1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Testsuite for eBPF verifier 4 * 5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 6 * Copyright (c) 2017 Facebook 7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 8 */ 9 10 #include <endian.h> 11 #include <asm/types.h> 12 #include <linux/types.h> 13 #include <stdint.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unistd.h> 17 #include <errno.h> 18 #include <string.h> 19 #include <stddef.h> 20 #include <stdbool.h> 21 #include <sched.h> 22 #include <limits.h> 23 #include <assert.h> 24 25 #include <linux/unistd.h> 26 #include <linux/filter.h> 27 #include <linux/bpf_perf_event.h> 28 #include <linux/bpf.h> 29 #include <linux/if_ether.h> 30 #include <linux/btf.h> 31 32 #include <bpf/btf.h> 33 #include <bpf/bpf.h> 34 #include <bpf/libbpf.h> 35 36 #include "autoconf_helper.h" 37 #include "unpriv_helpers.h" 38 #include "cap_helpers.h" 39 #include "bpf_rand.h" 40 #include "bpf_util.h" 41 #include "test_btf.h" 42 #include "../../../include/linux/filter.h" 43 #include "testing_helpers.h" 44 45 #ifndef ENOTSUPP 46 #define ENOTSUPP 524 47 #endif 48 49 #define MAX_INSNS BPF_MAXINSNS 50 #define MAX_EXPECTED_INSNS 32 51 #define MAX_UNEXPECTED_INSNS 32 52 #define MAX_TEST_INSNS 1000000 53 #define MAX_FIXUPS 8 54 #define MAX_NR_MAPS 23 55 #define MAX_TEST_RUNS 8 56 #define POINTER_VALUE 0xcafe4all 57 #define TEST_DATA_LEN 64 58 #define MAX_FUNC_INFOS 8 59 #define MAX_BTF_STRINGS 256 60 #define MAX_BTF_TYPES 256 61 62 #define INSN_OFF_MASK ((__s16)0xFFFF) 63 #define INSN_IMM_MASK ((__s32)0xFFFFFFFF) 64 #define SKIP_INSNS() BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef) 65 66 #define DEFAULT_LIBBPF_LOG_LEVEL 4 67 68 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 69 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 70 #define F_NEEDS_JIT_ENABLED (1 << 2) 71 72 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ 73 #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN | \ 74 1ULL << CAP_PERFMON | \ 75 1ULL << CAP_BPF) 76 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 77 static bool unpriv_disabled = false; 78 static bool jit_disabled; 79 static int skips; 80 static bool verbose = false; 81 static int verif_log_level = 0; 82 83 struct kfunc_btf_id_pair { 84 const char *kfunc; 85 int insn_idx; 86 }; 87 88 struct bpf_test { 89 const char *descr; 90 struct bpf_insn insns[MAX_INSNS]; 91 struct bpf_insn *fill_insns; 92 /* If specified, test engine looks for this sequence of 93 * instructions in the BPF program after loading. Allows to 94 * test rewrites applied by verifier. Use values 95 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm` 96 * fields if content does not matter. The test case fails if 97 * specified instructions are not found. 98 * 99 * The sequence could be split into sub-sequences by adding 100 * SKIP_INSNS instruction at the end of each sub-sequence. In 101 * such case sub-sequences are searched for one after another. 102 */ 103 struct bpf_insn expected_insns[MAX_EXPECTED_INSNS]; 104 /* If specified, test engine applies same pattern matching 105 * logic as for `expected_insns`. If the specified pattern is 106 * matched test case is marked as failed. 107 */ 108 struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS]; 109 int fixup_map_hash_8b[MAX_FIXUPS]; 110 int fixup_map_hash_48b[MAX_FIXUPS]; 111 int fixup_map_hash_16b[MAX_FIXUPS]; 112 int fixup_map_array_48b[MAX_FIXUPS]; 113 int fixup_map_sockmap[MAX_FIXUPS]; 114 int fixup_map_sockhash[MAX_FIXUPS]; 115 int fixup_map_xskmap[MAX_FIXUPS]; 116 int fixup_map_stacktrace[MAX_FIXUPS]; 117 int fixup_prog1[MAX_FIXUPS]; 118 int fixup_prog2[MAX_FIXUPS]; 119 int fixup_map_in_map[MAX_FIXUPS]; 120 int fixup_cgroup_storage[MAX_FIXUPS]; 121 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 122 int fixup_map_spin_lock[MAX_FIXUPS]; 123 int fixup_map_array_ro[MAX_FIXUPS]; 124 int fixup_map_array_wo[MAX_FIXUPS]; 125 int fixup_map_array_small[MAX_FIXUPS]; 126 int fixup_sk_storage_map[MAX_FIXUPS]; 127 int fixup_map_event_output[MAX_FIXUPS]; 128 int fixup_map_reuseport_array[MAX_FIXUPS]; 129 int fixup_map_ringbuf[MAX_FIXUPS]; 130 int fixup_map_timer[MAX_FIXUPS]; 131 int fixup_map_kptr[MAX_FIXUPS]; 132 struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS]; 133 /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT. 134 * Can be a tab-separated sequence of expected strings. An empty string 135 * means no log verification. 136 */ 137 const char *errstr; 138 const char *errstr_unpriv; 139 uint32_t insn_processed; 140 int prog_len; 141 enum { 142 UNDEF, 143 ACCEPT, 144 REJECT, 145 VERBOSE_ACCEPT, 146 } result, result_unpriv; 147 enum bpf_prog_type prog_type; 148 uint8_t flags; 149 void (*fill_helper)(struct bpf_test *self); 150 int runs; 151 #define bpf_testdata_struct_t \ 152 struct { \ 153 uint32_t retval, retval_unpriv; \ 154 union { \ 155 __u8 data[TEST_DATA_LEN]; \ 156 __u64 data64[TEST_DATA_LEN / 8]; \ 157 }; \ 158 } 159 union { 160 bpf_testdata_struct_t; 161 bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; 162 }; 163 enum bpf_attach_type expected_attach_type; 164 const char *kfunc; 165 struct bpf_func_info func_info[MAX_FUNC_INFOS]; 166 int func_info_cnt; 167 char btf_strings[MAX_BTF_STRINGS]; 168 /* A set of BTF types to load when specified, 169 * use macro definitions from test_btf.h, 170 * must end with BTF_END_RAW 171 */ 172 __u32 btf_types[MAX_BTF_TYPES]; 173 }; 174 175 /* Note we want this to be 64 bit aligned so that the end of our array is 176 * actually the end of the structure. 177 */ 178 #define MAX_ENTRIES 11 179 180 struct test_val { 181 unsigned int index; 182 int foo[MAX_ENTRIES]; 183 }; 184 185 struct other_val { 186 long long foo; 187 long long bar; 188 }; 189 190 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 191 { 192 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 193 #define PUSH_CNT 51 194 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 195 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 196 struct bpf_insn *insn = self->fill_insns; 197 int i = 0, j, k = 0; 198 199 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 200 loop: 201 for (j = 0; j < PUSH_CNT; j++) { 202 insn[i++] = BPF_LD_ABS(BPF_B, 0); 203 /* jump to error label */ 204 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 205 i++; 206 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 207 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 208 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 209 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 210 BPF_FUNC_skb_vlan_push); 211 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 212 i++; 213 } 214 215 for (j = 0; j < PUSH_CNT; j++) { 216 insn[i++] = BPF_LD_ABS(BPF_B, 0); 217 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 218 i++; 219 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 220 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 221 BPF_FUNC_skb_vlan_pop); 222 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 223 i++; 224 } 225 if (++k < 5) 226 goto loop; 227 228 for (; i < len - 3; i++) 229 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 230 insn[len - 3] = BPF_JMP_A(1); 231 /* error label */ 232 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 233 insn[len - 1] = BPF_EXIT_INSN(); 234 self->prog_len = len; 235 } 236 237 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 238 { 239 struct bpf_insn *insn = self->fill_insns; 240 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 241 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 242 * to extend the error value of the inlined ld_abs sequence which then 243 * contains 7 insns. so, set the dividend to 7 so the testcase could 244 * work on all arches. 