~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/testing/selftests/bpf/test_lpm_map.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Randomized tests for eBPF longest-prefix-match maps
  4  *
  5  * This program runs randomized tests against the lpm-bpf-map. It implements a
  6  * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked
  7  * lists. The implementation should be pretty straightforward.
  8  *
  9  * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies
 10  * the trie-based bpf-map implementation behaves the same way as tlpm.
 11  */
 12 
 13 #include <assert.h>
 14 #include <errno.h>
 15 #include <inttypes.h>
 16 #include <linux/bpf.h>
 17 #include <pthread.h>
 18 #include <stdio.h>
 19 #include <stdlib.h>
 20 #include <string.h>
 21 #include <time.h>
 22 #include <unistd.h>
 23 #include <arpa/inet.h>
 24 #include <sys/time.h>
 25 
 26 #include <bpf/bpf.h>
 27 
 28 #include "bpf_util.h"
 29 
 30 struct tlpm_node {
 31         struct tlpm_node *next;
 32         size_t n_bits;
 33         uint8_t key[];
 34 };
 35 
 36 static struct tlpm_node *tlpm_match(struct tlpm_node *list,
 37                                     const uint8_t *key,
 38                                     size_t n_bits);
 39 
 40 static struct tlpm_node *tlpm_add(struct tlpm_node *list,
 41                                   const uint8_t *key,
 42                                   size_t n_bits)
 43 {
 44         struct tlpm_node *node;
 45         size_t n;
 46 
 47         n = (n_bits + 7) / 8;
 48 
 49         /* 'overwrite' an equivalent entry if one already exists */
 50         node = tlpm_match(list, key, n_bits);
 51         if (node && node->n_bits == n_bits) {
 52                 memcpy(node->key, key, n);
 53                 return list;
 54         }
 55 
 56         /* add new entry with @key/@n_bits to @list and return new head */
 57 
 58         node = malloc(sizeof(*node) + n);
 59         assert(node);
 60 
 61         node->next = list;
 62         node->n_bits = n_bits;
 63         memcpy(node->key, key, n);
 64 
 65         return node;
 66 }
 67 
 68 static void tlpm_clear(struct tlpm_node *list)
 69 {
 70         struct tlpm_node *node;
 71 
 72         /* free all entries in @list */
 73 
 74         while ((node = list)) {
 75                 list = list->next;
 76                 free(node);
 77         }
 78 }
 79 
 80 static struct tlpm_node *tlpm_match(struct tlpm_node *list,
 81                                     const uint8_t *key,
 82                                     size_t n_bits)
 83 {
 84         struct tlpm_node *best = NULL;
 85         size_t i;
 86 
 87         /* Perform longest prefix-match on @key/@n_bits. That is, iterate all
 88          * entries and match each prefix against @key. Remember the "best"
 89          * entry we find (i.e., the longest prefix that matches) and return it
 90          * to the caller when done.
 91          */
 92 
 93         for ( ; list; list = list->next) {
 94                 for (i = 0; i < n_bits && i < list->n_bits; ++i) {
 95                         if ((key[i / 8] & (1 << (7 - i % 8))) !=
 96                             (list->key[i / 8] & (1 << (7 - i % 8))))
 97                                 break;
 98                 }
 99 
100                 if (i >= list->n_bits) {
101                         if (!best || i > best->n_bits)
102                                 best = list;
103                 }
104         }
105 
106         return best;
107 }
108 
109 static struct tlpm_node *tlpm_delete(struct tlpm_node *list,
110                                      const uint8_t *key,
111                                      size_t n_bits)
112 {
113         struct tlpm_node *best = tlpm_match(list, key, n_bits);
114         struct tlpm_node *node;
115 
116         if (!best || best->n_bits != n_bits)
117                 return list;
118 
119         if (best == list) {
120                 node = best->next;
121                 free(best);
122                 return node;
123         }
124 
125         for (node = list; node; node = node->next) {
126                 if (node->next == best) {
127                         node->next = best->next;
128                         free(best);
129                         return list;
130                 }
131         }
132         /* should never get here */
133         assert(0);
134         return list;
135 }
136 
137 static void test_lpm_basic(void)
138 {
139         struct tlpm_node *list = NULL, *t1, *t2;
140 
141         /* very basic, static tests to verify tlpm works as expected */
142 
143         assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));
144 
145         t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8);
146         assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
147         assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
148         assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16));
149         assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8));
150         assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8));
151         assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7));
152 
153         t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16);
154         assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
155         assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
156         assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15));
157         assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16));
158 
159         list = tlpm_delete(list, (uint8_t[]){ 0xff, 0xff }, 16);
160         assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
161         assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
162 
163         list = tlpm_delete(list, (uint8_t[]){ 0xff }, 8);
164         assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));
165 
166         tlpm_clear(list);
167 }
168 
169 static void test_lpm_order(void)
170 {
171         struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL;
172         size_t i, j;
173 
174         /* Verify the tlpm implementation works correctly regardless of the
175          * order of entries. Insert a random set of entries into @l1, and copy
176          * the same data in reverse order into @l2. Then verify a lookup of
177          * random keys will yield the same result in both sets.
