~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/testing/selftests/kvm/aarch64/page_fault_test.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * page_fault_test.c - Test stage 2 faults.
  4  *
  5  * This test tries different combinations of guest accesses (e.g., write,
  6  * S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on
  7  * hugetlbfs with a hole). It checks that the expected handling method is
  8  * called (e.g., uffd faults with the right address and write/read flag).
  9  */
 10 #include <linux/bitmap.h>
 11 #include <fcntl.h>
 12 #include <test_util.h>
 13 #include <kvm_util.h>
 14 #include <processor.h>
 15 #include <asm/sysreg.h>
 16 #include <linux/bitfield.h>
 17 #include "guest_modes.h"
 18 #include "userfaultfd_util.h"
 19 
 20 /* Guest virtual addresses that point to the test page and its PTE. */
 21 #define TEST_GVA                                0xc0000000
 22 #define TEST_EXEC_GVA                           (TEST_GVA + 0x8)
 23 #define TEST_PTE_GVA                            0xb0000000
 24 #define TEST_DATA                               0x0123456789ABCDEF
 25 
 26 static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA;
 27 
 28 #define CMD_NONE                                (0)
 29 #define CMD_SKIP_TEST                           (1ULL << 1)
 30 #define CMD_HOLE_PT                             (1ULL << 2)
 31 #define CMD_HOLE_DATA                           (1ULL << 3)
 32 #define CMD_CHECK_WRITE_IN_DIRTY_LOG            (1ULL << 4)
 33 #define CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG         (1ULL << 5)
 34 #define CMD_CHECK_NO_WRITE_IN_DIRTY_LOG         (1ULL << 6)
 35 #define CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG      (1ULL << 7)
 36 #define CMD_SET_PTE_AF                          (1ULL << 8)
 37 
 38 #define PREPARE_FN_NR                           10
 39 #define CHECK_FN_NR                             10
 40 
 41 static struct event_cnt {
 42         int mmio_exits;
 43         int fail_vcpu_runs;
 44         int uffd_faults;
 45         /* uffd_faults is incremented from multiple threads. */
 46         pthread_mutex_t uffd_faults_mutex;
 47 } events;
 48 
 49 struct test_desc {
 50         const char *name;
 51         uint64_t mem_mark_cmd;
 52         /* Skip the test if any prepare function returns false */
 53         bool (*guest_prepare[PREPARE_FN_NR])(void);
 54         void (*guest_test)(void);
 55         void (*guest_test_check[CHECK_FN_NR])(void);
 56         uffd_handler_t uffd_pt_handler;
 57         uffd_handler_t uffd_data_handler;
 58         void (*dabt_handler)(struct ex_regs *regs);
 59         void (*iabt_handler)(struct ex_regs *regs);
 60         void (*mmio_handler)(struct kvm_vm *vm, struct kvm_run *run);
 61         void (*fail_vcpu_run_handler)(int ret);
 62         uint32_t pt_memslot_flags;
 63         uint32_t data_memslot_flags;
 64         bool skip;
 65         struct event_cnt expected_events;
 66 };
 67 
 68 struct test_params {
 69         enum vm_mem_backing_src_type src_type;
 70         struct test_desc *test_desc;
 71 };
 72 
 73 static inline void flush_tlb_page(uint64_t vaddr)
 74 {
 75         uint64_t page = vaddr >> 12;
 76 
 77         dsb(ishst);
 78         asm volatile("tlbi vaae1is, %0" :: "r" (page));
 79         dsb(ish);
 80         isb();
 81 }
 82 
 83 static void guest_write64(void)
 84 {
 85         uint64_t val;
 86 
 87         WRITE_ONCE(*guest_test_memory, TEST_DATA);
 88         val = READ_ONCE(*guest_test_memory);
 89         GUEST_ASSERT_EQ(val, TEST_DATA);
 90 }
 91 
 92 /* Check the system for atomic instructions. */
 93 static bool guest_check_lse(void)
 94 {
 95         uint64_t isar0 = read_sysreg(id_aa64isar0_el1);
 96         uint64_t atomic;
 97 
 98         atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_ATOMIC), isar0);
 99         return atomic >= 2;
100 }
101 
102 static bool guest_check_dc_zva(void)
103 {
104         uint64_t dczid = read_sysreg(dczid_el0);
105         uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_EL0_DZP), dczid);
106 
107         return dzp == 0;
108 }
109 
110 /* Compare and swap instruction. */
111 static void guest_cas(void)
112 {
113         uint64_t val;
114 
115         GUEST_ASSERT(guest_check_lse());
116         asm volatile(".arch_extension lse\n"
117                      "casal %0, %1, [%2]\n"
118                      :: "r" (0ul), "r" (TEST_DATA), "r" (guest_test_memory));
119         val = READ_ONCE(*guest_test_memory);
120         GUEST_ASSERT_EQ(val, TEST_DATA);
121 }
122 
123 static void guest_read64(void)
124 {
125         uint64_t val;
126 
127         val = READ_ONCE(*guest_test_memory);
128         GUEST_ASSERT_EQ(val, 0);
129 }
130 
131 /* Address translation instruction */
132 static void guest_at(void)
133 {
134         uint64_t par;
135 
136         asm volatile("at s1e1r, %0" :: "r" (guest_test_memory));
137         isb();
138         par = read_sysreg(par_el1);
139 
140         /* Bit 1 indicates whether the AT was successful */
141         GUEST_ASSERT_EQ(par & 1, 0);
142 }
143 
144 /*
145  * The size of the block written by "dc zva" is guaranteed to be between (2 <<
146  * 0) and (2 << 9), which is safe in our case as we need the write to happen
147  * for at least a word, and not more than a page.
