~ [ source navigation ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/power/pm-graph/

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Name Size Last modified (GMT) Description
Back Parent directory 2024-11-11 14:31:23
Folder config/ 2024-11-11 14:31:23
File Makefile 3275 bytes 2024-11-11 14:31:23
File README 24990 bytes 2024-11-11 14:31:23
File bootgraph.8 5682 bytes 2024-11-11 14:31:23
File bootgraph.py 34273 bytes 2024-11-11 14:31:23
File install_latest_from_github.sh 703 bytes 2024-11-11 14:31:23
File sleepgraph.8 12344 bytes 2024-11-11 14:31:23
File sleepgraph.py 238573 bytes 2024-11-11 14:31:23

  1                                                 _
  2     _ __  _ __ ___         __ _ _ __ __ _ _ __ | |__
  3    | '_ \| '_ ` _ \ _____ / _` | '__/ _` | '_ \| '_ \
  4    | |_) | | | | | |_____| (_| | | | (_| | |_) | | | |
  5    | .__/|_| |_| |_|      \__, |_|  \__,_| .__/|_| |_|
  6    |_|                    |___/          |_|
  7 
  8    pm-graph: suspend/resume/boot timing analysis tools
  9     Version: 5.11
 10      Author: Todd Brandt <todd.e.brandt@intel.com>
 11   Home Page: https://www.intel.com/content/www/us/en/developer/topic-technology/open/pm-graph/overview.html
 12 
 13  Report bugs/issues at bugzilla.kernel.org Tools/pm-graph
 14         - https://bugzilla.kernel.org/buglist.cgi?component=pm-graph&product=Tools
 15 
 16  Full documentation available online & in man pages
 17         - Getting Started:
 18           https://www.intel.com/content/www/us/en/developer/articles/technical/usage.html
 19 
 20         - Feature Summary:
 21           https://www.intel.com/content/www/us/en/developer/topic-technology/open/pm-graph/features.html
 22 
 23         - upstream version in git:
 24           git clone https://github.com/intel/pm-graph/
 25 
 26  Table of Contents
 27         - Overview
 28         - Setup
 29         - Usage
 30                 - Basic Usage
 31                 - Dev Mode Usage
 32                 - Proc Mode Usage
 33         - Endurance Testing
 34                 - Usage Examples
 35         - Configuration Files
 36                 - Usage Examples
 37                 - Config File Options
 38         - Custom Timeline Entries
 39                 - Adding/Editing Timeline Functions
 40                 - Adding/Editing Dev Timeline Source Functions
 41                 - Verifying your Custom Functions
 42         - Testing on consumer linux Operating Systems
 43                 - Android
 44 
 45 ------------------------------------------------------------------
 46 |                          OVERVIEW                              |
 47 ------------------------------------------------------------------
 48 
 49  This tool suite is designed to assist kernel and OS developers in optimizing
 50  their linux stack's suspend/resume & boot time. Using a kernel image built
 51  with a few extra options enabled, the tools will execute a suspend or boot,
 52  and will capture dmesg and ftrace data. This data is transformed into a set of
 53  timelines and a callgraph to give a quick and detailed view of which devices
 54  and kernel processes are taking the most time in suspend/resume & boot.
