ""); 249 } 250 } 251 252 int perf_mem_events__record_args(const char **rec_argv, int *argv_nr) 253 { 254 const char *mnt = sysfs__mount(); 255 struct perf_pmu *pmu = NULL; 256 struct perf_mem_event *e; 257 int i = *argv_nr; 258 const char *s; 259 char *copy; 260 struct perf_cpu_map *cpu_map = NULL; 261 262 while ((pmu = perf_pmus__scan_mem(pmu)) != NULL) { 263 for (int j = 0; j < PERF_MEM_EVENTS__MAX; j++) { 264 e = perf_pmu__mem_events_ptr(pmu, j); 265 266 if (!perf_mem_record[j]) 267 continue; 268 269 if (!e->supported) { 270 pr_err("failed: event '%s' not supported\n", 271 perf_pmu__mem_events_name(j, pmu)); 272 return -1; 273 } 274 275 s = perf_pmu__mem_events_name(j, pmu); 276 if (!s || !perf_pmu__mem_events_supported(mnt, pmu, e)) 277 continue; 278 279 copy = strdup(s); 280 if (!copy) 281 return -1; 282 283 rec_argv[i++] = "-e"; 284 rec_argv[i++] = copy; 285 286 cpu_map = perf_cpu_map__merge(cpu_map, pmu->cpus); 287 } 288 } 289 290 if (cpu_map) { 291 if (!perf_cpu_map__equal(cpu_map, cpu_map__online())) { 292 char buf[200]; 293 294 cpu_map__snprint(cpu_map, buf, sizeof(buf)); 295 pr_warning("Memory events are enabled on a subset of CPUs: %s\n", buf); 296 } 297 perf_cpu_map__put(cpu_map); 298 } 299 300 *argv_nr = i; 301 return 0; 302 } 303 304 static const char * const tlb_access[] = { 305 "N/A", 306 "HIT", 307 "MISS", 308 "L1", 309 "L2", 310 "Walker", 311 "Fault", 312 }; 313 314 int perf_mem__tlb_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) 315 { 316 size_t l = 0, i; 317 u64 m = PERF_MEM_TLB_NA; 318 u64 hit, miss; 319 320 sz -= 1; /* -1 for null termination */ 321 out[0] = '\0'; 322 323 if (mem_info) 324 m = mem_info__const_data_src(mem_info)->mem_dtlb; 325 326 hit = m & PERF_MEM_TLB_HIT; 327 miss = m & PERF_MEM_TLB_MISS; 328 329 /* already taken care of */ 330 m &= ~(PERF_MEM_TLB_HIT|PERF_MEM_TLB_MISS); 331 332 for (i = 0; m && i < ARRAY_SIZE(tlb_access); i++, m >>= 1) { 333 if (!(m & 0x1)) 334 continue; 335 if (l) { 336 strcat(out, " or "); 337 l += 4; 338 } 339 l += scnprintf(out + l, sz - l, tlb_access[i]); 340 } 341 if (*out == '\0') 342 l += scnprintf(out, sz - l, "N/A"); 343 if (hit) 344 l += scnprintf(out + l, sz - l, " hit"); 345 if (miss) 346 l += scnprintf(out + l, sz - l, " miss"); 347 348 return l; 349 } 350 351 static const char * const mem_lvl[] = { 352 "N/A", 353 "HIT", 354 "MISS", 355 "L1", 356 "LFB/MAB", 357 "L2", 358 "L3", 359 "Local RAM", 360 "Remote RAM (1 hop)", 361 "Remote RAM (2 hops)", 362 "Remote Cache (1 hop)", 363 "Remote Cache (2 hops)", 364 "I/O", 365 "Uncached", 366 }; 367 368 static const char * const mem_lvlnum[] = { 369 [PERF_MEM_LVLNUM_UNC] = "Uncached", 370 [PERF_MEM_LVLNUM_CXL] = "CXL", 371 [PERF_MEM_LVLNUM_IO] = "I/O", 372 [PERF_MEM_LVLNUM_ANY_CACHE] = "Any cache", 373 [PERF_MEM_LVLNUM_LFB] = "LFB/MAB", 374 [PERF_MEM_LVLNUM_RAM] = "RAM", 375 [PERF_MEM_LVLNUM_PMEM] = "PMEM", 376 [PERF_MEM_LVLNUM_NA] = "N/A", 377 }; 378 379 static const char * const mem_hops[] = { 380 "N/A", 381 /* 382 * While printing, 'Remote' will be added to represent 383 * 'Remote core, same node' accesses as remote field need 384 * to be set with mem_hops field. 