1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <signal.h> 4 #include <inttypes.h> 5 #include <linux/err.h> 6 #include <linux/kernel.h> 7 #include <linux/zalloc.h> 8 #include <api/fs/fs.h> 9 10 #include <byteswap.h> 11 #include <unistd.h> 12 #include <sys/types.h> 13 #include <sys/mman.h> 14 #include <perf/cpumap.h> 15 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "debug.h" 19 #include "env.h" 20 #include "evlist.h" 21 #include "evsel.h" 22 #include "memswap.h" 23 #include "map.h" 24 #include "symbol.h" 25 #include "session.h" 26 #include "tool.h" 27 #include "perf_regs.h" 28 #include "asm/bug.h" 29 #include "auxtrace.h" 30 #include "thread.h" 31 #include "thread-stack.h" 32 #include "sample-raw.h" 33 #include "stat.h" 34 #include "tsc.h" 35 #include "ui/progress.h" 36 #include "util.h" 37 #include "arch/common.h" 38 #include "units.h" 39 #include <internal/lib.h> 40 41 #ifdef HAVE_ZSTD_SUPPORT 42 static int perf_session__process_compressed_event(struct perf_session *session, 43 union perf_event *event, u64 file_offset, 44 const char *file_path) 45 { 46 void *src; 47 size_t decomp_size, src_size; 48 u64 decomp_last_rem = 0; 49 size_t mmap_len, decomp_len = session->header.env.comp_mmap_len; 50 struct decomp *decomp, *decomp_last = session->active_decomp->decomp_last; 51 52 if (decomp_last) { 53 decomp_last_rem = decomp_last->size - decomp_last->head; 54 decomp_len += decomp_last_rem; 55 } 56 57 mmap_len = sizeof(struct decomp) + decomp_len; 58 decomp = mmap(NULL, mmap_len, PROT_READ|PROT_WRITE, 59 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 60 if (decomp == MAP_FAILED) { 61 pr_err("Couldn't allocate memory for decompression\n"); 62 return -1; 63 } 64 65 decomp->file_pos = file_offset; 66 decomp->file_path = file_path; 67 decomp->mmap_len = mmap_len; 68 decomp->head = 0; 69 70 if (decomp_last_rem) { 71 memcpy(decomp->data, &(decomp_last->data[decomp_last->head]), decomp_last_rem); 72 decomp->size = decomp_last_rem; 73 } 74 75 src = (void *)event + sizeof(struct perf_record_compressed); 76 src_size = event->pack.header.size - sizeof(struct perf_record_compressed); 77 78 decomp_size = zstd_decompress_stream(session->active_decomp->zstd_decomp, src, src_size, 79 &(decomp->data[decomp_last_rem]), decomp_len - decomp_last_rem); 80 if (!decomp_size) { 81 munmap(decomp, mmap_len); 82 pr_err("Couldn't decompress data\n"); 83 return -1; 84 } 85 86 decomp->size += decomp_size; 87 88 if (session->active_decomp->decomp == NULL) 89 session->active_decomp->decomp = decomp; 90 else 91 session->active_decomp->decomp_last->next = decomp; 92 93 session->active_decomp->decomp_last = decomp; 94 95 pr_debug("decomp (B): %zd to %zd\n", src_size, decomp_size); 96 97 return 0; 98 } 99 #else /* !HAVE_ZSTD_SUPPORT */ 100 #define perf_session__process_compressed_event perf_session__process_compressed_event_stub 101 #endif 102 103 static int perf_session__deliver_event(struct perf_session *session, 104 union perf_event *event, 105 struct perf_tool *tool, 106 u64 file_offset, 107 const char *file_path); 108 109 static int perf_session__open(struct perf_session *session, int repipe_fd) 110 { 111 struct perf_data *data = session->data; 112 113 if (perf_session__read_header(session, repipe_fd) < 0) { 114 pr_err("incompatible file format (rerun with -v to learn more)\n"); 115 return -1; 116 } 117 118 if (perf_header__has_feat(&session->header, HEADER_AUXTRACE)) { 119 /* Auxiliary events may reference exited threads, hold onto dead ones. */ 120 symbol_conf.keep_exited_threads = true; 121 } 122 123 if (perf_data__is_pipe(data)) 124 return 0; 125 126 if (perf_header__has_feat(&session->header, HEADER_STAT)) 127 return 0; 128 129 if (!evlist__valid_sample_type(session->evlist)) { 130 pr_err("non matching sample_type\n"); 131 return -1; 132 } 133 134 if (!evlist__valid_sample_id_all(session->evlist)) { 135 pr_err("non matching sample_id_all\n"); 136 return -1; 137 } 138 139 if (!evlist__valid_read_format(session->evlist)) { 140 pr_err("non matching read_format\n"); 141 return -1; 142 } 143 144 return 0; 145 } 146 147 void perf_session__set_id_hdr_size(struct perf_session *session) 148 { 149 u16 id_hdr_size = evlist__id_hdr_size(session->evlist); 150 151 machines__set_id_hdr_size(&session->machines, id_hdr_size); 152 } 153 154 int perf_session__create_kernel_maps(struct perf_session *session) 155 { 156 int ret = machine__create_kernel_maps(&session->machines.host); 157 158 if (ret >= 0) 159 ret = machines__create_guest_kernel_maps(&session->machines); 160 return ret; 161 } 162 163 static void perf_session__destroy_kernel_maps(struct perf_session *session) 164 { 165 machines__destroy_kernel_maps(&session->machines); 166 } 167 168 static bool perf_session__has_comm_exec(struct perf_session *session) 169 { 170 struct evsel *evsel; 171 172 evlist__for_each_entry(session->evlist, evsel) { 173 if (evsel->core.attr.comm_exec) 174 return true; 175 } 176 177 return false; 178 } 179 180 static void perf_session__set_comm_exec(struct perf_session *session) 181 { 182 bool comm_exec = perf_session__has_comm_exec(session); 183 184 machines__set_comm_exec(&session->machines, comm_exec); 185 } 186 187 static int ordered_events__deliver_event(struct ordered_events *oe, 188 struct ordered_event *event) 189 { 190 struct perf_session *session = container_of(oe, struct perf_session, 191 ordered_events); 192 193 return perf_session__deliver_event(session, event->event, 194 session->tool, event->file_offset, 195 event->file_path); 196 } 197 198 struct perf_session *__perf_session__new(struct perf_data *data, 199 bool repipe, int repipe_fd, 200 struct perf_tool *tool) 201 { 202 int ret = -ENOMEM; 203 struct perf_session *session = zalloc(sizeof(*session)); 204 205 if (!session) 206 goto out; 207 208 session->repipe = repipe; 209 session->tool = tool; 210 session->decomp_data.zstd_decomp = &session->zstd_data; 211 session->active_decomp = &session->decomp_data; 212 INIT_LIST_HEAD(&session->auxtrace_index); 213 machines__init(&session->machines); 214 ordered_events__init(&session->ordered_events, 215 ordered_events__deliver_event, NULL); 216 217 perf_env__init(&session->header.env); 218 if (data) { 219 ret = perf_data__open(data); 220 if (ret < 0) 221 goto out_delete; 222 223 session->data = data; 224 225 if (perf_data__is_read(data)) { 226 ret = perf_session__open(session, repipe_fd); 227 if (ret < 0) 228 goto out_delete; 229 230 /* 231 * set session attributes that are present in perf.data 232 * but not in pipe-mode. 233 */ 234 if (!data->is_pipe) { 235 perf_session__set_id_hdr_size(session); 236 perf_session__set_comm_exec(session); 237 } 238 239 evlist__init_trace_event_sample_raw(session->evlist); 240 241 /* Open the directory data. */ 242 if (data->is_dir) { 243 ret = perf_data__open_dir(data); 244 if (ret) 245 goto out_delete; 246 } 247 248 if (!symbol_conf.kallsyms_name && 249 !symbol_conf.vmlinux_name) 250 symbol_conf.kallsyms_name = perf_data__kallsyms_name(data); 251 } 252 } else { 253 session->machines.host.env = &perf_env; 254 } 255 256 session->machines.host.single_address_space = 257 perf_env__single_address_space(session->machines.host.env); 258 259 if (!data || perf_data__is_write(data)) { 260 /* 261 * In O_RDONLY mode this will be performed when reading the 262 * kernel MMAP event, in perf_event__process_mmap(). 263 */ 264 if (perf_session__create_kernel_maps(session) < 0) 265 pr_warning("Cannot read kernel map\n"); 266 } 267 268 /* 269 * In pipe-mode, evlist is empty until PERF_RECORD_HEADER_ATTR is 270 * processed, so evlist__sample_id_all is not meaningful here. 271 */ 272 if ((!data || !data->is_pipe) && tool && tool->ordering_requires_timestamps && 273 tool->ordered_events && !evlist__sample_id_all(session->evlist)) { 274 dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n"); 275 tool->ordered_events = false; 276 } 277 278 return session; 279 280 out_delete: 281 perf_session__delete(session); 282 out: 283 return ERR_PTR(ret); 284 } 285 286 static void perf_decomp__release_events(struct decomp *next) 287 { 288 struct decomp *decomp; 289 size_t mmap_len; 290 291 do { 292 decomp = next; 293 if (decomp == NULL) 294 break; 295 next = decomp->next; 296 mmap_len = decomp->mmap_len; 297 munmap(decomp, mmap_len); 298 } while (1); 299 } 300 301 void perf_session__delete(struct perf_session *session) 302 { 303 if (session == NULL) 304 return; 305 auxtrace__free(session); 306 auxtrace_index__free(&session->auxtrace_index); 307 perf_session__destroy_kernel_maps(session); 308 perf_decomp__release_events(session->decomp_data.decomp); 309 perf_env__exit(&session->header.env); 310 machines__exit(&session->machines); 311 if (session->data) { 312 if (perf_data__is_read(session->data)) 313 evlist__delete(session->evlist); 314 perf_data__close(session->data); 315 } 316 #ifdef HAVE_LIBTRACEEVENT 317 trace_event__cleanup(&session->tevent); 318 #endif 319 free(session); 320 } 321 322 static int process_event_synth_tracing_data_stub(struct perf_session *session 323 __maybe_unused, 324 union perf_event *event 325 __maybe_unused) 326 { 327 dump_printf(": unhandled!\n"); 328 return 0; 329 } 330 331 static int process_event_synth_attr_stub(struct perf_tool *tool __maybe_unused, 332 union perf_event *event __maybe_unused, 333 struct evlist **pevlist 334 __maybe_unused) 335 { 336 dump_printf(": unhandled!\n"); 337 return 0; 338 } 339 340 static int process_event_synth_event_update_stub(struct perf_tool *tool __maybe_unused, 341 union perf_event *event __maybe_unused, 342 struct evlist **pevlist 343 __maybe_unused) 344 { 345 if (dump_trace) 346 perf_event__fprintf_event_update(event, stdout); 347 348 dump_printf(": unhandled!\n"); 349 return 0; 350 } 351 352 static int process_event_sample_stub(struct perf_tool *tool __maybe_unused, 353 union perf_event *event __maybe_unused, 354 struct perf_sample *sample __maybe_unused, 355 struct evsel *evsel __maybe_unused, 356 struct machine *machine __maybe_unused) 357 { 358 dump_printf(": unhandled!\n"); 359 return 0; 360 } 361 362 static int process_event_stub(struct perf_tool *tool __maybe_unused, 363 union perf_event *event __maybe_unused, 364 struct perf_sample *sample __maybe_unused, 365 struct machine *machine __maybe_unused) 366 { 367 dump_printf(": unhandled!\n"); 368 return 0; 369 } 370 371 static int process_finished_round_stub(struct perf_tool *tool __maybe_unused, 372 union perf_event *event __maybe_unused, 373 struct ordered_events *oe __maybe_unused) 374 { 375 dump_printf(": unhandled!\n"); 376 return 0; 377 } 378 379 static int skipn(int fd, off_t n) 380 { 381 char buf[4096]; 382 ssize_t ret; 383 384 while (n > 0) { 385 ret = read(fd, buf, min(n, (off_t)sizeof(buf))); 386 if (ret <= 0) 387 return ret; 388 n -= ret; 389 } 390 391 return 0; 392 } 393 394 static s64 process_event_auxtrace_stub(struct perf_session *session __maybe_unused, 395 union perf_event *event) 396 { 397 dump_printf(": unhandled!\n"); 398 if (perf_data__is_pipe(session->data)) 399 skipn(perf_data__fd(session->data), event->auxtrace.size); 400 return event->auxtrace.size; 401 } 402 403 static int process_event_op2_stub(struct perf_session *session __maybe_unused, 404 union perf_event *event __maybe_unused) 405 { 406 dump_printf(": unhandled!