178          */
179 
180         for (i = 0; i < (1 << 12); ++i)
181                 l1 = tlpm_add(l1, (uint8_t[]){
182                                         rand() % 0xff,
183                                         rand() % 0xff,
184                                 }, rand() % 16 + 1);
185 
186         for (t1 = l1; t1; t1 = t1->next)
187                 l2 = tlpm_add(l2, t1->key, t1->n_bits);
188 
189         for (i = 0; i < (1 << 8); ++i) {
190                 uint8_t key[] = { rand() % 0xff, rand() % 0xff };
191 
192                 t1 = tlpm_match(l1, key, 16);
193                 t2 = tlpm_match(l2, key, 16);
194 
195                 assert(!t1 == !t2);
196                 if (t1) {
197                         assert(t1->n_bits == t2->n_bits);
198                         for (j = 0; j < t1->n_bits; ++j)
199                                 assert((t1->key[j / 8] & (1 << (7 - j % 8))) ==
200                                        (t2->key[j / 8] & (1 << (7 - j % 8))));
201                 }
202         }
203 
204         tlpm_clear(l1);
205         tlpm_clear(l2);
206 }
207 
208 static void test_lpm_map(int keysize)
209 {
210         LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
211         volatile size_t n_matches, n_matches_after_delete;
212         size_t i, j, n_nodes, n_lookups;
213         struct tlpm_node *t, *list = NULL;
214         struct bpf_lpm_trie_key_u8 *key;
215         uint8_t *data, *value;
216         int r, map;
217 
218         /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of
219          * prefixes and insert it into both tlpm and bpf-lpm. Then run some
220          * randomized lookups and verify both maps return the same result.
221          */
222 
223         n_matches = 0;
224         n_matches_after_delete = 0;
225         n_nodes = 1 << 8;
226         n_lookups = 1 << 16;
227 
228         data = alloca(keysize);
229         memset(data, 0, keysize);
230 
231         value = alloca(keysize + 1);
232         memset(value, 0, keysize + 1);
233 
234         key = alloca(sizeof(*key) + keysize);
235         memset(key, 0, sizeof(*key) + keysize);
236 
237         map = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL,
238                              sizeof(*key) + keysize,
239                              keysize + 1,
240                              4096,
241                              &opts);
242         assert(map >= 0);
243 
244         for (i = 0; i < n_nodes; ++i) {
245                 for (j = 0; j < keysize; ++j)
246                         value[j] = rand() & 0xff;
247                 value[keysize] = rand() % (8 * keysize + 1);
248 
249                 list = tlpm_add(list, value, value[keysize]);
250 
251                 key->prefixlen = value[keysize];
252                 memcpy(key->data, value, keysize);
253                 r = bpf_map_update_elem(map, key, value, 0);
254                 assert(!r);
255         }
256 
257         for (i = 0; i < n_lookups; ++i) {
258                 for (j = 0; j < keysize; ++j)
259                         data[j] = rand() & 0xff;
260 
261                 t = tlpm_match(list, data, 8 * keysize);
262 
263                 key->prefixlen = 8 * keysize;
264                 memcpy(key->data, data, keysize);
265                 r = bpf_map_lookup_elem(map, key, value);
266                 assert(!r || errno == ENOENT);
267                 assert(!t == !!r);
268 
269                 if (t) {
270                         ++n_matches;
271                         assert(t->n_bits == value[keysize]);
272                         for (j = 0; j < t->n_bits; ++j)
273                                 assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
274                                        (value[j / 8] & (1 << (7 - j % 8))));
275                 }
276         }
277 
278         /* Remove the first half of the elements in the tlpm and the
279          * corresponding nodes from the bpf-lpm.  Then run the same
280          * large number of random lookups in both and make sure they match.
281          * Note: we need to count the number of nodes actually inserted
282          * since there may have been duplicates.
