~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/sched_ext/scx_flatcg.bpf.c

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /*
  3  * A demo sched_ext flattened cgroup hierarchy scheduler. It implements
  4  * hierarchical weight-based cgroup CPU control by flattening the cgroup
  5  * hierarchy into a single layer by compounding the active weight share at each
  6  * level. Consider the following hierarchy with weights in parentheses:
  7  *
  8  * R + A (100) + B (100)
  9  *   |         \ C (100)
 10  *   \ D (200)
 11  *
 12  * Ignoring the root and threaded cgroups, only B, C and D can contain tasks.
 13  * Let's say all three have runnable tasks. The total share that each of these
 14  * three cgroups is entitled to can be calculated by compounding its share at
 15  * each level.
 16  *
 17  * For example, B is competing against C and in that competition its share is
 18  * 100/(100+100) == 1/2. At its parent level, A is competing against D and A's
 19  * share in that competition is 100/(200+100) == 1/3. B's eventual share in the
 20  * system can be calculated by multiplying the two shares, 1/2 * 1/3 == 1/6. C's
 21  * eventual shaer is the same at 1/6. D is only competing at the top level and
 22  * its share is 200/(100+200) == 2/3.
 23  *
 24  * So, instead of hierarchically scheduling level-by-level, we can consider it
 25  * as B, C and D competing each other with respective share of 1/6, 1/6 and 2/3
 26  * and keep updating the eventual shares as the cgroups' runnable states change.
 27  *
 28  * This flattening of hierarchy can bring a substantial performance gain when
 29  * the cgroup hierarchy is nested multiple levels. in a simple benchmark using
 30  * wrk[8] on apache serving a CGI script calculating sha1sum of a small file, it
 31  * outperforms CFS by ~3% with CPU controller disabled and by ~10% with two
 32  * apache instances competing with 2:1 weight ratio nested four level deep.
 33  *
 34  * However, the gain comes at the cost of not being able to properly handle
 35  * thundering herd of cgroups. For example, if many cgroups which are nested
 36  * behind a low priority parent cgroup wake up around the same time, they may be
 37  * able to consume more CPU cycles than they are entitled to. In many use cases,
 38  * this isn't a real concern especially given the performance gain. Also, there
 39  * are ways to mitigate the problem further by e.g. introducing an extra
 40  * scheduling layer on cgroup delegation boundaries.
 41  *
 42  * The scheduler first picks the cgroup to run and then schedule the tasks
 43  * within by using nested weighted vtime scheduling by default. The
 44  * cgroup-internal scheduling can be switched to FIFO with the -f option.
 45  */
 46 #include <scx/common.bpf.h>
 47 #include "scx_flatcg.h"
 48 
 49 /*
 50  * Maximum amount of retries to find a valid cgroup.
 51  */
 52 enum {
 53         FALLBACK_DSQ            = 0,
 54         CGROUP_MAX_RETRIES      = 1024,
 55 };
 56 
 57 char _license[] SEC("license") = "GPL";
 58 
 59 const volatile u32 nr_cpus = 32;        /* !0 for veristat, set during init */
 60 const volatile u64 cgrp_slice_ns = SCX_SLICE_DFL;
 61 const volatile bool fifo_sched;
 62 
 63 u64 cvtime_now;
 64 UEI_DEFINE(uei);
 65 
 66 struct {
 67         __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
 68         __type(key, u32);
 69         __type(value, u64);
 70         __uint(max_entries, FCG_NR_STATS);
 71 } stats SEC(".maps");
 72 
 73 static void stat_inc(enum fcg_stat_idx idx)
 74 {
 75         u32 idx_v = idx;
 76 
 77         u64 *cnt_p = bpf_map_lookup_elem(&stats, &idx_v);
 78         if (cnt_p)
 79                 (*cnt_p)++;
 80 }
 81 
 82 struct fcg_cpu_ctx {
 83         u64                     cur_cgid;
 84         u64                     cur_at;
 85 };
 86 
 87 struct {
 88         __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
 89         __type(key, u32);
 90         __type(value, struct fcg_cpu_ctx);
 91         __uint(max_entries, 1);
 92 } cpu_ctx SEC(".maps");
 93 
 94 struct {
 95         __uint(type, BPF_MAP_TYPE_CGRP_STORAGE);
 96         __uint(map_flags, BPF_F_NO_PREALLOC);
 97         __type(key, int);
 98         __type(value, struct fcg_cgrp_ctx);
 99 } cgrp_ctx SEC(".maps");
100 
101 struct cgv_node {
