1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * A demo sched_ext flattened cgroup hierarchy scheduler. It implements 4 * hierarchical weight-based cgroup CPU control by flattening the cgroup 5 * hierarchy into a single layer by compounding the active weight share at each 6 * level. Consider the following hierarchy with weights in parentheses: 7 * 8 * R + A (100) + B (100) 9 * | \ C (100) 10 * \ D (200) 11 * 12 * Ignoring the root and threaded cgroups, only B, C and D can contain tasks. 13 * Let's say all three have runnable tasks. The total share that each of these 14 * three cgroups is entitled to can be calculated by compounding its share at 15 * each level. 16 * 17 * For example, B is competing against C and in that competition its share is 18 * 100/(100+100) == 1/2. At its parent level, A is competing against D and A's 19 * share in that competition is 100/(200+100) == 1/3. B's eventual share in the 20 * system can be calculated by multiplying the two shares, 1/2 * 1/3 == 1/6. C's 21 * eventual shaer is the same at 1/6. D is only competing at the top level and 22 * its share is 200/(100+200) == 2/3. 23 * 24 * So, instead of hierarchically scheduling level-by-level, we can consider it 25 * as B, C and D competing each other with respective share of 1/6, 1/6 and 2/3 26 * and keep updating the eventual shares as the cgroups' runnable states change. 27 * 28 * This flattening of hierarchy can bring a substantial performance gain when 29 * the cgroup hierarchy is nested multiple levels. in a simple benchmark using 30 * wrk[8] on apache serving a CGI script calculating sha1sum of a small file, it 31 * outperforms CFS by ~3% with CPU controller disabled and by ~10% with two 32 * apache instances competing with 2:1 weight ratio nested four level deep. 33 * 34 * However, the gain comes at the cost of not being able to properly handle 35 * thundering herd of cgroups. For example, if many cgroups which are nested 36 * behind a low priority parent cgroup wake up around the same time, they may be 37 * able to consume more CPU cycles than they are entitled to. In many use cases, 38 * this isn't a real concern especially given the performance gain. Also, there 39 * are ways to mitigate the problem further by e.g. introducing an extra 40 * scheduling layer on cgroup delegation boundaries. 41 * 42 * The scheduler first picks the cgroup to run and then schedule the tasks 43 * within by using nested weighted vtime scheduling by default. The 44 * cgroup-internal scheduling can be switched to FIFO with the -f option. 45 */ 46 #include <scx/common.bpf.h> 47 #include "scx_flatcg.h" 48 49 /* 50 * Maximum amount of retries to find a valid cgroup. 51 */ 52 enum { 53 FALLBACK_DSQ = 0, 54 CGROUP_MAX_RETRIES = 1024, 55 }; 56 57 char _license[] SEC("license") = "GPL"; 58 59 const volatile u32 nr_cpus = 32; /* !0 for veristat, set during init */ 60 const volatile u64 cgrp_slice_ns = SCX_SLICE_DFL; 61 const volatile bool fifo_sched; 62 63 u64 cvtime_now; 64 UEI_DEFINE(uei); 65 66 struct { 67 __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY); 68 __type(key, u32); 69 __type(value, u64); 70 __uint(max_entries, FCG_NR_STATS); 71 } stats SEC(".maps"); 72 73 static void stat_inc(enum fcg_stat_idx idx) 74 { 75 u32 idx_v = idx; 76 77 u64 *cnt_p = bpf_map_lookup_elem(&stats, &idx_v); 78 if (cnt_p) 79 (*cnt_p)++; 80 } 81 82 struct fcg_cpu_ctx { 83 u64 cur_cgid; 84 u64 cur_at; 85 }; 86 87 