283          */
284         for (i = 0, t = list; t; i++, t = t->next)
285                 ;
286         for (j = 0; j < i / 2; ++j) {
287                 key->prefixlen = list->n_bits;
288                 memcpy(key->data, list->key, keysize);
289                 r = bpf_map_delete_elem(map, key);
290                 assert(!r);
291                 list = tlpm_delete(list, list->key, list->n_bits);
292                 assert(list);
293         }
294         for (i = 0; i < n_lookups; ++i) {
295                 for (j = 0; j < keysize; ++j)
296                         data[j] = rand() & 0xff;
297 
298                 t = tlpm_match(list, data, 8 * keysize);
299 
300                 key->prefixlen = 8 * keysize;
301                 memcpy(key->data, data, keysize);
302                 r = bpf_map_lookup_elem(map, key, value);
303                 assert(!r || errno == ENOENT);
304                 assert(!t == !!r);
305 
306                 if (t) {
307                         ++n_matches_after_delete;
308                         assert(t->n_bits == value[keysize]);
309                         for (j = 0; j < t->n_bits; ++j)
310                                 assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
311                                        (value[j / 8] & (1 << (7 - j % 8))));
312                 }
313         }
314 
315         close(map);
316         tlpm_clear(list);
317 
318         /* With 255 random nodes in the map, we are pretty likely to match
319          * something on every lookup. For statistics, use this:
320          *
321          *     printf("          nodes: %zu\n"
322          *            "        lookups: %zu\n"
323          *            "        matches: %zu\n"
324          *            "matches(delete): %zu\n",
325          *            n_nodes, n_lookups, n_matches, n_matches_after_delete);
326          */
327 }
328 
329 /* Test the implementation with some 'real world' examples */
330 
331 static void test_lpm_ipaddr(void)
332 {
333         LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
334         struct bpf_lpm_trie_key_u8 *key_ipv4;
335         struct bpf_lpm_trie_key_u8 *key_ipv6;
336         size_t key_size_ipv4;
337         size_t key_size_ipv6;
338         int map_fd_ipv4;
339         int map_fd_ipv6;
340         __u64 value;
341 
342         key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32);
343         key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4;
344         key_ipv4 = alloca(key_size_ipv4);
345         key_ipv6 = alloca(key_size_ipv6);
346 
347         map_fd_ipv4 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL,
348                                      key_size_ipv4, sizeof(value),
349                                      100, &opts);
350         assert(map_fd_ipv4 >= 0);
351 
352         map_fd_ipv6 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL,
353                                      key_size_ipv6, sizeof(value),
354                                      100, &opts);
355         assert(map_fd_ipv6 >= 0);
356 
357         /* Fill data some IPv4 and IPv6 address ranges */
358         value = 1;
359         key_ipv4->prefixlen = 16;
360         inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
361         assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
362 
363         value = 2;
364         key_ipv4->prefixlen = 24;
365         inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
366         assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
367 
368         value = 3;
369         key_ipv4->prefixlen = 24;
370         inet_pton(AF_INET, "192.168.128.0", key_ipv4->data);
371         assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
372 
373         value = 5;
374         key_ipv4->prefixlen = 24;
375         inet_pton(AF_INET, "192.168.1.0", key_ipv4->data);
376         assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
377 
378         value = 4;
379         key_ipv4->prefixlen = 23;
380         inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
381         assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
382 
383         value = 0xdeadbeef;
384         key_ipv6->prefixlen = 64;
385         inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data);
386         assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0);
387 
388         /* Set tprefixlen to maximum for lookups */
389         key_ipv4->prefixlen = 32;
390         key_ipv6->prefixlen = 128;
391 
392         /* Test some lookups that should come back with a value */
393         inet_pton(AF_INET, "192.168.128.23", key_ipv4->data);
394         assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
395         assert(value == 3);
396 
397         inet_pton(AF_INET, "192.168.0.1", key_ipv4->data);
398         assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
399         assert(value == 2);
400 
401         inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data);
402         assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
403         assert(value == 0xdeadbeef);
404 
405         inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data);
406         assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
407         assert(value == 0xdeadbeef);
408 
409         /* Test some lookups that should not match any entry */
410         inet_pton(AF_INET, "10.0.0.1", key_ipv4->data);
411         assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -ENOENT);
412 
413         inet_pton(AF_INET, "11.11.11.11", key_ipv4->data);
414         assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -ENOENT);
415 
416         inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data);
417         assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -ENOENT);
418 
419         close(map_fd_ipv4);
420         close(map_fd_ipv6);
421 }
422 
423 static void test_lpm_delete(void)
