1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Randomized tests for eBPF longest-prefix-match maps 4 * 5 * This program runs randomized tests against the lpm-bpf-map. It implements a 6 * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked 7 * lists. The implementation should be pretty straightforward. 8 * 9 * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies 10 * the trie-based bpf-map implementation behaves the same way as tlpm. 11 */ 12 13 #include <assert.h> 14 #include <errno.h> 15 #include <inttypes.h> 16 #include <linux/bpf.h> 17 #include <pthread.h> 18 #include <stdio.h> 19 #include <stdlib.h> 20 #include <string.h> 21 #include <time.h> 22 #include <unistd.h> 23 #include <arpa/inet.h> 24 #include <sys/time.h> 25 26 #include <bpf/bpf.h> 27 28 #include "bpf_util.h" 29 30 struct tlpm_node { 31 struct tlpm_node *next; 32 size_t n_bits; 33 uint8_t key[]; 34 }; 35 36 static struct tlpm_node *tlpm_match(struct tlpm_node *list, 37 const uint8_t *key, 38 size_t n_bits); 39 40 static struct tlpm_node *tlpm_add(struct tlpm_node *list, 41 const uint8_t *key, 42 size_t n_bits) 43 { 44 struct tlpm_node *node; 45 size_t n; 46 47 n = (n_bits + 7) / 8; 48 49 /* 'overwrite' an equivalent entry if one already exists */ 50 node = tlpm_match(list, key, n_bits); 51 if (node && node->n_bits == n_bits) { 52 memcpy(node->key, key, n); 53 return list; 54 } 55 56 /* add new entry with @key/@n_bits to @list and return new head */ 57 58 node = malloc(sizeof(*node) + n); 59 assert(node); 60 61 node->next = list; 62 node->n_bits = n_bits; 63 memcpy(node->key, key, n); 64 65 return node; 66 } 67 68 static void tlpm_clear(struct tlpm_node *list) 69 { 70 struct tlpm_node *node; 71 72 /* free all entries in @list */ 73 74 while ((node = list)) { 75 list = list->next; 76 free(node); 77 } 78 } 79 80 static struct tlpm_node *tlpm_match(struct tlpm_node *list, 81 const uint8_t *key, 82 size_t n_bits) 83 { 84 struct tlpm_node *best = NULL; 85 size_t i; 86 87 /* Perform longest prefix-match on @key/@n_bits. That is, iterate all 88 * entries and match each prefix against @key. Remember the "best" 89 * entry we find (i.e., the longest prefix that matches) and return it 90 * to the caller when done. 91 */ 92 93 for ( ; list; list = list->next) { 94 for (i = 0; i < n_bits && i < list->n_bits; ++i) { 95 if ((key[i / 8] & (1 << (7 - i % 8))) != 96 (list->key[i / 8] & (1 << (7 - i % 8)))) 97 break; 98 } 99 100 if (i >= list->n_bits) { 101 if (!best || i > best->n_bits) 102 best = list; 103 } 104 } 105 106 return best; 107 } 108 109 static struct tlpm_node *tlpm_delete(struct tlpm_node *list, 110 const uint8_t *key, 111 size_t n_bits) 112 { 113 struct tlpm_node *best = tlpm_match(list, key, n_bits); 114 struct tlpm_node *node; 115 116 if (!best || best->n_bits != n_bits) 117 return list; 118 119 if (best == list) { 120 node = best->next; 121 free(best); 122 return node; 123 } 124 125 for (node = list; node; node = node->next) { 126 if (node->next == best) { 127 node->next = best->next; 128 free(best); 129 return list; 130 } 131 } 132 /* should never get here */ 133 assert(0); 134 return list; 135 } 136 137 static void test_lpm_basic(void) 138 { 139 struct tlpm_node *list = NULL, *t1, *t2; 140 141 /* very basic, static tests to verify tlpm works as expected */ 142 143 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 144 145 t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8); 146 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 147 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 148 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16)); 149 assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8)); 150 assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8)); 151 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7)); 152 153 t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16); 154 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 155 assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 156 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15)); 157 assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16)); 158 159 list = tlpm_delete(list, (uint8_t[]){ 