 55 
 56 ------------------------------------------------------------------
 57 |                            SETUP                               |
 58 ------------------------------------------------------------------
 59 
 60     Package Requirements
 61        - runs with python2 or python3, choice is made by /usr/bin/python link
 62        - python
 63        - python-configparser (for python2 sleepgraph)
 64        - python-requests (for stresstester.py)
 65        - linux-tools-common (for turbostat usage in sleepgraph)
 66 
 67        Ubuntu:
 68           sudo apt-get install python python-configparser python-requests linux-tools-common
 69 
 70        Fedora:
 71           sudo dnf install python python-configparser python-requests linux-tools-common
 72 
 73     The tools can most easily be installed via git clone and make install
 74 
 75     $> git clone http://github.com/intel/pm-graph.git
 76     $> cd pm-graph
 77     $> sudo make install
 78     $> man sleepgraph ; man bootgraph
 79 
 80     Setup involves some minor kernel configuration
 81 
 82     The following kernel build options are required for all kernels:
 83         CONFIG_DEVMEM=y
 84         CONFIG_PM_DEBUG=y
 85         CONFIG_PM_SLEEP_DEBUG=y
 86         CONFIG_FTRACE=y
 87         CONFIG_FUNCTION_TRACER=y
 88         CONFIG_FUNCTION_GRAPH_TRACER=y
 89         CONFIG_KPROBES=y
 90         CONFIG_KPROBES_ON_FTRACE=y
 91 
 92         In kernel 3.15.0, two patches were upstreamed which enable the
 93         v3.0 behavior. These patches allow the tool to read all the
 94         data from trace events instead of from dmesg. You can enable
 95         this behavior on earlier kernels with these patches:
 96 
 97         (kernel/pre-3.15/enable_trace_events_suspend_resume.patch)
 98         (kernel/pre-3.15/enable_trace_events_device_pm_callback.patch)
 99 
100         If you're using bootgraph, or sleepgraph with a kernel older than 3.15.0,
101                 the following additional kernel parameters are required:
102         (e.g. in file /etc/default/grub)
103         GRUB_CMDLINE_LINUX_DEFAULT="... initcall_debug log_buf_len=32M ..."
104 
105         If you're using a kernel older than 3.11-rc2, the following simple
106                 patch must be applied to enable ftrace data:
107         in file: kernel/power/suspend.c
108         in function: int suspend_devices_and_enter(suspend_state_t state)
109         remove call to "ftrace_stop();"
110         remove call to "ftrace_start();"
111 
112         There is a patch which does this for kernel v3.8.0:
113         (kernel/pre-3.11-rc2/enable_ftrace_in_suspendresume.patch)
114 
115 
116 
117 ------------------------------------------------------------------
118 |                            USAGE                               |
119 ------------------------------------------------------------------
120 
121 Basic Usage
122 ___________
123 
124  1) First configure a kernel using the instructions from the previous sections.
125     Then build, install, and boot with it.
126  2) Open up a terminal window and execute the mode list command:
127 
128         %> sudo ./sleepgraph.py -modes
129                 ['freeze', 'mem', 'disk']
130 
131  Execute a test using one of the available power modes, e.g. mem (S3):
132 
133         %> sudo ./sleepgraph.py -m mem -rtcwake 15
134 
135                 or with a config file
136 
137         %> sudo ./sleepgraph.py -config config/suspend.cfg
138 
139  When the system comes back you'll see the script finishing up and
140  creating the output files in the test subdir. It generates output
141  files in subdirectory: suspend-mmddyy-HHMMSS. The ftrace file can
142  be used to regenerate the html timeline with different options
143 
144      HTML output:                    <hostname>_<mode>.html
145      raw dmesg output:               <hostname>_<mode>_dmesg.txt
146      raw ftrace output:              <hostname>_<mode>_ftrace.txt
147 
148  View the html in firefox or chrome.
149 
150 
151 Dev Mode Usage
152 ______________
153 
154  Developer mode adds information on low level source calls to the timeline.
155  The tool sets kprobes on all delay and mutex calls to see which devices
156  are waiting for something and when. It also sets a suite of kprobes on
157  subsystem dependent calls to better fill out the timeline.
158 
159  The tool will also expose kernel threads that don't normally show up in the
160  timeline. This is useful in discovering dependent threads to get a better
161  idea of what each device is waiting for. For instance, the scsi_eh thread,
162  a.k.a. scsi resume error handler, is what each SATA disk device waits for
163  before it can continue resume.