424 {
425         LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
426         struct bpf_lpm_trie_key_u8 *key;
427         size_t key_size;
428         int map_fd;
429         __u64 value;
430 
431         key_size = sizeof(*key) + sizeof(__u32);
432         key = alloca(key_size);
433 
434         map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL,
435                                 key_size, sizeof(value),
436                                 100, &opts);
437         assert(map_fd >= 0);
438 
439         /* Add nodes:
440          * 192.168.0.0/16   (1)
441          * 192.168.0.0/24   (2)
442          * 192.168.128.0/24 (3)
443          * 192.168.1.0/24   (4)
444          *
445          *         (1)
446          *        /   \
447          *     (IM)    (3)
448          *    /   \
449          *   (2)  (4)
450          */
451         value = 1;
452         key->prefixlen = 16;
453         inet_pton(AF_INET, "192.168.0.0", key->data);
454         assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
455 
456         value = 2;
457         key->prefixlen = 24;
458         inet_pton(AF_INET, "192.168.0.0", key->data);
459         assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
460 
461         value = 3;
462         key->prefixlen = 24;
463         inet_pton(AF_INET, "192.168.128.0", key->data);
464         assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
465 
466         value = 4;
467         key->prefixlen = 24;
468         inet_pton(AF_INET, "192.168.1.0", key->data);
469         assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
470 
471         /* remove non-existent node */
472         key->prefixlen = 32;
473         inet_pton(AF_INET, "10.0.0.1", key->data);
474         assert(bpf_map_lookup_elem(map_fd, key, &value) == -ENOENT);
475 
476         key->prefixlen = 30; // unused prefix so far
477         inet_pton(AF_INET, "192.255.0.0", key->data);
478         assert(bpf_map_delete_elem(map_fd, key) == -ENOENT);
479 
480         key->prefixlen = 16; // same prefix as the root node
481         inet_pton(AF_INET, "192.255.0.0", key->data);
482         assert(bpf_map_delete_elem(map_fd, key) == -ENOENT);
483 
484         /* assert initial lookup */
485         key->prefixlen = 32;
486         inet_pton(AF_INET, "192.168.0.1", key->data);
487         assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
488         assert(value == 2);
489 
490         /* remove leaf node */
491         key->prefixlen = 24;
492         inet_pton(AF_INET, "192.168.0.0", key->data);
493         assert(bpf_map_delete_elem(map_fd, key) == 0);
494 
495         key->prefixlen = 32;
496         inet_pton(AF_INET, "192.168.0.1", key->data);
497         assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
498         assert(value == 1);
499 
500         /* remove leaf (and intermediary) node */
501         key->prefixlen = 24;
502         inet_pton(AF_INET, "192.168.1.0", key->data);
503         assert(bpf_map_delete_elem(map_fd, key) == 0);
504 
505         key->prefixlen = 32;
506         inet_pton(AF_INET, "192.168.1.1", key->data);
507         assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
508         assert(value == 1);
509 
510         /* remove root node */
511         key->prefixlen = 16;
512         inet_pton(AF_INET, "192.168.0.0", key->data);
513         assert(bpf_map_delete_elem(map_fd, key) == 0);
514 
515         key->prefixlen = 32;
516         inet_pton(AF_INET, "192.168.128.1", key->data);
517         assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
518         assert(value == 3);
519 
520         /* remove last node */
521         key->prefixlen = 24;
522         inet_pton(AF_INET, "192.168.128.0", key->data);
523         assert(bpf_map_delete_elem(map_fd, key) == 0);
524 
525         key->prefixlen = 32;
526         inet_pton(AF_INET, "192.168.128.1", key->data);
527         assert(bpf_map_lookup_elem(map_fd, key, &value) == -ENOENT);
528 
529         close(map_fd);
530 }
531 
532 static void test_lpm_get_next_key(void)
533 {
534         LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
535         struct bpf_lpm_trie_key_u8 *key_p, *next_key_p;
536         size_t key_size;
537         __u32 value = 0;
538         int map_fd;
539 
540         key_size = sizeof(*key_p) + sizeof(__u32);
541         key_p = alloca(key_size);
542         next_key_p = alloca(key_size);
543 
544         map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, key_size, sizeof(value), 100, &opts);
545         assert(map_fd >= 0);
546 
547         /* empty tree. get_next_key should return ENOENT */
548         assert(bpf_map_get_next_key(map_fd, NULL, key_p) == -ENOENT);
549 
550         /* get and verify the first key, get the second one should fail. */
551         key_p->prefixlen = 16;
552         inet_pton(AF_INET, "192.168.0.0", key_p->data);
553         assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
554 
555         memset(key_p, 0, key_size);
556         assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
557         assert(key_p->prefixlen == 16 && key_p->data[0] == 192 &&
558                key_p->data[1] == 168);
559 
560         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);
561 
562         /* no exact matching key should get the first one in post order. */
563         key_p->prefixlen = 8;
564         assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
565         assert(key_p->prefixlen == 16 && key_p->data[0] == 192 &&
566                key_p->data[1] == 168);
567 
568         /* add one more element (total two) */
569         key_p->prefixlen = 24;
570         inet_pton(AF_INET, "192.168.128.0", key_p->data);
571         assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
572 
573         memset(key_p, 0, key_size);
574         assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