0xff, 0xff }, 16); 160 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 161 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 162 163 list = tlpm_delete(list, (uint8_t[]){ 0xff }, 8); 164 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 165 166 tlpm_clear(list); 167 } 168 169 static void test_lpm_order(void) 170 { 171 struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL; 172 size_t i, j; 173 174 /* Verify the tlpm implementation works correctly regardless of the 175 * order of entries. Insert a random set of entries into @l1, and copy 176 * the same data in reverse order into @l2. Then verify a lookup of 177 * random keys will yield the same result in both sets. 178 */ 179 180 for (i = 0; i < (1 << 12); ++i) 181 l1 = tlpm_add(l1, (uint8_t[]){ 182 rand() % 0xff, 183 rand() % 0xff, 184 }, rand() % 16 + 1); 185 186 for (t1 = l1; t1; t1 = t1->next) 187 l2 = tlpm_add(l2, t1->key, t1->n_bits); 188 189 for (i = 0; i < (1 << 8); ++i) { 190 uint8_t key[] = { rand() % 0xff, rand() % 0xff }; 191 192 t1 = tlpm_match(l1, key, 16); 193 t2 = tlpm_match(l2, key, 16); 194 195 assert(!t1 == !t2); 196 if (t1) { 197 assert(t1->n_bits == t2->n_bits); 198 for (j = 0; j < t1->n_bits; ++j) 199 assert((t1->key[j / 8] & (1 << (7 - j % 8))) == 200 (t2->key[j / 8] & (1 << (7 - j % 8)))); 201 } 202 } 203 204 tlpm_clear(l1); 205 tlpm_clear(l2); 206 } 207 208 static void test_lpm_map(int keysize) 209 { 210 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 211 volatile size_t n_matches, n_matches_after_delete; 212 size_t i, j, n_nodes, n_lookups; 213 struct tlpm_node *t, *list = NULL; 214 struct bpf_lpm_trie_key_u8 *key; 215 uint8_t *data, *value; 216 int r, map; 217 218 /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of 219 * prefixes and insert it into both tlpm and bpf-lpm. Then run some 220 * randomized lookups and verify both maps return the same result. 221 */ 222 223 n_matches = 0; 224 n_matches_after_delete = 0; 225 n_nodes = 1 << 8; 226 n_lookups = 1 << 16; 227 228 data = alloca(keysize); 229 memset(data, 0, keysize); 230 231 value = alloca(keysize + 1); 232 memset(value, 0, keysize + 1); 233 234 key = alloca(sizeof(*key) + keysize); 235 memset(key, 0, sizeof(*key) + keysize); 236 237 map = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, 238 sizeof(*key) + keysize, 239 keysize + 1, 240 4096, 241 &opts); 242 assert(map >= 0); 243 244 for (i = 0; i < n_nodes; ++i) { 245 for (j = 0; j < keysize; ++j) 246 value[j] = rand() & 0xff; 247 value[keysize] = rand() % (8 * keysize + 1); 248 249 list = tlpm_add(list, value, value[keysize]); 250 251 key->prefixlen = value[keysize]; 252 memcpy(key->data, value, keysize); 253 r = bpf_map_update_elem(map, key, value, 0); 254 assert(!r); 255 } 256 257 for (i = 0; i < n_lookups; ++i) { 258 for (j = 0; j < keysize; ++j) 259 data[j] = rand() & 0xff; 260 261 t = tlpm_match(list, data, 8 * keysize); 262 263 key->prefixlen = 8 * keysize; 264 memcpy(key->data, data, keysize); 265 r = bpf_map_lookup_elem(map, key, value); 266 assert(!r || errno == ENOENT); 267 assert(!t == !!r); 268 269 if (t) { 270 ++n_matches; 271 assert(t->n_bits == value[keysize]); 272 for (j = 0; j < t->n_bits; ++j) 273 assert((t->key[j / 8] & (1 << (7 - j % 8))) == 274 (value[j / 8] & (1 << (7 - j % 8)))); 275 } 276 } 277 278 /* Remove the first half of the elements in the tlpm and the 279 * corresponding nodes from the bpf-lpm. Then run the same 280 * large number of random lookups in both and make sure they match. 281 * Note: we need to count the number of nodes actually inserted 282 * since there may have been duplicates. 