102         struct bpf_rb_node      rb_node;
103         __u64                   cvtime;
104         __u64                   cgid;
105 };
106 
107 private(CGV_TREE) struct bpf_spin_lock cgv_tree_lock;
108 private(CGV_TREE) struct bpf_rb_root cgv_tree __contains(cgv_node, rb_node);
109 
110 struct cgv_node_stash {
111         struct cgv_node __kptr *node;
112 };
113 
114 struct {
115         __uint(type, BPF_MAP_TYPE_HASH);
116         __uint(max_entries, 16384);
117         __type(key, __u64);
118         __type(value, struct cgv_node_stash);
119 } cgv_node_stash SEC(".maps");
120 
121 struct fcg_task_ctx {
122         u64             bypassed_at;
123 };
124 
125 struct {
126         __uint(type, BPF_MAP_TYPE_TASK_STORAGE);
127         __uint(map_flags, BPF_F_NO_PREALLOC);
128         __type(key, int);
129         __type(value, struct fcg_task_ctx);
130 } task_ctx SEC(".maps");
131 
132 /* gets inc'd on weight tree changes to expire the cached hweights */
133 u64 hweight_gen = 1;
134 
135 static u64 div_round_up(u64 dividend, u64 divisor)
136 {
137         return (dividend + divisor - 1) / divisor;
138 }
139 
140 static bool vtime_before(u64 a, u64 b)
141 {
142         return (s64)(a - b) < 0;
143 }
144 
145 static bool cgv_node_less(struct bpf_rb_node *a, const struct bpf_rb_node *b)
146 {
147         struct cgv_node *cgc_a, *cgc_b;
148 
149         cgc_a = container_of(a, struct cgv_node, rb_node);
150         cgc_b = container_of(b, struct cgv_node, rb_node);
151 
152         return cgc_a->cvtime < cgc_b->cvtime;
153 }
154 
155 static struct fcg_cpu_ctx *find_cpu_ctx(void)
156 {
157         struct fcg_cpu_ctx *cpuc;
158         u32 idx = 0;
159 
160         cpuc = bpf_map_lookup_elem(&cpu_ctx, &idx);
161         if (!cpuc) {
162                 scx_bpf_error("cpu_ctx lookup failed");
163                 return NULL;
164         }
165         return cpuc;
166 }
167 
168 static struct fcg_cgrp_ctx *find_cgrp_ctx(struct cgroup *cgrp)
169 {
170         struct fcg_cgrp_ctx *cgc;
171 
172         cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0, 0);
173         if (!cgc) {
174                 scx_bpf_error("cgrp_ctx lookup failed for cgid %llu", cgrp->kn->id);
175                 return NULL;
176         }
177         return cgc;
178 }
179 
180 static struct fcg_cgrp_ctx *find_ancestor_cgrp_ctx(struct cgroup *cgrp, int level)
181 {
182         struct fcg_cgrp_ctx *cgc;
183 
184         cgrp = bpf_cgroup_ancestor(cgrp, level);
185         if (!cgrp) {
186                 scx_bpf_error("ancestor cgroup lookup failed");
187                 return NULL;
188         }
189 
190         cgc = find_cgrp_ctx(cgrp);
191         if (!cgc)
192                 scx_bpf_error("ancestor cgrp_ctx lookup failed");
193         bpf_cgroup_release(cgrp);
194         return cgc;
195 }
196 
197 static void cgrp_refresh_hweight(struct cgroup *cgrp, struct fcg_cgrp_ctx *cgc)
198 {
199         int level;
200 
201         if (!cgc->nr_active) {
202                 stat_inc(FCG_STAT_HWT_SKIP);
203                 return;
204         }
205 
206         if (cgc->hweight_gen == hweight_gen) {
207                 stat_inc(FCG_STAT_HWT_CACHE);
208                 return;
209         }
210 
211         stat_inc(FCG_STAT_HWT_UPDATES);
212         bpf_for(level, 0, cgrp->level + 1) {
213                 struct fcg_cgrp_ctx *cgc;
214                 bool is_active;
215 
216                 cgc = find_ancestor_cgrp_ctx(cgrp, level);
217                 if (!cgc)
218                         break;
219 
220                 if (!level) {
221                         cgc->hweight = FCG_HWEIGHT_ONE;
222                         cgc->hweight_gen = hweight_gen;
223                 } else {
224                         struct fcg_cgrp_ctx *pcgc;
225 
226                         pcgc = find_ancestor_cgrp_ctx(cgrp, level - 1);
227                         if (!pcgc)
228                                 break;
229 
230                         /*
231                          * We can be opportunistic here and not grab the
232                          * cgv_tree_lock and deal with the occasional races.
233                          * However, hweight updates are already cached and
234                          * relatively low-frequency. Let's just do the
235                          * straightforward thing.