245 */ 246 unsigned int len = (1 << 15) / 7; 247 int i = 0; 248 249 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 250 insn[i++] = BPF_LD_ABS(BPF_B, 0); 251 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 252 i++; 253 while (i < len - 1) 254 insn[i++] = BPF_LD_ABS(BPF_B, 1); 255 insn[i] = BPF_EXIT_INSN(); 256 self->prog_len = i + 1; 257 } 258 259 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 260 { 261 struct bpf_insn *insn = self->fill_insns; 262 uint64_t res = 0; 263 int i = 0; 264 265 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 266 while (i < self->retval) { 267 uint64_t val = bpf_semi_rand_get(); 268 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 269 270 res ^= val; 271 insn[i++] = tmp[0]; 272 insn[i++] = tmp[1]; 273 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 274 } 275 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 276 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 277 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 278 insn[i] = BPF_EXIT_INSN(); 279 self->prog_len = i + 1; 280 res ^= (res >> 32); 281 self->retval = (uint32_t)res; 282 } 283 284 #define MAX_JMP_SEQ 8192 285 286 /* test the sequence of 8k jumps */ 287 static void bpf_fill_scale1(struct bpf_test *self) 288 { 289 struct bpf_insn *insn = self->fill_insns; 290 int i = 0, k = 0; 291 292 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 293 /* test to check that the long sequence of jumps is acceptable */ 294 while (k++ < MAX_JMP_SEQ) { 295 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 296 BPF_FUNC_get_prandom_u32); 297 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 298 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 299 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 300 -8 * (k % 64 + 1)); 301 } 302 /* is_state_visited() doesn't allocate state for pruning for every jump. 303 * Hence multiply jmps by 4 to accommodate that heuristic 304 */ 305 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 306 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 307 insn[i] = BPF_EXIT_INSN(); 308 self->prog_len = i + 1; 309 self->retval = 42; 310 } 311 312 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 313 static void bpf_fill_scale2(struct bpf_test *self) 314 { 315 struct bpf_insn *insn = self->fill_insns; 316 int i = 0, k = 0; 317 318 #define FUNC_NEST 7 319 for (k = 0; k < FUNC_NEST; k++) { 320 insn[i++] = BPF_CALL_REL(1); 321 insn[i++] = BPF_EXIT_INSN(); 322 } 323 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 324 /* test to check that the long sequence of jumps is acceptable */ 325 k = 0; 326 while (k++ < MAX_JMP_SEQ) { 327 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 328 BPF_FUNC_get_prandom_u32); 329 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 330 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 331 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 332 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 333 } 334 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 335 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 336 insn[i] = BPF_EXIT_INSN(); 337 self->prog_len = i + 1; 338 self->retval = 42; 339 } 340 341 static void bpf_fill_scale(struct bpf_test *self) 342 { 343 switch (self->retval) { 344 case 1: 345 return bpf_fill_scale1(self); 346 case 2: 347 return bpf_fill_scale2(self); 348 default: 349 self->prog_len = 0; 350 break; 351 } 352 } 353 354 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn) 355 { 356 unsigned int len = 259, hlen = 128; 357 int i; 358 359 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 360 for (i = 1; i <= hlen; i++) { 361 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen); 362 insn[i + hlen] = BPF_JMP_A(hlen - i); 363 } 364 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1); 365 insn[len - 1] = BPF_EXIT_INSN(); 366 367 return len; 368 } 369 370 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn) 371 { 372 unsigned int len = 4100, jmp_off = 2048; 373 int i, j; 374 375 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 376 for (i = 1; i <= jmp_off; i++) { 377 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off); 378 } 379 insn[i++] = BPF_JMP_A(jmp_off); 380 for (; i <= jmp_off * 2 + 1; i+=16) { 381 for (j = 0; j < 16; j++) { 382 insn[i + j] = BPF_JMP_A(16 - j - 1); 383 } 384 } 385 386 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2); 387 insn[len - 1] = BPF_EXIT_INSN(); 388 389 return len; 390 } 391 392 static void bpf_fill_torturous_jumps(struct bpf_test *self) 393 { 394 struct bpf_insn *insn = self->fill_insns; 395 int i = 0; 396 397 switch (self->retval) { 398 case 1: 399 self->prog_len = bpf_fill_torturous_jumps_insn_1(insn); 400 return; 401 case 2: 402 self->prog_len = bpf_fill_torturous_jumps_insn_2(insn); 403 return; 404 case 3: 405 /* main */ 406 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4); 407 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262); 408 insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0); 409 insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3); 410 insn[i++] = BPF_EXIT_INSN(); 411 412 /* subprog 1 */ 413 i += bpf_fill_torturous_jumps_insn_1(insn + i); 414 415 /* subprog 2 */ 416 i += bpf_fill_torturous_jumps_insn_2(insn + i); 417 418 self->prog_len = i; 419 return; 420 default: 421 self->prog_len = 0; 422 break; 423 } 424 } 425 426 static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self) 427 { 428 struct bpf_insn *insn = self->fill_insns; 429 /* This test was added to catch a specific use after free 430 * error, which happened upon BPF program reallocation. 431 * Reallocation is handled by core.c:bpf_prog_realloc, which 432 * reuses old memory if page boundary is not crossed. The 433 * value of `len` is chosen to cross this boundary on bpf_loop 434 * patching. 