~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/testing/selftests/cgroup/test_memcontrol.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #define _GNU_SOURCE
  3 
  4 #include <linux/limits.h>
  5 #include <linux/oom.h>
  6 #include <fcntl.h>
  7 #include <stdio.h>
  8 #include <stdlib.h>
  9 #include <string.h>
 10 #include <sys/stat.h>
 11 #include <sys/types.h>
 12 #include <unistd.h>
 13 #include <sys/socket.h>
 14 #include <sys/wait.h>
 15 #include <arpa/inet.h>
 16 #include <netinet/in.h>
 17 #include <netdb.h>
 18 #include <errno.h>
 19 #include <sys/mman.h>
 20 
 21 #include "../kselftest.h"
 22 #include "cgroup_util.h"
 23 
 24 static bool has_localevents;
 25 static bool has_recursiveprot;
 26 
 27 /*
 28  * This test creates two nested cgroups with and without enabling
 29  * the memory controller.
 30  */
 31 static int test_memcg_subtree_control(const char *root)
 32 {
 33         char *parent, *child, *parent2 = NULL, *child2 = NULL;
 34         int ret = KSFT_FAIL;
 35         char buf[PAGE_SIZE];
 36 
 37         /* Create two nested cgroups with the memory controller enabled */
 38         parent = cg_name(root, "memcg_test_0");
 39         child = cg_name(root, "memcg_test_0/memcg_test_1");
 40         if (!parent || !child)
 41                 goto cleanup_free;
 42 
 43         if (cg_create(parent))
 44                 goto cleanup_free;
 45 
 46         if (cg_write(parent, "cgroup.subtree_control", "+memory"))
 47                 goto cleanup_parent;
 48 
 49         if (cg_create(child))
 50                 goto cleanup_parent;
 51 
 52         if (cg_read_strstr(child, "cgroup.controllers", "memory"))
 53                 goto cleanup_child;
 54 
 55         /* Create two nested cgroups without enabling memory controller */
 56         parent2 = cg_name(root, "memcg_test_1");
 57         child2 = cg_name(root, "memcg_test_1/memcg_test_1");
 58         if (!parent2 || !child2)
 59                 goto cleanup_free2;
 60 
 61         if (cg_create(parent2))
 62                 goto cleanup_free2;
 63 
 64         if (cg_create(child2))
 65                 goto cleanup_parent2;
 66 
 67         if (cg_read(child2, "cgroup.controllers", buf, sizeof(buf)))
 68                 goto cleanup_all;
 69 
 70         if (!cg_read_strstr(child2, "cgroup.controllers", "memory"))
 71                 goto cleanup_all;
 72 
 73         ret = KSFT_PASS;
 74 
 75 cleanup_all:
 76         cg_destroy(child2);
 77 cleanup_parent2:
 78         cg_destroy(parent2);
 79 cleanup_free2:
 80         free(parent2);
 81         free(child2);
 82 cleanup_child:
 83         cg_destroy(child);
 84 cleanup_parent:
 85         cg_destroy(parent);
 86 cleanup_free:
 87         free(parent);
 88         free(child);
 89 
 90         return ret;
 91 }
 92 
 93 static int alloc_anon_50M_check(const char *cgroup, void *arg)
 94 {
 95         size_t size = MB(50);
 96         char *buf, *ptr;
 97         long anon, current;
 98         int ret = -1;
 99 
100         buf = malloc(size);
101         if (buf == NULL) {
102                 fprintf(stderr, "malloc() failed\n");
103                 return -1;
104         }
105 
106         for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
107                 *ptr = 0;
108 
109         current = cg_read_long(cgroup, "memory.current");
110         if (current < size)
111                 goto cleanup;
112 
113         if (!values_close(size, current, 3))
114                 goto cleanup;
115 
116         anon = cg_read_key_long(cgroup, "memory.stat", "anon ");
117         if (anon < 0)
118                 goto cleanup;
119 
120         if (!values_close(anon, current, 3))
121                 goto cleanup;
122 
123         ret = 0;
124 cleanup:
125         free(buf);
126         return ret;
127 }
128 
129 static int alloc_pagecache_50M_check(const char *cgroup, void *arg)
130 {
131         size_t size = MB(50);
132         int ret = -1;
133         long current, file;
134         int fd;
135 
136         fd = get_temp_fd();
137         if (fd < 0)
138                 return -1;
139 
140         if (alloc_pagecache(fd, size))
141                 goto cleanup;
142 
143         current = cg_read_long(cgroup, "memory.current");
144         if (current < size)
145                 goto cleanup;
146 
147         file = cg_read_key_long(cgroup, "memory.stat", "file ");
148         if (file < 0)
149                 goto cleanup;
150 
151         if (!values_close(file, current, 10))
152                 goto cleanup;
153 
154         ret = 0;
155 
156 cleanup:
157         close(fd);
158         return ret;
159 }
160 
161 /*
162  * This test create a memory cgroup, allocates
163  * some anonymous memory and some pagecache
164  * and check memory.current and some memory.stat values.