148  */
149 static void guest_dc_zva(void)
150 {
151         uint16_t val;
152 
153         asm volatile("dc zva, %0" :: "r" (guest_test_memory));
154         dsb(ish);
155         val = READ_ONCE(*guest_test_memory);
156         GUEST_ASSERT_EQ(val, 0);
157 }
158 
159 /*
160  * Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0).
161  * And that's special because KVM must take special care with those: they
162  * should still count as accesses for dirty logging or user-faulting, but
163  * should be handled differently on mmio.
164  */
165 static void guest_ld_preidx(void)
166 {
167         uint64_t val;
168         uint64_t addr = TEST_GVA - 8;
169 
170         /*
171          * This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is
172          * in a gap between memslots not backing by anything.
173          */
174         asm volatile("ldr %0, [%1, #8]!"
175                      : "=r" (val), "+r" (addr));
176         GUEST_ASSERT_EQ(val, 0);
177         GUEST_ASSERT_EQ(addr, TEST_GVA);
178 }
179 
180 static void guest_st_preidx(void)
181 {
182         uint64_t val = TEST_DATA;
183         uint64_t addr = TEST_GVA - 8;
184 
185         asm volatile("str %0, [%1, #8]!"
186                      : "+r" (val), "+r" (addr));
187 
188         GUEST_ASSERT_EQ(addr, TEST_GVA);
189         val = READ_ONCE(*guest_test_memory);
190 }
191 
192 static bool guest_set_ha(void)
193 {
194         uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1);
195         uint64_t hadbs, tcr;
196 
197         /* Skip if HA is not supported. */
198         hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_HAFDBS), mmfr1);
199         if (hadbs == 0)
200                 return false;
201 
202         tcr = read_sysreg(tcr_el1) | TCR_EL1_HA;
203         write_sysreg(tcr, tcr_el1);
204         isb();
205 
206         return true;
207 }
208 
209 static bool guest_clear_pte_af(void)
210 {
211         *((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF;
212         flush_tlb_page(TEST_GVA);
213 
214         return true;
215 }
216 
217 static void guest_check_pte_af(void)
218 {
219         dsb(ish);
220         GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF);
221 }
222 
223 static void guest_check_write_in_dirty_log(void)
224 {
225         GUEST_SYNC(CMD_CHECK_WRITE_IN_DIRTY_LOG);
226 }
227 
228 static void guest_check_no_write_in_dirty_log(void)
229 {
230         GUEST_SYNC(CMD_CHECK_NO_WRITE_IN_DIRTY_LOG);
231 }
232 
233 static void guest_check_s1ptw_wr_in_dirty_log(void)
234 {
235         GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG);
236 }
237 
238 static void guest_check_no_s1ptw_wr_in_dirty_log(void)
239 {
240         GUEST_SYNC(CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG);
241 }
242 
243 static void guest_exec(void)
244 {
245         int (*code)(void) = (int (*)(void))TEST_EXEC_GVA;
246         int ret;
247 
248         ret = code();
249         GUEST_ASSERT_EQ(ret, 0x77);
250 }
251 
252 static bool guest_prepare(struct test_desc *test)
253 {
254         bool (*prepare_fn)(void);
255         int i;
256 
257         for (i = 0; i < PREPARE_FN_NR; i++) {
258                 prepare_fn = test->guest_prepare[i];
259                 if (prepare_fn && !prepare_fn())
260                         return false;
261         }
262 
263         return true;
264 }
265 
266 static void guest_test_check(struct test_desc *test)
267 {
268         void (*check_fn)(void);
269         int i;
270 
271         for (i = 0; i < CHECK_FN_NR; i++) {
272                 check_fn = test->guest_test_check[i];
273                 if (check_fn)
274                         check_fn();
275         }
276 }
277 
278 static void guest_code(struct test_desc *test)
279 {
280         if (!guest_prepare(test))
281                 GUEST_SYNC(CMD_SKIP_TEST);
282 
283         GUEST_SYNC(test->mem_mark_cmd);
284 
285         if (test->guest_test)
286                 test->guest_test();
287 
288         guest_test_check(test);
289         GUEST_DONE();
290 }
291 
292 static void no_dabt_handler(struct ex_regs *regs)
293 {
294         GUEST_FAIL("Unexpected dabt, far_el1 = 0x%lx", read_sysreg(far_el1));
295 }
296 
297 static void no_iabt_handler(struct ex_regs *regs)
298 {
299         GUEST_FAIL("Unexpected iabt, pc = 0x%lx", regs->pc);
300 }
301 
302 static struct uffd_args {
303         char *copy;
304         void *hva;
305         uint64_t paging_size;
306 } pt_args, data_args;
307 
308 /* Returns true to continue the test, and false if it should be skipped. */
309 static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg,
310                                 struct uffd_args *args)
311 {
312         uint64_t addr = msg->arg.pagefault.address;
313         uint64_t flags = msg->arg.pagefault.flags;
314         struct uffdio_copy copy;
315         int ret;
316 
317         TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING,
318                     "The only expected UFFD mode is MISSING");
319         TEST_ASSERT_EQ(addr, (uint64_t)args->hva);
320 
321         pr_debug("uffd fault: addr=%p write=%d\n",
322                  (void *)addr, !!(flags & UFFD_PAGEFAULT_FLAG_WRITE));
323 
324         copy.src = (uint64_t)args->copy;
325         copy.dst = addr;
326         copy.len = args->paging_size;
327         copy.mode = 0;
328 
329         ret = ioctl(uffd, UFFDIO_COPY, &copy);
330         if (ret == -1) {
331                 pr_info("Failed UFFDIO_COPY in 0x%lx with errno: %d\n",
332                         addr, errno);
333                 return ret;
334         }
335 
336         pthread_mutex_lock(&events.uffd_faults_mutex);
337         events.uffd_faults += 1;
338         pthread_mutex_unlock(&events.uffd_faults_mutex);
339         return 0;
340 }
341 
342 static int uffd_pt_handler(int mode, int uffd, struct uffd_msg *msg)
343 {
344         return uffd_generic_handler(mode, uffd, msg, &pt_args);
345 }
346 
347 static int uffd_data_handler(int mode, int uffd, struct uffd_msg *msg)
348 {
349         return uffd_generic_handler(mode, uffd, msg, &data_args);
350 }
351 
352 static void setup_uffd_args(struct userspace_mem_region *region,
353                             struct uffd_args *args)