435 */ 436 const int len = getpagesize() - 25; 437 int callback_load_idx; 438 int callback_idx; 439 int i = 0; 440 441 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1); 442 callback_load_idx = i; 443 insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 444 BPF_REG_2, BPF_PSEUDO_FUNC, 0, 445 777 /* filled below */); 446 insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0); 447 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0); 448 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0); 449 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop); 450 451 while (i < len - 3) 452 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); 453 insn[i++] = BPF_EXIT_INSN(); 454 455 callback_idx = i; 456 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); 457 insn[i++] = BPF_EXIT_INSN(); 458 459 insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1; 460 self->func_info[1].insn_off = callback_idx; 461 self->prog_len = i; 462 assert(i == len); 463 } 464 465 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 466 #define BPF_SK_LOOKUP(func) \ 467 /* struct bpf_sock_tuple tuple = {} */ \ 468 BPF_MOV64_IMM(BPF_REG_2, 0), \ 469 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 470 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 471 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 472 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 473 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 474 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 475 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 476 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 477 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 478 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 479 BPF_MOV64_IMM(BPF_REG_4, 0), \ 480 BPF_MOV64_IMM(BPF_REG_5, 0), \ 481 BPF_EMIT_CALL(BPF_FUNC_ ## func) 482 483 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 484 * value into 0 and does necessary preparation for direct packet access 485 * through r2. The allowed access range is 8 bytes. 486 */ 487 #define BPF_DIRECT_PKT_R2 \ 488 BPF_MOV64_IMM(BPF_REG_0, 0), \ 489 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 490 offsetof(struct __sk_buff, data)), \ 491 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 492 offsetof(struct __sk_buff, data_end)), \ 493 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 494 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 495 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 496 BPF_EXIT_INSN() 497 498 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 499 * positive u32, and zero-extend it into 64-bit. 500 */ 501 #define BPF_RAND_UEXT_R7 \ 502 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 503 BPF_FUNC_get_prandom_u32), \ 504 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 505 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 506 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 507 508 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 509 * negative u32, and sign-extend it into 64-bit. 510 */ 511 #define BPF_RAND_SEXT_R7 \ 512 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 513 BPF_FUNC_get_prandom_u32), \ 514 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 515 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 516 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 517 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 518 519 static struct bpf_test tests[] = { 520 #define FILL_ARRAY 521 #include <verifier/tests.h> 522 #undef FILL_ARRAY 523 }; 524 525 static int probe_filter_length(const struct bpf_insn *fp) 526 { 527 int len; 528 529 for (len = MAX_INSNS - 1; len > 0; --len) 530 if (fp[len].code != 0 || fp[len].imm != 0) 531 break; 532 return len + 1; 533 } 534 535 static bool skip_unsupported_map(enum bpf_map_type map_type) 536 { 537 if (!libbpf_probe_bpf_map_type(map_type, NULL)) { 538 printf("SKIP (unsupported map type %d)\n", map_type); 539 skips++; 540 return true; 541 } 542 return false; 543 } 544 545 static int __create_map(uint32_t type, uint32_t size_key, 546 uint32_t size_value, uint32_t max_elem, 547 uint32_t extra_flags) 548 { 549 LIBBPF_OPTS(bpf_map_create_opts, opts); 550 int fd; 551 552 opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags; 553 fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts); 554 if (fd < 0) { 555 if (skip_unsupported_map(type)) 556 return -1; 557 printf("Failed to create hash map '%s'!\n", strerror(errno)); 558 } 559 560 return fd; 561 } 562 563 static int create_map(uint32_t type, uint32_t size_key, 564 uint32_t size_value, uint32_t max_elem) 565 { 566 return __create_map(type, size_key, size_value, max_elem, 0); 567 } 568 569 static void update_map(int fd, int index) 570 { 571 struct test_val value = { 572 .index = (6 + 1) * sizeof(int), 573 .foo[6] = 0xabcdef12, 574 }; 575 576 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 577 } 578 579 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) 580 { 581 struct bpf_insn prog[] = { 582 BPF_MOV64_IMM(BPF_REG_0, ret), 583 BPF_EXIT_INSN(), 584 }; 585 586 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); 587 } 588 589 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, 590 int idx, int ret) 591 { 592 struct bpf_insn prog[] = { 593 BPF_MOV64_IMM(BPF_REG_3, idx), 594 BPF_LD_MAP_FD(BPF_REG_2, mfd), 595 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 596 BPF_FUNC_tail_call), 597 BPF_MOV64_IMM(BPF_REG_0, ret), 598 BPF_EXIT_INSN(), 599 }; 600 601 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); 602 } 603 604 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 605 int p1key, int p2key, int p3key) 606 { 607 int mfd, p1fd, p2fd, p3fd; 608 609 mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int), 610 sizeof(int), max_elem, NULL); 611 if (mfd < 0) { 612 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 613 return -1; 614 printf("Failed to create prog array '%s'!\n", strerror(errno)); 615 return -1; 616 } 617 618 p1fd = create_prog_dummy_simple(prog_type, 42); 619 p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); 620 p3fd = create_prog_dummy_simple(prog_type, 24); 621 if (p1fd < 0 || p2fd < 0 || p3fd < 0) 622 goto err; 623 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 624 goto err; 625 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 626 goto err; 627 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { 628 err: 629 close(mfd); 630 mfd = -1; 631 } 632 close(p3fd); 633 close(p2fd); 634 close(p1fd); 635 return mfd; 636 } 637 638 static int create_map_in_map(void) 639 { 640 LIBBPF_OPTS(bpf_map_create_opts, opts); 641 int inner_map_fd, outer_map_fd; 642 643 inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 644 sizeof(int), 1, NULL); 645 if (inner_map_fd < 0) { 646 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 647 return -1; 648 printf("Failed to create array '%s'!