~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/power/cpupower/utils/idle_monitor/mperf_monitor.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  (C) 2010,2011       Thomas Renninger <trenn@suse.de>, Novell Inc.
  4  */
  5 
  6 #if defined(__i386__) || defined(__x86_64__)
  7 
  8 #include <stdio.h>
  9 #include <stdint.h>
 10 #include <stdlib.h>
 11 #include <string.h>
 12 #include <limits.h>
 13 
 14 #include <cpufreq.h>
 15 
 16 #include "helpers/helpers.h"
 17 #include "idle_monitor/cpupower-monitor.h"
 18 
 19 #define MSR_APERF       0xE8
 20 #define MSR_MPERF       0xE7
 21 
 22 #define RDPRU ".byte 0x0f, 0x01, 0xfd"
 23 #define RDPRU_ECX_MPERF 0
 24 #define RDPRU_ECX_APERF 1
 25 
 26 #define MSR_TSC 0x10
 27 
 28 #define MSR_AMD_HWCR 0xc0010015
 29 
 30 enum mperf_id { C0 = 0, Cx, AVG_FREQ, MPERF_CSTATE_COUNT };
 31 
 32 static int mperf_get_count_percent(unsigned int self_id, double *percent,
 33                                    unsigned int cpu);
 34 static int mperf_get_count_freq(unsigned int id, unsigned long long *count,
 35                                 unsigned int cpu);
 36 static struct timespec time_start, time_end;
 37 
 38 static cstate_t mperf_cstates[MPERF_CSTATE_COUNT] = {
 39         {
 40                 .name                   = "C0",
 41                 .desc                   = N_("Processor Core not idle"),
 42                 .id                     = C0,
 43                 .range                  = RANGE_THREAD,
 44                 .get_count_percent      = mperf_get_count_percent,
 45         },
 46         {
 47                 .name                   = "Cx",
 48                 .desc                   = N_("Processor Core in an idle state"),
 49                 .id                     = Cx,
 50                 .range                  = RANGE_THREAD,
 51                 .get_count_percent      = mperf_get_count_percent,
 52         },
 53 
 54         {
 55                 .name                   = "Freq",
 56                 .desc                   = N_("Average Frequency (including boost) in MHz"),
 57                 .id                     = AVG_FREQ,
 58                 .range                  = RANGE_THREAD,
 59                 .get_count              = mperf_get_count_freq,
 60         },
 61 };
 62 
 63 enum MAX_FREQ_MODE { MAX_FREQ_SYSFS, MAX_FREQ_TSC_REF };
 64 static int max_freq_mode;
 65 /*
 66  * The max frequency mperf is ticking at (in C0), either retrieved via:
 67  *   1) calculated after measurements if we know TSC ticks at mperf/P0 frequency
 68  *   2) cpufreq /sys/devices/.../cpu0/cpufreq/cpuinfo_max_freq at init time
 69  * 1. Is preferred as it also works without cpufreq subsystem (e.g. on Xen)
 70  */
 71 static unsigned long max_frequency;
 72 
 73 static unsigned long long *tsc_at_measure_start;
 74 static unsigned long long *tsc_at_measure_end;
 75 static unsigned long long *mperf_previous_count;
 76 static unsigned long long *aperf_previous_count;
 77 static unsigned long long *mperf_current_count;
 78 static unsigned long long *aperf_current_count;
 79 
 80 /* valid flag for all CPUs. If a MSR read failed it will be zero */
 81 static int *is_valid;
 82 
 83 static int mperf_get_tsc(unsigned long long *tsc)
 84 {
 85         int ret;
 86 
 87         ret = read_msr(base_cpu, MSR_TSC, tsc);
 88         if (ret)
 89                 dprint("Reading TSC MSR failed, returning %llu\n", *tsc);
 90         return ret;
 91 }
 92 
 93 static int get_aperf_mperf(int cpu, unsigned long long *aval,
 94                                     unsigned long long *mval)
 95 {
 96         unsigned long low_a, high_a;
 97         unsigned long low_m, high_m;
 98         int ret;
 99 
100         /*
101          * Running on the cpu from which we read the registers will
102          * prevent APERF/MPERF from going out of sync because of IPI
103          * latency introduced by read_msr()s.