236                          */
237                         bpf_spin_lock(&cgv_tree_lock);
238                         is_active = cgc->nr_active;
239                         if (is_active) {
240                                 cgc->hweight_gen = pcgc->hweight_gen;
241                                 cgc->hweight =
242                                         div_round_up(pcgc->hweight * cgc->weight,
243                                                      pcgc->child_weight_sum);
244                         }
245                         bpf_spin_unlock(&cgv_tree_lock);
246 
247                         if (!is_active) {
248                                 stat_inc(FCG_STAT_HWT_RACE);
249                                 break;
250                         }
251                 }
252         }
253 }
254 
255 static void cgrp_cap_budget(struct cgv_node *cgv_node, struct fcg_cgrp_ctx *cgc)
256 {
257         u64 delta, cvtime, max_budget;
258 
259         /*
260          * A node which is on the rbtree can't be pointed to from elsewhere yet
261          * and thus can't be updated and repositioned. Instead, we collect the
262          * vtime deltas separately and apply it asynchronously here.
263          */
264         delta = __sync_fetch_and_sub(&cgc->cvtime_delta, cgc->cvtime_delta);
265         cvtime = cgv_node->cvtime + delta;
266 
267         /*
268          * Allow a cgroup to carry the maximum budget proportional to its
269          * hweight such that a full-hweight cgroup can immediately take up half
270          * of the CPUs at the most while staying at the front of the rbtree.
271          */
272         max_budget = (cgrp_slice_ns * nr_cpus * cgc->hweight) /
273                 (2 * FCG_HWEIGHT_ONE);
274         if (vtime_before(cvtime, cvtime_now - max_budget))
275                 cvtime = cvtime_now - max_budget;
276 
277         cgv_node->cvtime = cvtime;
278 }
279 
280 static void cgrp_enqueued(struct cgroup *cgrp, struct fcg_cgrp_ctx *cgc)
281 {
282         struct cgv_node_stash *stash;
283         struct cgv_node *cgv_node;
284         u64 cgid = cgrp->kn->id;
285 
286         /* paired with cmpxchg in try_pick_next_cgroup() */
287         if (__sync_val_compare_and_swap(&cgc->queued, 0, 1)) {
288                 stat_inc(FCG_STAT_ENQ_SKIP);
289                 return;
290         }
291 
292         stash = bpf_map_lookup_elem(&cgv_node_stash, &cgid);
293         if (!stash) {
294                 scx_bpf_error("cgv_node lookup failed for cgid %llu", cgid);
295                 return;
296         }
297 
298         /* NULL if the node is already on the rbtree */
299         cgv_node = bpf_kptr_xchg(&stash->node, NULL);
300         if (!cgv_node) {
301                 stat_inc(FCG_STAT_ENQ_RACE);
302                 return;
303         }
304 
305         bpf_spin_lock(&cgv_tree_lock);
306         cgrp_cap_budget(cgv_node, cgc);
307         bpf_rbtree_add(&cgv_tree, &cgv_node->rb_node, cgv_node_less);
308         bpf_spin_unlock(&cgv_tree_lock);
309 }
310 
311 static void set_bypassed_at(struct task_struct *p, struct fcg_task_ctx *taskc)
312 {
313         /*
314          * Tell fcg_stopping() that this bypassed the regular scheduling path
315          * and should be force charged to the cgroup. 0 is used to indicate that
316          * the task isn't bypassing, so if the current runtime is 0, go back by
317          * one nanosecond.
318          */
319         taskc->bypassed_at = p->se.sum_exec_runtime ?: (u64)-1;
320 }
321 
322 s32 BPF_STRUCT_OPS(fcg_select_cpu, struct task_struct *p, s32 prev_cpu, u64 wake_flags)
323 {
324         struct fcg_task_ctx *taskc;
325         bool is_idle = false;
326         s32 cpu;
327 
328         cpu = scx_bpf_select_cpu_dfl(p, prev_cpu, wake_flags, &is_idle);
329 
330         taskc = bpf_task_storage_get(&task_ctx, p, 0, 0);
331         if (!taskc) {
332                 scx_bpf_error("task_ctx lookup failed");
333                 return cpu;
334         }
335 
336         /*
337          * If select_cpu_dfl() is recommending local enqueue, the target CPU is
338          * idle. Follow it and charge the cgroup later in fcg_stopping() after
339          * the fact.
340          */
341         if (is_idle) {
342                 set_bypassed_at(p, taskc);
343                 stat_inc(FCG_STAT_LOCAL);
344                 scx_bpf_dispatch(p, SCX_DSQ_LOCAL, SCX_SLICE_DFL, 0);
345         }
346 
347         return cpu;
348 }
349 
350 void BPF_STRUCT_OPS(fcg_enqueue, struct task_struct *p, u64 enq_flags)
351 {
352         struct fcg_task_ctx *taskc;
353         struct cgroup *cgrp;
354         struct fcg_cgrp_ctx *cgc;
355 
356         taskc = bpf_task_storage_get(&task_ctx, p, 0, 0);
357         if (!taskc) {
358                 scx_bpf_error("task_ctx lookup failed");
359                 return;
360         }
361 
362         /*
363          * Use the direct dispatching and force charging to deal with tasks with
364          * custom affinities so that we don't have to worry about per-cgroup
365          * dq's containing tasks that can't be executed from some CPUs.