\n", strerror(errno)); 649 return inner_map_fd; 650 } 651 652 opts.inner_map_fd = inner_map_fd; 653 outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 654 sizeof(int), sizeof(int), 1, &opts); 655 if (outer_map_fd < 0) { 656 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 657 return -1; 658 printf("Failed to create array of maps '%s'!\n", 659 strerror(errno)); 660 } 661 662 close(inner_map_fd); 663 664 return outer_map_fd; 665 } 666 667 static int create_cgroup_storage(bool percpu) 668 { 669 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 670 BPF_MAP_TYPE_CGROUP_STORAGE; 671 int fd; 672 673 fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key), 674 TEST_DATA_LEN, 0, NULL); 675 if (fd < 0) { 676 if (skip_unsupported_map(type)) 677 return -1; 678 printf("Failed to create cgroup storage '%s'!\n", 679 strerror(errno)); 680 } 681 682 return fd; 683 } 684 685 /* struct bpf_spin_lock { 686 * int val; 687 * }; 688 * struct val { 689 * int cnt; 690 * struct bpf_spin_lock l; 691 * }; 692 * struct bpf_timer { 693 * __u64 :64; 694 * __u64 :64; 695 * } __attribute__((aligned(8))); 696 * struct timer { 697 * struct bpf_timer t; 698 * }; 699 * struct btf_ptr { 700 * struct prog_test_ref_kfunc __kptr_untrusted *ptr; 701 * struct prog_test_ref_kfunc __kptr *ptr; 702 * struct prog_test_member __kptr *ptr; 703 * } 704 */ 705 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t" 706 "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_untrusted" 707 "\0prog_test_member"; 708 static __u32 btf_raw_types[] = { 709 /* int */ 710 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 711 /* struct bpf_spin_lock */ /* [2] */ 712 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 713 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 714 /* struct val */ /* [3] */ 715 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 716 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 717 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 718 /* struct bpf_timer */ /* [4] */ 719 BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16), 720 /* struct timer */ /* [5] */ 721 BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16), 722 BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */ 723 /* struct prog_test_ref_kfunc */ /* [6] */ 724 BTF_STRUCT_ENC(51, 0, 0), 725 BTF_STRUCT_ENC(95, 0, 0), /* [7] */ 726 /* type tag "kptr_untrusted" */ 727 BTF_TYPE_TAG_ENC(80, 6), /* [8] */ 728 /* type tag "kptr" */ 729 BTF_TYPE_TAG_ENC(75, 6), /* [9] */ 730 BTF_TYPE_TAG_ENC(75, 7), /* [10] */ 731 BTF_PTR_ENC(8), /* [11] */ 732 BTF_PTR_ENC(9), /* [12] */ 733 BTF_PTR_ENC(10), /* [13] */ 734 /* struct btf_ptr */ /* [14] */ 735 BTF_STRUCT_ENC(43, 3, 24), 736 BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr_untrusted *ptr; */ 737 BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr *ptr; */ 738 BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr *ptr; */ 739 }; 740 741 static char bpf_vlog[UINT_MAX >> 8]; 742 743 static int load_btf_spec(__u32 *types, int types_len, 744 const char *strings, int strings_len) 745 { 746 struct btf_header hdr = { 747 .magic = BTF_MAGIC, 748 .version = BTF_VERSION, 749 .hdr_len = sizeof(struct btf_header), 750 .type_len = types_len, 751 .str_off = types_len, 752 .str_len = strings_len, 753 }; 754 void *ptr, *raw_btf; 755 int btf_fd; 756 LIBBPF_OPTS(bpf_btf_load_opts, opts, 757 .log_buf = bpf_vlog, 758 .log_size = sizeof(bpf_vlog), 759 .log_level = (verbose 760 ? verif_log_level 761 : DEFAULT_LIBBPF_LOG_LEVEL), 762 ); 763 764 raw_btf = malloc(sizeof(hdr) + types_len + strings_len); 765 766 ptr = raw_btf; 767 memcpy(ptr, &hdr, sizeof(hdr)); 768 ptr += sizeof(hdr); 769 memcpy(ptr, types, hdr.type_len); 770 ptr += hdr.type_len; 771 memcpy(ptr, strings, hdr.str_len); 772 ptr += hdr.str_len; 773 774 btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts); 775 if (btf_fd < 0) 776 printf("Failed to load BTF spec: '%s'\n", strerror(errno)); 777 778 free(raw_btf); 779 780 return btf_fd < 0 ? -1 : btf_fd; 781 } 782 783 static int load_btf(void) 784 { 785 return load_btf_spec(btf_raw_types, sizeof(btf_raw_types), 786 btf_str_sec, sizeof(btf_str_sec)); 787 } 788 789 static int load_btf_for_test(struct bpf_test *test) 790 { 791 int types_num = 0; 792 793 while (types_num < MAX_BTF_TYPES && 794 test->btf_types[types_num] != BTF_END_RAW) 795 ++types_num; 796 797 int types_len = types_num * sizeof(test->btf_types[0]); 798 799 return load_btf_spec(test->btf_types, types_len, 800 test->btf_strings, sizeof(test->btf_strings)); 801 } 802 803 static int create_map_spin_lock(void) 804 { 805 LIBBPF_OPTS(bpf_map_create_opts, opts, 806 .btf_key_type_id = 1, 807 .btf_value_type_id = 3, 808 ); 809 int fd, btf_fd; 810 811 btf_fd = load_btf(); 812 if (btf_fd < 0) 813 return -1; 814 opts.btf_fd = btf_fd; 815 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts); 816 if (fd < 0) 817 printf("Failed to create map with spin_lock\n"); 818 return fd; 819 } 820 821 static int create_sk_storage_map(void) 822 { 823 LIBBPF_OPTS(bpf_map_create_opts, opts, 824 .map_flags = BPF_F_NO_PREALLOC, 825 .btf_key_type_id = 1, 826 .btf_value_type_id = 3, 827 ); 828 int fd, btf_fd; 829 830 btf_fd = load_btf(); 831 if (btf_fd < 0) 832 return -1; 833 opts.btf_fd = btf_fd; 834 fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts); 835 close(opts.btf_fd); 836 if (fd < 0) 837 printf("Failed to create sk_storage_map\n"); 838 return fd; 839 } 840 841 static int create_map_timer(void) 842 { 843 LIBBPF_OPTS(bpf_map_create_opts, opts, 844 .btf_key_type_id = 1, 845 .btf_value_type_id = 5, 846 ); 847 int fd, btf_fd; 848 849 btf_fd = load_btf(); 850 if (btf_fd < 0) 851 return -1; 852 853 opts.btf_fd = btf_fd; 854 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts); 855 if (fd < 0) 856 printf("Failed to create map with timer\n"); 857 return fd; 858 } 859 860 static int create_map_kptr(void) 861 { 862 LIBBPF_OPTS(bpf_map_create_opts, opts, 863 .btf_key_type_id = 1, 864 .btf_value_type_id = 14, 865 ); 866 int fd, btf_fd; 867 868 btf_fd = load_btf(); 869 if (btf_fd < 0) 870 return -1; 871 872 opts.btf_fd = btf_fd; 873 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts); 874 if (fd < 0) 875 printf("Failed to create map with btf_id pointer\n"); 876 return fd; 877 } 878 879 static void set_root(bool set) 880 { 881 __u64 caps; 882 883 if (set) { 884 if (cap_enable_effective(1ULL << CAP_SYS_ADMIN, &caps)) 885 perror("cap_disable_effective(CAP_SYS_ADMIN)"); 886 } else { 887 if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) 888 perror("cap_disable_effective(CAP_SYS_ADMIN)"); 