165  */
166 static int test_memcg_current(const char *root)
167 {
168         int ret = KSFT_FAIL;
169         long current;
170         char *memcg;
171 
172         memcg = cg_name(root, "memcg_test");
173         if (!memcg)
174                 goto cleanup;
175 
176         if (cg_create(memcg))
177                 goto cleanup;
178 
179         current = cg_read_long(memcg, "memory.current");
180         if (current != 0)
181                 goto cleanup;
182 
183         if (cg_run(memcg, alloc_anon_50M_check, NULL))
184                 goto cleanup;
185 
186         if (cg_run(memcg, alloc_pagecache_50M_check, NULL))
187                 goto cleanup;
188 
189         ret = KSFT_PASS;
190 
191 cleanup:
192         cg_destroy(memcg);
193         free(memcg);
194 
195         return ret;
196 }
197 
198 static int alloc_pagecache_50M_noexit(const char *cgroup, void *arg)
199 {
200         int fd = (long)arg;
201         int ppid = getppid();
202 
203         if (alloc_pagecache(fd, MB(50)))
204                 return -1;
205 
206         while (getppid() == ppid)
207                 sleep(1);
208 
209         return 0;
210 }
211 
212 static int alloc_anon_noexit(const char *cgroup, void *arg)
213 {
214         int ppid = getppid();
215         size_t size = (unsigned long)arg;
216         char *buf, *ptr;
217 
218         buf = malloc(size);
219         if (buf == NULL) {
220                 fprintf(stderr, "malloc() failed\n");
221                 return -1;
222         }
223 
224         for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
225                 *ptr = 0;
226 
227         while (getppid() == ppid)
228                 sleep(1);
229 
230         free(buf);
231         return 0;
232 }
233 
234 /*
235  * Wait until processes are killed asynchronously by the OOM killer
236  * If we exceed a timeout, fail.
237  */
238 static int cg_test_proc_killed(const char *cgroup)
239 {
240         int limit;
241 
242         for (limit = 10; limit > 0; limit--) {
243                 if (cg_read_strcmp(cgroup, "cgroup.procs", "") == 0)
244                         return 0;
245 
246                 usleep(100000);
247         }
248         return -1;
249 }
250 
251 static bool reclaim_until(const char *memcg, long goal);
252 
253 /*
254  * First, this test creates the following hierarchy:
255  * A       memory.min = 0,    memory.max = 200M
256  * A/B     memory.min = 50M
257  * A/B/C   memory.min = 75M,  memory.current = 50M
258  * A/B/D   memory.min = 25M,  memory.current = 50M
259  * A/B/E   memory.min = 0,    memory.current = 50M
260  * A/B/F   memory.min = 500M, memory.current = 0
261  *
262  * (or memory.low if we test soft protection)
263  *
264  * Usages are pagecache and the test keeps a running
265  * process in every leaf cgroup.
266  * Then it creates A/G and creates a significant
267  * memory pressure in A.
268  *
269  * Then it checks actual memory usages and expects that:
270  * A/B    memory.current ~= 50M
271  * A/B/C  memory.current ~= 29M
272  * A/B/D  memory.current ~= 21M
273  * A/B/E  memory.current ~= 0
274  * A/B/F  memory.current  = 0
275  * (for origin of the numbers, see model in memcg_protection.m.)
276  *
277  * After that it tries to allocate more than there is
278  * unprotected memory in A available, and checks that:
279  * a) memory.min protects pagecache even in this case,
280  * b) memory.low allows reclaiming page cache with low events.
281  *
282  * Then we try to reclaim from A/B/C using memory.reclaim until its
283  * usage reaches 10M.
284  * This makes sure that:
285  * (a) We ignore the protection of the reclaim target memcg.
286  * (b) The previously calculated emin value (~29M) should be dismissed.
287  */
288 static int test_memcg_protection(const char *root, bool min)
289 {
290         int ret = KSFT_FAIL, rc;
291         char *parent[3] = {NULL};
292         char *children[4] = {NULL};
293         const char *attribute = min ? "memory.min" : "memory.low";
294         long c[4];
295         long current;
296         int i, attempts;
297         int fd;
298 
299         fd = get_temp_fd();
300         if (fd < 0)
301                 goto cleanup;
302 
303         parent[0] = cg_name(root, "memcg_test_0");
304         if (!parent[0])
305                 goto cleanup;
306 
307         parent[1] = cg_name(parent[0], "memcg_test_1");
308         if (!parent[1])
309                 goto cleanup;
310 
311         parent[2] = cg_name(parent[0], "memcg_test_2");
312         if (!parent[2])
313                 goto cleanup;
314 
315         if (cg_create(parent[0]))
316                 goto cleanup;
317 
318         if (cg_read_long(parent[0], attribute)) {
319                 /* No memory.min on older kernels is fine */
320                 if (min)
321                         ret = KSFT_SKIP;
322                 goto cleanup;
323         }
324 
325         if (cg_write(parent[0], "cgroup.subtree_control", "+memory"))
326                 goto cleanup;
327 
328         if (cg_write(parent[0], "memory.max", "200M"))
329                 goto cleanup;
330 
331         if (cg_write(parent[0], "memory.swap.max", ""))
332                 goto cleanup;
333 
334         if (cg_create(parent[1]))