354 {
355         args->hva = (void *)region->region.userspace_addr;
356         args->paging_size = region->region.memory_size;
357 
358         args->copy = malloc(args->paging_size);
359         TEST_ASSERT(args->copy, "Failed to allocate data copy.");
360         memcpy(args->copy, args->hva, args->paging_size);
361 }
362 
363 static void setup_uffd(struct kvm_vm *vm, struct test_params *p,
364                        struct uffd_desc **pt_uffd, struct uffd_desc **data_uffd)
365 {
366         struct test_desc *test = p->test_desc;
367         int uffd_mode = UFFDIO_REGISTER_MODE_MISSING;
368 
369         setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_PT), &pt_args);
370         setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_TEST_DATA), &data_args);
371 
372         *pt_uffd = NULL;
373         if (test->uffd_pt_handler)
374                 *pt_uffd = uffd_setup_demand_paging(uffd_mode, 0,
375                                                     pt_args.hva,
376                                                     pt_args.paging_size,
377                                                     1, test->uffd_pt_handler);
378 
379         *data_uffd = NULL;
380         if (test->uffd_data_handler)
381                 *data_uffd = uffd_setup_demand_paging(uffd_mode, 0,
382                                                       data_args.hva,
383                                                       data_args.paging_size,
384                                                       1, test->uffd_data_handler);
385 }
386 
387 static void free_uffd(struct test_desc *test, struct uffd_desc *pt_uffd,
388                       struct uffd_desc *data_uffd)
389 {
390         if (test->uffd_pt_handler)
391                 uffd_stop_demand_paging(pt_uffd);
392         if (test->uffd_data_handler)
393                 uffd_stop_demand_paging(data_uffd);
394 
395         free(pt_args.copy);
396         free(data_args.copy);
397 }
398 
399 static int uffd_no_handler(int mode, int uffd, struct uffd_msg *msg)
400 {
401         TEST_FAIL("There was no UFFD fault expected.");
402         return -1;
403 }
404 
405 /* Returns false if the test should be skipped. */
406 static bool punch_hole_in_backing_store(struct kvm_vm *vm,
407                                         struct userspace_mem_region *region)
408 {
409         void *hva = (void *)region->region.userspace_addr;
410         uint64_t paging_size = region->region.memory_size;
411         int ret, fd = region->fd;
412 
413         if (fd != -1) {
414                 ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
415                                 0, paging_size);
416                 TEST_ASSERT(ret == 0, "fallocate failed");
417         } else {
418                 ret = madvise(hva, paging_size, MADV_DONTNEED);
419                 TEST_ASSERT(ret == 0, "madvise failed");
420         }
421 
422         return true;
423 }
424 
425 static void mmio_on_test_gpa_handler(struct kvm_vm *vm, struct kvm_run *run)
426 {
427         struct userspace_mem_region *region;
428         void *hva;
429 
430         region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
431         hva = (void *)region->region.userspace_addr;
432 
433         TEST_ASSERT_EQ(run->mmio.phys_addr, region->region.guest_phys_addr);
434 
435         memcpy(hva, run->mmio.data, run->mmio.len);
436         events.mmio_exits += 1;
437 }
438 
439 static void mmio_no_handler(struct kvm_vm *vm, struct kvm_run *run)
440 {
441         uint64_t data;
442 
443         memcpy(&data, run->mmio.data, sizeof(data));
444         pr_debug("addr=%lld len=%d w=%d data=%lx\n",
445                  run->mmio.phys_addr, run->mmio.len,
446                  run->mmio.is_write, data);
447         TEST_FAIL("There was no MMIO exit expected.");
448 }
449 
450 static bool check_write_in_dirty_log(struct kvm_vm *vm,
451                                      struct userspace_mem_region *region,
452                                      uint64_t host_pg_nr)
453 {
454         unsigned long *bmap;
455         bool first_page_dirty;
456         uint64_t size = region->region.memory_size;
457 
458         /* getpage_size() is not always equal to vm->page_size */
459         bmap = bitmap_zalloc(size / getpagesize());
460         kvm_vm_get_dirty_log(vm, region->region.slot, bmap);
461         first_page_dirty = test_bit(host_pg_nr, bmap);
462         free(bmap);
463         return first_page_dirty;
464 }
465 
466 /* Returns true to continue the test, and false if it should be skipped. */
467 static bool handle_cmd(struct kvm_vm *vm, int cmd)
468 {
469         struct userspace_mem_region *data_region, *pt_region;
470         bool continue_test = true;
471         uint64_t pte_gpa, pte_pg;
472 
473         data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
474         pt_region = vm_get_mem_region(vm, MEM_REGION_PT);
475         pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
476         pte_pg = (pte_gpa - pt_region->region.guest_phys_addr) / getpagesize();
477 
478         if (cmd == CMD_SKIP_TEST)
479                 continue_test = false;
480 
481         if (cmd & CMD_HOLE_PT)
482                 continue_test = punch_hole_in_backing_store(vm, pt_region);
483         if (cmd & CMD_HOLE_DATA)
484                 continue_test = punch_hole_in_backing_store(vm, data_region);
485         if (cmd & CMD_CHECK_WRITE_IN_DIRTY_LOG)
486                 TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0),
487                             "Missing write in dirty log");
488         if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG)
489                 TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, pte_pg),
490                             "Missing s1ptw write in dirty log");
491         if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG)
492                 TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0),
493                             "Unexpected write in dirty log");
494         if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG)
495                 TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, pte_pg),