struct { 88 __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY); 89 __type(key, u32); 90 __type(value, struct fcg_cpu_ctx); 91 __uint(max_entries, 1); 92 } cpu_ctx SEC(".maps"); 93 94 struct { 95 __uint(type, BPF_MAP_TYPE_CGRP_STORAGE); 96 __uint(map_flags, BPF_F_NO_PREALLOC); 97 __type(key, int); 98 __type(value, struct fcg_cgrp_ctx); 99 } cgrp_ctx SEC(".maps"); 100 101 struct cgv_node { 102 struct bpf_rb_node rb_node; 103 __u64 cvtime; 104 __u64 cgid; 105 }; 106 107 private(CGV_TREE) struct bpf_spin_lock cgv_tree_lock; 108 private(CGV_TREE) struct bpf_rb_root cgv_tree __contains(cgv_node, rb_node); 109 110 struct cgv_node_stash { 111 struct cgv_node __kptr *node; 112 }; 113 114 struct { 115 __uint(type, BPF_MAP_TYPE_HASH); 116 __uint(max_entries, 16384); 117 __type(key, __u64); 118 __type(value, struct cgv_node_stash); 119 } cgv_node_stash SEC(".maps"); 120 121 struct fcg_task_ctx { 122 u64 bypassed_at; 123 }; 124 125 struct { 126 __uint(type, BPF_MAP_TYPE_TASK_STORAGE); 127 __uint(map_flags, BPF_F_NO_PREALLOC); 128 __type(key, int); 129 __type(value, struct fcg_task_ctx); 130 } task_ctx SEC(".maps"); 131 132 /* gets inc'd on weight tree changes to expire the cached hweights */ 133 u64 hweight_gen = 1; 134 135 static u64 div_round_up(u64 dividend, u64 divisor) 136 { 137 return (dividend + divisor - 1) / divisor; 138 } 139 140 static bool vtime_before(u64 a, u64 b) 141 { 142 return (s64)(a - b) < 0; 143 } 144 145 static bool cgv_node_less(struct bpf_rb_node *a, const struct bpf_rb_node *b) 146 { 147 struct cgv_node *cgc_a, *cgc_b; 148 149 cgc_a = container_of(a, struct cgv_node, rb_node); 150 cgc_b = container_of(b, struct cgv_node, rb_node); 151 152 return cgc_a->cvtime < cgc_b->cvtime; 153 } 154 155 static struct fcg_cpu_ctx *find_cpu_ctx(void) 156 { 157 struct fcg_cpu_ctx *cpuc; 158 u32 idx = 0; 159 160 cpuc = bpf_map_lookup_elem(&cpu_ctx, &idx); 161 if (!cpuc) { 162 scx_bpf_error("cpu_ctx lookup failed"); 163 return NULL; 164 } 165 return cpuc; 166 } 167 168 static struct fcg_cgrp_ctx *find_cgrp_ctx(struct cgroup *cgrp) 169 { 170 struct fcg_cgrp_ctx *cgc; 171 172 cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0, 0); 173 if (!cgc) { 174 scx_bpf_error("cgrp_ctx lookup failed for cgid %llu", cgrp->kn->id); 175 return NULL; 176 } 177 return cgc; 178 } 179 180 static struct fcg_cgrp_ctx *find_ancestor_cgrp_ctx(struct cgroup *cgrp, int level) 181 { 182 struct fcg_cgrp_ctx *cgc; 183 184 cgrp = bpf_cgroup_ancestor(cgrp, level); 185 if (!cgrp) { 186 scx_bpf_error("ancestor cgroup lookup failed"); 187 return NULL; 188 } 189 190 cgc = find_cgrp_ctx(cgrp); 191 if (!cgc) 192 scx_bpf_error("ancestor cgrp_ctx lookup failed"); 193 bpf_cgroup_release(cgrp); 194 return cgc; 195 } 196 197 static void cgrp_refresh_hweight(struct cgroup *cgrp, struct fcg_cgrp_ctx *cgc) 198 { 199 int level; 200 201 if (!cgc->nr_active) { 202 stat_inc(FCG_STAT_HWT_SKIP); 203 return; 204 } 205 206 if (cgc->hweight_gen == hweight_gen) { 207 stat_inc(FCG_STAT_HWT_CACHE); 208 return; 209 } 210 211 stat_inc(FCG_STAT_HWT_UPDATES); 212 bpf_for(level, 0, cgrp->level + 1) { 213 struct fcg_cgrp_ctx *cgc; 214 bool is_active; 215 216 cgc = find_ancestor_cgrp_ctx(cgrp, level); 217 if (!cgc) 218 break; 219 220 if (!level) { 221 cgc->hweight = FCG_HWEIGHT_ONE; 222 cgc->hweight_gen = hweight_gen; 223 } else { 224 struct fcg_cgrp_ctx *pcgc; 225 226 pcgc = find_ancestor_cgrp_ctx(cgrp, level - 1); 227 if (!pcgc) 228 break; 229 230 /* 231 * We can be opportunistic here and not grab the 232 * cgv_tree_lock and deal with the occasional races. 