164 
165  The timeline will be much larger if run with dev mode, so it can be useful
166  to set the -mindev option to clip out any device blocks that are too small
167  to see easily. The following command will give a nice dev mode run:
168 
169  %> sudo ./sleepgraph.py -m mem -rtcwake 15 -mindev 1 -dev
170 
171         or with a config file
172 
173  %> sudo ./sleepgraph.py -config config/suspend-dev.cfg
174 
175 
176 Proc Mode Usage
177 _______________
178 
179  Proc mode adds user process info to the timeline. This is done in a manner
180  similar to the bootchart utility, which graphs init processes and their
181  execution as the system boots. This tool option does the same thing but for
182  the period before and after suspend/resume.
183 
184  In order to see any process info, there needs to be some delay before or
185  after resume since processes are frozen in suspend_prepare and thawed in
186  resume_complete. The predelay and postdelay args allow you to do this. It
187  can also be useful to run in x2 mode with an x2 delay, this way you can
188  see process activity before and after resume, and in between two
189  successive suspend/resumes.
190 
191  The command can be run like this:
192 
193  %> sudo ./sleepgraph.py -m mem -rtcwake 15 -x2 -x2delay 1000 -predelay 1000 -postdelay 1000 -proc
194 
195         or with a config file
196 
197  %> sudo ./sleepgraph.py -config config/suspend-proc.cfg
198 
199 ------------------------------------------------------------------
200 |                     ENDURANCE TESTING                          |
201 ------------------------------------------------------------------
202 
203  The best way to gauge the health of a system is to run a series of
204  suspend/resumes over an extended period and analyze the behavior. This can be
205  accomplished with sleepgraph's -multi argument. You specify two numbers: the
206  number of tests to run OR the duration in days, hours, or minutes, and the
207  delay in seconds between them. For instance, -multi 20 5: execute 20 tests with
208  a 5 second delay between each, or -multi 24h 0: execute tests over a 24 hour
209  period with no delay between tests. You can include any other options you like
210  to generate the data you want. It's most useful to collect dev mode timelines
211  as the kprobes don't alter the performance much and you get more insight.
212 
213  On completion, the output folder contains a series of folders for the
214  individual test data and a set of summary pages in the root. The summary.html
215  file is a tabular list of the tests with relevant info and links. The
216  summary-issue.html and summary-devices.html files include data taken from
217  all tests on kernel issues and device performance. The folder looks like this:
218 
219   suspend-xN-{date}-{time}:
220         summary.html
221         summary-issues.html
222         summary-devices.html
223         suspend-{date}-{time} (1)
224         suspend-{date}-{time} (2)
225         ...
226 
227  These are the relevant arguments to use for testing:
228 
229   -m mode
230         Mode to initiate for suspend e.g. mem, freeze, standby (default: mem).
231 
232   -rtcwake t
233         Use rtcwake to autoresume after t seconds (default: 15).
234 
235   -gzip (optional)
236         Gzip the trace and dmesg logs to save space. The tool can also read in
237         gzipped logs for processing. This reduces the multitest folder size.
238 
239   -dev (optional)
240         Add kernel source calls and threads to the timeline (default: disabled).
241 
242   -multi n d
243         Execute n consecutive tests at d seconds intervals. The outputs will be
244         created in a new subdirectory: suspend-xN-{date}-{time}. When the multitest
245         run is done, the -summary command is called automatically to create summary
246         html files for all the data (unless you use -skiphtml). -skiphtml will
247         speed up the testing by not creating timelines or summary html files. You
248         can then run the tool again at a later time with -summary and -genhtml to
249         create the timelines.
250 
251   -skiphtml (optional)
252         Run the test and capture the trace logs, but skip the timeline and summary
253         html generation. This can greatly speed up overall testing. You can then
254         copy the data to a faster host machine and run -summary -genhtml to
255         generate the timelines and summary.