\n"); 407 return 0; 408 } 409 410 411 static 412 int process_event_thread_map_stub(struct perf_session *session __maybe_unused, 413 union perf_event *event __maybe_unused) 414 { 415 if (dump_trace) 416 perf_event__fprintf_thread_map(event, stdout); 417 418 dump_printf(": unhandled!\n"); 419 return 0; 420 } 421 422 static 423 int process_event_cpu_map_stub(struct perf_session *session __maybe_unused, 424 union perf_event *event __maybe_unused) 425 { 426 if (dump_trace) 427 perf_event__fprintf_cpu_map(event, stdout); 428 429 dump_printf(": unhandled!\n"); 430 return 0; 431 } 432 433 static 434 int process_event_stat_config_stub(struct perf_session *session __maybe_unused, 435 union perf_event *event __maybe_unused) 436 { 437 if (dump_trace) 438 perf_event__fprintf_stat_config(event, stdout); 439 440 dump_printf(": unhandled!\n"); 441 return 0; 442 } 443 444 static int process_stat_stub(struct perf_session *perf_session __maybe_unused, 445 union perf_event *event) 446 { 447 if (dump_trace) 448 perf_event__fprintf_stat(event, stdout); 449 450 dump_printf(": unhandled!\n"); 451 return 0; 452 } 453 454 static int process_stat_round_stub(struct perf_session *perf_session __maybe_unused, 455 union perf_event *event) 456 { 457 if (dump_trace) 458 perf_event__fprintf_stat_round(event, stdout); 459 460 dump_printf(": unhandled!\n"); 461 return 0; 462 } 463 464 static int process_event_time_conv_stub(struct perf_session *perf_session __maybe_unused, 465 union perf_event *event) 466 { 467 if (dump_trace) 468 perf_event__fprintf_time_conv(event, stdout); 469 470 dump_printf(": unhandled!\n"); 471 return 0; 472 } 473 474 static int perf_session__process_compressed_event_stub(struct perf_session *session __maybe_unused, 475 union perf_event *event __maybe_unused, 476 u64 file_offset __maybe_unused, 477 const char *file_path __maybe_unused) 478 { 479 dump_printf(": unhandled!\n"); 480 return 0; 481 } 482 483 void perf_tool__fill_defaults(struct perf_tool *tool) 484 { 485 if (tool->sample == NULL) 486 tool->sample = process_event_sample_stub; 487 if (tool->mmap == NULL) 488 tool->mmap = process_event_stub; 489 if (tool->mmap2 == NULL) 490 tool->mmap2 = process_event_stub; 491 if (tool->comm == NULL) 492 tool->comm = process_event_stub; 493 if (tool->namespaces == NULL) 494 tool->namespaces = process_event_stub; 495 if (tool->cgroup == NULL) 496 tool->cgroup = process_event_stub; 497 if (tool->fork == NULL) 498 tool->fork = process_event_stub; 499 if (tool->exit == NULL) 500 tool->exit = process_event_stub; 501 if (tool->lost == NULL) 502 tool->lost = perf_event__process_lost; 503 if (tool->lost_samples == NULL) 504 tool->lost_samples = perf_event__process_lost_samples; 505 if (tool->aux == NULL) 506 tool->aux = perf_event__process_aux; 507 if (tool->itrace_start == NULL) 508 tool->itrace_start = perf_event__process_itrace_start; 509 if (tool->context_switch == NULL) 510 tool->context_switch = perf_event__process_switch; 511 if (tool->ksymbol == NULL) 512 tool->ksymbol = perf_event__process_ksymbol; 513 if (tool->bpf == NULL) 514 tool->bpf = perf_event__process_bpf; 515 if (tool->text_poke == NULL) 516 tool->text_poke = perf_event__process_text_poke; 517 if (tool->aux_output_hw_id == NULL) 518 tool->aux_output_hw_id = perf_event__process_aux_output_hw_id; 519 if (tool->read == NULL) 520 tool->read = process_event_sample_stub; 521 if (tool->throttle == NULL) 522 tool->throttle = process_event_stub; 523 if (tool->unthrottle == NULL) 524 tool->unthrottle = process_event_stub; 525 if (tool->attr == NULL) 526 tool->attr = process_event_synth_attr_stub; 527 if (tool->event_update == NULL) 528 tool->event_update = process_event_synth_event_update_stub; 529 if (tool->tracing_data == NULL) 530 tool->tracing_data = process_event_synth_tracing_data_stub; 531 if (tool->build_id == NULL) 532 tool->build_id = process_event_op2_stub; 533 if (tool->finished_round == NULL) { 534 if (tool->ordered_events) 535 tool->finished_round = perf_event__process_finished_round; 536 else 537 tool->finished_round = process_finished_round_stub; 538 } 539 if (tool->id_index == NULL) 540 tool->id_index = process_event_op2_stub; 541 if (tool->auxtrace_info == NULL) 542 tool->auxtrace_info = process_event_op2_stub; 543 if (tool->auxtrace == NULL) 544 tool->auxtrace = process_event_auxtrace_stub; 545 if (tool->auxtrace_error == NULL) 546 tool->auxtrace_error = process_event_op2_stub; 547 if (tool->thread_map == NULL) 548 tool->thread_map = process_event_thread_map_stub; 549 if (tool->cpu_map == NULL) 550 tool->cpu_map = process_event_cpu_map_stub; 551 if (tool->stat_config == NULL) 552 tool->stat_config = process_event_stat_config_stub; 553 if (tool->stat == NULL) 554 tool->stat = process_stat_stub; 555 if (tool->stat_round == NULL) 556 tool->stat_round = process_stat_round_stub; 557 if (tool->time_conv == NULL) 558 tool->time_conv = process_event_time_conv_stub; 559 if (tool->feature == NULL) 560 tool->feature = process_event_op2_stub; 561 if (tool->compressed == NULL) 562 tool->compressed = perf_session__process_compressed_event; 563 if (tool->finished_init == NULL) 564 tool->finished_init = process_event_op2_stub; 565 } 566 567 static void swap_sample_id_all(union perf_event *event, void *data) 568 { 569 void *end = (void *) event + event->header.size; 570 int size = end - data; 571 572 BUG_ON(size % sizeof(u64)); 573 mem_bswap_64(data, size); 574 } 575 576 static void perf_event__all64_swap(union perf_event *event, 577 bool sample_id_all __maybe_unused) 578 { 579 struct perf_event_header *hdr = &event->header; 580 mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr)); 581 } 582 583 static void perf_event__comm_swap(union perf_event *event, bool sample_id_all) 584 { 585 event->comm.pid = bswap_32(event->comm.pid); 586 event->comm.tid = bswap_32(event->comm.tid); 587 588 if (sample_id_all) { 589 void *data = &event->comm.comm; 590 591 data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); 592 swap_sample_id_all(event, data); 593 } 594 } 595 596 static void perf_event__mmap_swap(union perf_event *event, 597 bool sample_id_all) 598 { 599 event->mmap.pid = bswap_32(event->mmap.pid); 600 event->mmap.tid = bswap_32(event->mmap.tid); 601 event->mmap.start = bswap_64(event->mmap.start); 602 event->mmap.len = bswap_64(event->mmap.len); 603 event->mmap.pgoff = bswap_64(event->mmap.pgoff); 604 605 if (sample_id_all) { 606 void *data = &event->mmap.filename; 607 608 data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); 609 swap_sample_id_all(event, data); 610 } 611 } 612 613 static void perf_event__mmap2_swap(union perf_event *event, 614 bool sample_id_all) 615 { 616 event->mmap2.pid = bswap_32(event->mmap2.pid); 617 event->mmap2.tid = bswap_32(event->mmap2.tid); 618 event->mmap2.start = bswap_64(event->mmap2.start); 619 event->mmap2.len = bswap_64(event->mmap2.len); 620 event->mmap2.pgoff = bswap_64(event->mmap2.pgoff); 621 622 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID)) { 623 event->mmap2.maj = bswap_32(event->mmap2.maj); 624 event->mmap2.min = bswap_32(event->mmap2.min); 625 event->mmap2.ino = bswap_64(event->mmap2.ino); 626 event->mmap2.ino_generation = bswap_64(event->mmap2.ino_generation); 627 } 628 629 if (sample_id_all) { 630 void *data = &event->mmap2.filename; 631 632 data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); 633 swap_sample_id_all(event, data); 634 } 635 } 636 static void perf_event__task_swap(union perf_event *event, bool sample_id_all) 637 { 638 event->fork.pid = bswap_32(event->fork.pid); 639 event->fork.tid = bswap_32(event->fork.tid); 640 event->fork.ppid = bswap_32(event->fork.ppid); 641 event->fork.ptid = bswap_32(event->fork.ptid); 642 event->fork.time = bswap_64(event->fork.time); 643 644 if (sample_id_all) 645 swap_sample_id_all(event, &event->fork + 1); 646 } 647 648 static void perf_event__read_swap(union perf_event *event, bool sample_id_all) 649 { 650 event->read.pid = bswap_32(event->read.pid); 651 event->read.tid = bswap_32(event->read.tid); 652 event->read.value = bswap_64(event->read.value); 653 event->read.time_enabled = bswap_64(event->read.time_enabled); 654 event->read.time_running = bswap_64(event->read.time_running); 655 event->read.id = bswap_64(event->read.id); 656 657 if (sample_id_all) 658 swap_sample_id_all(event, &event->read + 1); 659 } 660 661 static void perf_event__aux_swap(union perf_event *event, bool sample_id_all) 662 { 663 event->aux.aux_offset = bswap_64(event->aux.aux_offset); 664 event->aux.aux_size = bswap_64(event->aux.aux_size); 665 event->aux.flags = bswap_64(event->aux.flags); 666 667 if (sample_id_all) 668 swap_sample_id_all(event, &event->aux + 1); 669 } 670 671 static void perf_event__itrace_start_swap(union perf_event *event, 672 bool sample_id_all) 673 { 674 event->itrace_start.pid = bswap_32(event->itrace_start.pid); 675 event->itrace_start.tid = bswap_32(event->itrace_start.tid); 676 677 if (sample_id_all) 678 swap_sample_id_all(event, &event->itrace_start + 1); 679 } 680 681 static void perf_event__switch_swap(union perf_event *event, bool sample_id_all) 682 { 683 if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) { 684 event->context_switch.next_prev_pid = 685 bswap_32(event->context_switch.next_prev_pid); 686 event->context_switch.next_prev_tid = 687 bswap_32(event->context_switch.next_prev_tid); 688 } 689 690 if (sample_id_all) 691 swap_sample_id_all(event, &event->context_switch + 1); 692 } 693 694 static void perf_event__text_poke_swap(union perf_event *event, bool sample_id_all) 695 { 696 event->text_poke.addr = bswap_64(event->text_poke.addr); 697 event->text_poke.old_len = bswap_16(event->text_poke.old_len); 698 event->text_poke.new_len = bswap_16(event->text_poke.new_len); 699 700 if (sample_id_all) { 701 size_t len = sizeof(event->text_poke.old_len) + 702 sizeof(event->text_poke.new_len) + 703 event->text_poke.old_len + 704 event->text_poke.new_len; 705 void *data = &event->text_poke.old_len; 706 707 data += PERF_ALIGN(len, sizeof(u64)); 708 swap_sample_id_all(event, data); 709 } 710 } 711 712 static void perf_event__throttle_swap(union perf_event *event, 713 bool sample_id_all) 714 { 715 event->throttle.time = bswap_64(event->throttle.time); 716 event->throttle.id = bswap_64(event->throttle.id); 717 event->throttle.stream_id = bswap_64(event->throttle.stream_id); 718 719 if (sample_id_all) 720 swap_sample_id_all(event, &event->throttle + 1); 721 } 722 723 static void perf_event__namespaces_swap(union perf_event *event, 724 bool sample_id_all) 725 { 726 u64 i; 727 728 event->namespaces.pid = bswap_32(event->namespaces.pid); 729 event->namespaces.tid = bswap_32(event->namespaces.tid); 730 event->namespaces.nr_namespaces = bswap_64(event->namespaces.nr_namespaces); 731 732 for (i = 0; i < event->namespaces.nr_namespaces; i++) { 733 struct perf_ns_link_info *ns = &event->namespaces.link_info[i]; 734 735 ns->dev = bswap_64(ns->dev); 736 ns->ino = bswap_64(ns->ino); 737 } 738 739 if (sample_id_all) 740 swap_sample_id_all(event, &event->namespaces.link_info[i]); 741 } 742 743 static void perf_event__cgroup_swap(union perf_event *event, bool sample_id_all) 744 { 745 event->cgroup.id = bswap_64(event->cgroup.id); 746 747 if (sample_id_all) { 748 void *data = &event->cgroup.path; 749 750 data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); 751 swap_sample_id_all(event, data); 752 } 753 } 754 755 static u8 revbyte(u8 b) 756 { 757 int rev = (b >> 4) | ((b & 0xf) << 4); 758 rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2); 759 rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1); 760 return (u8) rev; 761 } 762 763 /* 764 * XXX this is hack in attempt to carry flags bitfield 765 * through endian village. ABI says: 766 * 767 * Bit-fields are allocated from right to left (least to most significant) 768 * on little-endian implementations and from left to right (most to least 769 * significant) on big-endian implementations. 