366          */
367         if (p->nr_cpus_allowed != nr_cpus) {
368                 set_bypassed_at(p, taskc);
369 
370                 /*
371                  * The global dq is deprioritized as we don't want to let tasks
372                  * to boost themselves by constraining its cpumask. The
373                  * deprioritization is rather severe, so let's not apply that to
374                  * per-cpu kernel threads. This is ham-fisted. We probably wanna
375                  * implement per-cgroup fallback dq's instead so that we have
376                  * more control over when tasks with custom cpumask get issued.
377                  */
378                 if (p->nr_cpus_allowed == 1 && (p->flags & PF_KTHREAD)) {
379                         stat_inc(FCG_STAT_LOCAL);
380                         scx_bpf_dispatch(p, SCX_DSQ_LOCAL, SCX_SLICE_DFL, enq_flags);
381                 } else {
382                         stat_inc(FCG_STAT_GLOBAL);
383                         scx_bpf_dispatch(p, FALLBACK_DSQ, SCX_SLICE_DFL, enq_flags);
384                 }
385                 return;
386         }
387 
388         cgrp = __COMPAT_scx_bpf_task_cgroup(p);
389         cgc = find_cgrp_ctx(cgrp);
390         if (!cgc)
391                 goto out_release;
392 
393         if (fifo_sched) {
394                 scx_bpf_dispatch(p, cgrp->kn->id, SCX_SLICE_DFL, enq_flags);
395         } else {
396                 u64 tvtime = p->scx.dsq_vtime;
397 
398                 /*
399                  * Limit the amount of budget that an idling task can accumulate
400                  * to one slice.
401                  */
402                 if (vtime_before(tvtime, cgc->tvtime_now - SCX_SLICE_DFL))
403                         tvtime = cgc->tvtime_now - SCX_SLICE_DFL;
404 
405                 scx_bpf_dispatch_vtime(p, cgrp->kn->id, SCX_SLICE_DFL,
406                                        tvtime, enq_flags);
407         }
408 
409         cgrp_enqueued(cgrp, cgc);
410 out_release:
411         bpf_cgroup_release(cgrp);
412 }
413 
414 /*
415  * Walk the cgroup tree to update the active weight sums as tasks wake up and
416  * sleep. The weight sums are used as the base when calculating the proportion a
417  * given cgroup or task is entitled to at each level.
418  */
419 static void update_active_weight_sums(struct cgroup *cgrp, bool runnable)
420 {
421         struct fcg_cgrp_ctx *cgc;
422         bool updated = false;
423         int idx;
424 
425         cgc = find_cgrp_ctx(cgrp);
426         if (!cgc)
427                 return;
428 
429         /*
430          * In most cases, a hot cgroup would have multiple threads going to
431          * sleep and waking up while the whole cgroup stays active. In leaf
432          * cgroups, ->nr_runnable which is updated with __sync operations gates
433          * ->nr_active updates, so that we don't have to grab the cgv_tree_lock
434          * repeatedly for a busy cgroup which is staying active.
435          */
436         if (runnable) {
437                 if (__sync_fetch_and_add(&cgc->nr_runnable, 1))
438                         return;
439                 stat_inc(FCG_STAT_ACT);
440         } else {
441                 if (__sync_sub_and_fetch(&cgc->nr_runnable, 1))
442                         return;
443                 stat_inc(FCG_STAT_DEACT);
444         }
445 
446         /*
447          * If @cgrp is becoming runnable, its hweight should be refreshed after
448          * it's added to the weight tree so that enqueue has the up-to-date
449          * value. If @cgrp is becoming quiescent, the hweight should be
450          * refreshed before it's removed from the weight tree so that the usage
451          * charging which happens afterwards has access to the latest value.
452          */
453         if (!runnable)
454                 cgrp_refresh_hweight(cgrp, cgc);
455 
456         /* propagate upwards */
457         bpf_for(idx, 0, cgrp->level) {
458                 int level = cgrp->level - idx;
459                 struct fcg_cgrp_ctx *cgc, *pcgc = NULL;
460                 bool propagate = false;
461 
462                 cgc = find_ancestor_cgrp_ctx(cgrp, level);
463                 if (!cgc)
464                         break;
465                 if (level) {
466                         pcgc = find_ancestor_cgrp_ctx(cgrp, level - 1);
467                         if (!pcgc)
468                                 break;
469                 }
470 
471                 /*
472                  * We need the propagation protected by a lock to synchronize
473                  * against weight changes. There's no reason to drop the lock at
474                  * each level but bpf_spin_lock() doesn't want any function
475                  * calls while locked.