233 * However, hweight updates are already cached and 234 * relatively low-frequency. Let's just do the 235 * straightforward thing. 236 */ 237 bpf_spin_lock(&cgv_tree_lock); 238 is_active = cgc->nr_active; 239 if (is_active) { 240 cgc->hweight_gen = pcgc->hweight_gen; 241 cgc->hweight = 242 div_round_up(pcgc->hweight * cgc->weight, 243 pcgc->child_weight_sum); 244 } 245 bpf_spin_unlock(&cgv_tree_lock); 246 247 if (!is_active) { 248 stat_inc(FCG_STAT_HWT_RACE); 249 break; 250 } 251 } 252 } 253 } 254 255 static void cgrp_cap_budget(struct cgv_node *cgv_node, struct fcg_cgrp_ctx *cgc) 256 { 257 u64 delta, cvtime, max_budget; 258 259 /* 260 * A node which is on the rbtree can't be pointed to from elsewhere yet 261 * and thus can't be updated and repositioned. Instead, we collect the 262 * vtime deltas separately and apply it asynchronously here. 263 */ 264 delta = __sync_fetch_and_sub(&cgc->cvtime_delta, cgc->cvtime_delta); 265 cvtime = cgv_node->cvtime + delta; 266 267 /* 268 * Allow a cgroup to carry the maximum budget proportional to its 269 * hweight such that a full-hweight cgroup can immediately take up half 270 * of the CPUs at the most while staying at the front of the rbtree. 271 */ 272 max_budget = (cgrp_slice_ns * nr_cpus * cgc->hweight) / 273 (2 * FCG_HWEIGHT_ONE); 274 if (vtime_before(cvtime, cvtime_now - max_budget)) 275 cvtime = cvtime_now - max_budget; 276 277 cgv_node->cvtime = cvtime; 278 } 279 280 static void cgrp_enqueued(struct cgroup *cgrp, struct fcg_cgrp_ctx *cgc) 281 { 282 struct cgv_node_stash *stash; 283 struct cgv_node *cgv_node; 284 u64 cgid = cgrp->kn->id; 285 286 /* paired with cmpxchg in try_pick_next_cgroup() */ 287 if (__sync_val_compare_and_swap(&cgc->queued, 0, 1)) { 288 stat_inc(FCG_STAT_ENQ_SKIP); 289 return; 290 } 291 292 stash = bpf_map_lookup_elem(&cgv_node_stash, &cgid); 293 if (!stash) { 294 scx_bpf_error("cgv_node lookup failed for cgid %llu", cgid); 295 return; 296 } 297 298 /* NULL if the node is already on the rbtree */ 299 cgv_node = bpf_kptr_xchg(&stash->node, NULL); 300 if (!cgv_node) { 301 stat_inc(FCG_STAT_ENQ_RACE); 302 return; 303 } 304 305 bpf_spin_lock(&cgv_tree_lock); 306 cgrp_cap_budget(cgv_node, cgc); 307 bpf_rbtree_add(&cgv_tree, &cgv_node->rb_node, cgv_node_less); 308 bpf_spin_unlock(&cgv_tree_lock); 309 } 310 311 static void set_bypassed_at(struct task_struct *p, struct fcg_task_ctx *taskc) 312 { 313 /* 314 * Tell fcg_stopping() that this bypassed the regular scheduling path 315 * and should be force charged to the cgroup. 0 is used to indicate that 316 * the task isn't bypassing, so if the current runtime is 0, go back by 317 * one nanosecond. 318 */ 319 taskc->bypassed_at = p->se.sum_exec_runtime ?: (u64)-1; 320 } 321 322 s32 BPF_STRUCT_OPS(fcg_select_cpu, struct task_struct *p, s32 prev_cpu, u64 wake_flags) 323 { 324 struct fcg_task_ctx *taskc; 325 bool is_idle = false; 326 s32 cpu; 327 328 cpu = scx_bpf_select_cpu_dfl(p, prev_cpu, wake_flags, &is_idle); 329 330 taskc = bpf_task_storage_get(&task_ctx, p, 0, 0); 331 if (!taskc) { 332 scx_bpf_error("task_ctx lookup failed"); 333 return cpu; 334 } 335 336 /* 337 * If select_cpu_dfl() is recommending local enqueue, the target CPU is 338 * idle. Follow it and charge the cgroup later in fcg_stopping() after 339 * the fact. 340 */ 341 if (is_idle) { 342 set_bypassed_at(p, taskc); 343 stat_inc(FCG_STAT_LOCAL); 344 scx_bpf_dispatch(p, SCX_DSQ_LOCAL, SCX_SLICE_DFL, 0); 345 } 346 347 return cpu; 348 } 349 350 void BPF_STRUCT_OPS(fcg_enqueue, struct task_struct *p, u64 enq_flags) 351 { 352 struct fcg_task_ctx *taskc; 353 struct cgroup *cgrp; 354 struct fcg_cgrp_ctx *cgc; 355 356 taskc = bpf_task_storage_get(&task_ctx, p, 0, 0); 357 if (!taskc) { 358 scx_bpf_error("task_ctx lookup failed"); 359 return; 360 } 361 362 /* 363 * Use the direct dispatching and force charging to deal with tasks with 364 * custom affinities so that we don't have to worry about per-cgroup 365 * dq's containing tasks that can't be executed from some CPUs. 366 */ 367 if (p->nr_cpus_allowed != nr_cpus) { 368 set_bypassed_at(p, taskc); 369 370 /* 371 * The global dq is deprioritized as we don't want to let tasks 372 * to boost themselves by constraining its cpumask. The 373 * deprioritization is rather severe, so let's not apply that to 374 * per-cpu kernel threads. This is ham-fisted. We probably wanna 375 * implement per-cgroup fallback dq's instead so that we have 376 * more control over when tasks with custom cpumask get issued. 377 */ 378 if (p->nr_cpus_allowed == 1 && (p->flags & PF_KTHREAD)) { 379 stat_inc(FCG_STAT_LOCAL); 380 scx_bpf_dispatch(p, SCX_DSQ_LOCAL, SCX_SLICE_DFL, enq_flags); 381 } else { 382 stat_inc(FCG_STAT_GLOBAL); 383 scx_bpf_dispatch(p, FALLBACK_DSQ, SCX_SLICE_DFL, enq_flags); 384 } 385 return; 386 } 387 388 cgrp = __COMPAT_scx_bpf_task_cgroup(p); 389 cgc = find_cgrp_ctx(cgrp); 390 if (!cgc) 391 goto out_release; 392 393 if (fifo_sched) { 394 scx_bpf_dispatch(p, cgrp->kn->id, SCX_SLICE_DFL, enq_flags); 395 } else { 396 u64 tvtime = p->scx.dsq_vtime; 397 398 /* 399 * Limit the amount of budget that an idling task can accumulate 400 * to one slice. 401 */ 402 if (vtime_before(tvtime, cgc->tvtime_now - SCX_SLICE_DFL)) 403 tvtime = cgc->tvtime_now - SCX_SLICE_DFL; 404 405 scx_bpf_dispatch_vtime(p, cgrp->kn->id, SCX_SLICE_DFL, 406 tvtime, enq_flags); 407 } 408 409 cgrp_enqueued(cgrp, cgc); 410 out_release: 411 bpf_cgroup_release(cgrp); 412 } 413 414 /* 415 * Walk the cgroup tree to update the active weight sums as tasks wake up and 416 * sleep. The weight sums are used as the base when calculating the proportion a 417 * given cgroup or task is entitled to at each level. 418 */ 419 static void update_active_weight_sums(struct cgroup *cgrp, bool runnable) 420 { 421 struct fcg_cgrp_ctx *cgc; 422 bool updated = false; 423 int idx; 424 425 cgc = find_cgrp_ctx(cgrp); 426 if (!cgc) 427 return; 428 429 /* 430 * In most cases, a hot cgroup would have multiple threads going to 431 * sleep and waking up while the whole cgroup stays active. In leaf 432 * cgroups, ->nr_runnable which is updated with __sync operations gates 433 * ->nr_active updates, so that we don't have to grab the cgv_tree_lock 434 * repeatedly for a busy cgroup which is staying active. 435 */ 436 if (runnable) { 437 if (__sync_fetch_and_add(&cgc->nr_runnable, 1)) 438 return; 439 stat_inc(FCG_STAT_ACT); 440 } else { 441 if (__sync_sub_and_fetch(&cgc->nr_runnable, 1)) 442 return; 443 stat_inc(FCG_STAT_DEACT); 444 } 445 446 /* 447 * If @cgrp is becoming runnable, its hweight should be refreshed after 448 * it's added to the weight tree so that enqueue has the up-to-date 449 * value. If @cgrp is becoming quiescent, the hweight should be 450 * refreshed before it's removed from the weight tree so that the usage 451 * charging which happens afterwards has access to the latest value. 