770 * 771 * The above seems to be byte specific, so we need to reverse each 772 * byte of the bitfield. 'Internet' also says this might be implementation 773 * specific and we probably need proper fix and carry perf_event_attr 774 * bitfield flags in separate data file FEAT_ section. Thought this seems 775 * to work for now. 776 */ 777 static void swap_bitfield(u8 *p, unsigned len) 778 { 779 unsigned i; 780 781 for (i = 0; i < len; i++) { 782 *p = revbyte(*p); 783 p++; 784 } 785 } 786 787 /* exported for swapping attributes in file header */ 788 void perf_event__attr_swap(struct perf_event_attr *attr) 789 { 790 attr->type = bswap_32(attr->type); 791 attr->size = bswap_32(attr->size); 792 793 #define bswap_safe(f, n) \ 794 (attr->size > (offsetof(struct perf_event_attr, f) + \ 795 sizeof(attr->f) * (n))) 796 #define bswap_field(f, sz) \ 797 do { \ 798 if (bswap_safe(f, 0)) \ 799 attr->f = bswap_##sz(attr->f); \ 800 } while(0) 801 #define bswap_field_16(f) bswap_field(f, 16) 802 #define bswap_field_32(f) bswap_field(f, 32) 803 #define bswap_field_64(f) bswap_field(f, 64) 804 805 bswap_field_64(config); 806 bswap_field_64(sample_period); 807 bswap_field_64(sample_type); 808 bswap_field_64(read_format); 809 bswap_field_32(wakeup_events); 810 bswap_field_32(bp_type); 811 bswap_field_64(bp_addr); 812 bswap_field_64(bp_len); 813 bswap_field_64(branch_sample_type); 814 bswap_field_64(sample_regs_user); 815 bswap_field_32(sample_stack_user); 816 bswap_field_32(aux_watermark); 817 bswap_field_16(sample_max_stack); 818 bswap_field_32(aux_sample_size); 819 820 /* 821 * After read_format are bitfields. Check read_format because 822 * we are unable to use offsetof on bitfield. 823 */ 824 if (bswap_safe(read_format, 1)) 825 swap_bitfield((u8 *) (&attr->read_format + 1), 826 sizeof(u64)); 827 #undef bswap_field_64 828 #undef bswap_field_32 829 #undef bswap_field 830 #undef bswap_safe 831 } 832 833 static void perf_event__hdr_attr_swap(union perf_event *event, 834 bool sample_id_all __maybe_unused) 835 { 836 size_t size; 837 838 perf_event__attr_swap(&event->attr.attr); 839 840 size = event->header.size; 841 size -= perf_record_header_attr_id(event) - (void *)event; 842 mem_bswap_64(perf_record_header_attr_id(event), size); 843 } 844 845 static void perf_event__event_update_swap(union perf_event *event, 846 bool sample_id_all __maybe_unused) 847 { 848 event->event_update.type = bswap_64(event->event_update.type); 849 event->event_update.id = bswap_64(event->event_update.id); 850 } 851 852 static void perf_event__event_type_swap(union perf_event *event, 853 bool sample_id_all __maybe_unused) 854 { 855 event->event_type.event_type.event_id = 856 bswap_64(event->event_type.event_type.event_id); 857 } 858 859 static void perf_event__tracing_data_swap(union perf_event *event, 860 bool sample_id_all __maybe_unused) 861 { 862 event->tracing_data.size = bswap_32(event->tracing_data.size); 863 } 864 865 static void perf_event__auxtrace_info_swap(union perf_event *event, 866 bool sample_id_all __maybe_unused) 867 { 868 size_t size; 869 870 event->auxtrace_info.type = bswap_32(event->auxtrace_info.type); 871 872 size = event->header.size; 873 size -= (void *)&event->auxtrace_info.priv - (void *)event; 874 mem_bswap_64(event->auxtrace_info.priv, size); 875 } 876 877 static void perf_event__auxtrace_swap(union perf_event *event, 878 bool sample_id_all __maybe_unused) 879 { 880 event->auxtrace.size = bswap_64(event->auxtrace.size); 881 event->auxtrace.offset = bswap_64(event->auxtrace.offset); 882 event->auxtrace.reference = bswap_64(event->auxtrace.reference); 883 event->auxtrace.idx = bswap_32(event->auxtrace.idx); 884 event->auxtrace.tid = bswap_32(event->auxtrace.tid); 885 event->auxtrace.cpu = bswap_32(event->auxtrace.cpu); 886 } 887 888 static void perf_event__auxtrace_error_swap(union perf_event *event, 889 bool sample_id_all __maybe_unused) 890 { 891 event->auxtrace_error.type = bswap_32(event->auxtrace_error.type); 892 event->auxtrace_error.code = bswap_32(event->auxtrace_error.code); 893 event->auxtrace_error.cpu = bswap_32(event->auxtrace_error.cpu); 894 event->auxtrace_error.pid = bswap_32(event->auxtrace_error.pid); 895 event->auxtrace_error.tid = bswap_32(event->auxtrace_error.tid); 896 event->auxtrace_error.fmt = bswap_32(event->auxtrace_error.fmt); 897 event->auxtrace_error.ip = bswap_64(event->auxtrace_error.ip); 898 if (event->auxtrace_error.fmt) 899 event->auxtrace_error.time = bswap_64(event->auxtrace_error.time); 900 if (event->auxtrace_error.fmt >= 2) { 901 event->auxtrace_error.machine_pid = bswap_32(event->auxtrace_error.machine_pid); 902 event->auxtrace_error.vcpu = bswap_32(event->auxtrace_error.vcpu); 903 } 904 } 905 906 static void perf_event__thread_map_swap(union perf_event *event, 907 bool sample_id_all __maybe_unused) 908 { 909 unsigned i; 910 911 event->thread_map.nr = bswap_64(event->thread_map.nr); 912 913 for (i = 0; i < event->thread_map.nr; i++) 914 event->thread_map.entries[i].pid = bswap_64(event->thread_map.entries[i].pid); 915 } 916 917 static void perf_event__cpu_map_swap(union perf_event *event, 918 bool sample_id_all __maybe_unused) 919 { 920 struct perf_record_cpu_map_data *data = &event->cpu_map.data; 921 922 data->type = bswap_16(data->type); 923 924 switch (data->type) { 925 case PERF_CPU_MAP__CPUS: 926 data->cpus_data.nr = bswap_16(data->cpus_data.nr); 927 928 for (unsigned i = 0; i < data->cpus_data.nr; i++) 929 data->cpus_data.cpu[i] = bswap_16(data->cpus_data.cpu[i]); 930 break; 931 case PERF_CPU_MAP__MASK: 932 data->mask32_data.long_size = bswap_16(data->mask32_data.long_size); 933 934 switch (data->mask32_data.long_size) { 935 case 4: 936 data->mask32_data.nr = bswap_16(data->mask32_data.nr); 937 for (unsigned i = 0; i < data->mask32_data.nr; i++) 938 data->mask32_data.mask[i] = bswap_32(data->mask32_data.mask[i]); 939 break; 940 case 8: 941 data->mask64_data.nr = bswap_16(data->mask64_data.nr); 942 for (unsigned i = 0; i < data->mask64_data.nr; i++) 943 data->mask64_data.mask[i] = bswap_64(data->mask64_data.mask[i]); 944 break; 945 default: 946 pr_err("cpu_map swap: unsupported long size\n"); 947 } 948 break; 949 case PERF_CPU_MAP__RANGE_CPUS: 950 data->range_cpu_data.start_cpu = bswap_16(data->range_cpu_data.start_cpu); 951 data->range_cpu_data.end_cpu = bswap_16(data->range_cpu_data.end_cpu); 952 break; 953 default: 954 break; 955 } 956 } 957 958 static void perf_event__stat_config_swap(union perf_event *event, 959 bool sample_id_all __maybe_unused) 960 { 961 u64 size; 962 963 size = bswap_64(event->stat_config.nr) * sizeof(event->stat_config.data[0]); 964 size += 1; /* nr item itself */ 965 mem_bswap_64(&event->stat_config.nr, size); 966 } 967 968 static void perf_event__stat_swap(union perf_event *event, 969 bool sample_id_all __maybe_unused) 970 { 971 event->stat.id = bswap_64(event->stat.id); 972 event->stat.thread = bswap_32(event->stat.thread); 973 event->stat.cpu = bswap_32(event->stat.cpu); 974 event->stat.val = bswap_64(event->stat.val); 975 event->stat.ena = bswap_64(event->stat.ena); 976 event->stat.run = bswap_64(event->stat.run); 977 } 978 979 static void perf_event__stat_round_swap(union perf_event *event, 980 bool sample_id_all __maybe_unused) 981 { 982 event->stat_round.type = bswap_64(event->stat_round.type); 983 event->stat_round.time = bswap_64(event->stat_round.time); 984 } 985 986 static void perf_event__time_conv_swap(union perf_event *event, 987 bool sample_id_all __maybe_unused) 988 { 989 event->time_conv.time_shift = bswap_64(event->time_conv.time_shift); 990 event->time_conv.time_mult = bswap_64(event->time_conv.time_mult); 991 event->time_conv.time_zero = bswap_64(event->time_conv.time_zero); 992 993 if (event_contains(event->time_conv, time_cycles)) { 994 event->time_conv.time_cycles = bswap_64(event->time_conv.time_cycles); 995 event->time_conv.time_mask = bswap_64(event->time_conv.time_mask); 996 } 997 } 998 999 typedef void (*perf_event__swap_op)(union perf_event *event, 1000 bool sample_id_all); 1001 1002 static perf_event__swap_op perf_event__swap_ops[] = { 1003 [PERF_RECORD_MMAP] = perf_event__mmap_swap, 1004 [PERF_RECORD_MMAP2] = perf_event__mmap2_swap, 1005 [PERF_RECORD_COMM] = perf_event__comm_swap, 1006 [PERF_RECORD_FORK] = perf_event__task_swap, 1007 [PERF_RECORD_EXIT] = perf_event__task_swap, 1008 [PERF_RECORD_LOST] = perf_event__all64_swap, 1009 [PERF_RECORD_READ] = perf_event__read_swap, 1010 [PERF_RECORD_THROTTLE] = perf_event__throttle_swap, 1011 [PERF_RECORD_UNTHROTTLE] = perf_event__throttle_swap, 1012 [PERF_RECORD_SAMPLE] = perf_event__all64_swap, 1013 [PERF_RECORD_AUX] = perf_event__aux_swap, 1014 [PERF_RECORD_ITRACE_START] = perf_event__itrace_start_swap, 1015 [PERF_RECORD_LOST_SAMPLES] = perf_event__all64_swap, 1016 [PERF_RECORD_SWITCH] = perf_event__switch_swap, 1017 [PERF_RECORD_SWITCH_CPU_WIDE] = perf_event__switch_swap, 1018 [PERF_RECORD_NAMESPACES] = perf_event__namespaces_swap, 1019 [PERF_RECORD_CGROUP] = perf_event__cgroup_swap, 1020 [PERF_RECORD_TEXT_POKE] = perf_event__text_poke_swap, 1021 [PERF_RECORD_AUX_OUTPUT_HW_ID] = perf_event__all64_swap, 1022 [PERF_RECORD_HEADER_ATTR] = perf_event__hdr_attr_swap, 1023 [PERF_RECORD_HEADER_EVENT_TYPE] = perf_event__event_type_swap, 1024 [PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap, 1025 [PERF_RECORD_HEADER_BUILD_ID] = NULL, 1026 [PERF_RECORD_ID_INDEX] = perf_event__all64_swap, 1027 [PERF_RECORD_AUXTRACE_INFO] = perf_event__auxtrace_info_swap, 1028 [PERF_RECORD_AUXTRACE] = perf_event__auxtrace_swap, 1029 [PERF_RECORD_AUXTRACE_ERROR] = perf_event__auxtrace_error_swap, 1030 [PERF_RECORD_THREAD_MAP] = perf_event__thread_map_swap, 1031 [PERF_RECORD_CPU_MAP] = perf_event__cpu_map_swap, 1032 [PERF_RECORD_STAT_CONFIG] = perf_event__stat_config_swap, 1033 [PERF_RECORD_STAT] = perf_event__stat_swap, 1034 [PERF_RECORD_STAT_ROUND] = perf_event__stat_round_swap, 1035 [PERF_RECORD_EVENT_UPDATE] = perf_event__event_update_swap, 1036 [PERF_RECORD_TIME_CONV] = perf_event__time_conv_swap, 1037 [PERF_RECORD_HEADER_MAX] = NULL, 1038 }; 1039 1040 /* 1041 * When perf record finishes a pass on every buffers, it records this pseudo 1042 * event. 1043 * We record the max timestamp t found in the pass n. 1044 * Assuming these timestamps are monotonic across cpus, we know that if 1045 * a buffer still has events with timestamps below t, they will be all 1046 * available and then read in the pass n + 1. 