104          */
105         if (mperf_monitor.flags.per_cpu_schedule) {
106                 if (bind_cpu(cpu))
107                         return 1;
108         }
109 
110         if (cpupower_cpu_info.caps & CPUPOWER_CAP_AMD_RDPRU) {
111                 asm volatile(RDPRU
112                              : "=a" (low_a), "=d" (high_a)
113                              : "c" (RDPRU_ECX_APERF));
114                 asm volatile(RDPRU
115                              : "=a" (low_m), "=d" (high_m)
116                              : "c" (RDPRU_ECX_MPERF));
117 
118                 *aval = ((low_a) | (high_a) << 32);
119                 *mval = ((low_m) | (high_m) << 32);
120 
121                 return 0;
122         }
123 
124         ret  = read_msr(cpu, MSR_APERF, aval);
125         ret |= read_msr(cpu, MSR_MPERF, mval);
126 
127         return ret;
128 }
129 
130 static int mperf_init_stats(unsigned int cpu)
131 {
132         unsigned long long aval, mval;
133         int ret;
134 
135         ret = get_aperf_mperf(cpu, &aval, &mval);
136         aperf_previous_count[cpu] = aval;
137         mperf_previous_count[cpu] = mval;
138         is_valid[cpu] = !ret;
139 
140         return 0;
141 }
142 
143 static int mperf_measure_stats(unsigned int cpu)
144 {
145         unsigned long long aval, mval;
146         int ret;
147 
148         ret = get_aperf_mperf(cpu, &aval, &mval);
149         aperf_current_count[cpu] = aval;
150         mperf_current_count[cpu] = mval;
151         is_valid[cpu] = !ret;
152 
153         return 0;
154 }
155 
156 static int mperf_get_count_percent(unsigned int id, double *percent,
157                                    unsigned int cpu)
158 {
159         unsigned long long aperf_diff, mperf_diff, tsc_diff;
160         unsigned long long timediff;
161 
162         if (!is_valid[cpu])
163                 return -1;
164 
165         if (id != C0 && id != Cx)
166                 return -1;
167 
168         mperf_diff = mperf_current_count[cpu] - mperf_previous_count[cpu];
169         aperf_diff = aperf_current_count[cpu] - aperf_previous_count[cpu];
170 
171         if (max_freq_mode == MAX_FREQ_TSC_REF) {
172                 tsc_diff = tsc_at_measure_end[cpu] - tsc_at_measure_start[cpu];
173                 *percent = 100.0 * mperf_diff / tsc_diff;
174                 dprint("%s: TSC Ref - mperf_diff: %llu, tsc_diff: %llu\n",
175                        mperf_cstates[id].name, mperf_diff, tsc_diff);
176         } else if (max_freq_mode == MAX_FREQ_SYSFS) {
177                 timediff = max_frequency * timespec_diff_us(time_start, time_end);
178                 *percent = 100.0 * mperf_diff / timediff;
179                 dprint("%s: MAXFREQ - mperf_diff: %llu, time_diff: %llu\n",
180                        mperf_cstates[id].name, mperf_diff, timediff);
181         } else
182                 return -1;
183 
184         if (id == Cx)
185                 *percent = 100.0 - *percent;
186 
187         dprint("%s: previous: %llu - current: %llu - (%u)\n",
188                 mperf_cstates[id].name, mperf_diff, aperf_diff, cpu);
189         dprint("%s: %f\n", mperf_cstates[id].name, *percent);
190         return 0;
191 }
192 
193 static int mperf_get_count_freq(unsigned int id, unsigned long long *count,
194                                 unsigned int cpu)
195 {
196         unsigned long long aperf_diff, mperf_diff, time_diff, tsc_diff;