256 
257  These are the relevant commands to use after testing is complete:
258 
259   -summary indir
260         Generate or regenerate the summary for a -multi test run. Creates three
261         files: summary.html, summary-issues.html, and summary-devices.html in the
262         current folder. summary.html is a table of tests with relevant info sorted
263         by kernel/host/mode, and links to the test html files. summary-issues.html
264         is a list of kernel issues found in dmesg from all the tests.
265         summary-devices.html is a list of devices and times from all the tests.
266 
267   -genhtml
268         Used  with -summary to regenerate any missing html timelines from their
269         dmesg and ftrace logs. This will require a significant amount of time if
270         there are thousands of tests.
271 
272 Usage Examples
273 _______________
274 
275  A multitest is initiated like this:
276 
277   %> sudo ./sleepgraph.py -m mem -rtcwake 10 -dev -gzip -multi 2000 0
278 
279         or you can skip timeline generation in order to speed things up
280 
281   %> sudo ./sleepgraph.py -m mem -rtcwake 10 -dev -gzip -multi 2000 0 -skiphtml
282 
283  The tool will produce an output folder with all the test subfolders inside.
284  Each test subfolder contains the dmesg/ftrace logs and/or the html timeline
285  depending on whether you used the -skiphtml option. The root folder contains
286  the summary.html files.
287 
288  The summary for an existing multitest is generated like this:
289 
290   %> cd suspend-x2000-{date}-{time}
291   %> sleepgraph.py -summary .
292 
293         or if you need to generate the html timelines you can use -genhtml
294 
295   %> cd suspend-xN-{date}-{time}
296   %> sleepgraph.py -summary . -genhtml
297 
298 ------------------------------------------------------------------
299 |                    CONFIGURATION FILES                         |
300 ------------------------------------------------------------------
301 
302  Since 4.0 we've moved to using config files in lieu of command line options.
303  The config folder contains a collection of typical use cases.
304  There are corresponding configs for other power modes:
305 
306         Simple suspend/resume with basic timeline (mem/freeze/standby)
307                 config/suspend.cfg
308                 config/freeze.cfg
309                 config/standby.cfg
310 
311         Dev mode suspend/resume with dev timeline (mem/freeze/standby)
312                 config/suspend-dev.cfg
313                 config/freeze-dev.cfg
314                 config/standby-dev.cfg
315 
316         Simple suspend/resume with timeline and callgraph (mem/freeze/standby)
317                 config/suspend-callgraph.cfg
318                 config/freeze-callgraph.cfg
319                 config/standby-callgraph.cfg
320 
321         Sample proc mode x2 run using mem suspend
322                 config/suspend-x2-proc.cfg
323 
324         Sample for editing timeline funcs (moves internal functions into config)
325                 config/custom-timeline-functions.cfg
326 
327         Sample debug config for serio subsystem
328                 config/debug-serio-suspend.cfg
329 
330 
331 Usage Examples
332 ______________
333 
334  Run a simple mem suspend:
335  %> sudo ./sleepgraph.py -config config/suspend.cfg
336 
337  Run a mem suspend with callgraph data:
338  %> sudo ./sleepgraph.py -config config/suspend-callgraph.cfg
339 
340  Run a mem suspend with dev mode detail:
341  %> sudo ./sleepgraph.py -config config/suspend-dev.cfg
342 
343 
344 Config File Options
345 ___________________
346 
347  [Settings]
348 
349  # Verbosity: print verbose messages (def: false)
350  verbose: false
351 
352  # Suspend Mode: e.g. standby, mem, freeze, disk (def: mem)
353  mode: mem
354 
355  # Output Directory Format: {hostname}, {date}, {time} give current values
356  output-dir: suspend-{hostname}-{date}-{time}
357 
358  # Automatic Wakeup: use rtcwake to wakeup after X seconds (def: infinity)
359  rtcwake: 15
360 
361  # Add Logs: add the dmesg and ftrace log to the html output (def: false)
362  addlogs: false