496                             "Unexpected s1ptw write in dirty log");
497 
498         return continue_test;
499 }
500 
501 void fail_vcpu_run_no_handler(int ret)
502 {
503         TEST_FAIL("Unexpected vcpu run failure");
504 }
505 
506 void fail_vcpu_run_mmio_no_syndrome_handler(int ret)
507 {
508         TEST_ASSERT(errno == ENOSYS,
509                     "The mmio handler should have returned not implemented.");
510         events.fail_vcpu_runs += 1;
511 }
512 
513 typedef uint32_t aarch64_insn_t;
514 extern aarch64_insn_t __exec_test[2];
515 
516 noinline void __return_0x77(void)
517 {
518         asm volatile("__exec_test: mov x0, #0x77\n"
519                      "ret\n");
520 }
521 
522 /*
523  * Note that this function runs on the host before the test VM starts: there's
524  * no need to sync the D$ and I$ caches.
525  */
526 static void load_exec_code_for_test(struct kvm_vm *vm)
527 {
528         uint64_t *code;
529         struct userspace_mem_region *region;
530         void *hva;
531 
532         region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
533         hva = (void *)region->region.userspace_addr;
534 
535         assert(TEST_EXEC_GVA > TEST_GVA);
536         code = hva + TEST_EXEC_GVA - TEST_GVA;
537         memcpy(code, __exec_test, sizeof(__exec_test));
538 }
539 
540 static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
541                                  struct test_desc *test)
542 {
543         vm_init_descriptor_tables(vm);
544         vcpu_init_descriptor_tables(vcpu);
545 
546         vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
547                                 ESR_EC_DABT, no_dabt_handler);
548         vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
549                                 ESR_EC_IABT, no_iabt_handler);
550 }
551 
552 static void setup_gva_maps(struct kvm_vm *vm)
553 {
554         struct userspace_mem_region *region;
555         uint64_t pte_gpa;
556 
557         region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
558         /* Map TEST_GVA first. This will install a new PTE. */
559         virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr);
560         /* Then map TEST_PTE_GVA to the above PTE. */
561         pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
562         virt_pg_map(vm, TEST_PTE_GVA, pte_gpa);
563 }
564 
565 enum pf_test_memslots {
566         CODE_AND_DATA_MEMSLOT,
567         PAGE_TABLE_MEMSLOT,
568         TEST_DATA_MEMSLOT,
569 };
570 
571 /*
572  * Create a memslot for code and data at pfn=0, and test-data and PT ones
573  * at max_gfn.
574  */
575 static void setup_memslots(struct kvm_vm *vm, struct test_params *p)
576 {
577         uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type);
578         uint64_t guest_page_size = vm->page_size;
579         uint64_t max_gfn = vm_compute_max_gfn(vm);
580         /* Enough for 2M of code when using 4K guest pages. */
581         uint64_t code_npages = 512;
582         uint64_t pt_size, data_size, data_gpa;
583 
584         /*
585          * This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using
586          * VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs.  That's 13
587          * pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use
588          * twice that just in case.
589          */
590         pt_size = 26 * guest_page_size;
591 
592         /* memslot sizes and gpa's must be aligned to the backing page size */
593         pt_size = align_up(pt_size, backing_src_pagesz);
594         data_size = align_up(guest_page_size, backing_src_pagesz);
595         data_gpa = (max_gfn * guest_page_size) - data_size;
596         data_gpa = align_down(data_gpa, backing_src_pagesz);
597 
598         vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0,
599                                     CODE_AND_DATA_MEMSLOT, code_npages, 0);
600         vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT;
601         vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT;
602 
603         vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size,
604                                     PAGE_TABLE_MEMSLOT, pt_size / guest_page_size,
605                                     p->test_desc->pt_memslot_flags);
606         vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT;
607 
608         vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT,
609                                     data_size / guest_page_size,
610                                     p->test_desc->data_memslot_flags);
611         vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
612 }
613 
614 static void setup_ucall(struct kvm_vm *vm)
615 {
616         struct userspace_mem_region *region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
617 
618         ucall_init(vm, region->region.guest_phys_addr + region->region.memory_size);
619 }
620 
621 static void setup_default_handlers(struct test_desc *test)
622 {
623         if (!test->mmio_handler)
624                 test->mmio_handler = mmio_no_handler;
625 
626         if (!test->fail_vcpu_run_handler)
627                 test->fail_vcpu_run_handler = fail_vcpu_run_no_handler;
628 }
629 
630 static void check_event_counts(struct test_desc *test)
631 {
632         TEST_ASSERT_EQ(test->expected_events.uffd_faults, events.uffd_faults);
633         TEST_ASSERT_EQ(test->expected_events.mmio_exits, events.mmio_exits);
634         TEST_ASSERT_EQ(test->expected_events.fail_vcpu_runs, events.fail_vcpu_runs);
635 }
636 
637 static void print_test_banner(enum vm_guest_mode mode, struct test_params *p)
638 {
639         struct test_desc *test = p->test_desc;
640 
641         pr_debug("Test: %s\n", test->name);
642         pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode));
643         pr_debug("Testing memory backing src type: %s\n",
644                  vm_mem_backing_src_alias(p->src_type)->name);
645 }
646 
647 static void reset_event_counts(void)
648 {
649         memset(&events, 0, sizeof(events));
650 }
651 
652 /*
653  * This function either succeeds, skips the test (after setting test->skip), or
654  * fails with a TEST_FAIL that aborts all tests.