283 */ 284 for (i = 0, t = list; t; i++, t = t->next) 285 ; 286 for (j = 0; j < i / 2; ++j) { 287 key->prefixlen = list->n_bits; 288 memcpy(key->data, list->key, keysize); 289 r = bpf_map_delete_elem(map, key); 290 assert(!r); 291 list = tlpm_delete(list, list->key, list->n_bits); 292 assert(list); 293 } 294 for (i = 0; i < n_lookups; ++i) { 295 for (j = 0; j < keysize; ++j) 296 data[j] = rand() & 0xff; 297 298 t = tlpm_match(list, data, 8 * keysize); 299 300 key->prefixlen = 8 * keysize; 301 memcpy(key->data, data, keysize); 302 r = bpf_map_lookup_elem(map, key, value); 303 assert(!r || errno == ENOENT); 304 assert(!t == !!r); 305 306 if (t) { 307 ++n_matches_after_delete; 308 assert(t->n_bits == value[keysize]); 309 for (j = 0; j < t->n_bits; ++j) 310 assert((t->key[j / 8] & (1 << (7 - j % 8))) == 311 (value[j / 8] & (1 << (7 - j % 8)))); 312 } 313 } 314 315 close(map); 316 tlpm_clear(list); 317 318 /* With 255 random nodes in the map, we are pretty likely to match 319 * something on every lookup. For statistics, use this: 320 * 321 * printf(" nodes: %zu\n" 322 * " lookups: %zu\n" 323 * " matches: %zu\n" 324 * "matches(delete): %zu\n", 325 * n_nodes, n_lookups, n_matches, n_matches_after_delete); 326 */ 327 } 328 329 /* Test the implementation with some 'real world' examples */ 330 331 static void test_lpm_ipaddr(void) 332 { 333 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 334 struct bpf_lpm_trie_key_u8 *key_ipv4; 335 struct bpf_lpm_trie_key_u8 *key_ipv6; 336 size_t key_size_ipv4; 337 size_t key_size_ipv6; 338 int map_fd_ipv4; 339 int map_fd_ipv6; 340 __u64 value; 341 342 key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32); 343 key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4; 344 key_ipv4 = alloca(key_size_ipv4); 345 key_ipv6 = alloca(key_size_ipv6); 346 347 map_fd_ipv4 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, 348 key_size_ipv4, sizeof(value), 349 100, &opts); 350 assert(map_fd_ipv4 >= 0); 351 352 map_fd_ipv6 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, 353 key_size_ipv6, sizeof(value), 354 100, &opts); 355 assert(map_fd_ipv6 >= 0); 356 357 /* Fill data some IPv4 and IPv6 address ranges */ 358 value = 1; 359 key_ipv4->prefixlen = 16; 360 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 361 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 362 363 value = 2; 364 key_ipv4->prefixlen = 24; 365 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 366 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 367 368 value = 3; 369 key_ipv4->prefixlen = 24; 370 inet_pton(AF_INET, "192.168.128.0", key_ipv4->data); 371 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 372 373 value = 5; 374 key_ipv4->prefixlen = 24; 375 inet_pton(AF_INET, "192.168.1.0", key_ipv4->data); 376 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 377 378 value = 4; 379 key_ipv4->prefixlen = 23; 380 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 381 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 382 383 value = 0xdeadbeef; 384 key_ipv6->prefixlen = 64; 385 inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data); 386 assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0); 387 388 /* Set tprefixlen to maximum for lookups */ 389 key_ipv4->prefixlen = 32; 390 key_ipv6->prefixlen = 128; 391 392 /* Test some lookups that should come back with a value */ 393 inet_pton(AF_INET, "192.168.128.23", key_ipv4->data); 394 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); 395 assert(value == 3); 396 397 inet_pton(AF_INET, "192.168.0.1", key_ipv4->data); 398 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); 399 assert(value == 2); 400 401 inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data); 402 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); 403 assert(value == 0xdeadbeef); 404 405 inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data); 406 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); 407 assert(value == 0xdeadbeef); 408 409 /* Test some lookups that should not match any entry */ 410 inet_pton(AF_INET, "10.0.0.1", key_ipv4->data); 411 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -ENOENT); 412 413 inet_pton(AF_INET, "11.11.11.11", key_ipv4->data); 414 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -ENOENT); 415 416 inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data); 417 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -ENOENT); 418 419 close(map_fd_ipv4); 420 close(map_fd_ipv6); 421 } 422 423 static void test_lpm_delete(void) 424 { 425 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 426 struct bpf_lpm_trie_key_u8 *key; 427 size_t key_size; 428 int map_fd; 429 __u64 value; 430 