363 
364  # Sus/Res Gap: insert a gap between sus & res in the timeline (def: false)
365  srgap: false
366 
367  # Custom Command: Command to execute in lieu of suspend (def: "")
368  command: echo mem > /sys/power/state
369 
370  # Proc mode: graph user processes and cpu usage in the timeline (def: false)
371  proc: false
372 
373  # Dev mode: graph source functions in the timeline (def: false)
374  dev: false
375 
376  # Suspend/Resume x2: run 2 suspend/resumes back to back (def: false)
377  x2: false
378 
379  # x2 Suspend Delay: time delay between the two test runs in ms (def: 0 ms)
380  x2delay: 0
381 
382  # Pre Suspend Delay: nclude an N ms delay before (1st) suspend (def: 0 ms)
383  predelay: 0
384 
385  # Post Resume Delay: include an N ms delay after (last) resume (def: 0 ms)
386  postdelay: 0
387 
388  # Min Device Length: graph only dev callbacks longer than min (def: 0.001 ms)
389  mindev: 0.001
390 
391  # Callgraph: gather ftrace callgraph data on all timeline events (def: false)
392  callgraph: false
393 
394  # Expand Callgraph: pre-expand the callgraph treeviews in html (def: false)
395  expandcg: false
396 
397  # Min Callgraph Length: show callgraphs only if longer than min (def: 1 ms)
398  mincg: 1
399 
400  # Timestamp Precision: number of sig digits in timestamps (0:S, [3:ms], 6:us)
401  timeprec: 3
402 
403  # Device Filter: show only devs whose name/driver includes one of these strings
404  devicefilter: _cpu_up,_cpu_down,i915,usb
405 
406  # Override default timeline entries:
407  # Do not use the internal default functions for timeline entries (def: false)
408  # Set this to true if you intend to only use the ones defined in the config
409  override-timeline-functions: true
410 
411  # Override default dev timeline entries:
412  # Do not use the internal default functions for dev timeline entries (def: false)
413  # Set this to true if you intend to only use the ones defined in the config
414  override-dev-timeline-functions: true
415 
416  # Call Loop Max Gap (dev mode only)
417  # merge loops of the same call if each is less than maxgap apart (def: 100us)
418  callloop-maxgap: 0.0001
419 
420  # Call Loop Max Length (dev mode only)
421  # merge loops of the same call if each is less than maxlen in length (def: 5ms)
422  callloop-maxlen: 0.005
423 
424 ------------------------------------------------------------------
425 |                   CUSTOM TIMELINE ENTRIES                      |
426 ------------------------------------------------------------------
427 
428 Adding or Editing Timeline Functions
429 ____________________________________
430 
431  The tool uses an array of function names to fill out empty spaces in the
432  timeline where device callbacks don't appear. For instance, in suspend_prepare
433  the tool adds the sys_sync and freeze_processes calls as virtual device blocks
434  in the timeline to show you where the time is going. These calls should fill
435  the timeline with contiguous data so that most kernel execution is covered.
436 
437  It is possible to add new function calls to the timeline by adding them to
438  the config. It's also possible to copy the internal timeline functions into
439  the config so that you can override and edit them. Place them in the
440  timeline_functions_ARCH section with the name of your architecture appended.
441  i.e. for x86_64: [timeline_functions_x86_64]
442 
443  Use the override-timeline-functions option if you only want to use your
444  custom calls, or leave it false to append them to the internal ones.
445 
446  This section includes a list of functions (set using kprobes) which use both
447  symbol data and function arg data. The args are pulled directly from the
448  stack using this architecture's registers and stack formatting. Each entry
449  can include up to four pieces of info: The function name, a format string,
450  an argument list, and a color. But only a function name is required.
451 
452  For a full example config, see config/custom-timeline-functions.cfg. It pulls
453  all the internal timeline functions into the config and allows you to edit
454  them.