655  */
656 static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
657                           struct test_desc *test)
658 {
659         struct kvm_run *run;
660         struct ucall uc;
661         int ret;
662 
663         run = vcpu->run;
664 
665         for (;;) {
666                 ret = _vcpu_run(vcpu);
667                 if (ret) {
668                         test->fail_vcpu_run_handler(ret);
669                         goto done;
670                 }
671 
672                 switch (get_ucall(vcpu, &uc)) {
673                 case UCALL_SYNC:
674                         if (!handle_cmd(vm, uc.args[1])) {
675                                 test->skip = true;
676                                 goto done;
677                         }
678                         break;
679                 case UCALL_ABORT:
680                         REPORT_GUEST_ASSERT(uc);
681                         break;
682                 case UCALL_DONE:
683                         goto done;
684                 case UCALL_NONE:
685                         if (run->exit_reason == KVM_EXIT_MMIO)
686                                 test->mmio_handler(vm, run);
687                         break;
688                 default:
689                         TEST_FAIL("Unknown ucall %lu", uc.cmd);
690                 }
691         }
692 
693 done:
694         pr_debug(test->skip ? "Skipped.\n" : "Done.\n");
695 }
696 
697 static void run_test(enum vm_guest_mode mode, void *arg)
698 {
699         struct test_params *p = (struct test_params *)arg;
700         struct test_desc *test = p->test_desc;
701         struct kvm_vm *vm;
702         struct kvm_vcpu *vcpu;
703         struct uffd_desc *pt_uffd, *data_uffd;
704 
705         print_test_banner(mode, p);
706 
707         vm = ____vm_create(VM_SHAPE(mode));
708         setup_memslots(vm, p);
709         kvm_vm_elf_load(vm, program_invocation_name);
710         setup_ucall(vm);
711         vcpu = vm_vcpu_add(vm, 0, guest_code);
712 
713         setup_gva_maps(vm);
714 
715         reset_event_counts();
716 
717         /*
718          * Set some code in the data memslot for the guest to execute (only
719          * applicable to the EXEC tests). This has to be done before
720          * setup_uffd() as that function copies the memslot data for the uffd
721          * handler.
722          */
723         load_exec_code_for_test(vm);
724         setup_uffd(vm, p, &pt_uffd, &data_uffd);
725         setup_abort_handlers(vm, vcpu, test);
726         setup_default_handlers(test);
727         vcpu_args_set(vcpu, 1, test);
728 
729         vcpu_run_loop(vm, vcpu, test);
730 
731         kvm_vm_free(vm);
732         free_uffd(test, pt_uffd, data_uffd);
733 
734         /*
735          * Make sure we check the events after the uffd threads have exited,
736          * which means they updated their respective event counters.
737          */
738         if (!test->skip)
739                 check_event_counts(test);
740 }
741 
742 static void help(char *name)
743 {
744         puts("");
745         printf("usage: %s [-h] [-s mem-type]\n", name);
746         puts("");
747         guest_modes_help();
748         backing_src_help("-s");
749         puts("");
750 }
751 
752 #define SNAME(s)                        #s
753 #define SCAT2(a, b)                     SNAME(a ## _ ## b)
754 #define SCAT3(a, b, c)                  SCAT2(a, SCAT2(b, c))
755 #define SCAT4(a, b, c, d)               SCAT2(a, SCAT3(b, c, d))
756 
757 #define _CHECK(_test)                   _CHECK_##_test
758 #define _PREPARE(_test)                 _PREPARE_##_test
759 #define _PREPARE_guest_read64           NULL
760 #define _PREPARE_guest_ld_preidx        NULL
761 #define _PREPARE_guest_write64          NULL
762 #define _PREPARE_guest_st_preidx        NULL
763 #define _PREPARE_guest_exec             NULL
764 #define _PREPARE_guest_at               NULL
765 #define _PREPARE_guest_dc_zva           guest_check_dc_zva
766 #define _PREPARE_guest_cas              guest_check_lse
767 
768 /* With or without access flag checks */
769 #define _PREPARE_with_af                guest_set_ha, guest_clear_pte_af
770 #define _PREPARE_no_af                  NULL
771 #define _CHECK_with_af                  guest_check_pte_af
772 #define _CHECK_no_af                    NULL
773 
774 /* Performs an access and checks that no faults were triggered. */
775 #define TEST_ACCESS(_access, _with_af, _mark_cmd)                               \
776 {                                                                               \
777         .name                   = SCAT3(_access, _with_af, #_mark_cmd),         \
778         .guest_prepare          = { _PREPARE(_with_af),                         \
779                                     _PREPARE(_access) },                        \
780         .mem_mark_cmd           = _mark_cmd,                                    \
781         .guest_test             = _access,                                      \
782         .guest_test_check       = { _CHECK(_with_af) },                         \
783         .expected_events        = { 0 },                                        \
784 }
785 
786 #define TEST_UFFD(_access, _with_af, _mark_cmd,                                 \
787                   _uffd_data_handler, _uffd_pt_handler, _uffd_faults)           \
788 {                                                                               \
789         .name                   = SCAT4(uffd, _access, _with_af, #_mark_cmd),   \
790         .guest_prepare          = { _PREPARE(_with_af),                         \
791                                     _PREPARE(_access) },                        \
792         .guest_test             = _access,                                      \
793         .mem_mark_cmd           = _mark_cmd,                                    \
794         .guest_test_check       = { _CHECK(_with_af) },                         \
795         .uffd_data_handler      = _uffd_data_handler,                           \
796         .uffd_pt_handler        = _uffd_pt_handler,                             \
797         .expected_events        = { .uffd_faults = _uffd_faults, },             \
798 }
799 
800 #define TEST_DIRTY_LOG(_access, _with_af, _test_check, _pt_check)               \
801 {                                                                               \