431 key_size = sizeof(*key) + sizeof(__u32); 432 key = alloca(key_size); 433 434 map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, 435 key_size, sizeof(value), 436 100, &opts); 437 assert(map_fd >= 0); 438 439 /* Add nodes: 440 * 192.168.0.0/16 (1) 441 * 192.168.0.0/24 (2) 442 * 192.168.128.0/24 (3) 443 * 192.168.1.0/24 (4) 444 * 445 * (1) 446 * / \ 447 * (IM) (3) 448 * / \ 449 * (2) (4) 450 */ 451 value = 1; 452 key->prefixlen = 16; 453 inet_pton(AF_INET, "192.168.0.0", key->data); 454 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 455 456 value = 2; 457 key->prefixlen = 24; 458 inet_pton(AF_INET, "192.168.0.0", key->data); 459 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 460 461 value = 3; 462 key->prefixlen = 24; 463 inet_pton(AF_INET, "192.168.128.0", key->data); 464 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 465 466 value = 4; 467 key->prefixlen = 24; 468 inet_pton(AF_INET, "192.168.1.0", key->data); 469 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 470 471 /* remove non-existent node */ 472 key->prefixlen = 32; 473 inet_pton(AF_INET, "10.0.0.1", key->data); 474 assert(bpf_map_lookup_elem(map_fd, key, &value) == -ENOENT); 475 476 key->prefixlen = 30; // unused prefix so far 477 inet_pton(AF_INET, "192.255.0.0", key->data); 478 assert(bpf_map_delete_elem(map_fd, key) == -ENOENT); 479 480 key->prefixlen = 16; // same prefix as the root node 481 inet_pton(AF_INET, "192.255.0.0", key->data); 482 assert(bpf_map_delete_elem(map_fd, key) == -ENOENT); 483 484 /* assert initial lookup */ 485 key->prefixlen = 32; 486 inet_pton(AF_INET, "192.168.0.1", key->data); 487 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 488 assert(value == 2); 489 490 /* remove leaf node */ 491 key->prefixlen = 24; 492 inet_pton(AF_INET, "192.168.0.0", key->data); 493 assert(bpf_map_delete_elem(map_fd, key) == 0); 494 495 key->prefixlen = 32; 496 inet_pton(AF_INET, "192.168.0.1", key->data); 497 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 498 assert(value == 1); 499 500 /* remove leaf (and intermediary) node */ 501 key->prefixlen = 24; 502 inet_pton(AF_INET, "192.168.1.0", key->data); 503 assert(bpf_map_delete_elem(map_fd, key) == 0); 504 505 key->prefixlen = 32; 506 inet_pton(AF_INET, "192.168.1.1", key->data); 507 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 508 assert(value == 1); 509 510 /* remove root node */ 511 key->prefixlen = 16; 512 inet_pton(AF_INET, "192.168.0.0", key->data); 513 assert(bpf_map_delete_elem(map_fd, key) == 0); 514 515 key->prefixlen = 32; 516 inet_pton(AF_INET, "192.168.128.1", key->data); 517 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 518 assert(value == 3); 519 520 /* remove last node */ 521 key->prefixlen = 24; 522 inet_pton(AF_INET, "192.168.128.0", key->data); 523 assert(bpf_map_delete_elem(map_fd, key) == 0); 524 525 key->prefixlen = 32; 526 inet_pton(AF_INET, "192.168.128.1", key->data); 527 assert(bpf_map_lookup_elem(map_fd, key, &value) == -ENOENT); 528 529 close(map_fd); 530 } 531 532 static void test_lpm_get_next_key(void) 533 { 534 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 535 struct bpf_lpm_trie_key_u8 *key_p, *next_key_p; 536 size_t key_size; 537 __u32 value = 0; 538 int map_fd; 539 540 key_size = sizeof(*key_p) + sizeof(__u32); 541 key_p = alloca(key_size); 542 next_key_p = alloca(key_size); 543 544 map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, key_size, sizeof(value), 100, &opts); 545 assert(map_fd >= 0); 546 547 /* empty tree. get_next_key should return ENOENT */ 548 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == -ENOENT); 549 550 /* get and verify the first key, get the second one should fail. */ 551 key_p->prefixlen = 16; 552 inet_pton(AF_INET, "192.168.0.0", key_p->data); 553 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 554 555 memset(key_p, 0, key_size); 556 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 557 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 && 558 key_p->data[1] == 168); 559 560 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT); 561 562 /* no exact matching key should get the first one in post order. */ 