476                  */
477                 bpf_spin_lock(&cgv_tree_lock);
478 
479                 if (runnable) {
480                         if (!cgc->nr_active++) {
481                                 updated = true;
482                                 if (pcgc) {
483                                         propagate = true;
484                                         pcgc->child_weight_sum += cgc->weight;
485                                 }
486                         }
487                 } else {
488                         if (!--cgc->nr_active) {
489                                 updated = true;
490                                 if (pcgc) {
491                                         propagate = true;
492                                         pcgc->child_weight_sum -= cgc->weight;
493                                 }
494                         }
495                 }
496 
497                 bpf_spin_unlock(&cgv_tree_lock);
498 
499                 if (!propagate)
500                         break;
501         }
502 
503         if (updated)
504                 __sync_fetch_and_add(&hweight_gen, 1);
505 
506         if (runnable)
507                 cgrp_refresh_hweight(cgrp, cgc);
508 }
509 
510 void BPF_STRUCT_OPS(fcg_runnable, struct task_struct *p, u64 enq_flags)
511 {
512         struct cgroup *cgrp;
513 
514         cgrp = __COMPAT_scx_bpf_task_cgroup(p);
515         update_active_weight_sums(cgrp, true);
516         bpf_cgroup_release(cgrp);
517 }
518 
519 void BPF_STRUCT_OPS(fcg_running, struct task_struct *p)
520 {
521         struct cgroup *cgrp;
522         struct fcg_cgrp_ctx *cgc;
523 
524         if (fifo_sched)
525                 return;
526 
527         cgrp = __COMPAT_scx_bpf_task_cgroup(p);
528         cgc = find_cgrp_ctx(cgrp);
529         if (cgc) {
530                 /*
531                  * @cgc->tvtime_now always progresses forward as tasks start
532                  * executing. The test and update can be performed concurrently
533                  * from multiple CPUs and thus racy. Any error should be
534                  * contained and temporary. Let's just live with it.
535                  */
536                 if (vtime_before(cgc->tvtime_now, p->scx.dsq_vtime))
537                         cgc->tvtime_now = p->scx.dsq_vtime;
538         }
539         bpf_cgroup_release(cgrp);
540 }
541 
542 void BPF_STRUCT_OPS(fcg_stopping, struct task_struct *p, bool runnable)
543 {
544         struct fcg_task_ctx *taskc;
545         struct cgroup *cgrp;
546         struct fcg_cgrp_ctx *cgc;
547 
548         /*
549          * Scale the execution time by the inverse of the weight and charge.
550          *
551          * Note that the default yield implementation yields by setting
552          * @p->scx.slice to zero and the following would treat the yielding task
553          * as if it has consumed all its slice. If this penalizes yielding tasks
554          * too much, determine the execution time by taking explicit timestamps
555          * instead of depending on @p->scx.slice.
556          */
557         if (!fifo_sched)
558                 p->scx.dsq_vtime +=
559                         (SCX_SLICE_DFL - p->scx.slice) * 100 / p->scx.weight;
560 
561         taskc = bpf_task_storage_get(&task_ctx, p, 0, 0);
562         if (!taskc) {
563                 scx_bpf_error("task_ctx lookup failed");
564                 return;
565         }
566 
567         if (!taskc->bypassed_at)
568                 return;
569 
570         cgrp = __COMPAT_scx_bpf_task_cgroup(p);
571         cgc = find_cgrp_ctx(cgrp);
572         if (cgc) {
573                 __sync_fetch_and_add(&cgc->cvtime_delta,
574                                      p->se.sum_exec_runtime - taskc->bypassed_at);
575                 taskc->bypassed_at = 0;
576         }
577         bpf_cgroup_release(cgrp);
578 }
579 
580 void BPF_STRUCT_OPS(fcg_quiescent, struct task_struct *p, u64 deq_flags)
581 {
582         struct cgroup *cgrp;
583 
584         cgrp = __COMPAT_scx_bpf_task_cgroup(p);
585         update_active_weight_sums(cgrp, false);
586         bpf_cgroup_release(cgrp);
587 }
588 
589 void BPF_STRUCT_OPS(fcg_cgroup_set_weight, struct cgroup *cgrp, u32 weight)