802         .name                   = SCAT3(dirty_log, _access, _with_af),          \
803         .data_memslot_flags     = KVM_MEM_LOG_DIRTY_PAGES,                      \
804         .pt_memslot_flags       = KVM_MEM_LOG_DIRTY_PAGES,                      \
805         .guest_prepare          = { _PREPARE(_with_af),                         \
806                                     _PREPARE(_access) },                        \
807         .guest_test             = _access,                                      \
808         .guest_test_check       = { _CHECK(_with_af), _test_check, _pt_check }, \
809         .expected_events        = { 0 },                                        \
810 }
811 
812 #define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler,          \
813                                 _uffd_faults, _test_check, _pt_check)           \
814 {                                                                               \
815         .name                   = SCAT3(uffd_and_dirty_log, _access, _with_af), \
816         .data_memslot_flags     = KVM_MEM_LOG_DIRTY_PAGES,                      \
817         .pt_memslot_flags       = KVM_MEM_LOG_DIRTY_PAGES,                      \
818         .guest_prepare          = { _PREPARE(_with_af),                         \
819                                     _PREPARE(_access) },                        \
820         .guest_test             = _access,                                      \
821         .mem_mark_cmd           = CMD_HOLE_DATA | CMD_HOLE_PT,                  \
822         .guest_test_check       = { _CHECK(_with_af), _test_check, _pt_check }, \
823         .uffd_data_handler      = _uffd_data_handler,                           \
824         .uffd_pt_handler        = uffd_pt_handler,                              \
825         .expected_events        = { .uffd_faults = _uffd_faults, },             \
826 }
827 
828 #define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits)                    \
829 {                                                                               \
830         .name                   = SCAT2(ro_memslot, _access),                   \
831         .data_memslot_flags     = KVM_MEM_READONLY,                             \
832         .pt_memslot_flags       = KVM_MEM_READONLY,                             \
833         .guest_prepare          = { _PREPARE(_access) },                        \
834         .guest_test             = _access,                                      \
835         .mmio_handler           = _mmio_handler,                                \
836         .expected_events        = { .mmio_exits = _mmio_exits },                \
837 }
838 
839 #define TEST_RO_MEMSLOT_NO_SYNDROME(_access)                                    \
840 {                                                                               \
841         .name                   = SCAT2(ro_memslot_no_syndrome, _access),       \
842         .data_memslot_flags     = KVM_MEM_READONLY,                             \
843         .pt_memslot_flags       = KVM_MEM_READONLY,                             \
844         .guest_prepare          = { _PREPARE(_access) },                        \
845         .guest_test             = _access,                                      \
846         .fail_vcpu_run_handler  = fail_vcpu_run_mmio_no_syndrome_handler,       \
847         .expected_events        = { .fail_vcpu_runs = 1 },                      \
848 }
849 
850 #define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits,      \
851                                       _test_check)                              \
852 {                                                                               \
853         .name                   = SCAT2(ro_memslot, _access),                   \
854         .data_memslot_flags     = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,   \
855         .pt_memslot_flags       = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,   \
856         .guest_prepare          = { _PREPARE(_access) },                        \
857         .guest_test             = _access,                                      \
858         .guest_test_check       = { _test_check },                              \
859         .mmio_handler           = _mmio_handler,                                \
860         .expected_events        = { .mmio_exits = _mmio_exits},                 \
861 }
862 
863 #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(_access, _test_check)         \
864 {                                                                               \
865         .name                   = SCAT2(ro_memslot_no_syn_and_dlog, _access),   \
866         .data_memslot_flags     = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,   \
867         .pt_memslot_flags       = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,   \
868         .guest_prepare          = { _PREPARE(_access) },                        \
869         .guest_test             = _access,                                      \
870         .guest_test_check       = { _test_check },                              \
871         .fail_vcpu_run_handler  = fail_vcpu_run_mmio_no_syndrome_handler,       \
872         .expected_events        = { .fail_vcpu_runs = 1 },                      \
873 }
874 
875 #define TEST_RO_MEMSLOT_AND_UFFD(_access, _mmio_handler, _mmio_exits,           \
876                                  _uffd_data_handler, _uffd_faults)              \
877 {                                                                               \
878         .name                   = SCAT2(ro_memslot_uffd, _access),              \
879         .data_memslot_flags     = KVM_MEM_READONLY,                             \
880         .pt_memslot_flags       = KVM_MEM_READONLY,                             \
881         .mem_mark_cmd           = CMD_HOLE_DATA | CMD_HOLE_PT,                  \
882         .guest_prepare          = { _PREPARE(_access) },                        \
883         .guest_test             = _access,                                      \
884         .uffd_data_handler      = _uffd_data_handler,                           \
885         .uffd_pt_handler        = uffd_pt_handler,                              \
886         .mmio_handler           = _mmio_handler,                                \
887         .expected_events        = { .mmio_exits = _mmio_exits,                  \