335                 goto cleanup;
336 
337         if (cg_write(parent[1], "cgroup.subtree_control", "+memory"))
338                 goto cleanup;
339 
340         if (cg_create(parent[2]))
341                 goto cleanup;
342 
343         for (i = 0; i < ARRAY_SIZE(children); i++) {
344                 children[i] = cg_name_indexed(parent[1], "child_memcg", i);
345                 if (!children[i])
346                         goto cleanup;
347 
348                 if (cg_create(children[i]))
349                         goto cleanup;
350 
351                 if (i > 2)
352                         continue;
353 
354                 cg_run_nowait(children[i], alloc_pagecache_50M_noexit,
355                               (void *)(long)fd);
356         }
357 
358         if (cg_write(parent[1],   attribute, "50M"))
359                 goto cleanup;
360         if (cg_write(children[0], attribute, "75M"))
361                 goto cleanup;
362         if (cg_write(children[1], attribute, "25M"))
363                 goto cleanup;
364         if (cg_write(children[2], attribute, ""))
365                 goto cleanup;
366         if (cg_write(children[3], attribute, "500M"))
367                 goto cleanup;
368 
369         attempts = 0;
370         while (!values_close(cg_read_long(parent[1], "memory.current"),
371                              MB(150), 3)) {
372                 if (attempts++ > 5)
373                         break;
374                 sleep(1);
375         }
376 
377         if (cg_run(parent[2], alloc_anon, (void *)MB(148)))
378                 goto cleanup;
379 
380         if (!values_close(cg_read_long(parent[1], "memory.current"), MB(50), 3))
381                 goto cleanup;
382 
383         for (i = 0; i < ARRAY_SIZE(children); i++)
384                 c[i] = cg_read_long(children[i], "memory.current");
385 
386         if (!values_close(c[0], MB(29), 10))
387                 goto cleanup;
388 
389         if (!values_close(c[1], MB(21), 10))
390                 goto cleanup;
391 
392         if (c[3] != 0)
393                 goto cleanup;
394 
395         rc = cg_run(parent[2], alloc_anon, (void *)MB(170));
396         if (min && !rc)
397                 goto cleanup;
398         else if (!min && rc) {
399                 fprintf(stderr,
400                         "memory.low prevents from allocating anon memory\n");
401                 goto cleanup;
402         }
403 
404         current = min ? MB(50) : MB(30);
405         if (!values_close(cg_read_long(parent[1], "memory.current"), current, 3))
406                 goto cleanup;
407 
408         if (!reclaim_until(children[0], MB(10)))
409                 goto cleanup;
410 
411         if (min) {
412                 ret = KSFT_PASS;
413                 goto cleanup;
414         }
415 
416         for (i = 0; i < ARRAY_SIZE(children); i++) {
417                 int no_low_events_index = 1;
418                 long low, oom;
419 
420                 oom = cg_read_key_long(children[i], "memory.events", "oom ");
421                 low = cg_read_key_long(children[i], "memory.events", "low ");
422 
423                 if (oom)
424                         goto cleanup;
425                 if (i <= no_low_events_index && low <= 0)
426                         goto cleanup;
427                 if (i > no_low_events_index && low)
428                         goto cleanup;
429 
430         }
431 
432         ret = KSFT_PASS;
433 
434 cleanup:
435         for (i = ARRAY_SIZE(children) - 1; i >= 0; i--) {
436                 if (!children[i])
437                         continue;
438 
439                 cg_destroy(children[i]);
440                 free(children[i]);
441         }
442 
443         for (i = ARRAY_SIZE(parent) - 1; i >= 0; i--) {
444                 if (!parent[i])
445                         continue;
446 
447                 cg_destroy(parent[i]);
448                 free(parent[i]);
449         }
450         close(fd);
451         return ret;
452 }
453 
454 static int test_memcg_min(const char *root)
455 {
456         return test_memcg_protection(root, true);
457 }
458 
459 static int test_memcg_low(const char *root)
460 {
461         return test_memcg_protection(root, false);
462 }
463 
464 static int alloc_pagecache_max_30M(const char *cgroup, void *arg)
465 {
466         size_t size = MB(50);
467         int ret = -1;
468         long current, high, max;
469         int fd;
470 
471         high = cg_read_long(cgroup, "memory.high");
472         max = cg_read_long(cgroup, "memory.max");
473         if (high != MB(30) && max != MB(30))
474                 return -1;
475 
476         fd = get_temp_fd();
477         if (fd < 0)
478                 return -1;
479 
480         if (alloc_pagecache(fd, size))
481                 goto cleanup;
482 
483         current = cg_read_long(cgroup, "memory.current");
484         if (!values_close(current, MB(30), 5))
485                 goto cleanup;
486 
487         ret = 0;
488 
489 cleanup:
490         close(fd);
491         return ret;
492 
493 }
494 
495 /*
496  * This test checks that memory.high limits the amount of
497  * memory which can be consumed by either anonymous memory
498  * or pagecache.