590 {
591         struct fcg_cgrp_ctx *cgc, *pcgc = NULL;
592 
593         cgc = find_cgrp_ctx(cgrp);
594         if (!cgc)
595                 return;
596 
597         if (cgrp->level) {
598                 pcgc = find_ancestor_cgrp_ctx(cgrp, cgrp->level - 1);
599                 if (!pcgc)
600                         return;
601         }
602 
603         bpf_spin_lock(&cgv_tree_lock);
604         if (pcgc && cgc->nr_active)
605                 pcgc->child_weight_sum += (s64)weight - cgc->weight;
606         cgc->weight = weight;
607         bpf_spin_unlock(&cgv_tree_lock);
608 }
609 
610 static bool try_pick_next_cgroup(u64 *cgidp)
611 {
612         struct bpf_rb_node *rb_node;
613         struct cgv_node_stash *stash;
614         struct cgv_node *cgv_node;
615         struct fcg_cgrp_ctx *cgc;
616         struct cgroup *cgrp;
617         u64 cgid;
618 
619         /* pop the front cgroup and wind cvtime_now accordingly */
620         bpf_spin_lock(&cgv_tree_lock);
621 
622         rb_node = bpf_rbtree_first(&cgv_tree);
623         if (!rb_node) {
624                 bpf_spin_unlock(&cgv_tree_lock);
625                 stat_inc(FCG_STAT_PNC_NO_CGRP);
626                 *cgidp = 0;
627                 return true;
628         }
629 
630         rb_node = bpf_rbtree_remove(&cgv_tree, rb_node);
631         bpf_spin_unlock(&cgv_tree_lock);
632 
633         if (!rb_node) {
634                 /*
635                  * This should never happen. bpf_rbtree_first() was called
636                  * above while the tree lock was held, so the node should
637                  * always be present.
638                  */
639                 scx_bpf_error("node could not be removed");
640                 return true;
641         }
642 
643         cgv_node = container_of(rb_node, struct cgv_node, rb_node);
644         cgid = cgv_node->cgid;
645 
646         if (vtime_before(cvtime_now, cgv_node->cvtime))
647                 cvtime_now = cgv_node->cvtime;
648 
649         /*
650          * If lookup fails, the cgroup's gone. Free and move on. See
651          * fcg_cgroup_exit().
652          */
653         cgrp = bpf_cgroup_from_id(cgid);
654         if (!cgrp) {
655                 stat_inc(FCG_STAT_PNC_GONE);
656                 goto out_free;
657         }
658 
659         cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0, 0);
660         if (!cgc) {
661                 bpf_cgroup_release(cgrp);
662                 stat_inc(FCG_STAT_PNC_GONE);
663                 goto out_free;
664         }
665 
666         if (!scx_bpf_consume(cgid)) {
667                 bpf_cgroup_release(cgrp);
668                 stat_inc(FCG_STAT_PNC_EMPTY);
669                 goto out_stash;
670         }
671 
672         /*
673          * Successfully consumed from the cgroup. This will be our current
674          * cgroup for the new slice. Refresh its hweight.
675          */
676         cgrp_refresh_hweight(cgrp, cgc);
677 
678         bpf_cgroup_release(cgrp);
679 
680         /*
681          * As the cgroup may have more tasks, add it back to the rbtree. Note
682          * that here we charge the full slice upfront and then exact later
683          * according to the actual consumption. This prevents lowpri thundering
684          * herd from saturating the machine.
685          */
686         bpf_spin_lock(&cgv_tree_lock);
687         cgv_node->cvtime += cgrp_slice_ns * FCG_HWEIGHT_ONE / (cgc->hweight ?: 1);
688         cgrp_cap_budget(cgv_node, cgc);
689         bpf_rbtree_add(&cgv_tree, &cgv_node->rb_node, cgv_node_less);
690         bpf_spin_unlock(&cgv_tree_lock);
691 
692         *cgidp = cgid;
693         stat_inc(FCG_STAT_PNC_NEXT);
694         return true;
695 
696 out_stash:
697         stash = bpf_map_lookup_elem(&cgv_node_stash, &cgid);
698         if (!stash) {
699                 stat_inc(FCG_STAT_PNC_GONE);
700                 goto out_free;
701         }
702 
703         /*
704          * Paired with cmpxchg in cgrp_enqueued(). If they see the following
705          * transition, they'll enqueue the cgroup. If they are earlier, we'll
706          * see their task in the dq below and requeue the cgroup.