888                                     .uffd_faults = _uffd_faults },              \
889 }
890 
891 #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(_access, _uffd_data_handler,       \
892                                              _uffd_faults)                      \
893 {                                                                               \
894         .name                   = SCAT2(ro_memslot_no_syndrome, _access),       \
895         .data_memslot_flags     = KVM_MEM_READONLY,                             \
896         .pt_memslot_flags       = KVM_MEM_READONLY,                             \
897         .mem_mark_cmd           = CMD_HOLE_DATA | CMD_HOLE_PT,                  \
898         .guest_prepare          = { _PREPARE(_access) },                        \
899         .guest_test             = _access,                                      \
900         .uffd_data_handler      = _uffd_data_handler,                           \
901         .uffd_pt_handler        = uffd_pt_handler,                      \
902         .fail_vcpu_run_handler  = fail_vcpu_run_mmio_no_syndrome_handler,       \
903         .expected_events        = { .fail_vcpu_runs = 1,                        \
904                                     .uffd_faults = _uffd_faults },              \
905 }
906 
907 static struct test_desc tests[] = {
908 
909         /* Check that HW is setting the Access Flag (AF) (sanity checks). */
910         TEST_ACCESS(guest_read64, with_af, CMD_NONE),
911         TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE),
912         TEST_ACCESS(guest_cas, with_af, CMD_NONE),
913         TEST_ACCESS(guest_write64, with_af, CMD_NONE),
914         TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE),
915         TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE),
916         TEST_ACCESS(guest_exec, with_af, CMD_NONE),
917 
918         /*
919          * Punch a hole in the data backing store, and then try multiple
920          * accesses: reads should rturn zeroes, and writes should
921          * re-populate the page. Moreover, the test also check that no
922          * exception was generated in the guest.  Note that this
923          * reading/writing behavior is the same as reading/writing a
924          * punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from
925          * userspace.
926          */
927         TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA),
928         TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA),
929         TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA),
930         TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA),
931         TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA),
932         TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA),
933         TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA),
934 
935         /*
936          * Punch holes in the data and PT backing stores and mark them for
937          * userfaultfd handling. This should result in 2 faults: the access
938          * on the data backing store, and its respective S1 page table walk
939          * (S1PTW).
940          */
941         TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
942                   uffd_data_handler, uffd_pt_handler, 2),
943         TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
944                   uffd_data_handler, uffd_pt_handler, 2),
945         TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
946                   uffd_data_handler, uffd_pt_handler, 2),
947         /*
948          * Can't test guest_at with_af as it's IMPDEF whether the AF is set.
949          * The S1PTW fault should still be marked as a write.
950          */
951         TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
952                   uffd_no_handler, uffd_pt_handler, 1),
953         TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
954                   uffd_data_handler, uffd_pt_handler, 2),
955         TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
956                   uffd_data_handler, uffd_pt_handler, 2),
957         TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
958                   uffd_data_handler, uffd_pt_handler, 2),
959         TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
960                   uffd_data_handler, uffd_pt_handler, 2),
961         TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
962                   uffd_data_handler, uffd_pt_handler, 2),
963 
964         /*
965          * Try accesses when the data and PT memory regions are both
966          * tracked for dirty logging.
967          */
968         TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log,
969                        guest_check_s1ptw_wr_in_dirty_log),
970         TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log,
971                        guest_check_no_s1ptw_wr_in_dirty_log),
972         TEST_DIRTY_LOG(guest_ld_preidx, with_af,
973                        guest_check_no_write_in_dirty_log,
974                        guest_check_s1ptw_wr_in_dirty_log),
975         TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log,
976                        guest_check_no_s1ptw_wr_in_dirty_log),
977         TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log,
978                        guest_check_s1ptw_wr_in_dirty_log),
979         TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log,
980                        guest_check_s1ptw_wr_in_dirty_log),
981         TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log,
982                        guest_check_s1ptw_wr_in_dirty_log),
983         TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log,
984                        guest_check_s1ptw_wr_in_dirty_log),
985         TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log,
986                        guest_check_s1ptw_wr_in_dirty_log),
987 
988         /*
989          * Access when the data and PT memory regions are both marked for
990          * dirty logging and UFFD at the same time. The expected result is
991          * that writes should mark the dirty log and trigger a userfaultfd
992          * write fault.  Reads/execs should result in a read userfaultfd
993          * fault, and nothing in the dirty log.  Any S1PTW should result in
994          * a write in the dirty log and a userfaultfd write.