1047 * Hence when we start to read the pass n + 2, we can safely flush every 1048 * events with timestamps below t. 1049 * 1050 * ============ PASS n ================= 1051 * CPU 0 | CPU 1 1052 * | 1053 * cnt1 timestamps | cnt2 timestamps 1054 * 1 | 2 1055 * 2 | 3 1056 * - | 4 <--- max recorded 1057 * 1058 * ============ PASS n + 1 ============== 1059 * CPU 0 | CPU 1 1060 * | 1061 * cnt1 timestamps | cnt2 timestamps 1062 * 3 | 5 1063 * 4 | 6 1064 * 5 | 7 <---- max recorded 1065 * 1066 * Flush every events below timestamp 4 1067 * 1068 * ============ PASS n + 2 ============== 1069 * CPU 0 | CPU 1 1070 * | 1071 * cnt1 timestamps | cnt2 timestamps 1072 * 6 | 8 1073 * 7 | 9 1074 * - | 10 1075 * 1076 * Flush every events below timestamp 7 1077 * etc... 1078 */ 1079 int perf_event__process_finished_round(struct perf_tool *tool __maybe_unused, 1080 union perf_event *event __maybe_unused, 1081 struct ordered_events *oe) 1082 { 1083 if (dump_trace) 1084 fprintf(stdout, "\n"); 1085 return ordered_events__flush(oe, OE_FLUSH__ROUND); 1086 } 1087 1088 int perf_session__queue_event(struct perf_session *s, union perf_event *event, 1089 u64 timestamp, u64 file_offset, const char *file_path) 1090 { 1091 return ordered_events__queue(&s->ordered_events, event, timestamp, file_offset, file_path); 1092 } 1093 1094 static void callchain__lbr_callstack_printf(struct perf_sample *sample) 1095 { 1096 struct ip_callchain *callchain = sample->callchain; 1097 struct branch_stack *lbr_stack = sample->branch_stack; 1098 struct branch_entry *entries = perf_sample__branch_entries(sample); 1099 u64 kernel_callchain_nr = callchain->nr; 1100 unsigned int i; 1101 1102 for (i = 0; i < kernel_callchain_nr; i++) { 1103 if (callchain->ips[i] == PERF_CONTEXT_USER) 1104 break; 1105 } 1106 1107 if ((i != kernel_callchain_nr) && lbr_stack->nr) { 1108 u64 total_nr; 1109 /* 1110 * LBR callstack can only get user call chain, 1111 * i is kernel call chain number, 1112 * 1 is PERF_CONTEXT_USER. 1113 * 1114 * The user call chain is stored in LBR registers. 1115 * LBR are pair registers. The caller is stored 1116 * in "from" register, while the callee is stored 1117 * in "to" register. 1118 * For example, there is a call stack 1119 * "A"->"B"->"C"->"D". 1120 * The LBR registers will be recorded like 1121 * "C"->"D", "B"->"C", "A"->"B". 1122 * So only the first "to" register and all "from" 1123 * registers are needed to construct the whole stack. 1124 */ 1125 total_nr = i + 1 + lbr_stack->nr + 1; 1126 kernel_callchain_nr = i + 1; 1127 1128 printf("... LBR call chain: nr:%" PRIu64 "\n", total_nr); 1129 1130 for (i = 0; i < kernel_callchain_nr; i++) 1131 printf("..... %2d: %016" PRIx64 "\n", 1132 i, callchain->ips[i]); 1133 1134 printf("..... %2d: %016" PRIx64 "\n", 1135 (int)(kernel_callchain_nr), entries[0].to); 1136 for (i = 0; i < lbr_stack->nr; i++) 1137 printf("..... %2d: %016" PRIx64 "\n", 1138 (int)(i + kernel_callchain_nr + 1), entries[i].from); 1139 } 1140 } 1141 1142 static void callchain__printf(struct evsel *evsel, 1143 struct perf_sample *sample) 1144 { 1145 unsigned int i; 1146 struct ip_callchain *callchain = sample->callchain; 1147 1148 if (evsel__has_branch_callstack(evsel)) 1149 callchain__lbr_callstack_printf(sample); 1150 1151 printf("... FP chain: nr:%" PRIu64 "\n", callchain->nr); 1152 1153 for (i = 0; i < callchain->nr; i++) 1154 printf("..... %2d: %016" PRIx64 "\n", 1155 i, callchain->ips[i]); 1156 } 1157 1158 static void branch_stack__printf(struct perf_sample *sample, 1159 struct evsel *evsel) 1160 { 1161 struct branch_entry *entries = perf_sample__branch_entries(sample); 1162 bool callstack = evsel__has_branch_callstack(evsel); 1163 u64 *branch_stack_cntr = sample->branch_stack_cntr; 1164 struct perf_env *env = evsel__env(evsel); 1165 uint64_t i; 1166 1167 if (!callstack) { 1168 printf("%s: nr:%" PRIu64 "\n", "... branch stack", sample->branch_stack->nr); 1169 } else { 1170 /* the reason of adding 1 to nr is because after expanding 1171 * branch stack it generates nr + 1 callstack records. e.g., 1172 * B()->C() 1173 * A()->B() 1174 * the final callstack should be: 1175 * C() 1176 * B() 1177 * A() 1178 */ 1179 printf("%s: nr:%" PRIu64 "\n", "... branch callstack", sample->branch_stack->nr+1); 1180 } 1181 1182 for (i = 0; i < sample->branch_stack->nr; i++) { 1183 struct branch_entry *e = &entries[i]; 1184 1185 if (!callstack) { 1186 printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 " %hu cycles %s%s%s%s %x %s %s\n", 1187 i, e->from, e->to, 1188 (unsigned short)e->flags.cycles, 1189 e->flags.mispred ? "M" : " ", 1190 e->flags.predicted ? "P" : " ", 1191 e->flags.abort ? "A" : " ", 1192 e->flags.in_tx ? "T" : " ", 1193 (unsigned)e->flags.reserved, 1194 get_branch_type(e), 1195 e->flags.spec ? branch_spec_desc(e->flags.spec) : ""); 1196 } else { 1197 if (i == 0) { 1198 printf("..... %2"PRIu64": %016" PRIx64 "\n" 1199 "..... %2"PRIu64": %016" PRIx64 "\n", 1200 i, e->to, i+1, e->from); 1201 } else { 1202 printf("..... %2"PRIu64": %016" PRIx64 "\n", i+1, e->from); 1203 } 1204 } 1205 } 1206 1207 if (branch_stack_cntr) { 1208 printf("... branch stack counters: nr:%" PRIu64 " (counter width: %u max counter nr:%u)\n", 1209 sample->branch_stack->nr, env->br_cntr_width, env->br_cntr_nr); 1210 for (i = 0; i < sample->branch_stack->nr; i++) 1211 printf("..... %2"PRIu64": %016" PRIx64 "\n", i, branch_stack_cntr[i]); 1212 } 1213 } 1214 1215 static void regs_dump__printf(u64 mask, u64 *regs, const char *arch) 1216 { 1217 unsigned rid, i = 0; 1218 1219 for_each_set_bit(rid, (unsigned long *) &mask, sizeof(mask) * 8) { 1220 u64 val = regs[i++]; 1221 1222 printf(".... %-5s 0x%016" PRIx64 "\n", 1223 perf_reg_name(rid, arch), val); 1224 } 1225 } 1226 1227 static const char *regs_abi[] = { 1228 [PERF_SAMPLE_REGS_ABI_NONE] = "none", 1229 [PERF_SAMPLE_REGS_ABI_32] = "32-bit", 1230 [PERF_SAMPLE_REGS_ABI_64] = "64-bit", 1231 }; 1232 1233 static inline const char *regs_dump_abi(struct regs_dump *d) 1234 { 1235 if (d->abi > PERF_SAMPLE_REGS_ABI_64) 1236 return "unknown"; 1237 1238 return regs_abi[d->abi]; 1239 } 1240 1241 static void regs__printf(const char *type, struct regs_dump *regs, const char *arch) 1242 { 1243 u64 mask = regs->mask; 1244 1245 printf("... %s regs: mask 0x%" PRIx64 " ABI %s\n", 1246 type, 1247 mask, 1248 regs_dump_abi(regs)); 1249 1250 regs_dump__printf(mask, regs->regs, arch); 1251 } 1252 1253 static void regs_user__printf(struct perf_sample *sample, const char *arch) 1254 { 1255 struct regs_dump *user_regs = &sample->user_regs; 1256 1257 if (user_regs->regs) 1258 regs__printf("user", user_regs, arch); 1259 } 1260 1261 static void regs_intr__printf(struct perf_sample *sample, const char *arch) 1262 { 1263 struct regs_dump *intr_regs = &sample->intr_regs; 1264 1265 if (intr_regs->regs) 1266 regs__printf("intr", intr_regs, arch); 1267 } 1268 1269 static void stack_user__printf(struct stack_dump *dump) 1270 { 1271 printf("... ustack: size %" PRIu64 ", offset 0x%x\n", 1272 dump->size, dump->offset); 1273 } 1274 1275 static void evlist__print_tstamp(struct evlist *evlist, union perf_event *event, struct perf_sample *sample) 1276 { 1277 u64 sample_type = __evlist__combined_sample_type(evlist); 1278 1279 if (event->header.type != PERF_RECORD_SAMPLE && 1280 !evlist__sample_id_all(evlist)) { 1281 fputs("-1 -1 ", stdout); 1282 return; 1283 } 1284 1285 if ((sample_type & PERF_SAMPLE_CPU)) 1286 printf("%u ", sample->cpu); 1287 1288 if (sample_type & PERF_SAMPLE_TIME) 1289 printf("%" PRIu64 " ", sample->time); 1290 } 1291 1292 static void sample_read__printf(struct perf_sample *sample, u64 read_format) 1293 { 1294 printf("... sample_read:\n"); 1295 1296 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1297 printf("...... time enabled %016" PRIx64 "\n", 1298 sample->read.time_enabled); 1299 1300 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1301 printf("...... time running %016" PRIx64 "\n", 1302 sample->read.time_running); 1303 1304 if (read_format & PERF_FORMAT_GROUP) { 1305 struct sample_read_value *value = sample->read.group.values; 1306 1307 printf(".... group nr %" PRIu64 "\n", sample->read.group.nr); 1308 1309 sample_read_group__for_each(value, sample->read.group.nr, read_format) { 1310 printf("..... id %016" PRIx64 1311 ", value %016" PRIx64, 1312 value->id, value->value); 1313 if (read_format & PERF_FORMAT_LOST) 1314 printf(", lost %" PRIu64, value->lost); 1315 printf("\n"); 1316 } 1317 } else { 1318 printf("..... id %016" PRIx64 ", value %016" PRIx64, 1319 sample->read.one.id, sample->read.one.value); 1320 if (read_format & PERF_FORMAT_LOST) 1321 printf(", lost %" PRIu64, sample->read.one.lost); 1322 printf("\n"); 1323 } 1324 } 1325 1326 static void dump_event(struct evlist *evlist, union perf_event *event, 1327 u64 file_offset, struct perf_sample *sample, 1328 const char *file_path) 1329 { 1330 if (!dump_trace) 1331 return; 1332 1333 printf("\n%#" PRIx64 "@%s [%#x]: event: %d\n", 1334 file_offset, file_path, event->header.size, event->header.type); 1335 1336 trace_event(event); 1337 if (event->header.type == PERF_RECORD_SAMPLE && evlist->trace_event_sample_raw) 1338 evlist->trace_event_sample_raw(evlist, event, sample); 1339 1340 if (sample) 1341 evlist__print_tstamp(evlist, event, sample); 1342 1343 printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset, 1344 event->header.size, perf_event__name(event->header.type)); 1345 } 1346 1347 char *get_page_size_name(u64 size, char *str) 1348 { 1349 if (!size || !unit_number__scnprintf(str, PAGE_SIZE_NAME_LEN, size)) 1350 snprintf(str, PAGE_SIZE_NAME_LEN, "%s", "N/A"); 1351 1352 return str; 1353 } 1354 1355 static void dump_sample(struct evsel *evsel, union perf_event *event, 1356 struct perf_sample *sample, const char *arch) 1357 { 1358 u64 sample_type; 1359 char str[PAGE_SIZE_NAME_LEN]; 1360 1361 if (!dump_trace) 1362 return; 1363 1364 printf("(IP, 0x%x): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n", 1365 event->header.misc, sample->pid, sample->tid, sample->ip, 1366 sample->period, sample->addr); 1367 1368 sample_type = evsel->core.attr.sample_type; 1369 1370 if (evsel__has_callchain(evsel)) 1371 callchain__printf(evsel, sample); 1372 1373 if (evsel__has_br_stack(evsel)) 1374 branch_stack__printf(sample, evsel); 1375 1376 if (sample_type & PERF_SAMPLE_REGS_USER) 1377 regs_user__printf(sample, arch); 1378 1379 if (sample_type & PERF_SAMPLE_REGS_INTR) 1380 regs_intr__printf(sample, arch); 1381 1382 if (sample_type & PERF_SAMPLE_STACK_USER) 1383 stack_user__printf(&sample->user_stack); 1384 1385 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 1386 printf("... weight: %" PRIu64 "", sample->weight); 1387 if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) { 1388 printf(",0x%"PRIx16"", sample->ins_lat); 1389 printf(",0x%"PRIx16"", sample->p_stage_cyc); 1390 } 1391 printf("\n"); 1392 } 1393 1394 if (sample_type & PERF_SAMPLE_DATA_SRC) 1395 printf(" . data_src: 0x%"PRIx64"\n", sample->data_src); 1396 1397 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1398 printf(" .. phys_addr: 0x%"PRIx64"\n", sample->phys_addr); 1399 1400 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1401 printf(" .. data page size: %s\n", get_page_size_name(sample->data_page_size, str)); 1402 1403 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1404 printf(" .. code page size: %s\n", get_page_size_name(sample->code_page_size, str)); 1405 1406 if (sample_type & PERF_SAMPLE_TRANSACTION) 1407 printf("... transaction: %" PRIx64 "\n", sample->transaction); 1408 1409 if (sample_type & PERF_SAMPLE_READ) 