385 */ 386 "core, same node", 387 "node, same socket", 388 "socket, same board", 389 "board", 390 }; 391 392 static int perf_mem__op_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) 393 { 394 u64 op = PERF_MEM_LOCK_NA; 395 int l; 396 397 if (mem_info) 398 op = mem_info__const_data_src(mem_info)->mem_op; 399 400 if (op & PERF_MEM_OP_NA) 401 l = scnprintf(out, sz, "N/A"); 402 else if (op & PERF_MEM_OP_LOAD) 403 l = scnprintf(out, sz, "LOAD"); 404 else if (op & PERF_MEM_OP_STORE) 405 l = scnprintf(out, sz, "STORE"); 406 else if (op & PERF_MEM_OP_PFETCH) 407 l = scnprintf(out, sz, "PFETCH"); 408 else if (op & PERF_MEM_OP_EXEC) 409 l = scnprintf(out, sz, "EXEC"); 410 else 411 l = scnprintf(out, sz, "No"); 412 413 return l; 414 } 415 416 int perf_mem__lvl_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) 417 { 418 union perf_mem_data_src data_src; 419 int printed = 0; 420 size_t l = 0; 421 size_t i; 422 int lvl; 423 char hit_miss[5] = {0}; 424 425 sz -= 1; /* -1 for null termination */ 426 out[0] = '\0'; 427 428 if (!mem_info) 429 goto na; 430 431 data_src = *mem_info__const_data_src(mem_info); 432 433 if (data_src.mem_lvl & PERF_MEM_LVL_HIT) 434 memcpy(hit_miss, "hit", 3); 435 else if (data_src.mem_lvl & PERF_MEM_LVL_MISS) 436 memcpy(hit_miss, "miss", 4); 437 438 lvl = data_src.mem_lvl_num; 439 if (lvl && lvl != PERF_MEM_LVLNUM_NA) { 440 if (data_src.mem_remote) { 441 strcat(out, "Remote "); 442 l += 7; 443 } 444 445 if (data_src.mem_hops) 446 l += scnprintf(out + l, sz - l, "%s ", mem_hops[data_src.mem_hops]); 447 448 if (mem_lvlnum[lvl]) 449 l += scnprintf(out + l, sz - l, mem_lvlnum[lvl]); 450 else 451 l += scnprintf(out + l, sz - l, "L%d", lvl); 452 453 l += scnprintf(out + l, sz - l, " %s", hit_miss); 454 return l; 455 } 456 457 lvl = data_src.mem_lvl; 458 if (!lvl) 459 goto na; 460 461 lvl &= ~(PERF_MEM_LVL_NA | PERF_MEM_LVL_HIT | PERF_MEM_LVL_MISS); 462 if (!lvl) 463 goto na; 464 465 for (i = 0; lvl && i < ARRAY_SIZE(mem_lvl); i++, lvl >>= 1) { 466 if (!(lvl & 0x1)) 467 continue; 468 if (printed++) { 469 strcat(out, " or "); 470 l += 4; 471 } 472 l += scnprintf(out + l, sz - l, mem_lvl[i]); 473 } 474 475 if (printed) { 476 l += scnprintf(out + l, sz - l, " %s", hit_miss); 477 return l; 478 } 479 480 na: 481 strcat(out, "N/A"); 482 return 3; 483 } 484 485 static const char * const snoop_access[] = { 486 "N/A", 487 "None", 488 "Hit", 489 "Miss", 490 "HitM", 491 }; 492 493 static const char * const snoopx_access[] = { 494 "Fwd", 495 "Peer", 496 }; 497 498 int perf_mem__snp_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) 499 { 500 size_t i, l = 0; 501 u64 m = PERF_MEM_SNOOP_NA; 502 503 sz -= 1; /* -1 for null termination */ 504 out[0] = '\0'; 505 506 if (mem_info) 507 m = mem_info__const_data_src(mem_info)->mem_snoop; 508 509 for (i = 0; m && i < ARRAY_SIZE(snoop_access); i++, m >>= 1) { 510 if (!(m & 0x1)) 511 continue; 512 if (l) { 513 strcat(out, " or "); 514 l += 4; 515 } 516 l += scnprintf(out + l, sz - l, snoop_access[i]); 517 } 518 519 m = 0; 520 if (mem_info) 521 m = mem_info__const_data_src(mem_info)->mem_snoopx; 522 523 for (i = 0; m && i < ARRAY_SIZE(snoopx_access); i++, m >>= 1) { 524 if (!