452 */ 453 if (!runnable) 454 cgrp_refresh_hweight(cgrp, cgc); 455 456 /* propagate upwards */ 457 bpf_for(idx, 0, cgrp->level) { 458 int level = cgrp->level - idx; 459 struct fcg_cgrp_ctx *cgc, *pcgc = NULL; 460 bool propagate = false; 461 462 cgc = find_ancestor_cgrp_ctx(cgrp, level); 463 if (!cgc) 464 break; 465 if (level) { 466 pcgc = find_ancestor_cgrp_ctx(cgrp, level - 1); 467 if (!pcgc) 468 break; 469 } 470 471 /* 472 * We need the propagation protected by a lock to synchronize 473 * against weight changes. There's no reason to drop the lock at 474 * each level but bpf_spin_lock() doesn't want any function 475 * calls while locked. 476 */ 477 bpf_spin_lock(&cgv_tree_lock); 478 479 if (runnable) { 480 if (!cgc->nr_active++) { 481 updated = true; 482 if (pcgc) { 483 propagate = true; 484 pcgc->child_weight_sum += cgc->weight; 485 } 486 } 487 } else { 488 if (!--cgc->nr_active) { 489 updated = true; 490 if (pcgc) { 491 propagate = true; 492 pcgc->child_weight_sum -= cgc->weight; 493 } 494 } 495 } 496 497 bpf_spin_unlock(&cgv_tree_lock); 498 499 if (!propagate) 500 break; 501 } 502 503 if (updated) 504 __sync_fetch_and_add(&hweight_gen, 1); 505 506 if (runnable) 507 cgrp_refresh_hweight(cgrp, cgc); 508 } 509 510 void BPF_STRUCT_OPS(fcg_runnable, struct task_struct *p, u64 enq_flags) 511 { 512 struct cgroup *cgrp; 513 514 cgrp = __COMPAT_scx_bpf_task_cgroup(p); 515 update_active_weight_sums(cgrp, true); 516 bpf_cgroup_release(cgrp); 517 } 518 519 void BPF_STRUCT_OPS(fcg_running, struct task_struct *p) 520 { 521 struct cgroup *cgrp; 522 struct fcg_cgrp_ctx *cgc; 523 524 if (fifo_sched) 525 return; 526 527 cgrp = __COMPAT_scx_bpf_task_cgroup(p); 528 cgc = find_cgrp_ctx(cgrp); 529 if (cgc) { 530 /* 531 * @cgc->tvtime_now always progresses forward as tasks start 532 * executing. The test and update can be performed concurrently 533 * from multiple CPUs and thus racy. Any error should be 534 * contained and temporary. Let's just live with it. 535 */ 536 if (vtime_before(cgc->tvtime_now, p->scx.dsq_vtime)) 537 cgc->tvtime_now = p->scx.dsq_vtime; 538 } 539 bpf_cgroup_release(cgrp); 540 } 541 542 void BPF_STRUCT_OPS(fcg_stopping, struct task_struct *p, bool runnable) 543 { 544 struct fcg_task_ctx *taskc; 545 struct cgroup *cgrp; 546 struct fcg_cgrp_ctx *cgc; 547 548 /* 549 * Scale the execution time by the inverse of the weight and charge. 550 * 551 * Note that the default yield implementation yields by setting 552 * @p->scx.slice to zero and the following would treat the yielding task 553 * as if it has consumed all its slice. If this penalizes yielding tasks 554 * too much, determine the execution time by taking explicit timestamps 555 * instead of depending on @p->scx.slice. 556 */ 557 if (!fifo_sched) 558 p->scx.dsq_vtime += 559 (SCX_SLICE_DFL - p->scx.slice) * 100 / p->scx.weight; 560 561 taskc = bpf_task_storage_get(&task_ctx, p, 0, 0); 562 if (!taskc) { 563 scx_bpf_error("task_ctx lookup failed"); 564 return; 565 } 566 567 if (!taskc->bypassed_at) 568 return; 569 570 cgrp = __COMPAT_scx_bpf_task_cgroup(p); 571 cgc = find_cgrp_ctx(cgrp); 572 if (cgc) { 573 __sync_fetch_and_add(&cgc->cvtime_delta, 574 p->se.sum_exec_runtime - taskc->bypassed_at); 575 taskc->bypassed_at = 0; 576 } 577 bpf_cgroup_release(cgrp); 578 } 579 580 void