1410 sample_read__printf(sample, evsel->core.attr.read_format); 1411 } 1412 1413 static void dump_read(struct evsel *evsel, union perf_event *event) 1414 { 1415 struct perf_record_read *read_event = &event->read; 1416 u64 read_format; 1417 1418 if (!dump_trace) 1419 return; 1420 1421 printf(": %d %d %s %" PRI_lu64 "\n", event->read.pid, event->read.tid, 1422 evsel__name(evsel), event->read.value); 1423 1424 if (!evsel) 1425 return; 1426 1427 read_format = evsel->core.attr.read_format; 1428 1429 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1430 printf("... time enabled : %" PRI_lu64 "\n", read_event->time_enabled); 1431 1432 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1433 printf("... time running : %" PRI_lu64 "\n", read_event->time_running); 1434 1435 if (read_format & PERF_FORMAT_ID) 1436 printf("... id : %" PRI_lu64 "\n", read_event->id); 1437 1438 if (read_format & PERF_FORMAT_LOST) 1439 printf("... lost : %" PRI_lu64 "\n", read_event->lost); 1440 } 1441 1442 static struct machine *machines__find_for_cpumode(struct machines *machines, 1443 union perf_event *event, 1444 struct perf_sample *sample) 1445 { 1446 if (perf_guest && 1447 ((sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL) || 1448 (sample->cpumode == PERF_RECORD_MISC_GUEST_USER))) { 1449 u32 pid; 1450 1451 if (sample->machine_pid) 1452 pid = sample->machine_pid; 1453 else if (event->header.type == PERF_RECORD_MMAP 1454 || event->header.type == PERF_RECORD_MMAP2) 1455 pid = event->mmap.pid; 1456 else 1457 pid = sample->pid; 1458 1459 /* 1460 * Guest code machine is created as needed and does not use 1461 * DEFAULT_GUEST_KERNEL_ID. 1462 */ 1463 if (symbol_conf.guest_code) 1464 return machines__findnew(machines, pid); 1465 1466 return machines__find_guest(machines, pid); 1467 } 1468 1469 return &machines->host; 1470 } 1471 1472 static int deliver_sample_value(struct evlist *evlist, 1473 struct perf_tool *tool, 1474 union perf_event *event, 1475 struct perf_sample *sample, 1476 struct sample_read_value *v, 1477 struct machine *machine) 1478 { 1479 struct perf_sample_id *sid = evlist__id2sid(evlist, v->id); 1480 struct evsel *evsel; 1481 1482 if (sid) { 1483 sample->id = v->id; 1484 sample->period = v->value - sid->period; 1485 sid->period = v->value; 1486 } 1487 1488 if (!sid || sid->evsel == NULL) { 1489 ++evlist->stats.nr_unknown_id; 1490 return 0; 1491 } 1492 1493 /* 1494 * There's no reason to deliver sample 1495 * for zero period, bail out. 1496 */ 1497 if (!sample->period) 1498 return 0; 1499 1500 evsel = container_of(sid->evsel, struct evsel, core); 1501 return tool->sample(tool, event, sample, evsel, machine); 1502 } 1503 1504 static int deliver_sample_group(struct evlist *evlist, 1505 struct perf_tool *tool, 1506 union perf_event *event, 1507 struct perf_sample *sample, 1508 struct machine *machine, 1509 u64 read_format) 1510 { 1511 int ret = -EINVAL; 1512 struct sample_read_value *v = sample->read.group.values; 1513 1514 if (tool->dont_split_sample_group) 1515 return deliver_sample_value(evlist, tool, event, sample, v, machine); 1516 1517 sample_read_group__for_each(v, sample->read.group.nr, read_format) { 1518 ret = deliver_sample_value(evlist, tool, event, sample, v, 1519 machine); 1520 if (ret) 1521 break; 1522 } 1523 1524 return ret; 1525 } 1526 1527 static int evlist__deliver_sample(struct evlist *evlist, struct perf_tool *tool, 1528 union perf_event *event, struct perf_sample *sample, 1529 struct evsel *evsel, struct machine *machine) 1530 { 1531 /* We know evsel != NULL. */ 1532 u64 sample_type = evsel->core.attr.sample_type; 1533 u64 read_format = evsel->core.attr.read_format; 1534 1535 /* Standard sample delivery. */ 1536 if (!(sample_type & PERF_SAMPLE_READ)) 1537 return tool->sample(tool, event, sample, evsel, machine); 1538 1539 /* For PERF_SAMPLE_READ we have either single or group mode. */ 1540 if (read_format & PERF_FORMAT_GROUP) 1541 return deliver_sample_group(evlist, tool, event, sample, 1542 machine, read_format); 1543 else 1544 return deliver_sample_value(evlist, tool, event, sample, 1545 &sample->read.one, machine); 1546 } 1547 1548 static int machines__deliver_event(struct machines *machines, 1549 struct evlist *evlist, 1550 union perf_event *event, 1551 struct perf_sample *sample, 1552 struct perf_tool *tool, u64 file_offset, 1553 const char *file_path) 1554 { 1555 struct evsel *evsel; 1556 struct machine *machine; 1557 1558 dump_event(evlist, event, file_offset, sample, file_path); 1559 1560 evsel = evlist__id2evsel(evlist, sample->id); 1561 1562 machine = machines__find_for_cpumode(machines, event, sample); 1563 1564 switch (event->header.type) { 1565 case PERF_RECORD_SAMPLE: 1566 if (evsel == NULL) { 1567 ++evlist->stats.nr_unknown_id; 1568 return 0; 1569 } 1570 if (machine == NULL) { 1571 ++evlist->stats.nr_unprocessable_samples; 1572 dump_sample(evsel, event, sample, perf_env__arch(NULL)); 1573 return 0; 1574 } 1575 dump_sample(evsel, event, sample, perf_env__arch(machine->env)); 1576 return evlist__deliver_sample(evlist, tool, event, sample, evsel, machine); 1577 case PERF_RECORD_MMAP: 1578 return tool->mmap(tool, event, sample, machine); 1579 case PERF_RECORD_MMAP2: 1580 if (event->header.misc & PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT) 1581 ++evlist->stats.nr_proc_map_timeout; 1582 return tool->mmap2(tool, event, sample, machine); 1583 case PERF_RECORD_COMM: 1584 return tool->comm(tool, event, sample, machine); 1585 case PERF_RECORD_NAMESPACES: 1586 return tool->namespaces(tool, event, sample, machine); 1587 case PERF_RECORD_CGROUP: 1588 return tool->cgroup(tool, event, sample, machine); 1589 case PERF_RECORD_FORK: 1590 return tool->fork(tool, event, sample, machine); 1591 case PERF_RECORD_EXIT: 1592 return tool->exit(tool, event, sample, machine); 1593 case PERF_RECORD_LOST: 1594 if (tool->lost == perf_event__process_lost) 1595 evlist->stats.total_lost += event->lost.lost; 1596 return tool->lost(tool, event, sample, machine); 1597 case PERF_RECORD_LOST_SAMPLES: 1598 if (tool->lost_samples == perf_event__process_lost_samples && 1599 !(event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF)) 1600 evlist->stats.total_lost_samples += event->lost_samples.lost; 1601 return tool->lost_samples(tool, event, sample, machine); 1602 case PERF_RECORD_READ: 1603 dump_read(evsel, event); 1604 return tool->read(tool, event, sample, evsel, machine); 1605 case PERF_RECORD_THROTTLE: 1606 return tool->throttle(tool, event, sample, machine); 1607 case PERF_RECORD_UNTHROTTLE: 1608 return tool->unthrottle(tool, event, sample, machine); 1609 case PERF_RECORD_AUX: 1610 if (tool->aux == perf_event__process_aux) { 1611 if (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) 1612 evlist->stats.total_aux_lost += 1; 1613 if (event->aux.flags & PERF_AUX_FLAG_PARTIAL) 1614 evlist->stats.total_aux_partial += 1; 1615 if (event->aux.flags & PERF_AUX_FLAG_COLLISION) 1616 evlist->stats.total_aux_collision += 1; 1617 } 1618 return tool->aux(tool, event, sample, machine); 1619 case PERF_RECORD_ITRACE_START: 1620 return tool->itrace_start(tool, event, sample, machine); 1621 case PERF_RECORD_SWITCH: 1622 case PERF_RECORD_SWITCH_CPU_WIDE: 1623 return tool->context_switch(tool, event, sample, machine); 1624 case PERF_RECORD_KSYMBOL: 1625 return tool->ksymbol(tool, event, sample, machine); 1626 case PERF_RECORD_BPF_EVENT: 1627 return tool->bpf(tool, event, sample, machine); 1628 case PERF_RECORD_TEXT_POKE: 1629 return tool->text_poke(tool, event, sample, machine); 1630 case PERF_RECORD_AUX_OUTPUT_HW_ID: 1631 return tool->aux_output_hw_id(tool, event, sample, machine); 1632 default: 1633 ++evlist->stats.nr_unknown_events; 1634 return -1; 1635 } 1636 } 1637 1638 static int perf_session__deliver_event(struct perf_session *session, 1639 union perf_event *event, 1640 struct perf_tool *tool, 1641 u64 file_offset, 1642 const char *file_path) 1643 { 1644 struct perf_sample sample; 1645 int ret = evlist__parse_sample(session->evlist, event, &sample); 1646 1647 if (ret) { 1648 pr_err("Can't parse sample, err = %d\n", ret); 1649 return ret; 1650 } 1651 1652 ret = auxtrace__process_event(session, event, &sample, tool); 1653 if (ret < 0) 1654 return ret; 1655 if (ret > 0) 1656 return 0; 1657 1658 ret = machines__deliver_event(&session->machines, session->evlist, 1659 event, &sample, tool, file_offset, file_path); 1660 1661 if (dump_trace && sample.aux_sample.size) 1662 auxtrace__dump_auxtrace_sample(session, &sample); 1663 1664 return ret; 1665 } 1666 1667 static s64 perf_session__process_user_event(struct perf_session *session, 1668 union perf_event *event, 1669 u64 file_offset, 1670 const char *file_path) 1671 { 1672 struct ordered_events *oe = &session->ordered_events; 1673 struct perf_tool *tool = session->tool; 1674 struct perf_sample sample = { .time = 0, }; 1675 int fd = perf_data__fd(session->data); 1676 int err; 1677 1678 if (event->header.type != PERF_RECORD_COMPRESSED || 1679 tool->compressed == perf_session__process_compressed_event_stub) 1680 dump_event(session->evlist, event, file_offset, &sample, file_path); 1681 1682 /* These events are processed right away */ 1683 switch (event->header.type) { 1684 case PERF_RECORD_HEADER_ATTR: 1685 err = tool->attr(tool, event, &session->evlist); 1686 if (err == 0) { 1687 perf_session__set_id_hdr_size(session); 1688 perf_session__set_comm_exec(session); 1689 } 1690 return err; 1691 case PERF_RECORD_EVENT_UPDATE: 1692 return tool->event_update(tool, event, &session->evlist); 1693 case PERF_RECORD_HEADER_EVENT_TYPE: 1694 /* 1695 * Deprecated, but we need to handle it for sake 1696 * of old data files create in pipe mode. 1697 */ 1698 return 0; 1699 case PERF_RECORD_HEADER_TRACING_DATA: 1700 /* 1701 * Setup for reading amidst mmap, but only when we 1702 * are in 'file' mode. The 'pipe' fd is in proper 1703 * place already. 1704 */ 1705 if (!perf_data__is_pipe(session->data)) 1706 lseek(fd, file_offset, SEEK_SET); 1707 return tool->tracing_data(session, event); 1708 case PERF_RECORD_HEADER_BUILD_ID: 1709 return tool->build_id(session, event); 1710 case PERF_RECORD_FINISHED_ROUND: 1711 return tool->finished_round(tool, event, oe); 1712 case PERF_RECORD_ID_INDEX: 1713 return tool->id_index(session, event); 1714 case PERF_RECORD_AUXTRACE_INFO: 1715 return tool->auxtrace_info(session, event); 1716 case PERF_RECORD_AUXTRACE: 1717 /* 1718 * Setup for reading amidst mmap, but only when we 1719 * are in 'file' mode. The 'pipe' fd is in proper 1720 * place already. 