563 key_p->prefixlen = 8; 564 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 565 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 && 566 key_p->data[1] == 168); 567 568 /* add one more element (total two) */ 569 key_p->prefixlen = 24; 570 inet_pton(AF_INET, "192.168.128.0", key_p->data); 571 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 572 573 memset(key_p, 0, key_size); 574 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 575 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 576 key_p->data[1] == 168 && key_p->data[2] == 128); 577 578 memset(next_key_p, 0, key_size); 579 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 580 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 581 next_key_p->data[1] == 168); 582 583 memcpy(key_p, next_key_p, key_size); 584 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT); 585 586 /* Add one more element (total three) */ 587 key_p->prefixlen = 24; 588 inet_pton(AF_INET, "192.168.0.0", key_p->data); 589 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 590 591 memset(key_p, 0, key_size); 592 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 593 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 594 key_p->data[1] == 168 && key_p->data[2] == 0); 595 596 memset(next_key_p, 0, key_size); 597 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 598 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 599 next_key_p->data[1] == 168 && next_key_p->data[2] == 128); 600 601 memcpy(key_p, next_key_p, key_size); 602 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 603 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 604 next_key_p->data[1] == 168); 605 606 memcpy(key_p, next_key_p, key_size); 607 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT); 608 609 /* Add one more element (total four) */ 610 key_p->prefixlen = 24; 611 inet_pton(AF_INET, "192.168.1.0", key_p->data); 612 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 613 614 memset(key_p, 0, key_size); 615 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 616 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 617 key_p->data[1] == 168 && key_p->data[2] == 0); 618 619 memset(next_key_p, 0, key_size); 620 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 621 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 622 next_key_p->data[1] == 168 && next_key_p->data[2] == 1); 623 624 memcpy(key_p, next_key_p, key_size); 625 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 626 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 627 next_key_p->data[1] == 168 && next_key_p->data[2] == 128); 628 629 memcpy(key_p, next_key_p, key_size); 630 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 631 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 632 next_key_p->data[1] == 168); 633 634 memcpy(key_p, next_key_p, key_size); 635 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT); 636 637 /* Add one more element (total five) */ 638 key_p->prefixlen = 28; 639 inet_pton(AF_INET, "192.168.1.128", key_p->data); 640 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 641 642 memset(key_p, 0, key_size); 643 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 644 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 645 key_p->data[1] == 168 && key_p->data[2] == 0); 646 647 memset(next_key_p, 0, key_size); 648 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 649 assert(next_key_p->prefixlen == 28 && next_key_p->data[0] == 192 && 650 next_key_p->data[1] == 168 && next_key_p->data[2] == 1 && 651 next_key_p->data[3] == 128); 652 653 memcpy(key_p, next_key_p, key_size); 654 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 655 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 656 next_key_p->data[1] == 168 && next_key_p->data[2] == 1); 657 658 memcpy(key_p, next_key_p, key_size); 659 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 660 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 661 next_key_p->data[1] == 168 && next_key_p->data[2] == 128); 662 663 memcpy(key_p, next_key_p, key_size); 664 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 665 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 