499  */
500 static int test_memcg_high(const char *root)
501 {
502         int ret = KSFT_FAIL;
503         char *memcg;
504         long high;
505 
506         memcg = cg_name(root, "memcg_test");
507         if (!memcg)
508                 goto cleanup;
509 
510         if (cg_create(memcg))
511                 goto cleanup;
512 
513         if (cg_read_strcmp(memcg, "memory.high", "max\n"))
514                 goto cleanup;
515 
516         if (cg_write(memcg, "memory.swap.max", ""))
517                 goto cleanup;
518 
519         if (cg_write(memcg, "memory.high", "30M"))
520                 goto cleanup;
521 
522         if (cg_run(memcg, alloc_anon, (void *)MB(31)))
523                 goto cleanup;
524 
525         if (!cg_run(memcg, alloc_pagecache_50M_check, NULL))
526                 goto cleanup;
527 
528         if (cg_run(memcg, alloc_pagecache_max_30M, NULL))
529                 goto cleanup;
530 
531         high = cg_read_key_long(memcg, "memory.events", "high ");
532         if (high <= 0)
533                 goto cleanup;
534 
535         ret = KSFT_PASS;
536 
537 cleanup:
538         cg_destroy(memcg);
539         free(memcg);
540 
541         return ret;
542 }
543 
544 static int alloc_anon_mlock(const char *cgroup, void *arg)
545 {
546         size_t size = (size_t)arg;
547         void *buf;
548 
549         buf = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
550                    0, 0);
551         if (buf == MAP_FAILED)
552                 return -1;
553 
554         mlock(buf, size);
555         munmap(buf, size);
556         return 0;
557 }
558 
559 /*
560  * This test checks that memory.high is able to throttle big single shot
561  * allocation i.e. large allocation within one kernel entry.
562  */
563 static int test_memcg_high_sync(const char *root)
564 {
565         int ret = KSFT_FAIL, pid, fd = -1;
566         char *memcg;
567         long pre_high, pre_max;
568         long post_high, post_max;
569 
570         memcg = cg_name(root, "memcg_test");
571         if (!memcg)
572                 goto cleanup;
573 
574         if (cg_create(memcg))
575                 goto cleanup;
576 
577         pre_high = cg_read_key_long(memcg, "memory.events", "high ");
578         pre_max = cg_read_key_long(memcg, "memory.events", "max ");
579         if (pre_high < 0 || pre_max < 0)
580                 goto cleanup;
581 
582         if (cg_write(memcg, "memory.swap.max", ""))
583                 goto cleanup;
584 
585         if (cg_write(memcg, "memory.high", "30M"))
586                 goto cleanup;
587 
588         if (cg_write(memcg, "memory.max", "140M"))
589                 goto cleanup;
590 
591         fd = memcg_prepare_for_wait(memcg);
592         if (fd < 0)
593                 goto cleanup;
594 
595         pid = cg_run_nowait(memcg, alloc_anon_mlock, (void *)MB(200));
596         if (pid < 0)
597                 goto cleanup;
598 
599         cg_wait_for(fd);
600 
601         post_high = cg_read_key_long(memcg, "memory.events", "high ");
602         post_max = cg_read_key_long(memcg, "memory.events", "max ");
603         if (post_high < 0 || post_max < 0)
604                 goto cleanup;
605 
606         if (pre_high == post_high || pre_max != post_max)
607                 goto cleanup;
608 
609         ret = KSFT_PASS;
610 
611 cleanup:
612         if (fd >= 0)
613                 close(fd);
614         cg_destroy(memcg);
615         free(memcg);
616 
617         return ret;
618 }
619 
620 /*
621  * This test checks that memory.max limits the amount of
622  * memory which can be consumed by either anonymous memory
623  * or pagecache.
624  */
625 static int test_memcg_max(const char *root)
626 {
627         int ret = KSFT_FAIL;
628         char *memcg;
629         long current, max;
630 
631         memcg = cg_name(root, "memcg_test");
632         if (!memcg)
633                 goto cleanup;
634 
635         if (cg_create(memcg))
636                 goto cleanup;
637 
638         if (cg_read_strcmp(memcg, "memory.max", "max\n"))
639                 goto cleanup;
640 
641         if (cg_write(memcg, "memory.swap.max", ""))
642                 goto cleanup;
643 
644         if (cg_write(memcg, "memory.max", "30M"))
645                 goto cleanup;
646 
647         /* Should be killed by OOM killer */
648         if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
649                 goto cleanup;
650 
651         if (cg_run(memcg, alloc_pagecache_max_30M, NULL))
652                 goto cleanup;
653 
654         current = cg_read_long(memcg, "memory.current");
655         if (current > MB(30) || !current)
656                 goto cleanup;
657 
658         max = cg_read_key_long(memcg, "memory.events", "max ");
659         if (max <= 0)
660                 goto cleanup;
661 
662         ret = KSFT_PASS;
663 
664 cleanup:
665         cg_destroy(memcg);
666         free(memcg);
667 
668         return ret;
669 }
670 
671 /*
672  * Reclaim from @memcg until usage reaches @goal by writing to
673  * memory.reclaim.
674  *
675  * This function will return false if the usage is already below the
676  * goal.
677  *
678  * This function assumes that writing to memory.reclaim is the only
679  * source of change in memory.current (no concurrent allocations or
680  * reclaim).
681  *
682  * This function makes sure memory.reclaim is sane. It will return
683  * false if memory.reclaim's error codes do not make sense, even if
684  * the usage goal was satisfied.