707          */
708         __sync_val_compare_and_swap(&cgc->queued, 1, 0);
709 
710         if (scx_bpf_dsq_nr_queued(cgid)) {
711                 bpf_spin_lock(&cgv_tree_lock);
712                 bpf_rbtree_add(&cgv_tree, &cgv_node->rb_node, cgv_node_less);
713                 bpf_spin_unlock(&cgv_tree_lock);
714                 stat_inc(FCG_STAT_PNC_RACE);
715         } else {
716                 cgv_node = bpf_kptr_xchg(&stash->node, cgv_node);
717                 if (cgv_node) {
718                         scx_bpf_error("unexpected !NULL cgv_node stash");
719                         goto out_free;
720                 }
721         }
722 
723         return false;
724 
725 out_free:
726         bpf_obj_drop(cgv_node);
727         return false;
728 }
729 
730 void BPF_STRUCT_OPS(fcg_dispatch, s32 cpu, struct task_struct *prev)
731 {
732         struct fcg_cpu_ctx *cpuc;
733         struct fcg_cgrp_ctx *cgc;
734         struct cgroup *cgrp;
735         u64 now = bpf_ktime_get_ns();
736         bool picked_next = false;
737 
738         cpuc = find_cpu_ctx();
739         if (!cpuc)
740                 return;
741 
742         if (!cpuc->cur_cgid)
743                 goto pick_next_cgroup;
744 
745         if (vtime_before(now, cpuc->cur_at + cgrp_slice_ns)) {
746                 if (scx_bpf_consume(cpuc->cur_cgid)) {
747                         stat_inc(FCG_STAT_CNS_KEEP);
748                         return;
749                 }
750                 stat_inc(FCG_STAT_CNS_EMPTY);
751         } else {
752                 stat_inc(FCG_STAT_CNS_EXPIRE);
753         }
754 
755         /*
756          * The current cgroup is expiring. It was already charged a full slice.
757          * Calculate the actual usage and accumulate the delta.
758          */
759         cgrp = bpf_cgroup_from_id(cpuc->cur_cgid);
760         if (!cgrp) {
761                 stat_inc(FCG_STAT_CNS_GONE);
762                 goto pick_next_cgroup;
763         }
764 
765         cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0, 0);
766         if (cgc) {
767                 /*
768                  * We want to update the vtime delta and then look for the next
769                  * cgroup to execute but the latter needs to be done in a loop
770                  * and we can't keep the lock held. Oh well...
771                  */
772                 bpf_spin_lock(&cgv_tree_lock);
773                 __sync_fetch_and_add(&cgc->cvtime_delta,
774                                      (cpuc->cur_at + cgrp_slice_ns - now) *
775                                      FCG_HWEIGHT_ONE / (cgc->hweight ?: 1));
776                 bpf_spin_unlock(&cgv_tree_lock);
777         } else {
778                 stat_inc(FCG_STAT_CNS_GONE);
779         }
780 
781         bpf_cgroup_release(cgrp);
782 
783 pick_next_cgroup:
784         cpuc->cur_at = now;
785 
786         if (scx_bpf_consume(FALLBACK_DSQ)) {
787                 cpuc->cur_cgid = 0;
788                 return;
789         }
790 
791         bpf_repeat(CGROUP_MAX_RETRIES) {
792                 if (try_pick_next_cgroup(&cpuc->cur_cgid)) {
793                         picked_next = true;
794                         break;
795                 }
796         }
797 
798         /*
799          * This only happens if try_pick_next_cgroup() races against enqueue
800          * path for more than CGROUP_MAX_RETRIES times, which is extremely
801          * unlikely and likely indicates an underlying bug. There shouldn't be
802          * any stall risk as the race is against enqueue.
803          */
804         if (!picked_next)
805                 stat_inc(FCG_STAT_PNC_FAIL);
806 }
807 
808 s32 BPF_STRUCT_OPS(fcg_init_task, struct task_struct *p,
809                    struct scx_init_task_args *args)
810 {
811         struct fcg_task_ctx *taskc;
812         struct fcg_cgrp_ctx *cgc;
813 
814         /*
815          * @p is new. Let's ensure that its task_ctx is available. We can sleep
816          * in this function and the following will automatically use GFP_KERNEL.
817          */
818         taskc = bpf_task_storage_get(&task_ctx, p, 0,
819                                      BPF_LOCAL_STORAGE_GET_F_CREATE);
820         if (!taskc)
821                 return -ENOMEM;
822 
823         taskc->bypassed_at = 0;
824 
825         if (!(cgc = find_cgrp_ctx(args->cgroup)))
826                 return -ENOENT;
827 
828         p->scx.dsq_vtime = cgc->tvtime_now;
829 
830         return 0;
831 }
832 
833 int BPF_STRUCT_OPS_SLEEPABLE(fcg_cgroup_init, struct cgroup *cgrp,
834                              struct scx_cgroup_init_args *args)
835 {
836         struct fcg_cgrp_ctx *cgc;
837         struct cgv_node *cgv_node;
838         struct cgv_node_stash empty_stash = {}, *stash;
839         u64 cgid = cgrp->kn->id;
840         int ret;
841 
842         /*
843          * Technically incorrect as cgroup ID is full 64bit while dsq ID is
844          * 63bit. Should not be a problem in practice and easy to spot in the
845          * unlikely case that it breaks.