BPF_STRUCT_OPS(fcg_quiescent, struct task_struct *p, u64 deq_flags) 581 { 582 struct cgroup *cgrp; 583 584 cgrp = __COMPAT_scx_bpf_task_cgroup(p); 585 update_active_weight_sums(cgrp, false); 586 bpf_cgroup_release(cgrp); 587 } 588 589 void BPF_STRUCT_OPS(fcg_cgroup_set_weight, struct cgroup *cgrp, u32 weight) 590 { 591 struct fcg_cgrp_ctx *cgc, *pcgc = NULL; 592 593 cgc = find_cgrp_ctx(cgrp); 594 if (!cgc) 595 return; 596 597 if (cgrp->level) { 598 pcgc = find_ancestor_cgrp_ctx(cgrp, cgrp->level - 1); 599 if (!pcgc) 600 return; 601 } 602 603 bpf_spin_lock(&cgv_tree_lock); 604 if (pcgc && cgc->nr_active) 605 pcgc->child_weight_sum += (s64)weight - cgc->weight; 606 cgc->weight = weight; 607 bpf_spin_unlock(&cgv_tree_lock); 608 } 609 610 static bool try_pick_next_cgroup(u64 *cgidp) 611 { 612 struct bpf_rb_node *rb_node; 613 struct cgv_node_stash *stash; 614 struct cgv_node *cgv_node; 615 struct fcg_cgrp_ctx *cgc; 616 struct cgroup *cgrp; 617 u64 cgid; 618 619 /* pop the front cgroup and wind cvtime_now accordingly */ 620 bpf_spin_lock(&cgv_tree_lock); 621 622 rb_node = bpf_rbtree_first(&cgv_tree); 623 if (!rb_node) { 624 bpf_spin_unlock(&cgv_tree_lock); 625 stat_inc(FCG_STAT_PNC_NO_CGRP); 626 *cgidp = 0; 627 return true; 628 } 629 630 rb_node = bpf_rbtree_remove(&cgv_tree, rb_node); 631 bpf_spin_unlock(&cgv_tree_lock); 632 633 if (!rb_node) { 634 /* 635 * This should never happen. bpf_rbtree_first() was called 636 * above while the tree lock was held, so the node should 637 * always be present. 638 */ 639 scx_bpf_error("node could not be removed"); 640 return true; 641 } 642 643 cgv_node = container_of(rb_node, struct cgv_node, rb_node); 644 cgid = cgv_node->cgid; 645 646 if (vtime_before(cvtime_now, cgv_node->cvtime)) 647 cvtime_now = cgv_node->cvtime; 648 649 /* 650 * If lookup fails, the cgroup's gone. Free and move on. See 651 * fcg_cgroup_exit(). 652 */ 653 cgrp = bpf_cgroup_from_id(cgid); 654 if (!cgrp) { 655 stat_inc(FCG_STAT_PNC_GONE); 656 goto out_free; 657 } 658 659 cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0, 0); 660 if (!cgc) { 661 bpf_cgroup_release(cgrp); 662 stat_inc(FCG_STAT_PNC_GONE); 663 goto out_free; 664 } 665 666 if (!scx_bpf_consume(cgid)) { 667 bpf_cgroup_release(cgrp); 668 stat_inc(FCG_STAT_PNC_EMPTY); 669 goto out_stash; 670 } 671 672 /* 673 * Successfully consumed from the cgroup. This will be our current 674 * cgroup for the new slice. Refresh its hweight. 675 */ 676 cgrp_refresh_hweight(cgrp, cgc); 677 678 bpf_cgroup_release(cgrp); 679 680 /* 681 * As the cgroup may have more tasks, add it back to the rbtree. Note 682 * that here we charge the full slice upfront and then exact later 683 * according to the actual consumption. This prevents lowpri thundering 684 * herd from saturating the machine. 685 */ 686 bpf_spin_lock(&cgv_tree_lock); 687 cgv_node->cvtime += cgrp_slice_ns * FCG_HWEIGHT_ONE / (cgc->hweight ?: 1); 688 cgrp_cap_budget(cgv_node, cgc); 689 bpf_rbtree_add(&cgv_tree, &cgv_node->rb_node, cgv_node_less); 690 bpf_spin_unlock(&cgv_tree_lock); 691 692 *cgidp = cgid; 693 stat_inc(FCG_STAT_PNC_NEXT); 694 return true; 695 696 out_stash: 697 stash = bpf_map_lookup_elem(&cgv_node_stash, &cgid); 698 if (!stash) { 699 stat_inc(FCG_STAT_PNC_GONE); 700 goto out_free; 701 } 702 703 /* 704 * Paired with cmpxchg in cgrp_enqueued(). If they see the following 705 * transition, they'll enqueue the cgroup. If they are earlier, we'll 706 * see their task in the dq below and requeue the cgroup. 