685  */
686 static bool reclaim_until(const char *memcg, long goal)
687 {
688         char buf[64];
689         int retries, err;
690         long current, to_reclaim;
691         bool reclaimed = false;
692 
693         for (retries = 5; retries > 0; retries--) {
694                 current = cg_read_long(memcg, "memory.current");
695 
696                 if (current < goal || values_close(current, goal, 3))
697                         break;
698                 /* Did memory.reclaim return 0 incorrectly? */
699                 else if (reclaimed)
700                         return false;
701 
702                 to_reclaim = current - goal;
703                 snprintf(buf, sizeof(buf), "%ld", to_reclaim);
704                 err = cg_write(memcg, "memory.reclaim", buf);
705                 if (!err)
706                         reclaimed = true;
707                 else if (err != -EAGAIN)
708                         return false;
709         }
710         return reclaimed;
711 }
712 
713 /*
714  * This test checks that memory.reclaim reclaims the given
715  * amount of memory (from both anon and file, if possible).
716  */
717 static int test_memcg_reclaim(const char *root)
718 {
719         int ret = KSFT_FAIL;
720         int fd = -1;
721         int retries;
722         char *memcg;
723         long current, expected_usage;
724 
725         memcg = cg_name(root, "memcg_test");
726         if (!memcg)
727                 goto cleanup;
728 
729         if (cg_create(memcg))
730                 goto cleanup;
731 
732         current = cg_read_long(memcg, "memory.current");
733         if (current != 0)
734                 goto cleanup;
735 
736         fd = get_temp_fd();
737         if (fd < 0)
738                 goto cleanup;
739 
740         cg_run_nowait(memcg, alloc_pagecache_50M_noexit, (void *)(long)fd);
741 
742         /*
743          * If swap is enabled, try to reclaim from both anon and file, else try
744          * to reclaim from file only.
745          */
746         if (is_swap_enabled()) {
747                 cg_run_nowait(memcg, alloc_anon_noexit, (void *) MB(50));
748                 expected_usage = MB(100);
749         } else
750                 expected_usage = MB(50);
751 
752         /*
753          * Wait until current usage reaches the expected usage (or we run out of
754          * retries).
755          */
756         retries = 5;
757         while (!values_close(cg_read_long(memcg, "memory.current"),
758                             expected_usage, 10)) {
759                 if (retries--) {
760                         sleep(1);
761                         continue;
762                 } else {
763                         fprintf(stderr,
764                                 "failed to allocate %ld for memcg reclaim test\n",
765                                 expected_usage);
766                         goto cleanup;
767                 }
768         }
769 
770         /*
771          * Reclaim until current reaches 30M, this makes sure we hit both anon
772          * and file if swap is enabled.
773          */
774         if (!reclaim_until(memcg, MB(30)))
775                 goto cleanup;
776 
777         ret = KSFT_PASS;
778 cleanup:
779         cg_destroy(memcg);
780         free(memcg);
781         close(fd);
782 
783         return ret;
784 }
785 
786 static int alloc_anon_50M_check_swap(const char *cgroup, void *arg)
787 {
788         long mem_max = (long)arg;
789         size_t size = MB(50);
790         char *buf, *ptr;
791         long mem_current, swap_current;
792         int ret = -1;
793 
794         buf = malloc(size);
795         if (buf == NULL) {
796                 fprintf(stderr, "malloc() failed\n");
797                 return -1;
798         }
799 
800         for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
801                 *ptr = 0;
802 
803         mem_current = cg_read_long(cgroup, "memory.current");
804         if (!mem_current || !values_close(mem_current, mem_max, 3))
805                 goto cleanup;
806 
807         swap_current = cg_read_long(cgroup, "memory.swap.current");
808         if (!swap_current ||
809             !values_close(mem_current + swap_current, size, 3))
810                 goto cleanup;
811 
812         ret = 0;
813 cleanup:
814         free(buf);
815         return ret;
816 }
817 
818 /*
819  * This test checks that memory.swap.max limits the amount of
820  * anonymous memory which can be swapped out.
821  */
822 static int test_memcg_swap_max(const char *root)
823 {
824         int ret = KSFT_FAIL;
825         char *memcg;
826         long max;
827 
828         if (!is_swap_enabled())
829                 return KSFT_SKIP;
830 
831         memcg = cg_name(root, "memcg_test");
832         if (!memcg)
833                 goto cleanup;
834 
835         if (cg_create(memcg))
836                 goto cleanup;
837 
838         if (cg_read_long(memcg, "memory.swap.current")) {
839                 ret = KSFT_SKIP;
840                 goto cleanup;
841         }
842 
843         if (cg_read_strcmp(memcg, "memory.max", "max\n"))
844                 goto cleanup;
845 
846         if (cg_read_strcmp(memcg, "memory.swap.max", "max\n"))
847                 goto cleanup;
848 
849         if (cg_write(memcg, "memory.swap.max", "30M"))
850                 goto cleanup;
851 
852         if (cg_write(memcg, "memory.max", "30M"))
853                 goto cleanup;
854 
855         /* Should be killed by OOM killer */
856         if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
857                 goto cleanup;
858 
859         if (cg_read_key_long(memcg, "memory.events", "oom ") != 1)
860                 goto cleanup;
861 
862         if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 1)
863                 goto cleanup;
864 
865         if (cg_run(memcg, alloc_anon_50M_check_swap, (void *)MB(30)))
866                 goto cleanup;
867 
868         max = cg_read_key_long(memcg, "memory.events", "max ");
869         if (max <= 0)
870                 goto cleanup;
871 
872         ret = KSFT_PASS;
873 
874 cleanup:
875         cg_destroy(memcg);
876         free(memcg);
877 
878         return ret;
879 }
880 
881 /*
882  * This test disables swapping and tries to allocate anonymous memory
883  * up to OOM. Then it checks for oom and oom_kill events in
884  * memory.events.