575         assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
576                key_p->data[1] == 168 && key_p->data[2] == 128);
577 
578         memset(next_key_p, 0, key_size);
579         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
580         assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
581                next_key_p->data[1] == 168);
582 
583         memcpy(key_p, next_key_p, key_size);
584         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);
585 
586         /* Add one more element (total three) */
587         key_p->prefixlen = 24;
588         inet_pton(AF_INET, "192.168.0.0", key_p->data);
589         assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
590 
591         memset(key_p, 0, key_size);
592         assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
593         assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
594                key_p->data[1] == 168 && key_p->data[2] == 0);
595 
596         memset(next_key_p, 0, key_size);
597         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
598         assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
599                next_key_p->data[1] == 168 && next_key_p->data[2] == 128);
600 
601         memcpy(key_p, next_key_p, key_size);
602         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
603         assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
604                next_key_p->data[1] == 168);
605 
606         memcpy(key_p, next_key_p, key_size);
607         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);
608 
609         /* Add one more element (total four) */
610         key_p->prefixlen = 24;
611         inet_pton(AF_INET, "192.168.1.0", key_p->data);
612         assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
613 
614         memset(key_p, 0, key_size);
615         assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
616         assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
617                key_p->data[1] == 168 && key_p->data[2] == 0);
618 
619         memset(next_key_p, 0, key_size);
620         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
621         assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
622                next_key_p->data[1] == 168 && next_key_p->data[2] == 1);
623 
624         memcpy(key_p, next_key_p, key_size);
625         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
626         assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
627                next_key_p->data[1] == 168 && next_key_p->data[2] == 128);
628 
629         memcpy(key_p, next_key_p, key_size);
630         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
631         assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
632                next_key_p->data[1] == 168);
633 
634         memcpy(key_p, next_key_p, key_size);
635         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);
636 
637         /* Add one more element (total five) */
638         key_p->prefixlen = 28;
639         inet_pton(AF_INET, "192.168.1.128", key_p->data);
640         assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
641 
642         memset(key_p, 0, key_size);
643         assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
644         assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
645                key_p->data[1] == 168 && key_p->data[2] == 0);
646 
647         memset(next_key_p, 0, key_size);
648         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
649         assert(next_key_p->prefixlen == 28 && next_key_p->data[0] == 192 &&
650                next_key_p->data[1] == 168 && next_key_p->data[2] == 1 &&
651                next_key_p->data[3] == 128);
652 
653         memcpy(key_p, next_key_p, key_size);
654         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
655         assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
656                next_key_p->data[1] == 168 && next_key_p->data[2] == 1);
657 
658         memcpy(key_p, next_key_p, key_size);
659         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
660         assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
661                next_key_p->data[1] == 168 && next_key_p->data[2] == 128);
662 
663         memcpy(key_p, next_key_p, key_size);
664         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
665         assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
666                next_key_p->data[1] == 168);
667 
668         memcpy(key_p, next_key_p, key_size);
669         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);
670 
671         /* no exact matching key should return the first one in post order */
672         key_p->prefixlen = 22;
673         inet_pton(AF_INET, "192.168.1.0", key_p->data);
674         assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
675         assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
676                next_key_p->data[1] == 168 && next_key_p->data[2] == 0);
677 
678         close(map_fd);
679 }
680 
681 #define MAX_TEST_KEYS   4
682 struct lpm_mt_test_info {
683         int cmd; /* 0: update, 1: delete, 2: lookup, 3: get_next_key */
684         int iter;
685         int map_fd;
686         struct {
687                 __u32 prefixlen;
688                 __u32 data;
689         } key[MAX_TEST_KEYS];
690 };
691 
692 static void *lpm_test_command(void *arg)
693 {
694         int i, j, ret, iter, key_size;
695         struct lpm_mt_test_info *info = arg;
696         struct bpf_lpm_trie_key_u8 *key_p;
697 
698         key_size = sizeof(*key_p) + sizeof(__u32);
699         key_p = alloca(key_size);
700         for (iter = 0; iter < info->iter; iter++)
701                 for (i = 0; i < MAX_TEST_KEYS; i++) {
702                         /* first half of iterations in forward order,
703                          * and second half in backward order.