1721 */ 1722 if (!perf_data__is_pipe(session->data)) 1723 lseek(fd, file_offset + event->header.size, SEEK_SET); 1724 return tool->auxtrace(session, event); 1725 case PERF_RECORD_AUXTRACE_ERROR: 1726 perf_session__auxtrace_error_inc(session, event); 1727 return tool->auxtrace_error(session, event); 1728 case PERF_RECORD_THREAD_MAP: 1729 return tool->thread_map(session, event); 1730 case PERF_RECORD_CPU_MAP: 1731 return tool->cpu_map(session, event); 1732 case PERF_RECORD_STAT_CONFIG: 1733 return tool->stat_config(session, event); 1734 case PERF_RECORD_STAT: 1735 return tool->stat(session, event); 1736 case PERF_RECORD_STAT_ROUND: 1737 return tool->stat_round(session, event); 1738 case PERF_RECORD_TIME_CONV: 1739 session->time_conv = event->time_conv; 1740 return tool->time_conv(session, event); 1741 case PERF_RECORD_HEADER_FEATURE: 1742 return tool->feature(session, event); 1743 case PERF_RECORD_COMPRESSED: 1744 err = tool->compressed(session, event, file_offset, file_path); 1745 if (err) 1746 dump_event(session->evlist, event, file_offset, &sample, file_path); 1747 return err; 1748 case PERF_RECORD_FINISHED_INIT: 1749 return tool->finished_init(session, event); 1750 default: 1751 return -EINVAL; 1752 } 1753 } 1754 1755 int perf_session__deliver_synth_event(struct perf_session *session, 1756 union perf_event *event, 1757 struct perf_sample *sample) 1758 { 1759 struct evlist *evlist = session->evlist; 1760 struct perf_tool *tool = session->tool; 1761 1762 events_stats__inc(&evlist->stats, event->header.type); 1763 1764 if (event->header.type >= PERF_RECORD_USER_TYPE_START) 1765 return perf_session__process_user_event(session, event, 0, NULL); 1766 1767 return machines__deliver_event(&session->machines, evlist, event, sample, tool, 0, NULL); 1768 } 1769 1770 static void event_swap(union perf_event *event, bool sample_id_all) 1771 { 1772 perf_event__swap_op swap; 1773 1774 swap = perf_event__swap_ops[event->header.type]; 1775 if (swap) 1776 swap(event, sample_id_all); 1777 } 1778 1779 int perf_session__peek_event(struct perf_session *session, off_t file_offset, 1780 void *buf, size_t buf_sz, 1781 union perf_event **event_ptr, 1782 struct perf_sample *sample) 1783 { 1784 union perf_event *event; 1785 size_t hdr_sz, rest; 1786 int fd; 1787 1788 if (session->one_mmap && !session->header.needs_swap) { 1789 event = file_offset - session->one_mmap_offset + 1790 session->one_mmap_addr; 1791 goto out_parse_sample; 1792 } 1793 1794 if (perf_data__is_pipe(session->data)) 1795 return -1; 1796 1797 fd = perf_data__fd(session->data); 1798 hdr_sz = sizeof(struct perf_event_header); 1799 1800 if (buf_sz < hdr_sz) 1801 return -1; 1802 1803 if (lseek(fd, file_offset, SEEK_SET) == (off_t)-1 || 1804 readn(fd, buf, hdr_sz) != (ssize_t)hdr_sz) 1805 return -1; 1806 1807 event = (union perf_event *)buf; 1808 1809 if (session->header.needs_swap) 1810 perf_event_header__bswap(&event->header); 1811 1812 if (event->header.size < hdr_sz || event->header.size > buf_sz) 1813 return -1; 1814 1815 buf += hdr_sz; 1816 rest = event->header.size - hdr_sz; 1817 1818 if (readn(fd, buf, rest) != (ssize_t)rest) 1819 return -1; 1820 1821 if (session->header.needs_swap) 1822 event_swap(event, evlist__sample_id_all(session->evlist)); 1823 1824 out_parse_sample: 1825 1826 if (sample && event->header.type < PERF_RECORD_USER_TYPE_START && 1827 evlist__parse_sample(session->evlist, event, sample)) 1828 return -1; 1829 1830 *event_ptr = event; 1831 1832 return 0; 1833 } 1834 1835 int perf_session__peek_events(struct perf_session *session, u64 offset, 1836 u64 size, peek_events_cb_t cb, void *data) 1837 { 1838 u64 max_offset = offset + size; 1839 char buf[PERF_SAMPLE_MAX_SIZE]; 1840 union perf_event *event; 1841 int err; 1842 1843 do { 1844 err = perf_session__peek_event(session, offset, buf, 1845 PERF_SAMPLE_MAX_SIZE, &event, 1846 NULL); 1847 if (err) 1848 return err; 1849 1850 err = cb(session, event, offset, data); 1851 if (err) 1852 return err; 1853 1854 offset += event->header.size; 1855 if (event->header.type == PERF_RECORD_AUXTRACE) 1856 offset += event->auxtrace.size; 1857 1858 } while (offset < max_offset); 1859 1860 return err; 1861 } 1862 1863 static s64 perf_session__process_event(struct perf_session *session, 1864 union perf_event *event, u64 file_offset, 1865 const char *file_path) 1866 { 1867 struct evlist *evlist = session->evlist; 1868 struct perf_tool *tool = session->tool; 1869 int ret; 1870 1871 if (session->header.needs_swap) 1872 event_swap(event, evlist__sample_id_all(evlist)); 1873 1874 if (event->header.type >= PERF_RECORD_HEADER_MAX) 1875 return -EINVAL; 1876 1877 events_stats__inc(&evlist->stats, event->header.type); 1878 1879 if (event->header.type >= PERF_RECORD_USER_TYPE_START) 1880 return perf_session__process_user_event(session, event, file_offset, file_path); 1881 1882 if (tool->ordered_events) { 1883 u64 timestamp = -1ULL; 1884 1885 ret = evlist__parse_sample_timestamp(evlist, event, ×tamp); 1886 if (ret && ret != -1) 1887 return ret; 1888 1889 ret = perf_session__queue_event(session, event, timestamp, file_offset, file_path); 1890 if (ret != -ETIME) 1891 return ret; 1892 } 1893 1894 return perf_session__deliver_event(session, event, tool, file_offset, file_path); 1895 } 1896 1897 void perf_event_header__bswap(struct perf_event_header *hdr) 1898 { 1899 hdr->type = bswap_32(hdr->type); 1900 hdr->misc = bswap_16(hdr->misc); 1901 hdr->size = bswap_16(hdr->size); 1902 } 1903 1904 struct thread *perf_session__findnew(struct perf_session *session, pid_t pid) 1905 { 1906 return machine__findnew_thread(&session->machines.host, -1, pid); 1907 } 1908 1909 int perf_session__register_idle_thread(struct perf_session *session) 1910 { 1911 struct thread *thread = machine__idle_thread(&session->machines.host); 1912 1913 /* machine__idle_thread() got the thread, so put it */ 1914 thread__put(thread); 1915 return thread ? 0 : -1; 1916 } 1917 1918 static void 1919 perf_session__warn_order(const struct perf_session *session) 1920 { 1921 const struct ordered_events *oe = &session->ordered_events; 1922 struct evsel *evsel; 1923 bool should_warn = true; 1924 1925 evlist__for_each_entry(session->evlist, evsel) { 1926 if (evsel->core.attr.write_backward) 1927 should_warn = false; 1928 } 1929 1930 if (!should_warn) 1931 return; 1932 if (oe->nr_unordered_events != 0) 1933 ui__warning("%u out of order events recorded.\n", oe->nr_unordered_events); 1934 } 1935 1936 static void perf_session__warn_about_errors(const struct perf_session *session) 1937 { 1938 const struct events_stats *stats = &session->evlist->stats; 1939 1940 if (session->tool->lost == perf_event__process_lost && 1941 stats->nr_events[PERF_RECORD_LOST] != 0) { 1942 ui__warning("Processed %d events and lost %d chunks!\n\n" 1943 "Check IO/CPU overload!\n\n", 1944 stats->nr_events[0], 1945 stats->nr_events[PERF_RECORD_LOST]); 1946 } 1947 1948 if (session->tool->lost_samples == perf_event__process_lost_samples) { 1949 double drop_rate; 1950 1951 drop_rate = (double)stats->total_lost_samples / 1952 (double) (stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples); 1953 if (drop_rate > 0.05) { 1954 ui__warning("Processed %" PRIu64 " samples and lost %3.2f%%!\n\n", 1955 stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples, 1956 drop_rate * 100.0); 1957 } 1958 } 1959 1960 if (session->tool->aux == perf_event__process_aux && 1961 stats->total_aux_lost != 0) { 1962 ui__warning("AUX data lost %" PRIu64 " times out of %u!\n\n", 1963 stats->total_aux_lost, 1964 stats->nr_events[PERF_RECORD_AUX]); 1965 } 1966 1967 if (session->tool->aux == perf_event__process_aux && 1968 stats->total_aux_partial != 0) { 1969 bool vmm_exclusive = false; 1970 1971 (void)sysfs__read_bool("module/kvm_intel/parameters/vmm_exclusive", 1972 &vmm_exclusive); 1973 1974 ui__warning("AUX data had gaps in it %" PRIu64 " times out of %u!\n\n" 1975 "Are you running a KVM guest in the background?%s\n\n", 1976 stats->total_aux_partial, 1977 stats->nr_events[PERF_RECORD_AUX], 1978 vmm_exclusive ? 1979 "\nReloading kvm_intel module with vmm_exclusive=0\n" 1980 "will reduce the gaps to only guest's timeslices." : 1981 ""); 1982 } 1983 1984 if (session->tool->aux == perf_event__process_aux && 1985 stats->total_aux_collision != 0) { 1986 ui__warning("AUX data detected collision %" PRIu64 " times out of %u!\n\n", 1987 stats->total_aux_collision, 1988 stats->nr_events[PERF_RECORD_AUX]); 1989 } 1990 1991 if (stats->nr_unknown_events != 0) { 1992 ui__warning("Found %u unknown events!\n\n" 1993 "Is this an older tool processing a perf.data " 1994 "file generated by a more recent tool?\n\n" 1995 "If that is not the case, consider " 1996 "reporting to linux-kernel@vger.kernel.org.\n\n", 1997 stats->nr_unknown_events); 1998 } 1999 2000 if (stats->nr_unknown_id != 0) { 2001 ui__warning("%u samples with id not present in the header\n", 2002 stats->nr_unknown_id); 2003 } 2004 2005 if (stats->nr_invalid_chains != 0) { 2006 ui__warning("Found invalid callchains!\n\n" 2007 "%u out of %u events were discarded for this reason.\n\n" 2008 "Consider reporting to linux-kernel@vger.kernel.org.\n\n", 2009 stats->nr_invalid_chains, 2010 stats->nr_events[PERF_RECORD_SAMPLE]); 2011 } 2012 2013 if (stats->nr_unprocessable_samples != 0) { 2014 ui__warning("%u unprocessable samples recorded.\n" 2015 "Do you have a KVM guest running and not using 'perf kvm'?\n", 2016 stats->nr_unprocessable_samples); 2017 } 2018 2019 perf_session__warn_order(session); 2020 2021 events_stats__auxtrace_error_warn(stats); 2022 2023 if (stats->nr_proc_map_timeout != 0) { 2024 ui__warning("%d map information files for pre-existing threads were\n" 2025 "not processed, if there are samples for addresses they\n" 2026 "will not be resolved, you may find out which are these\n" 2027 "threads by running with -v and redirecting the output\n" 2028 "to a file.\n" 2029 "The time limit to process proc map is too short?\n" 2030 "Increase it by --proc-map-timeout\n", 2031 stats->nr_proc_map_timeout); 2032 } 2033 } 2034 2035 static int perf_session__flush_thread_stack(struct thread *thread, 2036 void *p __maybe_unused) 2037 { 2038 return thread_stack__flush(thread); 2039 } 2040 2041 static int perf_session__flush_thread_stacks(struct perf_session *session) 2042 { 2043 return machines__for_each_thread(&session->machines, 2044 perf_session__flush_thread_stack, 2045 NULL); 2046 } 2047 2048 volatile sig_atomic_t session_done; 2049 2050 static int __perf_session__process_decomp_events(struct perf_session *session); 2051 2052 static int __perf_session__process_pipe_events(struct perf_session *session) 2053 { 2054 struct ordered_events *oe = &session->ordered_events; 2055 struct perf_tool *tool = session->tool; 2056 struct ui_progress prog; 2057 union perf_event *event; 2058 uint32_t size, cur_size = 0; 2059 void *buf = NULL; 2060 s64 skip = 0; 2061 u64 head; 2062 ssize_t err; 2063 void *p; 2064 bool update_prog = false; 2065 2066 perf_tool__fill_defaults(tool); 2067 2068 /* 2069 * If it's from a file saving pipe data (by redirection), it would have 2070 * a file name other than "-". Then we can get the total size and show 2071 * the progress. 