885  */
886 static int test_memcg_oom_events(const char *root)
887 {
888         int ret = KSFT_FAIL;
889         char *memcg;
890 
891         memcg = cg_name(root, "memcg_test");
892         if (!memcg)
893                 goto cleanup;
894 
895         if (cg_create(memcg))
896                 goto cleanup;
897 
898         if (cg_write(memcg, "memory.max", "30M"))
899                 goto cleanup;
900 
901         if (cg_write(memcg, "memory.swap.max", ""))
902                 goto cleanup;
903 
904         if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
905                 goto cleanup;
906 
907         if (cg_read_strcmp(memcg, "cgroup.procs", ""))
908                 goto cleanup;
909 
910         if (cg_read_key_long(memcg, "memory.events", "oom ") != 1)
911                 goto cleanup;
912 
913         if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 1)
914                 goto cleanup;
915 
916         ret = KSFT_PASS;
917 
918 cleanup:
919         cg_destroy(memcg);
920         free(memcg);
921 
922         return ret;
923 }
924 
925 struct tcp_server_args {
926         unsigned short port;
927         int ctl[2];
928 };
929 
930 static int tcp_server(const char *cgroup, void *arg)
931 {
932         struct tcp_server_args *srv_args = arg;
933         struct sockaddr_in6 saddr = { 0 };
934         socklen_t slen = sizeof(saddr);
935         int sk, client_sk, ctl_fd, yes = 1, ret = -1;
936 
937         close(srv_args->ctl[0]);
938         ctl_fd = srv_args->ctl[1];
939 
940         saddr.sin6_family = AF_INET6;
941         saddr.sin6_addr = in6addr_any;
942         saddr.sin6_port = htons(srv_args->port);
943 
944         sk = socket(AF_INET6, SOCK_STREAM, 0);
945         if (sk < 0)
946                 return ret;
947 
948         if (setsockopt(sk, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes)) < 0)
949                 goto cleanup;
950 
951         if (bind(sk, (struct sockaddr *)&saddr, slen)) {
952                 write(ctl_fd, &errno, sizeof(errno));
953                 goto cleanup;
954         }
955 
956         if (listen(sk, 1))
957                 goto cleanup;
958 
959         ret = 0;
960         if (write(ctl_fd, &ret, sizeof(ret)) != sizeof(ret)) {
961                 ret = -1;
962                 goto cleanup;
963         }
964 
965         client_sk = accept(sk, NULL, NULL);
966         if (client_sk < 0)
967                 goto cleanup;
968 
969         ret = -1;
970         for (;;) {
971                 uint8_t buf[0x100000];
972 
973                 if (write(client_sk, buf, sizeof(buf)) <= 0) {
974                         if (errno == ECONNRESET)
975                                 ret = 0;
976                         break;
977                 }
978         }
979 
980         close(client_sk);
981 
982 cleanup:
983         close(sk);
984         return ret;
985 }
986 
987 static int tcp_client(const char *cgroup, unsigned short port)
988 {
989         const char server[] = "localhost";
990         struct addrinfo *ai;
991         char servport[6];
992         int retries = 0x10; /* nice round number */
993         int sk, ret;
994         long allocated;
995 
996         allocated = cg_read_long(cgroup, "memory.current");
997         snprintf(servport, sizeof(servport), "%hd", port);
998         ret = getaddrinfo(server, servport, NULL, &ai);
999         if (ret)
1000                 return ret;
1001 
1002         sk = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
1003         if (sk < 0)
1004                 goto free_ainfo;
1005 
1006         ret = connect(sk, ai->ai_addr, ai->ai_addrlen);
1007         if (ret < 0)
1008                 goto close_sk;
1009 
1010         ret = KSFT_FAIL;
1011         while (retries--) {
1012                 uint8_t buf[0x100000];
1013                 long current, sock;
1014 
1015                 if (read(sk, buf, sizeof(buf)) <= 0)
1016                         goto close_sk;
1017 
1018                 current = cg_read_long(cgroup, "memory.current");
1019                 sock = cg_read_key_long(cgroup, "memory.stat", "sock ");
1020 
1021                 if (current < 0 || sock < 0)
1022                         goto close_sk;
1023 
1024                 /* exclude the memory not related to socket connection */
1025                 if (values_close(current - allocated, sock, 10)) {
1026                         ret = KSFT_PASS;
1027                         break;
1028                 }
1029         }
1030 
1031 close_sk:
1032         close(sk);
1033 free_ainfo:
1034         freeaddrinfo(ai);
1035         return ret;
1036 }
1037 
1038 /*
1039  * This test checks socket memory accounting.
1040  * The test forks a TCP server listens on a random port between 1000
1041  * and 61000. Once it gets a client connection, it starts writing to
1042  * its socket.
1043  * The TCP client interleaves reads from the socket with check whether
1044  * memory.current and memory.stat.sock are similar.