846          */
847         ret = scx_bpf_create_dsq(cgid, -1);
848         if (ret)
849                 return ret;
850 
851         cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0,
852                                    BPF_LOCAL_STORAGE_GET_F_CREATE);
853         if (!cgc) {
854                 ret = -ENOMEM;
855                 goto err_destroy_dsq;
856         }
857 
858         cgc->weight = args->weight;
859         cgc->hweight = FCG_HWEIGHT_ONE;
860 
861         ret = bpf_map_update_elem(&cgv_node_stash, &cgid, &empty_stash,
862                                   BPF_NOEXIST);
863         if (ret) {
864                 if (ret != -ENOMEM)
865                         scx_bpf_error("unexpected stash creation error (%d)",
866                                       ret);
867                 goto err_destroy_dsq;
868         }
869 
870         stash = bpf_map_lookup_elem(&cgv_node_stash, &cgid);
871         if (!stash) {
872                 scx_bpf_error("unexpected cgv_node stash lookup failure");
873                 ret = -ENOENT;
874                 goto err_destroy_dsq;
875         }
876 
877         cgv_node = bpf_obj_new(struct cgv_node);
878         if (!cgv_node) {
879                 ret = -ENOMEM;
880                 goto err_del_cgv_node;
881         }
882 
883         cgv_node->cgid = cgid;
884         cgv_node->cvtime = cvtime_now;
885 
886         cgv_node = bpf_kptr_xchg(&stash->node, cgv_node);
887         if (cgv_node) {
888                 scx_bpf_error("unexpected !NULL cgv_node stash");
889                 ret = -EBUSY;
890                 goto err_drop;
891         }
892 
893         return 0;
894 
895 err_drop:
896         bpf_obj_drop(cgv_node);
897 err_del_cgv_node:
898         bpf_map_delete_elem(&cgv_node_stash, &cgid);
899 err_destroy_dsq:
900         scx_bpf_destroy_dsq(cgid);
901         return ret;
902 }
903 
904 void BPF_STRUCT_OPS(fcg_cgroup_exit, struct cgroup *cgrp)
905 {
906         u64 cgid = cgrp->kn->id;
907 
908         /*
909          * For now, there's no way find and remove the cgv_node if it's on the
910          * cgv_tree. Let's drain them in the dispatch path as they get popped
911          * off the front of the tree.
912          */
913         bpf_map_delete_elem(&cgv_node_stash, &cgid);
914         scx_bpf_destroy_dsq(cgid);
915 }
916 
917 void BPF_STRUCT_OPS(fcg_cgroup_move, struct task_struct *p,
918                     struct cgroup *from, struct cgroup *to)
919 {
920         struct fcg_cgrp_ctx *from_cgc, *to_cgc;
921         s64 vtime_delta;
922 
923         /* find_cgrp_ctx() triggers scx_ops_error() on lookup failures */
924         if (!(from_cgc = find_cgrp_ctx(from)) || !(to_cgc = find_cgrp_ctx(to)))
925                 return;
926 
927         vtime_delta = p->scx.dsq_vtime - from_cgc->tvtime_now;
928         p->scx.dsq_vtime = to_cgc->tvtime_now + vtime_delta;
929 }
930 
931 s32 BPF_STRUCT_OPS_SLEEPABLE(fcg_init)
932 {
933         return scx_bpf_create_dsq(FALLBACK_DSQ, -1);
934 }
935 
936 void BPF_STRUCT_OPS(fcg_exit, struct scx_exit_info *ei)
937 {
938         UEI_RECORD(uei, ei);
939 }
940 
941 SCX_OPS_DEFINE(flatcg_ops,
942                .select_cpu              = (void *)fcg_select_cpu,
943                .enqueue                 = (void *)fcg_enqueue,
944                .dispatch                = (void *)fcg_dispatch,
945                .runnable                = (void *)fcg_runnable,
946                .running                 = (void *)fcg_running,
947                .stopping                = (void *)fcg_stopping,
948                .quiescent               = (void *)fcg_quiescent,
949                .init_task               = (void *)fcg_init_task,
950                .cgroup_set_weight       = (void *)fcg_cgroup_set_weight,
951                .cgroup_init             = (void *)fcg_cgroup_init,
952                .cgroup_exit             = (void *)fcg_cgroup_exit,
953                .cgroup_move             = (void *)fcg_cgroup_move,
954                .init                    = (void *)fcg_init,
955                .exit                    = (void *)fcg_exit,
956                .flags                   = SCX_OPS_HAS_CGROUP_WEIGHT | SCX_OPS_ENQ_EXITING,
957                .name                    = "flatcg");
958 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php