995          */
996         TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af,
997                                 uffd_data_handler, 2,
998                                 guest_check_no_write_in_dirty_log,
999                                 guest_check_s1ptw_wr_in_dirty_log),
1000         TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af,
1001                                 uffd_data_handler, 2,
1002                                 guest_check_no_write_in_dirty_log,
1003                                 guest_check_no_s1ptw_wr_in_dirty_log),
1004         TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af,
1005                                 uffd_data_handler,
1006                                 2, guest_check_no_write_in_dirty_log,
1007                                 guest_check_s1ptw_wr_in_dirty_log),
1008         TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, uffd_no_handler, 1,
1009                                 guest_check_no_write_in_dirty_log,
1010                                 guest_check_s1ptw_wr_in_dirty_log),
1011         TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af,
1012                                 uffd_data_handler, 2,
1013                                 guest_check_no_write_in_dirty_log,
1014                                 guest_check_s1ptw_wr_in_dirty_log),
1015         TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af,
1016                                 uffd_data_handler,
1017                                 2, guest_check_write_in_dirty_log,
1018                                 guest_check_s1ptw_wr_in_dirty_log),
1019         TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af,
1020                                 uffd_data_handler, 2,
1021                                 guest_check_write_in_dirty_log,
1022                                 guest_check_s1ptw_wr_in_dirty_log),
1023         TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af,
1024                                 uffd_data_handler,
1025                                 2, guest_check_write_in_dirty_log,
1026                                 guest_check_s1ptw_wr_in_dirty_log),
1027         TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af,
1028                                 uffd_data_handler, 2,
1029                                 guest_check_write_in_dirty_log,
1030                                 guest_check_s1ptw_wr_in_dirty_log),
1031         /*
1032          * Access when both the PT and data regions are marked read-only
1033          * (with KVM_MEM_READONLY). Writes with a syndrome result in an
1034          * MMIO exit, writes with no syndrome (e.g., CAS) result in a
1035          * failed vcpu run, and reads/execs with and without syndroms do
1036          * not fault.
1037          */
1038         TEST_RO_MEMSLOT(guest_read64, 0, 0),
1039         TEST_RO_MEMSLOT(guest_ld_preidx, 0, 0),
1040         TEST_RO_MEMSLOT(guest_at, 0, 0),
1041         TEST_RO_MEMSLOT(guest_exec, 0, 0),
1042         TEST_RO_MEMSLOT(guest_write64, mmio_on_test_gpa_handler, 1),
1043         TEST_RO_MEMSLOT_NO_SYNDROME(guest_dc_zva),
1044         TEST_RO_MEMSLOT_NO_SYNDROME(guest_cas),
1045         TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx),
1046 
1047         /*
1048          * The PT and data regions are both read-only and marked
1049          * for dirty logging at the same time. The expected result is that
1050          * for writes there should be no write in the dirty log. The
1051          * readonly handling is the same as if the memslot was not marked
1052          * for dirty logging: writes with a syndrome result in an MMIO
1053          * exit, and writes with no syndrome result in a failed vcpu run.
1054          */
1055         TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_read64, 0, 0,
1056                                       guest_check_no_write_in_dirty_log),
1057         TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_ld_preidx, 0, 0,
1058                                       guest_check_no_write_in_dirty_log),
1059         TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_at, 0, 0,
1060                                       guest_check_no_write_in_dirty_log),
1061         TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_exec, 0, 0,
1062                                       guest_check_no_write_in_dirty_log),
1063         TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_write64, mmio_on_test_gpa_handler,
1064                                       1, guest_check_no_write_in_dirty_log),
1065         TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_dc_zva,
1066                                                   guest_check_no_write_in_dirty_log),
1067         TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_cas,
1068                                                   guest_check_no_write_in_dirty_log),
1069         TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_st_preidx,
1070                                                   guest_check_no_write_in_dirty_log),
1071 
1072         /*
1073          * The PT and data regions are both read-only and punched with
1074          * holes tracked with userfaultfd.  The expected result is the
1075          * union of both userfaultfd and read-only behaviors. For example,
1076          * write accesses result in a userfaultfd write fault and an MMIO
1077          * exit.  Writes with no syndrome result in a failed vcpu run and
1078          * no userfaultfd write fault. Reads result in userfaultfd getting
1079          * triggered.
1080          */
1081         TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0, uffd_data_handler, 2),
1082         TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0, uffd_data_handler, 2),
1083         TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0, uffd_no_handler, 1),
1084         TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0, uffd_data_handler, 2),
1085         TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1,
1086                                  uffd_data_handler, 2),
1087         TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas, uffd_data_handler, 2),
1088         TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva, uffd_no_handler, 1),
1089         TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx, uffd_no_handler, 1),
1090 
1091         { 0 }
1092 };
1093 
1094 static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)
1095 {
1096         struct test_desc *t;
1097 
1098         for (t = &tests[0]; t->name; t++) {
1099                 if (t->skip)
1100                         continue;
1101 
1102                 struct test_params p = {
1103                         .src_type = src_type,
1104                         .test_desc = t,
1105                 };
1106 
1107                 for_each_guest_mode(run_test, &p);
1108         }
1109 }
1110 
1111 int main(int argc, char *argv[])
1112 {
1113         enum vm_mem_backing_src_type src_type;
1114         int opt;
1115 
1116         src_type = DEFAULT_VM_MEM_SRC;
1117 
1118         while ((opt = getopt(argc, argv, "hm:s:")) != -1) {
1119                 switch (opt) {
1120                 case 'm':
1121                         guest_modes_cmdline(optarg);
1122                         break;
1123                 case 's':
1124                         src_type = parse_backing_src_type(optarg);
1125                         break;
1126                 case 'h':
1127                 default:
1128                         help(argv[0]);
1129                         exit(0);
1130                 }
1131         }
1132 
1133         for_each_test_and_guest_mode(src_type);
1134         return 0;
1135 }
1136 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php