1045  */
1046 static int test_memcg_sock(const char *root)
1047 {
1048         int bind_retries = 5, ret = KSFT_FAIL, pid, err;
1049         unsigned short port;
1050         char *memcg;
1051 
1052         memcg = cg_name(root, "memcg_test");
1053         if (!memcg)
1054                 goto cleanup;
1055 
1056         if (cg_create(memcg))
1057                 goto cleanup;
1058 
1059         while (bind_retries--) {
1060                 struct tcp_server_args args;
1061 
1062                 if (pipe(args.ctl))
1063                         goto cleanup;
1064 
1065                 port = args.port = 1000 + rand() % 60000;
1066 
1067                 pid = cg_run_nowait(memcg, tcp_server, &args);
1068                 if (pid < 0)
1069                         goto cleanup;
1070 
1071                 close(args.ctl[1]);
1072                 if (read(args.ctl[0], &err, sizeof(err)) != sizeof(err))
1073                         goto cleanup;
1074                 close(args.ctl[0]);
1075 
1076                 if (!err)
1077                         break;
1078                 if (err != EADDRINUSE)
1079                         goto cleanup;
1080 
1081                 waitpid(pid, NULL, 0);
1082         }
1083 
1084         if (err == EADDRINUSE) {
1085                 ret = KSFT_SKIP;
1086                 goto cleanup;
1087         }
1088 
1089         if (tcp_client(memcg, port) != KSFT_PASS)
1090                 goto cleanup;
1091 
1092         waitpid(pid, &err, 0);
1093         if (WEXITSTATUS(err))
1094                 goto cleanup;
1095 
1096         if (cg_read_long(memcg, "memory.current") < 0)
1097                 goto cleanup;
1098 
1099         if (cg_read_key_long(memcg, "memory.stat", "sock "))
1100                 goto cleanup;
1101 
1102         ret = KSFT_PASS;
1103 
1104 cleanup:
1105         cg_destroy(memcg);
1106         free(memcg);
1107 
1108         return ret;
1109 }
1110 
1111 /*
1112  * This test disables swapping and tries to allocate anonymous memory
1113  * up to OOM with memory.group.oom set. Then it checks that all
1114  * processes in the leaf were killed. It also checks that oom_events
1115  * were propagated to the parent level.
1116  */
1117 static int test_memcg_oom_group_leaf_events(const char *root)
1118 {
1119         int ret = KSFT_FAIL;
1120         char *parent, *child;
1121         long parent_oom_events;
1122 
1123         parent = cg_name(root, "memcg_test_0");
1124         child = cg_name(root, "memcg_test_0/memcg_test_1");
1125 
1126         if (!parent || !child)
1127                 goto cleanup;
1128 
1129         if (cg_create(parent))
1130                 goto cleanup;
1131 
1132         if (cg_create(child))
1133                 goto cleanup;
1134 
1135         if (cg_write(parent, "cgroup.subtree_control", "+memory"))
1136                 goto cleanup;
1137 
1138         if (cg_write(child, "memory.max", "50M"))
1139                 goto cleanup;
1140 
1141         if (cg_write(child, "memory.swap.max", ""))
1142                 goto cleanup;
1143 
1144         if (cg_write(child, "memory.oom.group", "1"))
1145                 goto cleanup;
1146 
1147         cg_run_nowait(parent, alloc_anon_noexit, (void *) MB(60));
1148         cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1));
1149         cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1));
1150         if (!cg_run(child, alloc_anon, (void *)MB(100)))
1151                 goto cleanup;
1152 
1153         if (cg_test_proc_killed(child))
1154                 goto cleanup;
1155 
1156         if (cg_read_key_long(child, "memory.events", "oom_kill ") <= 0)
1157                 goto cleanup;
1158 
1159         parent_oom_events = cg_read_key_long(
1160                         parent, "memory.events", "oom_kill ");
1161         /*
1162          * If memory_localevents is not enabled (the default), the parent should
1163          * count OOM events in its children groups. Otherwise, it should not
1164          * have observed any events.
1165          */
1166         if (has_localevents && parent_oom_events != 0)
1167                 goto cleanup;
1168         else if (!has_localevents && parent_oom_events <= 0)
1169                 goto cleanup;
1170 
1171         ret = KSFT_PASS;
1172 
1173 cleanup:
1174         if (child)
1175                 cg_destroy(child);
1176         if (parent)
1177                 cg_destroy(parent);
1178         free(child);
1179         free(parent);
1180 
1181         return ret;
1182 }
1183 
1184 /*
1185  * This test disables swapping and tries to allocate anonymous memory
1186  * up to OOM with memory.group.oom set. Then it checks that all
1187  * processes in the parent and leaf were killed.