2072 */ 2073 if (strcmp(session->data->path, "-") && session->data->file.size) { 2074 ui_progress__init_size(&prog, session->data->file.size, 2075 "Processing events..."); 2076 update_prog = true; 2077 } 2078 2079 head = 0; 2080 cur_size = sizeof(union perf_event); 2081 2082 buf = malloc(cur_size); 2083 if (!buf) 2084 return -errno; 2085 ordered_events__set_copy_on_queue(oe, true); 2086 more: 2087 event = buf; 2088 err = perf_data__read(session->data, event, 2089 sizeof(struct perf_event_header)); 2090 if (err <= 0) { 2091 if (err == 0) 2092 goto done; 2093 2094 pr_err("failed to read event header\n"); 2095 goto out_err; 2096 } 2097 2098 if (session->header.needs_swap) 2099 perf_event_header__bswap(&event->header); 2100 2101 size = event->header.size; 2102 if (size < sizeof(struct perf_event_header)) { 2103 pr_err("bad event header size\n"); 2104 goto out_err; 2105 } 2106 2107 if (size > cur_size) { 2108 void *new = realloc(buf, size); 2109 if (!new) { 2110 pr_err("failed to allocate memory to read event\n"); 2111 goto out_err; 2112 } 2113 buf = new; 2114 cur_size = size; 2115 event = buf; 2116 } 2117 p = event; 2118 p += sizeof(struct perf_event_header); 2119 2120 if (size - sizeof(struct perf_event_header)) { 2121 err = perf_data__read(session->data, p, 2122 size - sizeof(struct perf_event_header)); 2123 if (err <= 0) { 2124 if (err == 0) { 2125 pr_err("unexpected end of event stream\n"); 2126 goto done; 2127 } 2128 2129 pr_err("failed to read event data\n"); 2130 goto out_err; 2131 } 2132 } 2133 2134 if ((skip = perf_session__process_event(session, event, head, "pipe")) < 0) { 2135 pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n", 2136 head, event->header.size, event->header.type); 2137 err = -EINVAL; 2138 goto out_err; 2139 } 2140 2141 head += size; 2142 2143 if (skip > 0) 2144 head += skip; 2145 2146 err = __perf_session__process_decomp_events(session); 2147 if (err) 2148 goto out_err; 2149 2150 if (update_prog) 2151 ui_progress__update(&prog, size); 2152 2153 if (!session_done()) 2154 goto more; 2155 done: 2156 /* do the final flush for ordered samples */ 2157 err = ordered_events__flush(oe, OE_FLUSH__FINAL); 2158 if (err) 2159 goto out_err; 2160 err = auxtrace__flush_events(session, tool); 2161 if (err) 2162 goto out_err; 2163 err = perf_session__flush_thread_stacks(session); 2164 out_err: 2165 free(buf); 2166 if (update_prog) 2167 ui_progress__finish(); 2168 if (!tool->no_warn) 2169 perf_session__warn_about_errors(session); 2170 ordered_events__free(&session->ordered_events); 2171 auxtrace__free_events(session); 2172 return err; 2173 } 2174 2175 static union perf_event * 2176 prefetch_event(char *buf, u64 head, size_t mmap_size, 2177 bool needs_swap, union perf_event *error) 2178 { 2179 union perf_event *event; 2180 u16 event_size; 2181 2182 /* 2183 * Ensure we have enough space remaining to read 2184 * the size of the event in the headers. 2185 */ 2186 if (head + sizeof(event->header) > mmap_size) 2187 return NULL; 2188 2189 event = (union perf_event *)(buf + head); 2190 if (needs_swap) 2191 perf_event_header__bswap(&event->header); 2192 2193 event_size = event->header.size; 2194 if (head + event_size <= mmap_size) 2195 return event; 2196 2197 /* We're not fetching the event so swap back again */ 2198 if (needs_swap) 2199 perf_event_header__bswap(&event->header); 2200 2201 /* Check if the event fits into the next mmapped buf. */ 2202 if (event_size <= mmap_size - head % page_size) { 2203 /* Remap buf and fetch again. */ 2204 return NULL; 2205 } 2206 2207 /* Invalid input. Event size should never exceed mmap_size. */ 2208 pr_debug("%s: head=%#" PRIx64 " event->header.size=%#x, mmap_size=%#zx:" 2209 " fuzzed or compressed perf.data?\n", __func__, head, event_size, mmap_size); 2210 2211 return error; 2212 } 2213 2214 static union perf_event * 2215 fetch_mmaped_event(u64 head, size_t mmap_size, char *buf, bool needs_swap) 2216 { 2217 return prefetch_event(buf, head, mmap_size, needs_swap, ERR_PTR(-EINVAL)); 2218 } 2219 2220 static union perf_event * 2221 fetch_decomp_event(u64 head, size_t mmap_size, char *buf, bool needs_swap) 2222 { 2223 return prefetch_event(buf, head, mmap_size, needs_swap, NULL); 2224 } 2225 2226 static int __perf_session__process_decomp_events(struct perf_session *session) 2227 { 2228 s64 skip; 2229 u64 size; 2230 struct decomp *decomp = session->active_decomp->decomp_last; 2231 2232 if (!decomp) 2233 return 0; 2234 2235 while (decomp->head < decomp->size && !session_done()) { 2236 union perf_event *event = fetch_decomp_event(decomp->head, decomp->size, decomp->data, 2237 session->header.needs_swap); 2238 2239 if (!event) 2240 break; 2241 2242 size = event->header.size; 2243 2244 if (size < sizeof(struct perf_event_header) || 2245 (skip = perf_session__process_event(session, event, decomp->file_pos, 2246 decomp->file_path)) < 0) { 2247 pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n", 2248 decomp->file_pos + decomp->head, event->header.size, event->header.type); 2249 return -EINVAL; 2250 } 2251 2252 if (skip) 2253 size += skip; 2254 2255 decomp->head += size; 2256 } 2257 2258 return 0; 2259 } 2260 2261 /* 2262 * On 64bit we can mmap the data file in one go. No need for tiny mmap 2263 * slices. On 32bit we use 32MB. 2264 */ 2265 #if BITS_PER_LONG == 64 2266 #define MMAP_SIZE ULLONG_MAX 2267 #define NUM_MMAPS 1 2268 #else 2269 #define MMAP_SIZE (32 * 1024 * 1024ULL) 2270 #define NUM_MMAPS 128 2271 #endif 2272 2273 struct reader; 2274 2275 typedef s64 (*reader_cb_t)(struct perf_session *session, 2276 union perf_event *event, 2277 u64 file_offset, 2278 const char *file_path); 2279 2280 struct reader { 2281 int fd; 2282 const char *path; 2283 u64 data_size; 2284 u64 data_offset; 2285 reader_cb_t process; 2286 bool in_place_update; 2287 char *mmaps[NUM_MMAPS]; 2288 size_t mmap_size; 2289 int mmap_idx; 2290 char *mmap_cur; 2291 u64 file_pos; 2292 u64 file_offset; 2293 u64 head; 2294 u64 size; 2295 bool done; 2296 struct zstd_data zstd_data; 2297 struct decomp_data decomp_data; 2298 }; 2299 2300 static int 2301 reader__init(struct reader *rd, bool *one_mmap) 2302 { 2303 u64 data_size = rd->data_size; 2304 char **mmaps = rd->mmaps; 2305 2306 rd->head = rd->data_offset; 2307 data_size += rd->data_offset; 2308 2309 rd->mmap_size = MMAP_SIZE; 2310 if (rd->mmap_size > data_size) { 2311 rd->mmap_size = data_size; 2312 if (one_mmap) 2313 *one_mmap = true; 2314 } 2315 2316 memset(mmaps, 0, sizeof(rd->mmaps)); 2317 2318 if (zstd_init(&rd->zstd_data, 0)) 2319 return -1; 2320 rd->decomp_data.zstd_decomp = &rd->zstd_data; 2321 2322 return 0; 2323 } 2324 2325 static void 2326 reader__release_decomp(struct reader *rd) 2327 { 2328 perf_decomp__release_events(rd->decomp_data.decomp); 2329 zstd_fini(&rd->zstd_data); 2330 } 2331 2332 static int 2333 reader__mmap(struct reader *rd, struct perf_session *session) 2334 { 2335 int mmap_prot, mmap_flags; 2336 char *buf, **mmaps = rd->mmaps; 2337 u64 page_offset; 2338 2339 mmap_prot = PROT_READ; 2340 mmap_flags = MAP_SHARED; 2341 2342 if (rd->in_place_update) { 2343 mmap_prot |= PROT_WRITE; 2344 } else if (session->header.needs_swap) { 2345 mmap_prot |= PROT_WRITE; 2346 mmap_flags = MAP_PRIVATE; 2347 } 2348 2349 if (mmaps[rd->mmap_idx]) { 2350 munmap(mmaps[rd->mmap_idx], rd->mmap_size); 2351 mmaps[rd->mmap_idx] = NULL; 2352 } 2353 2354 page_offset = page_size * (rd->head / page_size); 2355 rd->file_offset += page_offset; 2356 rd->head -= page_offset; 2357 2358 buf = mmap(NULL, rd->mmap_size, mmap_prot, mmap_flags, rd->fd, 2359 rd->file_offset); 2360 if (buf == MAP_FAILED) { 2361 pr_err("failed to mmap file\n"); 2362 return -errno; 2363 } 2364 mmaps[rd->mmap_idx] = rd->mmap_cur = buf; 2365 rd->mmap_idx = (rd->mmap_idx + 1) & (ARRAY_SIZE(rd->mmaps) - 1); 2366 rd->file_pos = rd->file_offset + rd->head; 2367 if (session->one_mmap) { 2368 session->one_mmap_addr = buf; 2369 session->one_mmap_offset = rd->file_offset; 2370 } 2371 2372 return 0; 2373 } 2374 2375 enum { 2376 READER_OK, 2377 READER_NODATA, 2378 }; 2379 2380 static int 2381 reader__read_event(struct reader *rd, struct perf_session *session, 2382 struct ui_progress *prog) 2383 { 2384 u64 size; 2385 int err = READER_OK; 2386 union perf_event *event; 2387 s64 skip; 2388 2389 event = fetch_mmaped_event(rd->head, rd->mmap_size, rd->mmap_cur, 2390 session->header.needs_swap); 2391 if (IS_ERR(event)) 2392 return PTR_ERR(event); 2393 2394 if (!event) 2395 return READER_NODATA; 2396 2397 size = event->header.size; 2398 2399 skip = -EINVAL; 2400 2401 if (size < sizeof(struct perf_event_header) || 2402 (skip = rd->process(session, event, rd->file_pos, rd->path)) < 0) { 2403 pr_err("%#" PRIx64 " [%#x]: failed to process type: %d [%s]\n", 2404 rd->file_offset + rd->head, event->header.size, 2405 event->header.type, strerror(-skip)); 2406 err = skip; 2407 goto out; 2408 } 2409 2410 if (skip) 2411 size += skip; 2412 2413 rd->size += size; 2414 rd->head += size; 2415 rd->file_pos += size; 2416 2417 err = __perf_session__process_decomp_events(session); 2418 if (err) 2419 goto out; 2420 2421 ui_progress__update(prog, size); 2422 2423 out: 2424 return err; 2425 } 2426 2427 static inline bool 2428 reader__eof(struct reader *rd) 2429 { 2430 return (rd->file_pos >= rd->data_size + rd->data_offset); 2431 } 2432 2433 static int 2434 reader__process_events(struct reader *rd, struct perf_session *session, 2435 struct ui_progress *prog) 2436 { 2437 int err; 2438 2439 err = reader__init(rd, &session->one_mmap); 2440 if (err) 2441 goto out; 2442 2443 session->active_decomp = &rd->decomp_data; 2444 2445 remap: 2446 err = reader__mmap(rd, session); 2447 if (err) 2448 goto out; 2449 2450 more: 2451 err = reader__read_event(rd, session, prog); 2452 if (err < 0) 2453 goto out; 2454 else if (err == READER_NODATA) 2455 goto remap; 2456 2457 if (session_done()) 2458 goto out; 2459 2460 if (!reader__eof(rd)) 2461 goto more; 2462 2463 out: 2464 session->active_decomp = &session->decomp_data; 2465 return err; 2466 } 2467 2468 static s64 process_simple(struct perf_session *session, 2469 union perf_event *event, 2470 u64 file_offset, 2471 const char *file_path) 2472 { 2473 return perf_session__process_event(session, event, file_offset, file_path); 2474 } 2475 2476 static int __perf_session__process_events(struct perf_session *session) 2477 { 2478 struct reader rd = { 2479 .fd = perf_data__fd(session->data), 2480 .path = session->data->file.path, 2481 .data_size = session->header.data_size, 2482 .data_offset = session->header.data_offset, 2483 .process = process_simple, 2484 .in_place_update = session->data->in_place_update, 2485 }; 2486 struct ordered_events *oe = &session->ordered_events; 2487 struct perf_tool *tool = session->tool; 2488 struct ui_progress prog; 2489 int err; 2490 2491 perf_tool__fill_defaults(tool); 2492 2493 if (rd.data_size == 0) 2494 return -1; 2495 2496 ui_progress__init_size(&prog, rd.data_size, "Processing events..."); 2497 2498 err = reader__process_events(&rd, session, &prog); 2499 if (err) 2500 goto out_err; 2501 /* do the final flush for ordered samples */ 2502 err = ordered_events__flush(oe, OE_FLUSH__FINAL); 2503 if (err) 2504 goto out_err; 2505 err = auxtrace__flush_events(session, tool); 2506 if (err) 2507 goto out_err; 2508 err = perf_session__flush_thread_stacks(session); 2509 out_err: 2510 ui_progress__finish(); 2511 if (!tool->no_warn) 2512 perf_session__warn_about_errors(session); 2513 /* 2514 * We may switching perf.data output, make ordered_events 2515 * reusable. 2516 */ 2517 ordered_events__reinit(&session->ordered_events); 2518 auxtrace__free_events(session); 2519 reader__release_decomp(&rd); 2520 session->one_mmap = false; 2521 return err; 2522 } 2523 2524 /* 2525 * Processing 2 MB of data from each reader in sequence, 2526 * because that's the way the ordered events sorting works 2527 * most efficiently. 2528 */ 2529 #define READER_MAX_SIZE (2 * 1024 * 1024) 2530 2531 /* 2532 * This function reads, merge and process directory data. 2533 * It assumens the version 1 of directory data, where each 2534 * data file holds per-cpu data, already sorted by kernel. 