889 } 890 } 891 892 static __u64 ptr_to_u64(const void *ptr) 893 { 894 return (uintptr_t) ptr; 895 } 896 897 static struct btf *btf__load_testmod_btf(struct btf *vmlinux) 898 { 899 struct bpf_btf_info info; 900 __u32 len = sizeof(info); 901 struct btf *btf = NULL; 902 char name[64]; 903 __u32 id = 0; 904 int err, fd; 905 906 /* Iterate all loaded BTF objects and find bpf_testmod, 907 * we need SYS_ADMIN cap for that. 908 */ 909 set_root(true); 910 911 while (true) { 912 err = bpf_btf_get_next_id(id, &id); 913 if (err) { 914 if (errno == ENOENT) 915 break; 916 perror("bpf_btf_get_next_id failed"); 917 break; 918 } 919 920 fd = bpf_btf_get_fd_by_id(id); 921 if (fd < 0) { 922 if (errno == ENOENT) 923 continue; 924 perror("bpf_btf_get_fd_by_id failed"); 925 break; 926 } 927 928 memset(&info, 0, sizeof(info)); 929 info.name_len = sizeof(name); 930 info.name = ptr_to_u64(name); 931 len = sizeof(info); 932 933 err = bpf_obj_get_info_by_fd(fd, &info, &len); 934 if (err) { 935 close(fd); 936 perror("bpf_obj_get_info_by_fd failed"); 937 break; 938 } 939 940 if (strcmp("bpf_testmod", name)) { 941 close(fd); 942 continue; 943 } 944 945 btf = btf__load_from_kernel_by_id_split(id, vmlinux); 946 if (!btf) { 947 close(fd); 948 break; 949 } 950 951 /* We need the fd to stay open so it can be used in fd_array. 952 * The final cleanup call to btf__free will free btf object 953 * and close the file descriptor. 954 */ 955 btf__set_fd(btf, fd); 956 break; 957 } 958 959 set_root(false); 960 return btf; 961 } 962 963 static struct btf *testmod_btf; 964 static struct btf *vmlinux_btf; 965 966 static void kfuncs_cleanup(void) 967 { 968 btf__free(testmod_btf); 969 btf__free(vmlinux_btf); 970 } 971 972 static void fixup_prog_kfuncs(struct bpf_insn *prog, int *fd_array, 973 struct kfunc_btf_id_pair *fixup_kfunc_btf_id) 974 { 975 /* Patch in kfunc BTF IDs */ 976 while (fixup_kfunc_btf_id->kfunc) { 977 int btf_id = 0; 978 979 /* try to find kfunc in kernel BTF */ 980 vmlinux_btf = vmlinux_btf ?: btf__load_vmlinux_btf(); 981 if (vmlinux_btf) { 982 btf_id = btf__find_by_name_kind(vmlinux_btf, 983 fixup_kfunc_btf_id->kfunc, 984 BTF_KIND_FUNC); 985 btf_id = btf_id < 0 ? 0 : btf_id; 986 } 987 988 /* kfunc not found in kernel BTF, try bpf_testmod BTF */ 989 if (!btf_id) { 990 testmod_btf = testmod_btf ?: btf__load_testmod_btf(vmlinux_btf); 991 if (testmod_btf) { 992 btf_id = btf__find_by_name_kind(testmod_btf, 993 fixup_kfunc_btf_id->kfunc, 994 BTF_KIND_FUNC); 995 btf_id = btf_id < 0 ? 0 : btf_id; 996 if (btf_id) { 997 /* We put bpf_testmod module fd into fd_array 998 * and its index 1 into instruction 'off'. 999 */ 1000 *fd_array = btf__fd(testmod_btf); 1001 prog[fixup_kfunc_btf_id->insn_idx].off = 1; 1002 } 1003 } 1004 } 1005 1006 prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id; 1007 fixup_kfunc_btf_id++; 1008 } 1009 } 1010 1011 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 1012 struct bpf_insn *prog, int *map_fds, int *fd_array) 1013 { 1014 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 1015 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 1016 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 1017 int *fixup_map_array_48b = test->fixup_map_array_48b; 1018 int *fixup_map_sockmap = test->fixup_map_sockmap; 1019 int *fixup_map_sockhash = test->fixup_map_sockhash; 1020 int *fixup_map_xskmap = test->fixup_map_xskmap; 1021 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 1022 int *fixup_prog1 = test->fixup_prog1; 1023 int *fixup_prog2 = test->fixup_prog2; 1024 int *fixup_map_in_map = test->fixup_map_in_map; 1025 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 1026 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 1027 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 1028 int *fixup_map_array_ro = test->fixup_map_array_ro; 1029 int *fixup_map_array_wo = test->fixup_map_array_wo; 1030 int *fixup_map_array_small = test->fixup_map_array_small; 1031 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 1032 int *fixup_map_event_output = test->fixup_map_event_output; 1033 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; 1034 int *fixup_map_ringbuf = test->fixup_map_ringbuf; 1035 int *fixup_map_timer = test->fixup_map_timer; 1036 int *fixup_map_kptr = test->fixup_map_kptr; 1037 1038 if (test->fill_helper) { 1039 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 1040 test->fill_helper(test); 1041 } 1042 1043 /* Allocating HTs with 1 elem is fine here, since we only test 1044 * for verifier and not do a runtime lookup, so the only thing 1045 * that really matters is value size in this case. 1046 */ 1047 if (*fixup_map_hash_8b) { 1048 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 1049 sizeof(long long), 1); 1050 do { 1051 prog[*fixup_map_hash_8b].imm = map_fds[0]; 1052 fixup_map_hash_8b++; 1053 } while (*fixup_map_hash_8b); 1054 } 1055 1056 if (*fixup_map_hash_48b) { 1057 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 1058 sizeof(struct test_val), 1); 1059 do { 1060 prog[*fixup_map_hash_48b].imm = map_fds[1]; 1061 fixup_map_hash_48b++; 1062 } while (*fixup_map_hash_48b); 1063 } 1064 1065 if (*fixup_map_hash_16b) { 1066 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 1067 sizeof(struct other_val), 1); 1068 do { 1069 prog[*fixup_map_hash_16b].imm = map_fds[2]; 1070 fixup_map_hash_16b++; 1071 } while (*fixup_map_hash_16b); 1072 } 1073 1074 if (*fixup_map_array_48b) { 1075 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1076 sizeof(struct test_val), 1); 1077 update_map(map_fds[3], 0); 1078 do { 1079 prog[*fixup_map_array_48b].imm = map_fds[3]; 1080 fixup_map_array_48b++; 1081 } while (*fixup_map_array_48b); 1082 } 1083 1084 if (*fixup_prog1) { 1085 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); 1086 do { 1087 prog[*fixup_prog1].imm = map_fds[4]; 1088 fixup_prog1++; 1089 } while (*fixup_prog1); 1090 } 1091 1092 if (*fixup_prog2) { 1093 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); 1094 do { 1095 prog[*fixup_prog2].imm = map_fds[5]; 1096 fixup_prog2++; 1097 } while (*fixup_prog2); 1098 } 1099 1100 if (*fixup_map_in_map) { 1101 map_fds[6] = create_map_in_map(); 1102 do { 1103 prog[*fixup_map_in_map].imm = map_fds[6]; 1104 fixup_map_in_map++; 1105 } while (*fixup_map_in_map); 1106 } 1107 1108 if (*fixup_cgroup_storage) { 1109 map_fds[7] = create_cgroup_storage(false); 1110 do { 1111 prog[*fixup_cgroup_storage].imm = map_fds[7]; 1112 fixup_cgroup_storage++; 1113 } while (*fixup_cgroup_storage); 1114 } 1115 1116 if (*fixup_percpu_cgroup_storage) { 1117 map_fds[8] = create_cgroup_storage(true); 1118 do { 1119 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 1120 fixup_percpu_cgroup_storage++; 1121 } while (*fixup_percpu_cgroup_storage); 