1188  */
1189 static int test_memcg_oom_group_parent_events(const char *root)
1190 {
1191         int ret = KSFT_FAIL;
1192         char *parent, *child;
1193 
1194         parent = cg_name(root, "memcg_test_0");
1195         child = cg_name(root, "memcg_test_0/memcg_test_1");
1196 
1197         if (!parent || !child)
1198                 goto cleanup;
1199 
1200         if (cg_create(parent))
1201                 goto cleanup;
1202 
1203         if (cg_create(child))
1204                 goto cleanup;
1205 
1206         if (cg_write(parent, "memory.max", "80M"))
1207                 goto cleanup;
1208 
1209         if (cg_write(parent, "memory.swap.max", ""))
1210                 goto cleanup;
1211 
1212         if (cg_write(parent, "memory.oom.group", "1"))
1213                 goto cleanup;
1214 
1215         cg_run_nowait(parent, alloc_anon_noexit, (void *) MB(60));
1216         cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1));
1217         cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1));
1218 
1219         if (!cg_run(child, alloc_anon, (void *)MB(100)))
1220                 goto cleanup;
1221 
1222         if (cg_test_proc_killed(child))
1223                 goto cleanup;
1224         if (cg_test_proc_killed(parent))
1225                 goto cleanup;
1226 
1227         ret = KSFT_PASS;
1228 
1229 cleanup:
1230         if (child)
1231                 cg_destroy(child);
1232         if (parent)
1233                 cg_destroy(parent);
1234         free(child);
1235         free(parent);
1236 
1237         return ret;
1238 }
1239 
1240 /*
1241  * This test disables swapping and tries to allocate anonymous memory
1242  * up to OOM with memory.group.oom set. Then it checks that all
1243  * processes were killed except those set with OOM_SCORE_ADJ_MIN
1244  */
1245 static int test_memcg_oom_group_score_events(const char *root)
1246 {
1247         int ret = KSFT_FAIL;
1248         char *memcg;
1249         int safe_pid;
1250 
1251         memcg = cg_name(root, "memcg_test_0");
1252 
1253         if (!memcg)
1254                 goto cleanup;
1255 
1256         if (cg_create(memcg))
1257                 goto cleanup;
1258 
1259         if (cg_write(memcg, "memory.max", "50M"))
1260                 goto cleanup;
1261 
1262         if (cg_write(memcg, "memory.swap.max", ""))
1263                 goto cleanup;
1264 
1265         if (cg_write(memcg, "memory.oom.group", "1"))
1266                 goto cleanup;
1267 
1268         safe_pid = cg_run_nowait(memcg, alloc_anon_noexit, (void *) MB(1));
1269         if (set_oom_adj_score(safe_pid, OOM_SCORE_ADJ_MIN))
1270                 goto cleanup;
1271 
1272         cg_run_nowait(memcg, alloc_anon_noexit, (void *) MB(1));
1273         if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
1274                 goto cleanup;
1275 
1276         if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 3)
1277                 goto cleanup;
1278 
1279         if (kill(safe_pid, SIGKILL))
1280                 goto cleanup;
1281 
1282         ret = KSFT_PASS;
1283 
1284 cleanup:
1285         if (memcg)
1286                 cg_destroy(memcg);
1287         free(memcg);
1288 
1289         return ret;
1290 }
1291 
1292 #define T(x) { x, #x }
1293 struct memcg_test {
1294         int (*fn)(const char *root);
1295         const char *name;
1296 } tests[] = {
1297         T(test_memcg_subtree_control),
1298         T(test_memcg_current),
1299         T(test_memcg_min),
1300         T(test_memcg_low),
1301         T(test_memcg_high),
1302         T(test_memcg_high_sync),
1303         T(test_memcg_max),
1304         T(test_memcg_reclaim),
1305         T(test_memcg_oom_events),
1306         T(test_memcg_swap_max),
1307         T(test_memcg_sock),
1308         T(test_memcg_oom_group_leaf_events),
1309         T(test_memcg_oom_group_parent_events),
1310         T(test_memcg_oom_group_score_events),
1311 };
1312 #undef T
1313 
1314 int main(int argc, char **argv)
1315 {
1316         char root[PATH_MAX];
1317         int i, proc_status, ret = EXIT_SUCCESS;
1318 
1319         if (cg_find_unified_root(root, sizeof(root), NULL))
1320                 ksft_exit_skip("cgroup v2 isn't mounted\n");
1321 
1322         /*
1323          * Check that memory controller is available:
1324          * memory is listed in cgroup.controllers
1325          */
1326         if (cg_read_strstr(root, "cgroup.controllers", "memory"))
1327                 ksft_exit_skip("memory controller isn't available\n");
1328 
1329         if (cg_read_strstr(root, "cgroup.subtree_control", "memory"))
1330                 if (cg_write(root, "cgroup.subtree_control", "+memory"))
1331                         ksft_exit_skip("Failed to set memory controller\n");
1332 
1333         proc_status = proc_mount_contains("memory_recursiveprot");
1334         if (proc_status < 0)
1335                 ksft_exit_skip("Failed to query cgroup mount option\n");
1336         has_recursiveprot = proc_status;
1337 
1338         proc_status = proc_mount_contains("memory_localevents");
1339         if (proc_status < 0)
1340                 ksft_exit_skip("Failed to query cgroup mount option\n");
1341         has_localevents = proc_status;
1342 
1343         for (i = 0; i < ARRAY_SIZE(tests); i++) {
1344                 switch (tests[i].fn(root)) {
1345                 case KSFT_PASS:
1346                         ksft_test_result_pass("%s\n", tests[i].name);
1347                         break;
1348                 case KSFT_SKIP:
1349                         ksft_test_result_skip("%s\n", tests[i].name);
1350                         break;
1351                 default:
1352                         ret = EXIT_FAILURE;
1353                         ksft_test_result_fail("%s\n", tests[i].name);
1354                         break;
1355                 }
1356         }
1357 
1358         return ret;
1359 }
1360 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php