2535 */ 2536 static int __perf_session__process_dir_events(struct perf_session *session) 2537 { 2538 struct perf_data *data = session->data; 2539 struct perf_tool *tool = session->tool; 2540 int i, ret, readers, nr_readers; 2541 struct ui_progress prog; 2542 u64 total_size = perf_data__size(session->data); 2543 struct reader *rd; 2544 2545 perf_tool__fill_defaults(tool); 2546 2547 ui_progress__init_size(&prog, total_size, "Processing events..."); 2548 2549 nr_readers = 1; 2550 for (i = 0; i < data->dir.nr; i++) { 2551 if (data->dir.files[i].size) 2552 nr_readers++; 2553 } 2554 2555 rd = zalloc(nr_readers * sizeof(struct reader)); 2556 if (!rd) 2557 return -ENOMEM; 2558 2559 rd[0] = (struct reader) { 2560 .fd = perf_data__fd(session->data), 2561 .path = session->data->file.path, 2562 .data_size = session->header.data_size, 2563 .data_offset = session->header.data_offset, 2564 .process = process_simple, 2565 .in_place_update = session->data->in_place_update, 2566 }; 2567 ret = reader__init(&rd[0], NULL); 2568 if (ret) 2569 goto out_err; 2570 ret = reader__mmap(&rd[0], session); 2571 if (ret) 2572 goto out_err; 2573 readers = 1; 2574 2575 for (i = 0; i < data->dir.nr; i++) { 2576 if (!data->dir.files[i].size) 2577 continue; 2578 rd[readers] = (struct reader) { 2579 .fd = data->dir.files[i].fd, 2580 .path = data->dir.files[i].path, 2581 .data_size = data->dir.files[i].size, 2582 .data_offset = 0, 2583 .process = process_simple, 2584 .in_place_update = session->data->in_place_update, 2585 }; 2586 ret = reader__init(&rd[readers], NULL); 2587 if (ret) 2588 goto out_err; 2589 ret = reader__mmap(&rd[readers], session); 2590 if (ret) 2591 goto out_err; 2592 readers++; 2593 } 2594 2595 i = 0; 2596 while (readers) { 2597 if (session_done()) 2598 break; 2599 2600 if (rd[i].done) { 2601 i = (i + 1) % nr_readers; 2602 continue; 2603 } 2604 if (reader__eof(&rd[i])) { 2605 rd[i].done = true; 2606 readers--; 2607 continue; 2608 } 2609 2610 session->active_decomp = &rd[i].decomp_data; 2611 ret = reader__read_event(&rd[i], session, &prog); 2612 if (ret < 0) { 2613 goto out_err; 2614 } else if (ret == READER_NODATA) { 2615 ret = reader__mmap(&rd[i], session); 2616 if (ret) 2617 goto out_err; 2618 } 2619 2620 if (rd[i].size >= READER_MAX_SIZE) { 2621 rd[i].size = 0; 2622 i = (i + 1) % nr_readers; 2623 } 2624 } 2625 2626 ret = ordered_events__flush(&session->ordered_events, OE_FLUSH__FINAL); 2627 if (ret) 2628 goto out_err; 2629 2630 ret = perf_session__flush_thread_stacks(session); 2631 out_err: 2632 ui_progress__finish(); 2633 2634 if (!tool->no_warn) 2635 perf_session__warn_about_errors(session); 2636 2637 /* 2638 * We may switching perf.data output, make ordered_events 2639 * reusable. 2640 */ 2641 ordered_events__reinit(&session->ordered_events); 2642 2643 session->one_mmap = false; 2644 2645 session->active_decomp = &session->decomp_data; 2646 for (i = 0; i < nr_readers; i++) 2647 reader__release_decomp(&rd[i]); 2648 zfree(&rd); 2649 2650 return ret; 2651 } 2652 2653 int perf_session__process_events(struct perf_session *session) 2654 { 2655 if (perf_session__register_idle_thread(session) < 0) 2656 return -ENOMEM; 2657 2658 if (perf_data__is_pipe(session->data)) 2659 return __perf_session__process_pipe_events(session); 2660 2661 if (perf_data__is_dir(session->data) && session->data->dir.nr) 2662 return __perf_session__process_dir_events(session); 2663 2664 return __perf_session__process_events(session); 2665 } 2666 2667 bool perf_session__has_traces(struct perf_session *session, const char *msg) 2668 { 2669 struct evsel *evsel; 2670 2671 evlist__for_each_entry(session->evlist, evsel) { 2672 if (evsel->core.attr.type == PERF_TYPE_TRACEPOINT) 2673 return true; 2674 } 2675 2676 pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg); 2677 return false; 2678 } 2679 2680 int map__set_kallsyms_ref_reloc_sym(struct map *map, const char *symbol_name, u64 addr) 2681 { 2682 char *bracket; 2683 struct ref_reloc_sym *ref; 2684 struct kmap *kmap; 2685 2686 ref = zalloc(sizeof(struct ref_reloc_sym)); 2687 if (ref == NULL) 2688 return -ENOMEM; 2689 2690 ref->name = strdup(symbol_name); 2691 if (ref->name == NULL) { 2692 free(ref); 2693 return -ENOMEM; 2694 } 2695 2696 bracket = strchr(ref->name, ']'); 2697 if (bracket) 2698 *bracket = '\0'; 2699 2700 ref->addr = addr; 2701 2702 kmap = map__kmap(map); 2703 if (kmap) 2704 kmap->ref_reloc_sym = ref; 2705 2706 return 0; 2707 } 2708 2709 size_t perf_session__fprintf_dsos(struct perf_session *session, FILE *fp) 2710 { 2711 return machines__fprintf_dsos(&session->machines, fp); 2712 } 2713 2714 size_t perf_session__fprintf_dsos_buildid(struct perf_session *session, FILE *fp, 2715 bool (skip)(struct dso *dso, int parm), int parm) 2716 { 2717 return machines__fprintf_dsos_buildid(&session->machines, fp, skip, parm); 2718 } 2719 2720 size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp) 2721 { 2722 size_t ret; 2723 const char *msg = ""; 2724 2725 if (perf_header__has_feat(&session->header, HEADER_AUXTRACE)) 2726 msg = " (excludes AUX area (e.g. instruction trace) decoded / synthesized events)"; 2727 2728 ret = fprintf(fp, "\nAggregated stats:%s\n", msg); 2729 2730 ret += events_stats__fprintf(&session->evlist->stats, fp); 2731 return ret; 2732 } 2733 2734 size_t perf_session__fprintf(struct perf_session *session, FILE *fp) 2735 { 2736 /* 2737 * FIXME: Here we have to actually print all the machines in this 2738 * session, not just the host... 2739 */ 2740 return machine__fprintf(&session->machines.host, fp); 2741 } 2742 2743 void perf_session__dump_kmaps(struct perf_session *session) 2744 { 2745 int save_verbose = verbose; 2746 2747 fflush(stdout); 2748 fprintf(stderr, "Kernel and module maps:\n"); 2749 verbose = 0; /* Suppress verbose to print a summary only */ 2750 maps__fprintf(machine__kernel_maps(&session->machines.host), stderr); 2751 verbose = save_verbose; 2752 } 2753 2754 struct evsel *perf_session__find_first_evtype(struct perf_session *session, 2755 unsigned int type) 2756 { 2757 struct evsel *pos; 2758 2759 evlist__for_each_entry(session->evlist, pos) { 2760 if (pos->core.attr.type == type) 2761 return pos; 2762 } 2763 return NULL; 2764 } 2765 2766 int perf_session__cpu_bitmap(struct perf_session *session, 2767 const char *cpu_list, unsigned long *cpu_bitmap) 2768 { 2769 int i, err = -1; 2770 struct perf_cpu_map *map; 2771 int nr_cpus = min(session->header.env.nr_cpus_avail, MAX_NR_CPUS); 2772 struct perf_cpu cpu; 2773 2774 for (i = 0; i < PERF_TYPE_MAX; ++i) { 2775 struct evsel *evsel; 2776 2777 evsel = perf_session__find_first_evtype(session, i); 2778 if (!evsel) 2779 continue; 2780 2781 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CPU)) { 2782 pr_err("File does not contain CPU events. " 2783 "Remove -C option to proceed.\n"); 2784 return -1; 2785 } 2786 } 2787 2788 map = perf_cpu_map__new(cpu_list); 2789 if (map == NULL) { 2790 pr_err("Invalid cpu_list\n"); 2791 return -1; 2792 } 2793 2794 perf_cpu_map__for_each_cpu(cpu, i, map) { 2795 if (cpu.cpu >= nr_cpus) { 2796 pr_err("Requested CPU %d too large. " 2797 "Consider raising MAX_NR_CPUS\n", cpu.cpu); 2798 goto out_delete_map; 2799 } 2800 2801 __set_bit(cpu.cpu, cpu_bitmap); 2802 } 2803 2804 err = 0; 2805 2806 out_delete_map: 2807 perf_cpu_map__put(map); 2808 return err; 2809 } 2810 2811 void perf_session__fprintf_info(struct perf_session *session, FILE *fp, 2812 bool full) 2813 { 2814 if (session == NULL || fp == NULL) 2815 return; 2816 2817 fprintf(fp, "# ========\n"); 2818 perf_header__fprintf_info(session, fp, full); 2819 fprintf(fp, "# ========\n#\n"); 2820 } 2821 2822 static int perf_session__register_guest(struct perf_session *session, pid_t machine_pid) 2823 { 2824 struct machine *machine = machines__findnew(&session->machines, machine_pid); 2825 struct thread *thread; 2826 2827 if (!machine) 2828 return -ENOMEM; 2829 2830 machine->single_address_space = session->machines.host.single_address_space; 2831 2832 thread = machine__idle_thread(machine); 2833 if (!thread) 2834 return -ENOMEM; 2835 thread__put(thread); 2836 2837 machine->kallsyms_filename = perf_data__guest_kallsyms_name(session->data, machine_pid); 2838 2839 return 0; 2840 } 2841 2842 static int perf_session__set_guest_cpu(struct perf_session *session, pid_t pid, 2843 pid_t tid, int guest_cpu) 2844 { 2845 struct machine *machine = &session->machines.host; 2846 struct thread *thread = machine__findnew_thread(machine, pid, tid); 2847 2848 if (!thread) 2849 return -ENOMEM; 2850 thread__set_guest_cpu(thread, guest_cpu); 2851 thread__put(thread); 2852 2853 return 0; 2854 } 2855 2856 int perf_event__process_id_index(struct perf_session *session, 2857 union perf_event *event) 2858 { 2859 struct evlist *evlist = session->evlist; 2860 struct perf_record_id_index *ie = &event->id_index; 2861 size_t sz = ie->header.size - sizeof(*ie); 2862 size_t i, nr, max_nr; 2863 size_t e1_sz = sizeof(struct id_index_entry); 2864 size_t e2_sz = sizeof(struct id_index_entry_2); 2865 size_t etot_sz = e1_sz + e2_sz; 2866 struct id_index_entry_2 *e2; 2867 pid_t last_pid = 0; 2868 2869 max_nr = sz / e1_sz; 2870 nr = ie->nr; 2871 if (nr > max_nr) { 2872 printf("Too big: nr %zu max_nr %zu\n", nr, max_nr); 2873 return -EINVAL; 2874 } 2875 2876 if (sz >= nr * etot_sz) { 2877 max_nr = sz / etot_sz; 2878 if (nr > max_nr) { 2879 printf("Too big2: nr %zu max_nr %zu\n", nr, max_nr); 2880 return -EINVAL; 2881 } 2882 e2 = (void *)ie + sizeof(*ie) + nr * e1_sz; 2883 } else { 2884 e2 = NULL; 2885 } 2886 2887 if (dump_trace) 2888 fprintf(stdout, " nr: %zu\n", nr); 2889 2890 for (i = 0; i < nr; i++, (e2 ? e2++ : 0)) { 2891 struct id_index_entry *e = &ie->entries[i]; 2892 struct perf_sample_id *sid; 2893 int ret; 2894 2895 if (dump_trace) { 2896 fprintf(stdout, " ... id: %"PRI_lu64, e->id); 2897 fprintf(stdout, " idx: %"PRI_lu64, e->idx); 2898 fprintf(stdout, " cpu: %"PRI_ld64, e->cpu); 2899 fprintf(stdout, " tid: %"PRI_ld64, e->tid); 2900 if (e2) { 2901 fprintf(stdout, " machine_pid: %"PRI_ld64, e2->machine_pid); 2902 fprintf(stdout, " vcpu: %"PRI_lu64"\n", e2->vcpu); 2903 } else { 2904 fprintf(stdout, "\n"); 2905 } 2906 } 2907 2908 sid = evlist__id2sid(evlist, e->id); 2909 if (!sid) 2910 return -ENOENT; 2911 2912 sid->idx = e->idx; 2913 sid->cpu.cpu = e->cpu; 2914 sid->tid = e->tid; 2915 2916 if (!e2) 2917 continue; 2918 2919 sid->machine_pid = e2->machine_pid; 2920 sid->vcpu.cpu = e2->vcpu; 2921 2922 if (!sid->machine_pid) 2923 continue; 2924 2925 if (sid->machine_pid != last_pid) { 2926 ret = perf_session__register_guest(session, sid->machine_pid); 2927 if (ret) 2928 return ret; 2929 last_pid = sid->machine_pid; 2930 perf_guest = true; 2931 } 2932 2933 ret = perf_session__set_guest_cpu(session, sid->machine_pid, e->tid, e2->vcpu); 2934 if (ret) 2935 return ret; 2936 } 2937 return 0; 2938 } 2939 2940 int perf_session__dsos_hit_all(struct perf_session *session) 2941 { 2942 struct rb_node *nd; 2943 int err; 2944 2945 err = machine__hit_all_dsos(&session->machines.host); 2946 if (err) 2947 return err; 2948 2949 for (nd = rb_first_cached(&session->machines.guests); nd; 2950 nd = rb_next(nd)) { 2951 struct machine *pos = rb_entry(nd, struct machine, rb_node); 2952 2953 err = machine__hit_all_dsos(pos); 2954 if (err) 2955 return err; 2956 } 2957 2958 return 0; 2959 } 2960
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.