707 */ 708 __sync_val_compare_and_swap(&cgc->queued, 1, 0); 709 710 if (scx_bpf_dsq_nr_queued(cgid)) { 711 bpf_spin_lock(&cgv_tree_lock); 712 bpf_rbtree_add(&cgv_tree, &cgv_node->rb_node, cgv_node_less); 713 bpf_spin_unlock(&cgv_tree_lock); 714 stat_inc(FCG_STAT_PNC_RACE); 715 } else { 716 cgv_node = bpf_kptr_xchg(&stash->node, cgv_node); 717 if (cgv_node) { 718 scx_bpf_error("unexpected !NULL cgv_node stash"); 719 goto out_free; 720 } 721 } 722 723 return false; 724 725 out_free: 726 bpf_obj_drop(cgv_node); 727 return false; 728 } 729 730 void BPF_STRUCT_OPS(fcg_dispatch, s32 cpu, struct task_struct *prev) 731 { 732 struct fcg_cpu_ctx *cpuc; 733 struct fcg_cgrp_ctx *cgc; 734 struct cgroup *cgrp; 735 u64 now = bpf_ktime_get_ns(); 736 bool picked_next = false; 737 738 cpuc = find_cpu_ctx(); 739 if (!cpuc) 740 return; 741 742 if (!cpuc->cur_cgid) 743 goto pick_next_cgroup; 744 745 if (vtime_before(now, cpuc->cur_at + cgrp_slice_ns)) { 746 if (scx_bpf_consume(cpuc->cur_cgid)) { 747 stat_inc(FCG_STAT_CNS_KEEP); 748 return; 749 } 750 stat_inc(FCG_STAT_CNS_EMPTY); 751 } else { 752 stat_inc(FCG_STAT_CNS_EXPIRE); 753 } 754 755 /* 756 * The current cgroup is expiring. It was already charged a full slice. 757 * Calculate the actual usage and accumulate the delta. 758 */ 759 cgrp = bpf_cgroup_from_id(cpuc->cur_cgid); 760 if (!cgrp) { 761 stat_inc(FCG_STAT_CNS_GONE); 762 goto pick_next_cgroup; 763 } 764 765 cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0, 0); 766 if (cgc) { 767 /* 768 * We want to update the vtime delta and then look for the next 769 * cgroup to execute but the latter needs to be done in a loop 770 * and we can't keep the lock held. Oh well... 771 */ 772 bpf_spin_lock(&cgv_tree_lock); 773 __sync_fetch_and_add(&cgc->cvtime_delta, 774 (cpuc->cur_at + cgrp_slice_ns - now) * 775 FCG_HWEIGHT_ONE / (cgc->hweight ?: 1)); 776 bpf_spin_unlock(&cgv_tree_lock); 777 } else { 778 stat_inc(FCG_STAT_CNS_GONE); 779 } 780 781 bpf_cgroup_release(cgrp); 782 783 pick_next_cgroup: 784 cpuc->cur_at = now; 785 786 if (scx_bpf_consume(FALLBACK_DSQ)) { 787 cpuc->cur_cgid = 0; 788 return; 789 } 790 791 bpf_repeat(CGROUP_MAX_RETRIES) { 792 if (try_pick_next_cgroup(&cpuc->cur_cgid)) { 793 picked_next = true; 794 break; 795 } 796 } 797 798 /* 799 * This only happens if try_pick_next_cgroup() races against enqueue 800 * path for more than CGROUP_MAX_RETRIES times, which is extremely 801 * unlikely and likely indicates an underlying bug. There shouldn't be 802 * any stall risk as the race is against enqueue. 803 */ 804 if (!picked_next) 805 stat_inc(FCG_STAT_PNC_FAIL); 806 } 807 808 s32 BPF_STRUCT_OPS(fcg_init_task, struct task_struct *p, 809 struct scx_init_task_args *args) 810 { 811 struct fcg_task_ctx *taskc; 812 struct fcg_cgrp_ctx *cgc; 813 814 /* 815 * @p is new. Let's ensure that its task_ctx is available. We can sleep 816 * in this function and the following will automatically use GFP_KERNEL. 817 */ 818 taskc = bpf_task_storage_get(&task_ctx, p, 0, 819 BPF_LOCAL_STORAGE_GET_F_CREATE); 820 if (!taskc) 821 return -ENOMEM; 822 823 taskc->bypassed_at = 0; 824 825 if (!