455 
456   Entry format:
457 
458     function: format{fn_arg1}_{fn_arg2} fn_arg1 fn_arg2 ... [color=purple]
459 
460   Required Arguments:
461 
462     function: The symbol name for the function you want probed, this is the
463               minimum required for an entry, it will show up as the function
464               name with no arguments.
465 
466         example: _cpu_up:
467 
468   Optional Arguments:
469 
470     format: The format to display the data on the timeline in. Use braces to
471             enclose the arg names.
472 
473         example: CPU_ON[{cpu}]
474 
475     color: The color of the entry block in the timeline. The default color is
476            transparent, so the entry shares the phase color. The color is an
477            html color string, either a word, or an RGB.
478 
479         example: [color=#CC00CC]
480 
481     arglist: A list of arguments from registers/stack addresses. See URL:
482              https://www.kernel.org/doc/Documentation/trace/kprobetrace.txt
483 
484         example: cpu=%di:s32
485 
486  Here is a full example entry. It displays cpu resume calls in the timeline
487  in orange. They will appear as CPU_ON[0], CPU_ON[1], etc.
488 
489   [timeline_functions_x86_64]
490   _cpu_up: CPU_ON[{cpu}] cpu=%di:s32 [color=orange]
491 
492 
493 Adding or Editing Dev Mode Timeline Source Functions
494 ____________________________________________________
495 
496  In dev mode, the tool uses an array of function names to monitor source
497  execution within the timeline entries.
498 
499  The function calls are displayed inside the main device/call blocks in the
500  timeline. However, if a function call is not within a main timeline event,
501  it will spawn an entirely new event named after the caller's kernel thread.
502  These asynchronous kernel threads will populate in a separate section
503  beneath the main device/call section.
504 
505  The tool has a set of hard coded calls which focus on the most common use
506  cases: msleep, udelay, schedule_timeout, mutex_lock_slowpath, etc. These are
507  the functions that add a hardcoded time delay to the suspend/resume path.
508  The tool also includes some common functions native to important
509  subsystems: ata, i915, and ACPI, etc.
510 
511  It is possible to add new function calls to the dev timeline by adding them
512  to the config. It's also possible to copy the internal dev timeline
513  functions into the config so that you can override and edit them. Place them
514  in the dev_timeline_functions_ARCH section with the name of your architecture
515  appended. i.e. for x86_64: [dev_timeline_functions_x86_64]
516 
517  Use the override-dev-timeline-functions option if you only want to use your
518  custom calls, or leave it false to append them to the internal ones.
519 
520  The format is the same as the timeline_functions_x86_64 section. It's a
521  list of functions (set using kprobes) which use both symbol data and function
522  arg data. The args are pulled directly from the stack using this
523  architecture's registers and stack formatting. Each entry can include up
524  to four pieces of info: The function name, a format string, an argument list,
525  and a color. But only the function name is required.
526 
527  For a full example config, see config/custom-timeline-functions.cfg. It pulls
528  all the internal dev timeline functions into the config and allows you to edit
529  them.
530 
531  Here is a full example entry. It displays the ATA port reset calls as
532  ataN_port_reset in the timeline. This is where most of the SATA disk resume
533  time goes, so it can be helpful to see the low level call.
534 
535   [dev_timeline_functions_x86_64]
536   ata_eh_recover: ata{port}_port_reset port=+36(%di):s32 [color=#CC00CC]
537 
538 
539 Verifying your custom functions
540 _______________________________
541 
542  Once you have a set of functions (kprobes) defined, it can be useful to
543  perform a quick check to see if you formatted them correctly and if the system
544  actually supports them. To do this, run the tool with your config file
545  and the -status option. The tool will go through all the kprobes (both
546  custom and internal if you haven't overridden them) and actually attempts
547  to set them in ftrace. It will then print out success or fail for you.
548 
549  Note that kprobes which don't actually exist in the kernel won't stop the
550  tool, they just wont show up.