197 
198         if (id != AVG_FREQ)
199                 return 1;
200 
201         if (!is_valid[cpu])
202                 return -1;
203 
204         mperf_diff = mperf_current_count[cpu] - mperf_previous_count[cpu];
205         aperf_diff = aperf_current_count[cpu] - aperf_previous_count[cpu];
206 
207         if (max_freq_mode == MAX_FREQ_TSC_REF) {
208                 /* Calculate max_freq from TSC count */
209                 tsc_diff = tsc_at_measure_end[cpu] - tsc_at_measure_start[cpu];
210                 time_diff = timespec_diff_us(time_start, time_end);
211                 max_frequency = tsc_diff / time_diff;
212         }
213 
214         *count = max_frequency * ((double)aperf_diff / mperf_diff);
215         dprint("%s: Average freq based on %s maximum frequency:\n",
216                mperf_cstates[id].name,
217                (max_freq_mode == MAX_FREQ_TSC_REF) ? "TSC calculated" : "sysfs read");
218         dprint("max_frequency: %lu\n", max_frequency);
219         dprint("aperf_diff: %llu\n", aperf_diff);
220         dprint("mperf_diff: %llu\n", mperf_diff);
221         dprint("avg freq:   %llu\n", *count);
222         return 0;
223 }
224 
225 static int mperf_start(void)
226 {
227         int cpu;
228 
229         clock_gettime(CLOCK_REALTIME, &time_start);
230 
231         for (cpu = 0; cpu < cpu_count; cpu++) {
232                 mperf_get_tsc(&tsc_at_measure_start[cpu]);
233                 mperf_init_stats(cpu);
234         }
235 
236         return 0;
237 }
238 
239 static int mperf_stop(void)
240 {
241         int cpu;
242 
243         for (cpu = 0; cpu < cpu_count; cpu++) {
244                 mperf_measure_stats(cpu);
245                 mperf_get_tsc(&tsc_at_measure_end[cpu]);
246         }
247 
248         clock_gettime(CLOCK_REALTIME, &time_end);
249         return 0;
250 }
251 
252 /*
253  * Mperf register is defined to tick at P0 (maximum) frequency
254  *
255  * Instead of reading out P0 which can be tricky to read out from HW,
256  * we use TSC counter if it reliably ticks at P0/mperf frequency.
257  *
258  * Still try to fall back to:
259  * /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq
260  * on older Intel HW without invariant TSC feature.
261  * Or on AMD machines where TSC does not tick at P0 (do not exist yet, but
262  * it's still double checked (MSR_AMD_HWCR)).
263  *
264  * On these machines the user would still get useful mperf
265  * stats when acpi-cpufreq driver is loaded.
266  */
267 static int init_maxfreq_mode(void)
268 {
269         int ret;
270         unsigned long long hwcr;
271         unsigned long min;
272 
273         if (!(cpupower_cpu_info.caps & CPUPOWER_CAP_INV_TSC))
274                 goto use_sysfs;
275 
276         if (cpupower_cpu_info.vendor == X86_VENDOR_AMD ||
277             cpupower_cpu_info.vendor == X86_VENDOR_HYGON) {
278                 /* MSR_AMD_HWCR tells us whether TSC runs at P0/mperf
279                  * freq.
280                  * A test whether hwcr is accessable/available would be:
281                  * (cpupower_cpu_info.family > 0x10 ||
282                  *   cpupower_cpu_info.family == 0x10 &&
283                  *   cpupower_cpu_info.model >= 0x2))
284                  * This should be the case for all aperf/mperf
285                  * capable AMD machines and is therefore safe to test here.