(cgc = find_cgrp_ctx(args->cgroup))) 826 return -ENOENT; 827 828 p->scx.dsq_vtime = cgc->tvtime_now; 829 830 return 0; 831 } 832 833 int BPF_STRUCT_OPS_SLEEPABLE(fcg_cgroup_init, struct cgroup *cgrp, 834 struct scx_cgroup_init_args *args) 835 { 836 struct fcg_cgrp_ctx *cgc; 837 struct cgv_node *cgv_node; 838 struct cgv_node_stash empty_stash = {}, *stash; 839 u64 cgid = cgrp->kn->id; 840 int ret; 841 842 /* 843 * Technically incorrect as cgroup ID is full 64bit while dsq ID is 844 * 63bit. Should not be a problem in practice and easy to spot in the 845 * unlikely case that it breaks. 846 */ 847 ret = scx_bpf_create_dsq(cgid, -1); 848 if (ret) 849 return ret; 850 851 cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0, 852 BPF_LOCAL_STORAGE_GET_F_CREATE); 853 if (!cgc) { 854 ret = -ENOMEM; 855 goto err_destroy_dsq; 856 } 857 858 cgc->weight = args->weight; 859 cgc->hweight = FCG_HWEIGHT_ONE; 860 861 ret = bpf_map_update_elem(&cgv_node_stash, &cgid, &empty_stash, 862 BPF_NOEXIST); 863 if (ret) { 864 if (ret != -ENOMEM) 865 scx_bpf_error("unexpected stash creation error (%d)", 866 ret); 867 goto err_destroy_dsq; 868 } 869 870 stash = bpf_map_lookup_elem(&cgv_node_stash, &cgid); 871 if (!stash) { 872 scx_bpf_error("unexpected cgv_node stash lookup failure"); 873 ret = -ENOENT; 874 goto err_destroy_dsq; 875 } 876 877 cgv_node = bpf_obj_new(struct cgv_node); 878 if (!cgv_node) { 879 ret = -ENOMEM; 880 goto err_del_cgv_node; 881 } 882 883 cgv_node->cgid = cgid; 884 cgv_node->cvtime = cvtime_now; 885 886 cgv_node = bpf_kptr_xchg(&stash->node, cgv_node); 887 if (cgv_node) { 888 scx_bpf_error("unexpected !NULL cgv_node stash"); 889 ret = -EBUSY; 890 goto err_drop; 891 } 892 893 return 0; 894 895 err_drop: 896 bpf_obj_drop(cgv_node); 897 err_del_cgv_node: 898 bpf_map_delete_elem(&cgv_node_stash, &cgid); 899 err_destroy_dsq: 900 scx_bpf_destroy_dsq(cgid); 901 return ret; 902 } 903 904 void BPF_STRUCT_OPS(fcg_cgroup_exit, struct cgroup *cgrp) 905 { 906 u64 cgid = cgrp->kn->id; 907 908 /* 909 * For now, there's no way find and remove the cgv_node if it's on the 910 * cgv_tree. Let's drain them in the dispatch path as they get popped 911 * off the front of the tree. 912 */ 913 bpf_map_delete_elem(&cgv_node_stash, &cgid); 914 scx_bpf_destroy_dsq(cgid); 915 } 916 917 void BPF_STRUCT_OPS(fcg_cgroup_move, struct task_struct *p, 918 struct cgroup *from, struct cgroup *to) 919 { 920 struct fcg_cgrp_ctx *from_cgc, *to_cgc; 921 s64 vtime_delta; 922 923 /* find_cgrp_ctx() triggers scx_ops_error() on lookup failures */ 924 if (!(from_cgc = find_cgrp_ctx(from)) || !(to_cgc = find_cgrp_ctx(to))) 925 return; 926 927 vtime_delta = p->scx.dsq_vtime - from_cgc->tvtime_now; 928 p->scx.dsq_vtime = to_cgc->tvtime_now + vtime_delta; 929 } 930 931 s32 BPF_STRUCT_OPS_SLEEPABLE(fcg_init) 932 { 933 return scx_bpf_create_dsq(FALLBACK_DSQ, -1); 934 } 935 936 void BPF_STRUCT_OPS(fcg_exit, struct scx_exit_info *ei) 937 { 938 UEI_RECORD(uei, ei); 939 } 940 941 SCX_OPS_DEFINE(flatcg_ops, 942 .select_cpu = (void *)fcg_select_cpu, 943 .enqueue = (void *)fcg_enqueue, 944 .dispatch = (void *)fcg_dispatch, 945 .runnable = (void *)fcg_runnable, 946 .running = (void *)fcg_running, 947 .stopping = (void *)fcg_stopping, 948 .quiescent = (void *)fcg_quiescent, 949 .init_task = (void *)fcg_init_task, 950 .cgroup_set_weight = (void *)fcg_cgroup_set_weight, 951 .cgroup_init = (void *)fcg_cgroup_init, 952 .cgroup_exit = (void *)fcg_cgroup_exit, 953 .cgroup_move = (void *)fcg_cgroup_move, 954 .init = (void *)fcg_init, 955 .exit = (void *)fcg_exit, 956 .flags = SCX_OPS_HAS_CGROUP_WEIGHT | SCX_OPS_ENQ_EXITING, 957 .name = "flatcg"); 958
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.