551 
552  For example:
553 
554  sudo ./sleepgraph.py -config config/custom-timeline-functions.cfg -status
555  Checking this system (myhostname)...
556     have root access: YES
557     is sysfs mounted: YES
558     is "mem" a valid power mode: YES
559     is ftrace supported: YES
560     are kprobes supported: YES
561     timeline data source: FTRACE (all trace events found)
562     is rtcwake supported: YES
563     verifying timeline kprobes work:
564          _cpu_down: YES
565          _cpu_up: YES
566          acpi_pm_finish: YES
567          acpi_pm_prepare: YES
568          freeze_kernel_threads: YES
569          freeze_processes: YES
570          sys_sync: YES
571          thaw_processes: YES
572     verifying dev kprobes work:
573          __const_udelay: YES
574          __mutex_lock_slowpath: YES
575          acpi_os_stall: YES
576          acpi_ps_parse_aml: YES
577          intel_opregion_init: NO
578          intel_opregion_register: NO
579          intel_opregion_setup: NO
580          msleep: YES
581          schedule_timeout: YES
582          schedule_timeout_uninterruptible: YES
583          usleep_range: YES
584 
585 
586 ------------------------------------------------------------------
587 |           TESTING ON CONSUMER LINUX OPERATING SYSTEMS          |
588 ------------------------------------------------------------------
589 
590 Android
591 _______
592 
593  The easiest way to execute on an android device is to run the android.sh
594  script on the device, then pull the ftrace log back to the host and run
595  sleepgraph.py on it.
596 
597  Here are the steps:
598 
599  [download and install the tool on the device]
600 
601         host%> wget https://raw.githubusercontent.com/intel/pm-graph/master/tools/android.sh
602         host%> adb connect 192.168.1.6
603         host%> adb root
604         # push the script to a writeable location
605         host%> adb push android.sh /sdcard/
606 
607  [check whether the tool will run on your device]
608 
609         host%> adb shell
610         dev%> cd /sdcard
611         dev%> sh android.sh status
612                 host    : asus_t100
613                 kernel  : 3.14.0-i386-dirty
614                 modes   : freeze mem
615                 rtcwake : supported
616                 ftrace  : supported
617                 trace events {
618                     suspend_resume: found
619                     device_pm_callback_end: found
620                     device_pm_callback_start: found
621                 }
622         # the above is what you see on a system that's properly patched
623 
624  [execute the suspend]
625 
626         # NOTE: The suspend will only work if the screen isn't timed out,
627         # so you have to press some keys first to wake it up b4 suspend)
628         dev%> sh android.sh suspend mem
629         ------------------------------------
630         Suspend/Resume timing test initiated
631         ------------------------------------
632         hostname   : asus_t100
633         kernel     : 3.14.0-i386-dirty
634         mode       : mem
635         ftrace out : /mnt/shell/emulated/0/ftrace.txt
636         dmesg out  : /mnt/shell/emulated/0/dmesg.txt
637         log file   : /mnt/shell/emulated/0/log.txt
638         ------------------------------------
639         INITIALIZING FTRACE........DONE
640         STARTING FTRACE
641         SUSPEND START @ 21:24:02 (rtcwake in 10 seconds)
642         <adb connection will now terminate>
643 
644  [retrieve the data from the device]
645 
646         # I find that you have to actually kill the adb process and
647         # reconnect sometimes in order for the connection to work post-suspend
648         host%> adb connect 192.168.1.6
649         # (required) get the ftrace data, this is the most important piece
650         host%> adb pull /sdcard/ftrace.txt
651         # (optional) get the dmesg data, this is for debugging
652         host%> adb pull /sdcard/dmesg.txt
653         # (optional) get the log, which just lists some test times for comparison
654         host%> adb pull /sdcard/log.txt
655 
656  [create an output html file using sleepgraph.py]
657 
658         host%> sleepgraph.py -ftrace ftrace.txt
659 
660  You should now have an output.html with the android data, enjoy!

~ [ source navigation ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php