(m & 0x1)) 525 continue; 526 527 if (l) { 528 strcat(out, " or "); 529 l += 4; 530 } 531 l += scnprintf(out + l, sz - l, snoopx_access[i]); 532 } 533 534 if (*out == '\0') 535 l += scnprintf(out, sz - l, "N/A"); 536 537 return l; 538 } 539 540 int perf_mem__lck_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) 541 { 542 u64 mask = PERF_MEM_LOCK_NA; 543 int l; 544 545 if (mem_info) 546 mask = mem_info__const_data_src(mem_info)->mem_lock; 547 548 if (mask & PERF_MEM_LOCK_NA) 549 l = scnprintf(out, sz, "N/A"); 550 else if (mask & PERF_MEM_LOCK_LOCKED) 551 l = scnprintf(out, sz, "Yes"); 552 else 553 l = scnprintf(out, sz, "No"); 554 555 return l; 556 } 557 558 int perf_mem__blk_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) 559 { 560 size_t l = 0; 561 u64 mask = PERF_MEM_BLK_NA; 562 563 sz -= 1; /* -1 for null termination */ 564 out[0] = '\0'; 565 566 if (mem_info) 567 mask = mem_info__const_data_src(mem_info)->mem_blk; 568 569 if (!mask || (mask & PERF_MEM_BLK_NA)) { 570 l += scnprintf(out + l, sz - l, " N/A"); 571 return l; 572 } 573 if (mask & PERF_MEM_BLK_DATA) 574 l += scnprintf(out + l, sz - l, " Data"); 575 if (mask & PERF_MEM_BLK_ADDR) 576 l += scnprintf(out + l, sz - l, " Addr"); 577 578 return l; 579 } 580 581 int perf_script__meminfo_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) 582 { 583 int i = 0; 584 585 i += scnprintf(out, sz, "|OP "); 586 i += perf_mem__op_scnprintf(out + i, sz - i, mem_info); 587 i += scnprintf(out + i, sz - i, "|LVL "); 588 i += perf_mem__lvl_scnprintf(out + i, sz, mem_info); 589 i += scnprintf(out + i, sz - i, "|SNP "); 590 i += perf_mem__snp_scnprintf(out + i, sz - i, mem_info); 591 i += scnprintf(out + i, sz - i, "|TLB "); 592 i += perf_mem__tlb_scnprintf(out + i, sz - i, mem_info); 593 i += scnprintf(out + i, sz - i, "|LCK "); 594 i += perf_mem__lck_scnprintf(out + i, sz - i, mem_info); 595 i += scnprintf(out + i, sz - i, "|BLK "); 596 i += perf_mem__blk_scnprintf(out + i, sz - i, mem_info); 597 598 return i; 599 } 600 601 int c2c_decode_stats(struct c2c_stats *stats, struct mem_info *mi) 602 { 603 union perf_mem_data_src *data_src = mem_info__data_src(mi); 604 u64 daddr = mem_info__daddr(mi)->addr; 605 u64 op = data_src->mem_op; 606 u64 lvl = data_src->mem_lvl; 607 u64 snoop = data_src->mem_snoop; 608 u64 snoopx = data_src->mem_snoopx; 609 u64 lock = data_src->mem_lock; 610 u64 blk = data_src->mem_blk; 611 /* 612 * Skylake might report unknown remote level via this 613 * bit, consider it when evaluating remote HITMs. 614 * 615 * Incase of power, remote field can also be used to denote cache 616 * accesses from the another core of same node. Hence, setting 617 * mrem only when HOPS is zero along with set remote field. 618 */ 619 bool mrem = (data_src->mem_remote && !data_src->mem_hops); 620 int err = 0; 621 622 #define HITM_INC(__f) \ 623 do { \ 624 stats->__f++; \ 625 stats->tot_hitm++; \ 626 } while (0) 627 628 #define PEER_INC(__f) \ 629 do { \ 630 stats->__f++; \ 631 stats->tot_peer++; \ 632 } while (0) 633 634 #define P(a, b) PERF_MEM_##a##_##b 635 636 stats->nr_entries++; 637 638 if (lock & P(LOCK, LOCKED)) stats->locks++; 639 640 if (blk & P(BLK, DATA)) stats->blk_data++; 641 if (blk & P(BLK, ADDR)) stats->blk_addr++; 642 643 if (op & P(OP, LOAD)) { 644 /* load */ 645 stats->load++; 646 647 if (!daddr) { 648 stats->ld_noadrs++; 649 return -1; 650 } 651 