666 next_key_p->data[1] == 168); 667 668 memcpy(key_p, next_key_p, key_size); 669 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT); 670 671 /* no exact matching key should return the first one in post order */ 672 key_p->prefixlen = 22; 673 inet_pton(AF_INET, "192.168.1.0", key_p->data); 674 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 675 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 676 next_key_p->data[1] == 168 && next_key_p->data[2] == 0); 677 678 close(map_fd); 679 } 680 681 #define MAX_TEST_KEYS 4 682 struct lpm_mt_test_info { 683 int cmd; /* 0: update, 1: delete, 2: lookup, 3: get_next_key */ 684 int iter; 685 int map_fd; 686 struct { 687 __u32 prefixlen; 688 __u32 data; 689 } key[MAX_TEST_KEYS]; 690 }; 691 692 static void *lpm_test_command(void *arg) 693 { 694 int i, j, ret, iter, key_size; 695 struct lpm_mt_test_info *info = arg; 696 struct bpf_lpm_trie_key_u8 *key_p; 697 698 key_size = sizeof(*key_p) + sizeof(__u32); 699 key_p = alloca(key_size); 700 for (iter = 0; iter < info->iter; iter++) 701 for (i = 0; i < MAX_TEST_KEYS; i++) { 702 /* first half of iterations in forward order, 703 * and second half in backward order. 704 */ 705 j = (iter < (info->iter / 2)) ? i : MAX_TEST_KEYS - i - 1; 706 key_p->prefixlen = info->key[j].prefixlen; 707 memcpy(key_p->data, &info->key[j].data, sizeof(__u32)); 708 if (info->cmd == 0) { 709 __u32 value = j; 710 /* update must succeed */ 711 assert(bpf_map_update_elem(info->map_fd, key_p, &value, 0) == 0); 712 } else if (info->cmd == 1) { 713 ret = bpf_map_delete_elem(info->map_fd, key_p); 714 assert(ret == 0 || errno == ENOENT); 715 } else if (info->cmd == 2) { 716 __u32 value; 717 ret = bpf_map_lookup_elem(info->map_fd, key_p, &value); 718 assert(ret == 0 || errno == ENOENT); 719 } else { 720 struct bpf_lpm_trie_key_u8 *next_key_p = alloca(key_size); 721 ret = bpf_map_get_next_key(info->map_fd, key_p, next_key_p); 722 assert(ret == 0 || errno == ENOENT || errno == ENOMEM); 723 } 724 } 725 726 // Pass successful exit info back to the main thread 727 pthread_exit((void *)info); 728 } 729 730 static void setup_lpm_mt_test_info(struct lpm_mt_test_info *info, int map_fd) 731 { 732 info->iter = 2000; 733 info->map_fd = map_fd; 734 info->key[0].prefixlen = 16; 735 inet_pton(AF_INET, "192.168.0.0", &info->key[0].data); 736 info->key[1].prefixlen = 24; 737 inet_pton(AF_INET, "192.168.0.0", &info->key[1].data); 738 info->key[2].prefixlen = 24; 739 inet_pton(AF_INET, "192.168.128.0", &info->key[2].data); 740 info->key[3].prefixlen = 24; 741 inet_pton(AF_INET, "192.168.1.0", &info->key[3].data); 742 } 743 744 static void test_lpm_multi_thread(void) 745 { 746 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 747 struct lpm_mt_test_info info[4]; 748 size_t key_size, value_size; 749 pthread_t thread_id[4]; 750 int i, map_fd; 751 void *ret; 752 753 /* create a trie */ 754 value_size = sizeof(__u32); 755 key_size = sizeof(struct bpf_lpm_trie_key_hdr) + value_size; 756 map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, key_size, value_size, 100, &opts); 757 758 /* create 4 threads to test update, delete, lookup and get_next_key */ 759 setup_lpm_mt_test_info(&info[0], map_fd); 760 for (i = 0; i < 4; i++) { 761 if (i != 0) 762 memcpy(&info[i], &info[0], sizeof(info[i])); 763 info[i].cmd = i; 764 assert(pthread_create(&thread_id[i], NULL, &lpm_test_command, &info[i]) == 0); 765 } 766 767 for (i = 0; i < 4; i++) 768 assert(pthread_join(thread_id[i], &ret) == 0 && ret == (void *)&info[i]); 769 770 close(map_fd); 771 } 772 773 int main(void) 774 { 775 int i; 776 777 /* we want predictable, pseudo random tests */ 778 srand(0xf00ba1); 779 780 /* Use libbpf 1.0 API mode */ 781 libbpf_set_strict_mode(LIBBPF_STRICT_ALL); 782 783 test_lpm_basic(); 784 test_lpm_order(); 785 786 /* Test with 8, 16, 24, 32, ... 128 bit prefix length */ 787 for (i = 1; i <= 16; ++i) 788 test_lpm_map(i); 789 790 test_lpm_ipaddr(); 791 test_lpm_delete(); 792 test_lpm_get_next_key(); 793 test_lpm_multi_thread(); 794 795 printf("test_lpm: OK\n"); 796 return 0; 797 } 798
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.