1122 } 1123 if (*fixup_map_sockmap) { 1124 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 1125 sizeof(int), 1); 1126 do { 1127 prog[*fixup_map_sockmap].imm = map_fds[9]; 1128 fixup_map_sockmap++; 1129 } while (*fixup_map_sockmap); 1130 } 1131 if (*fixup_map_sockhash) { 1132 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 1133 sizeof(int), 1); 1134 do { 1135 prog[*fixup_map_sockhash].imm = map_fds[10]; 1136 fixup_map_sockhash++; 1137 } while (*fixup_map_sockhash); 1138 } 1139 if (*fixup_map_xskmap) { 1140 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 1141 sizeof(int), 1); 1142 do { 1143 prog[*fixup_map_xskmap].imm = map_fds[11]; 1144 fixup_map_xskmap++; 1145 } while (*fixup_map_xskmap); 1146 } 1147 if (*fixup_map_stacktrace) { 1148 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 1149 sizeof(u64), 1); 1150 do { 1151 prog[*fixup_map_stacktrace].imm = map_fds[12]; 1152 fixup_map_stacktrace++; 1153 } while (*fixup_map_stacktrace); 1154 } 1155 if (*fixup_map_spin_lock) { 1156 map_fds[13] = create_map_spin_lock(); 1157 do { 1158 prog[*fixup_map_spin_lock].imm = map_fds[13]; 1159 fixup_map_spin_lock++; 1160 } while (*fixup_map_spin_lock); 1161 } 1162 if (*fixup_map_array_ro) { 1163 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1164 sizeof(struct test_val), 1, 1165 BPF_F_RDONLY_PROG); 1166 update_map(map_fds[14], 0); 1167 do { 1168 prog[*fixup_map_array_ro].imm = map_fds[14]; 1169 fixup_map_array_ro++; 1170 } while (*fixup_map_array_ro); 1171 } 1172 if (*fixup_map_array_wo) { 1173 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1174 sizeof(struct test_val), 1, 1175 BPF_F_WRONLY_PROG); 1176 update_map(map_fds[15], 0); 1177 do { 1178 prog[*fixup_map_array_wo].imm = map_fds[15]; 1179 fixup_map_array_wo++; 1180 } while (*fixup_map_array_wo); 1181 } 1182 if (*fixup_map_array_small) { 1183 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1184 1, 1, 0); 1185 update_map(map_fds[16], 0); 1186 do { 1187 prog[*fixup_map_array_small].imm = map_fds[16]; 1188 fixup_map_array_small++; 1189 } while (*fixup_map_array_small); 1190 } 1191 if (*fixup_sk_storage_map) { 1192 map_fds[17] = create_sk_storage_map(); 1193 do { 1194 prog[*fixup_sk_storage_map].imm = map_fds[17]; 1195 fixup_sk_storage_map++; 1196 } while (*fixup_sk_storage_map); 1197 } 1198 if (*fixup_map_event_output) { 1199 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, 1200 sizeof(int), sizeof(int), 1, 0); 1201 do { 1202 prog[*fixup_map_event_output].imm = map_fds[18]; 1203 fixup_map_event_output++; 1204 } while (*fixup_map_event_output); 1205 } 1206 if (*fixup_map_reuseport_array) { 1207 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 1208 sizeof(u32), sizeof(u64), 1, 0); 1209 do { 1210 prog[*fixup_map_reuseport_array].imm = map_fds[19]; 1211 fixup_map_reuseport_array++; 1212 } while (*fixup_map_reuseport_array); 1213 } 1214 if (*fixup_map_ringbuf) { 1215 map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0, 1216 0, getpagesize()); 1217 do { 1218 prog[*fixup_map_ringbuf].imm = map_fds[20]; 1219 fixup_map_ringbuf++; 1220 } while (*fixup_map_ringbuf); 1221 } 1222 if (*fixup_map_timer) { 1223 map_fds[21] = create_map_timer(); 1224 do { 1225 prog[*fixup_map_timer].imm = map_fds[21]; 1226 fixup_map_timer++; 1227 } while (*fixup_map_timer); 1228 } 1229 if (*fixup_map_kptr) { 1230 map_fds[22] = create_map_kptr(); 1231 do { 1232 prog[*fixup_map_kptr].imm = map_fds[22]; 1233 fixup_map_kptr++; 1234 } while (*fixup_map_kptr); 1235 } 1236 1237 fixup_prog_kfuncs(prog, fd_array, test->fixup_kfunc_btf_id); 1238 } 1239 1240 static int set_admin(bool admin) 1241 { 1242 int err; 1243 1244 if (admin) { 1245 err = cap_enable_effective(ADMIN_CAPS, NULL); 1246 if (err) 1247 perror("cap_enable_effective(ADMIN_CAPS)"); 1248 } else { 1249 err = cap_disable_effective(ADMIN_CAPS, NULL); 1250 if (err) 1251 perror("cap_disable_effective(ADMIN_CAPS)"); 1252 } 1253 1254 return err; 1255 } 1256 1257 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 1258 void *data, size_t size_data) 1259 { 1260 __u8 tmp[TEST_DATA_LEN << 2]; 1261 __u32 size_tmp = sizeof(tmp); 1262 int err, saved_errno; 1263 LIBBPF_OPTS(bpf_test_run_opts, topts, 1264 .data_in = data, 1265 .data_size_in = size_data, 1266 .data_out = tmp, 1267 .data_size_out = size_tmp, 1268 .repeat = 1, 1269 ); 1270 1271 if (unpriv) 1272 set_admin(true); 1273 err = bpf_prog_test_run_opts(fd_prog, &topts); 1274 saved_errno = errno; 1275 1276 if (unpriv) 1277 set_admin(false); 1278 1279 if (err) { 1280 switch (saved_errno) { 1281 case ENOTSUPP: 1282 printf("Did not run the program (not supported) "); 1283 return 0; 1284 case EPERM: 1285 if (unpriv) { 1286 printf("Did not run the program (no permission) "); 1287 return 0; 1288 } 1289 /* fallthrough; */ 1290 default: 1291 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ", 1292 strerror(saved_errno)); 1293 return err; 1294 } 1295 } 1296 1297 if (topts.retval != expected_val && expected_val != POINTER_VALUE) { 1298 printf("FAIL retval %d != %d ", topts.retval, expected_val); 1299 return 1; 1300 } 1301 1302 return 0; 1303 } 1304 1305 /* Returns true if every part of exp (tab-separated) appears in log, in order. 1306 * 1307 * If exp is an empty string, returns true. 1308 */ 1309 static bool cmp_str_seq(const char *log, const char *exp) 1310 { 1311 char needle[200]; 1312 const char *p, *q; 1313 int len; 1314 1315 do { 1316 if (!strlen(exp)) 1317 break; 1318 p = strchr(exp, '\t'); 1319 if (!p) 1320 p = exp + strlen(exp); 1321 1322 len = p - exp; 1323 if (len >= sizeof(needle) || !len) { 1324 printf("FAIL\nTestcase bug\n"); 1325 return false; 1326 } 1327 strncpy(needle, exp, len); 1328 needle[len] = 0; 1329 q = strstr(log, needle); 1330 if (!q) { 1331 printf("FAIL\nUnexpected verifier log!