652 if (lvl & P(LVL, HIT)) { 653 if (lvl & P(LVL, UNC)) stats->ld_uncache++; 654 if (lvl & P(LVL, IO)) stats->ld_io++; 655 if (lvl & P(LVL, LFB)) stats->ld_fbhit++; 656 if (lvl & P(LVL, L1 )) stats->ld_l1hit++; 657 if (lvl & P(LVL, L2)) { 658 stats->ld_l2hit++; 659 660 if (snoopx & P(SNOOPX, PEER)) 661 PEER_INC(lcl_peer); 662 } 663 if (lvl & P(LVL, L3 )) { 664 if (snoop & P(SNOOP, HITM)) 665 HITM_INC(lcl_hitm); 666 else 667 stats->ld_llchit++; 668 669 if (snoopx & P(SNOOPX, PEER)) 670 PEER_INC(lcl_peer); 671 } 672 673 if (lvl & P(LVL, LOC_RAM)) { 674 stats->lcl_dram++; 675 if (snoop & P(SNOOP, HIT)) 676 stats->ld_shared++; 677 else 678 stats->ld_excl++; 679 } 680 681 if ((lvl & P(LVL, REM_RAM1)) || 682 (lvl & P(LVL, REM_RAM2)) || 683 mrem) { 684 stats->rmt_dram++; 685 if (snoop & P(SNOOP, HIT)) 686 stats->ld_shared++; 687 else 688 stats->ld_excl++; 689 } 690 } 691 692 if ((lvl & P(LVL, REM_CCE1)) || 693 (lvl & P(LVL, REM_CCE2)) || 694 mrem) { 695 if (snoop & P(SNOOP, HIT)) { 696 stats->rmt_hit++; 697 } else if (snoop & P(SNOOP, HITM)) { 698 HITM_INC(rmt_hitm); 699 } else if (snoopx & P(SNOOPX, PEER)) { 700 stats->rmt_hit++; 701 PEER_INC(rmt_peer); 702 } 703 } 704 705 if ((lvl & P(LVL, MISS))) 706 stats->ld_miss++; 707 708 } else if (op & P(OP, STORE)) { 709 /* store */ 710 stats->store++; 711 712 if (!daddr) { 713 stats->st_noadrs++; 714 return -1; 715 } 716 717 if (lvl & P(LVL, HIT)) { 718 if (lvl & P(LVL, UNC)) stats->st_uncache++; 719 if (lvl & P(LVL, L1 )) stats->st_l1hit++; 720 } 721 if (lvl & P(LVL, MISS)) 722 if (lvl & P(LVL, L1)) stats->st_l1miss++; 723 if (lvl & P(LVL, NA)) 724 stats->st_na++; 725 } else { 726 /* unparsable data_src? */ 727 stats->noparse++; 728 return -1; 729 } 730 731 if (!mem_info__daddr(mi)->ms.map || !mem_info__iaddr(mi)->ms.map) { 732 stats->nomap++; 733 return -1; 734 } 735 736 #undef P 737 #undef HITM_INC 738 return err; 739 } 740 741 void c2c_add_stats(struct c2c_stats *stats, struct c2c_stats *add) 742 { 743 stats->nr_entries += add->nr_entries; 744 745 stats->locks += add->locks; 746 stats->store += add->store; 747 stats->st_uncache += add->st_uncache; 748 stats->st_noadrs += add->st_noadrs; 749 stats->st_l1hit += add->st_l1hit; 750 stats->st_l1miss += add->st_l1miss; 751 stats->st_na += add->st_na; 752 stats->load += add->load; 753 stats->ld_excl += add->ld_excl; 754 stats->ld_shared += add->ld_shared; 755 stats->ld_uncache += add->ld_uncache; 756 stats->ld_io += add->ld_io; 757 stats->ld_miss += add->ld_miss; 758 stats->ld_noadrs += add->ld_noadrs; 759 stats->ld_fbhit += add->ld_fbhit; 760 stats->ld_l1hit += add->ld_l1hit; 761 stats->ld_l2hit += add->ld_l2hit; 762 stats->ld_llchit += add->ld_llchit; 763 stats->lcl_hitm += add->lcl_hitm; 764 stats->rmt_hitm += add->rmt_hitm; 765 stats->tot_hitm += add->tot_hitm; 766 stats->lcl_peer += add->lcl_peer; 767 stats->rmt_peer += add->rmt_peer; 768 stats->tot_peer += add->tot_peer; 769 stats->rmt_hit += add->rmt_hit; 770 stats->lcl_dram += add->lcl_dram; 771 stats->rmt_dram += add->rmt_dram; 772 stats->blk_data += add->blk_data; 773 stats->blk_addr += add->blk_addr; 774 stats->nomap += add->nomap; 775 stats->noparse += add->noparse; 776 } 777
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.