286                  * Compare with Linus kernel git commit: acf01734b1747b1ec4
287                  */
288                 ret = read_msr(0, MSR_AMD_HWCR, &hwcr);
289                 /*
290                  * If the MSR read failed, assume a Xen system that did
291                  * not explicitly provide access to it and assume TSC works
292                 */
293                 if (ret != 0) {
294                         dprint("TSC read 0x%x failed - assume TSC working\n",
295                                MSR_AMD_HWCR);
296                         return 0;
297                 } else if (1 & (hwcr >> 24)) {
298                         max_freq_mode = MAX_FREQ_TSC_REF;
299                         return 0;
300                 } else { /* Use sysfs max frequency if available */ }
301         } else if (cpupower_cpu_info.vendor == X86_VENDOR_INTEL) {
302                 /*
303                  * On Intel we assume mperf (in C0) is ticking at same
304                  * rate than TSC
305                  */
306                 max_freq_mode = MAX_FREQ_TSC_REF;
307                 return 0;
308         }
309 use_sysfs:
310         if (cpufreq_get_hardware_limits(0, &min, &max_frequency)) {
311                 dprint("Cannot retrieve max freq from cpufreq kernel "
312                        "subsystem\n");
313                 return -1;
314         }
315         max_freq_mode = MAX_FREQ_SYSFS;
316         max_frequency /= 1000; /* Default automatically to MHz value */
317         return 0;
318 }
319 
320 /*
321  * This monitor provides:
322  *
323  * 1) Average frequency a CPU resided in
324  *    This always works if the CPU has aperf/mperf capabilities
325  *
326  * 2) C0 and Cx (any sleep state) time a CPU resided in
327  *    Works if mperf timer stops ticking in sleep states which
328  *    seem to be the case on all current HW.
329  * Both is directly retrieved from HW registers and is independent
330  * from kernel statistics.
331  */
332 struct cpuidle_monitor mperf_monitor;
333 struct cpuidle_monitor *mperf_register(void)
334 {
335         if (!(cpupower_cpu_info.caps & CPUPOWER_CAP_APERF))
336                 return NULL;
337 
338         if (init_maxfreq_mode())
339                 return NULL;
340 
341         if (cpupower_cpu_info.vendor == X86_VENDOR_AMD)
342                 mperf_monitor.flags.per_cpu_schedule = 1;
343 
344         /* Free this at program termination */
345         is_valid = calloc(cpu_count, sizeof(int));
346         mperf_previous_count = calloc(cpu_count, sizeof(unsigned long long));
347         aperf_previous_count = calloc(cpu_count, sizeof(unsigned long long));
348         mperf_current_count = calloc(cpu_count, sizeof(unsigned long long));
349         aperf_current_count = calloc(cpu_count, sizeof(unsigned long long));
350         tsc_at_measure_start = calloc(cpu_count, sizeof(unsigned long long));
351         tsc_at_measure_end = calloc(cpu_count, sizeof(unsigned long long));
352         mperf_monitor.name_len = strlen(mperf_monitor.name);
353         return &mperf_monitor;
354 }
355 
356 void mperf_unregister(void)
357 {
358         free(mperf_previous_count);
359         free(aperf_previous_count);
360         free(mperf_current_count);
361         free(aperf_current_count);
362         free(tsc_at_measure_start);
363         free(tsc_at_measure_end);
364         free(is_valid);
365 }
366 
367 struct cpuidle_monitor mperf_monitor = {
368         .name                   = "Mperf",
369         .hw_states_num          = MPERF_CSTATE_COUNT,
370         .hw_states              = mperf_cstates,
371         .start                  = mperf_start,
372         .stop                   = mperf_stop,
373         .do_register            = mperf_register,
374         .unregister             = mperf_unregister,
375         .flags.needs_root       = 1,
376         .overflow_s             = 922000000 /* 922337203 seconds TSC overflow
377                                                at 20GHz */
378 };
379 #endif /* #if defined(__i386__) || defined(__x86_64__) */
380 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php