\n" 1332 "EXP: %s\nRES:\n", needle); 1333 return false; 1334 } 1335 log = q + len; 1336 exp = p + 1; 1337 } while (*p); 1338 return true; 1339 } 1340 1341 static bool is_null_insn(struct bpf_insn *insn) 1342 { 1343 struct bpf_insn null_insn = {}; 1344 1345 return memcmp(insn, &null_insn, sizeof(null_insn)) == 0; 1346 } 1347 1348 static bool is_skip_insn(struct bpf_insn *insn) 1349 { 1350 struct bpf_insn skip_insn = SKIP_INSNS(); 1351 1352 return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0; 1353 } 1354 1355 static int null_terminated_insn_len(struct bpf_insn *seq, int max_len) 1356 { 1357 int i; 1358 1359 for (i = 0; i < max_len; ++i) { 1360 if (is_null_insn(&seq[i])) 1361 return i; 1362 } 1363 return max_len; 1364 } 1365 1366 static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked) 1367 { 1368 struct bpf_insn orig_masked; 1369 1370 memcpy(&orig_masked, orig, sizeof(orig_masked)); 1371 if (masked->imm == INSN_IMM_MASK) 1372 orig_masked.imm = INSN_IMM_MASK; 1373 if (masked->off == INSN_OFF_MASK) 1374 orig_masked.off = INSN_OFF_MASK; 1375 1376 return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0; 1377 } 1378 1379 static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq, 1380 int seq_len, int subseq_len) 1381 { 1382 int i, j; 1383 1384 if (subseq_len > seq_len) 1385 return -1; 1386 1387 for (i = 0; i < seq_len - subseq_len + 1; ++i) { 1388 bool found = true; 1389 1390 for (j = 0; j < subseq_len; ++j) { 1391 if (!compare_masked_insn(&seq[i + j], &subseq[j])) { 1392 found = false; 1393 break; 1394 } 1395 } 1396 if (found) 1397 return i; 1398 } 1399 1400 return -1; 1401 } 1402 1403 static int find_skip_insn_marker(struct bpf_insn *seq, int len) 1404 { 1405 int i; 1406 1407 for (i = 0; i < len; ++i) 1408 if (is_skip_insn(&seq[i])) 1409 return i; 1410 1411 return -1; 1412 } 1413 1414 /* Return true if all sub-sequences in `subseqs` could be found in 1415 * `seq` one after another. Sub-sequences are separated by a single 1416 * nil instruction. 1417 */ 1418 static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs, 1419 int seq_len, int max_subseqs_len) 1420 { 1421 int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len); 1422 1423 while (subseqs_len > 0) { 1424 int skip_idx = find_skip_insn_marker(subseqs, subseqs_len); 1425 int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx; 1426 int subseq_idx = find_insn_subseq(seq, subseqs, 1427 seq_len, cur_subseq_len); 1428 1429 if (subseq_idx < 0) 1430 return false; 1431 seq += subseq_idx + cur_subseq_len; 1432 seq_len -= subseq_idx + cur_subseq_len; 1433 subseqs += cur_subseq_len + 1; 1434 subseqs_len -= cur_subseq_len + 1; 1435 } 1436 1437 return true; 1438 } 1439 1440 static void print_insn(struct bpf_insn *buf, int cnt) 1441 { 1442 int i; 1443 1444 printf(" addr op d s off imm\n"); 1445 for (i = 0; i < cnt; ++i) { 1446 struct bpf_insn *insn = &buf[i]; 1447 1448 if (is_null_insn(insn)) 1449 break; 1450 1451 if (is_skip_insn(insn)) 1452 printf(" ...\n"); 1453 else 1454 printf(" %04x: %02x %1x %x %04hx %08x\n", 1455 i, insn->code, insn->dst_reg, 1456 insn->src_reg, insn->off, insn->imm); 1457 } 1458 } 1459 1460 static bool check_xlated_program(struct bpf_test *test, int fd_prog) 1461 { 1462 struct bpf_insn *buf; 1463 unsigned int cnt; 1464 bool result = true; 1465 bool check_expected = !is_null_insn(test->expected_insns); 1466 bool check_unexpected = !is_null_insn(test->unexpected_insns); 1467 1468 if (!check_expected && !check_unexpected) 1469 goto out; 1470 1471 if (get_xlated_program(fd_prog, &buf, &cnt)) { 1472 printf("FAIL: can't get xlated program\n"); 1473 result = false; 1474 goto out; 1475 } 1476 1477 if (check_expected && 1478 !find_all_insn_subseqs(buf, test->expected_insns, 1479 cnt, MAX_EXPECTED_INSNS)) { 1480 printf("FAIL: can't find expected subsequence of instructions\n"); 1481 result = false; 1482 if (verbose) { 1483 printf("Program:\n"); 1484 print_insn(buf, cnt); 1485 printf("Expected subsequence:\n"); 1486 print_insn(test->expected_insns, MAX_EXPECTED_INSNS); 1487 } 1488 } 1489 1490 if (check_unexpected && 1491 find_all_insn_subseqs(buf, test->unexpected_insns, 1492 cnt, MAX_UNEXPECTED_INSNS)) { 1493 printf("FAIL: found unexpected subsequence of instructions\n"); 1494 result = false; 1495 if (verbose) { 1496 printf("Program:\n"); 1497 print_insn(buf, cnt); 1498 printf("Un-expected subsequence:\n"); 1499 print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS); 1500 } 1501 } 1502 1503 free(buf); 1504 out: 1505 return result; 1506 } 1507 1508 static void do_test_single(struct bpf_test *test, bool unpriv, 1509 int *passes, int *errors) 1510 { 1511 int fd_prog, btf_fd, expected_ret, alignment_prevented_execution; 1512 int prog_len, prog_type = test->prog_type; 1513 struct bpf_insn *prog = test->insns; 1514 LIBBPF_OPTS(bpf_prog_load_opts, opts); 1515 int run_errs, run_successes; 1516 int map_fds[MAX_NR_MAPS]; 1517 const char *expected_err; 1518 int fd_array[2] = { -1, -1 }; 1519 int saved_errno; 1520 int fixup_skips; 1521 __u32 pflags; 1522 int i, err; 1523 1524 if ((test->flags & F_NEEDS_JIT_ENABLED) && jit_disabled) { 1525 printf("SKIP (requires BPF JIT)\n"); 1526 skips++; 1527 sched_yield(); 1528 return; 1529 } 1530 1531 fd_prog = -1; 1532 for (i = 0; i < MAX_NR_MAPS; i++) 1533 map_fds[i] = -1; 1534 btf_fd = -1; 1535 1536 if (!prog_type) 1537 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 1538 fixup_skips = skips; 1539 do_test_fixup(test, prog_type, prog, map_fds, &fd_array[1]); 1540 if (test->fill_insns) { 1541 prog = test->fill_insns; 1542 prog_len = test->prog_len; 1543 } else { 1544 prog_len = probe_filter_length(prog); 1545 } 1546 /* If there were some map skips during fixup due to missing bpf 1547 * features, skip this test. 1548 */ 1549 if (fixup_skips != skips) 1550 return; 1551 1552 pflags = testing_prog_flags(); 1553 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 1554 pflags |= BPF_F_STRICT_ALIGNMENT; 1555 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1556 pflags |= BPF_F_ANY_ALIGNMENT; 1557 if (test->flags & ~3) 1558 pflags |= test->flags; 1559 1560 expected_ret = unpriv && test->result_unpriv != UNDEF ? 1561 test->result_unpriv : test->result; 1562 expected_err = unpriv && test->errstr_unpriv ? 1563 test->errstr_unpriv : test->errstr; 1564 1565 opts.expected_attach_type = test->expected_attach_type; 1566 if (verbose) 1567 opts.log_level = verif_log_level | 4; /* force stats */ 1568 else if (expected_ret == VERBOSE_ACCEPT) 1569 opts.log_level = 2; 1570 else 1571 opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL; 1572 opts.prog_flags = pflags; 1573 if (fd_array[1] != -1) 1574 opts.fd_array = &fd_array[0]; 1575 1576 if ((prog_type == BPF_PROG_TYPE_TRACING || 1577 prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) { 1578 int attach_btf_id; 1579 1580 attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc, 1581 opts.expected_attach_type); 1582 if (attach_btf_id < 0) { 1583 printf("FAIL\nFailed to find BTF ID for '%s'!\n", 1584 test->kfunc); 1585 (*errors)++; 1586 return; 1587 } 1588 1589 opts.attach_btf_id = attach_btf_id; 1590 } 1591 1592 if (test->btf_types[0] != 0) { 1593 btf_fd = load_btf_for_test(test); 1594 if (btf_fd < 0) 1595 goto fail_log; 1596 opts.prog_btf_fd = btf_fd; 1597 } 1598 1599 if (test->func_info_cnt != 0) { 1600 opts.func_info = test->func_info; 1601 opts.func_info_cnt = test->func_info_cnt; 1602 opts.func_info_rec_size = sizeof(test->func_info[0]); 1603 } 1604 1605 opts.log_buf = bpf_vlog; 1606 opts.log_size = sizeof(bpf_vlog); 1607 fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts); 1608 saved_errno = errno; 1609 1610 /* BPF_PROG_TYPE_TRACING requires more setup and 1611 * bpf_probe_prog_type won't give correct answer 1612 */ 1613 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING && 1614 !libbpf_probe_bpf_prog_type(prog_type, NULL)) { 1615 printf("SKIP (unsupported program type %d)\n", prog_type); 1616 skips++; 1617 goto close_fds; 1618 } 1619 1620 if (fd_prog < 0 && saved_errno == ENOTSUPP) { 1621 printf("SKIP (program uses an unsupported feature)\n"); 1622 skips++; 1623 goto close_fds; 1624 } 1625 1626 alignment_prevented_execution = 0; 1627 1628 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { 1629 if (fd_prog < 0) { 1630 printf("FAIL\nFailed to load prog '%s'!