704                          */
705                         j = (iter < (info->iter / 2)) ? i : MAX_TEST_KEYS - i - 1;
706                         key_p->prefixlen = info->key[j].prefixlen;
707                         memcpy(key_p->data, &info->key[j].data, sizeof(__u32));
708                         if (info->cmd == 0) {
709                                 __u32 value = j;
710                                 /* update must succeed */
711                                 assert(bpf_map_update_elem(info->map_fd, key_p, &value, 0) == 0);
712                         } else if (info->cmd == 1) {
713                                 ret = bpf_map_delete_elem(info->map_fd, key_p);
714                                 assert(ret == 0 || errno == ENOENT);
715                         } else if (info->cmd == 2) {
716                                 __u32 value;
717                                 ret = bpf_map_lookup_elem(info->map_fd, key_p, &value);
718                                 assert(ret == 0 || errno == ENOENT);
719                         } else {
720                                 struct bpf_lpm_trie_key_u8 *next_key_p = alloca(key_size);
721                                 ret = bpf_map_get_next_key(info->map_fd, key_p, next_key_p);
722                                 assert(ret == 0 || errno == ENOENT || errno == ENOMEM);
723                         }
724                 }
725 
726         // Pass successful exit info back to the main thread
727         pthread_exit((void *)info);
728 }
729 
730 static void setup_lpm_mt_test_info(struct lpm_mt_test_info *info, int map_fd)
731 {
732         info->iter = 2000;
733         info->map_fd = map_fd;
734         info->key[0].prefixlen = 16;
735         inet_pton(AF_INET, "192.168.0.0", &info->key[0].data);
736         info->key[1].prefixlen = 24;
737         inet_pton(AF_INET, "192.168.0.0", &info->key[1].data);
738         info->key[2].prefixlen = 24;
739         inet_pton(AF_INET, "192.168.128.0", &info->key[2].data);
740         info->key[3].prefixlen = 24;
741         inet_pton(AF_INET, "192.168.1.0", &info->key[3].data);
742 }
743 
744 static void test_lpm_multi_thread(void)
745 {
746         LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
747         struct lpm_mt_test_info info[4];
748         size_t key_size, value_size;
749         pthread_t thread_id[4];
750         int i, map_fd;
751         void *ret;
752 
753         /* create a trie */
754         value_size = sizeof(__u32);
755         key_size = sizeof(struct bpf_lpm_trie_key_hdr) + value_size;
756         map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, key_size, value_size, 100, &opts);
757 
758         /* create 4 threads to test update, delete, lookup and get_next_key */
759         setup_lpm_mt_test_info(&info[0], map_fd);
760         for (i = 0; i < 4; i++) {
761                 if (i != 0)
762                         memcpy(&info[i], &info[0], sizeof(info[i]));
763                 info[i].cmd = i;
764                 assert(pthread_create(&thread_id[i], NULL, &lpm_test_command, &info[i]) == 0);
765         }
766 
767         for (i = 0; i < 4; i++)
768                 assert(pthread_join(thread_id[i], &ret) == 0 && ret == (void *)&info[i]);
769 
770         close(map_fd);
771 }
772 
773 int main(void)
774 {
775         int i;
776 
777         /* we want predictable, pseudo random tests */
778         srand(0xf00ba1);
779 
780         /* Use libbpf 1.0 API mode */
781         libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
782 
783         test_lpm_basic();
784         test_lpm_order();
785 
786         /* Test with 8, 16, 24, 32, ... 128 bit prefix length */
787         for (i = 1; i <= 16; ++i)
788                 test_lpm_map(i);
789 
790         test_lpm_ipaddr();
791         test_lpm_delete();
792         test_lpm_get_next_key();
793         test_lpm_multi_thread();
794 
795         printf("test_lpm: OK\n");
796         return 0;
797 }
798 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php