\n", 1631 strerror(saved_errno)); 1632 goto fail_log; 1633 } 1634 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1635 if (fd_prog >= 0 && 1636 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 1637 alignment_prevented_execution = 1; 1638 #endif 1639 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { 1640 goto fail_log; 1641 } 1642 } else { 1643 if (fd_prog >= 0) { 1644 printf("FAIL\nUnexpected success to load!\n"); 1645 goto fail_log; 1646 } 1647 if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) { 1648 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 1649 expected_err, bpf_vlog); 1650 goto fail_log; 1651 } 1652 } 1653 1654 if (!unpriv && test->insn_processed) { 1655 uint32_t insn_processed; 1656 char *proc; 1657 1658 proc = strstr(bpf_vlog, "processed "); 1659 insn_processed = atoi(proc + 10); 1660 if (test->insn_processed != insn_processed) { 1661 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 1662 insn_processed, test->insn_processed); 1663 goto fail_log; 1664 } 1665 } 1666 1667 if (verbose) 1668 printf(", verifier log:\n%s", bpf_vlog); 1669 1670 if (!check_xlated_program(test, fd_prog)) 1671 goto fail_log; 1672 1673 run_errs = 0; 1674 run_successes = 0; 1675 if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) { 1676 uint32_t expected_val; 1677 int i; 1678 1679 if (!test->runs) 1680 test->runs = 1; 1681 1682 for (i = 0; i < test->runs; i++) { 1683 if (unpriv && test->retvals[i].retval_unpriv) 1684 expected_val = test->retvals[i].retval_unpriv; 1685 else 1686 expected_val = test->retvals[i].retval; 1687 1688 err = do_prog_test_run(fd_prog, unpriv, expected_val, 1689 test->retvals[i].data, 1690 sizeof(test->retvals[i].data)); 1691 if (err) { 1692 printf("(run %d/%d) ", i + 1, test->runs); 1693 run_errs++; 1694 } else { 1695 run_successes++; 1696 } 1697 } 1698 } 1699 1700 if (!run_errs) { 1701 (*passes)++; 1702 if (run_successes > 1) 1703 printf("%d cases ", run_successes); 1704 printf("OK"); 1705 if (alignment_prevented_execution) 1706 printf(" (NOTE: not executed due to unknown alignment)"); 1707 printf("\n"); 1708 } else { 1709 printf("\n"); 1710 goto fail_log; 1711 } 1712 close_fds: 1713 if (test->fill_insns) 1714 free(test->fill_insns); 1715 close(fd_prog); 1716 close(btf_fd); 1717 for (i = 0; i < MAX_NR_MAPS; i++) 1718 close(map_fds[i]); 1719 sched_yield(); 1720 return; 1721 fail_log: 1722 (*errors)++; 1723 printf("%s", bpf_vlog); 1724 goto close_fds; 1725 } 1726 1727 static bool is_admin(void) 1728 { 1729 __u64 caps; 1730 1731 /* The test checks for finer cap as CAP_NET_ADMIN, 1732 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN. 1733 * Thus, disable CAP_SYS_ADMIN at the beginning. 1734 */ 1735 if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) { 1736 perror("cap_disable_effective(CAP_SYS_ADMIN)"); 1737 return false; 1738 } 1739 1740 return (caps & ADMIN_CAPS) == ADMIN_CAPS; 1741 } 1742 1743 static bool test_as_unpriv(struct bpf_test *test) 1744 { 1745 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1746 /* Some architectures have strict alignment requirements. In 1747 * that case, the BPF verifier detects if a program has 1748 * unaligned accesses and rejects them. A user can pass 1749 * BPF_F_ANY_ALIGNMENT to a program to override this 1750 * check. That, however, will only work when a privileged user 1751 * loads a program. An unprivileged user loading a program 1752 * with this flag will be rejected prior entering the 1753 * verifier. 1754 */ 1755 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1756 return false; 1757 #endif 1758 return !test->prog_type || 1759 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1760 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1761 } 1762 1763 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1764 { 1765 int i, passes = 0, errors = 0; 1766 1767 /* ensure previous instance of the module is unloaded */ 1768 unload_bpf_testmod(verbose); 1769 1770 if (load_bpf_testmod(verbose)) 1771 return EXIT_FAILURE; 1772 1773 for (i = from; i < to; i++) { 1774 struct bpf_test *test = &tests[i]; 1775 1776 /* Program types that are not supported by non-root we 1777 * skip right away. 1778 */ 1779 if (test_as_unpriv(test) && unpriv_disabled) { 1780 printf("#%d/u %s SKIP\n", i, test->descr); 1781 skips++; 1782 } else if (test_as_unpriv(test)) { 1783 if (!unpriv) 1784 set_admin(false); 1785 printf("#%d/u %s ", i, test->descr); 1786 do_test_single(test, true, &passes, &errors); 1787 if (!unpriv) 1788 set_admin(true); 1789 } 1790 1791 if (unpriv) { 1792 printf("#%d/p %s SKIP\n", i, test->descr); 1793 skips++; 1794 } else { 1795 printf("#%d/p %s ", i, test->descr); 1796 do_test_single(test, false, &passes, &errors); 1797 } 1798 } 1799 1800 unload_bpf_testmod(verbose); 1801 kfuncs_cleanup(); 1802 1803 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1804 skips, errors); 1805 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1806 } 1807 1808 int main(int argc, char **argv) 1809 { 1810 unsigned int from = 0, to = ARRAY_SIZE(tests); 1811 bool unpriv = !is_admin(); 1812 int arg = 1; 1813 1814 if (argc > 1 && strcmp(argv[1], "-v") == 0) { 1815 arg++; 1816 verbose = true; 1817 verif_log_level = 1; 1818 argc--; 1819 } 1820 if (argc > 1 && strcmp(argv[1], "-vv") == 0) { 1821 arg++; 1822 verbose = true; 1823 verif_log_level = 2; 1824 argc--; 1825 } 1826 1827 if (argc == 3) { 1828 unsigned int l = atoi(argv[arg]); 1829 unsigned int u = atoi(argv[arg + 1]); 1830 1831 if (l < to && u < to) { 1832 from = l; 1833 to = u + 1; 1834 } 1835 } else if (argc == 2) { 1836 unsigned int t = atoi(argv[arg]); 1837 1838 if (t < to) { 1839 from = t; 1840 to = t + 1; 1841 } 1842 } 1843 1844 unpriv_disabled = get_unpriv_disabled(); 1845 if (unpriv && unpriv_disabled) { 1846 printf("Cannot run as unprivileged user with sysctl %s.\n", 1847 UNPRIV_SYSCTL); 1848 return EXIT_FAILURE; 1849 } 1850 1851 jit_disabled = !is_jit_enabled(); 1852 1853 /* Use libbpf 1.0 API mode */ 1854 libbpf_set_strict_mode(LIBBPF_STRICT_ALL); 1855 1856 bpf_semi_rand_init(); 1857 return do_test(unpriv, from, to); 1858 } 1859
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.