1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * set_id_regs - Test for setting ID register from usersapce. 4 * 5 * Copyright (c) 2023 Google LLC. 6 * 7 * 8 * Test that KVM supports setting ID registers from userspace and handles the 9 * feature set correctly. 10 */ 11 12 #include <stdint.h> 13 #include "kvm_util.h" 14 #include "processor.h" 15 #include "test_util.h" 16 #include <linux/bitfield.h> 17 18 enum ftr_type { 19 FTR_EXACT, /* Use a predefined safe value */ 20 FTR_LOWER_SAFE, /* Smaller value is safe */ 21 FTR_HIGHER_SAFE, /* Bigger value is safe */ 22 FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */ 23 FTR_END, /* Mark the last ftr bits */ 24 }; 25 26 #define FTR_SIGNED true /* Value should be treated as signed */ 27 #define FTR_UNSIGNED false /* Value should be treated as unsigned */ 28 29 struct reg_ftr_bits { 30 char *name; 31 bool sign; 32 enum ftr_type type; 33 uint8_t shift; 34 uint64_t mask; 35 /* 36 * For FTR_EXACT, safe_val is used as the exact safe value. 37 * For FTR_LOWER_SAFE, safe_val is used as the minimal safe value. 38 */ 39 int64_t safe_val; 40 }; 41 42 struct test_feature_reg { 43 uint32_t reg; 44 const struct reg_ftr_bits *ftr_bits; 45 }; 46 47 #define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL) \ 48 { \ 49 .name = #NAME, \ 50 .sign = SIGNED, \ 51 .type = TYPE, \ 52 .shift = SHIFT, \ 53 .mask = MASK, \ 54 .safe_val = SAFE_VAL, \ 55 } 56 57 #define REG_FTR_BITS(type, reg, field, safe_val) \ 58 __REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \ 59 reg##_##field##_MASK, safe_val) 60 61 #define S_REG_FTR_BITS(type, reg, field, safe_val) \ 62 __REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \ 63 reg##_##field##_MASK, safe_val) 64 65 #define REG_FTR_END \ 66 { \ 67 .type = FTR_END, \ 68 } 69 70 static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = { 71 S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0), 72 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP), 73 REG_FTR_END, 74 }; 75 76 static const struct reg_ftr_bits ftr_id_dfr0_el1[] = { 77 S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3), 78 REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8), 79 REG_FTR_END, 80 }; 81 82 static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = { 83 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0), 84 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0), 85 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0), 86 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0), 87 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0), 88 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0), 89 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0), 90 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0), 91 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0), 92 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TME, 0), 93 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0), 94 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0), 95 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0), 96 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0), 97 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0), 98 REG_FTR_END, 99 }; 100 101 static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = { 102 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0), 103 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0), 104 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0), 105 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0), 106 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0), 107 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0), 108 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0), 109 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0), 110 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0), 111 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0), 112 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0), 113 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0), 114 REG_FTR_END, 115 }; 116 117 static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = { 118 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0), 119 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0), 120 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0), 121 REG_FTR_END, 122 }; 123 124 static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = { 125 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0), 126 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0), 127 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0), 128 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0), 129 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 0), 130 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 0), 131 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 0), 132 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 0), 133 REG_FTR_END, 134 }; 135 136 static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = { 137 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0), 138 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0), 139 S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0), 140 S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0), 141 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0), 142 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0), 143 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0), 144 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0), 145 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ASIDBITS, 0), 146 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0), 147 REG_FTR_END, 148 }; 149 150 static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = { 151 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0), 152 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0), 153 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0), 154 REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0), 155 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0), 156 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0), 157 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0), 158 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0), 159 REG_FTR_END, 160 }; 161 162 static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = { 163 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0), 164 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0), 165 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0), 166 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0), 167 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0), 168 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0), 169 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0), 170 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0), 171 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0), 172 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0), 173 REG_FTR_END, 174 }; 175 176 static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = { 177 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0), 178 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0), 179 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0), 180 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0), 181 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0), 182 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0), 183 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0), 184 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0), 185 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0), 186 REG_FTR_END, 187 }; 188 189 #define TEST_REG(id, table) \ 190 { \ 191 .reg = id, \ 192 .ftr_bits = &((table)[0]), \ 193 } 194 195 static struct test_feature_reg test_regs[] = { 196 TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1), 197 TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1), 198 TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1), 199 TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1), 200 TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1), 201 TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1), 202 TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1), 203 TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1), 204 TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1), 205 TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1), 206 }; 207 208 #define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0); 209 210 static void guest_code(void) 211 { 212 GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1); 213 GUEST_REG_SYNC(SYS_ID_DFR0_EL1); 214 GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1); 215 GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1); 216 GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1); 217 GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1); 218 GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1); 219 GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1); 220 GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1); 221 GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1); 222 GUEST_REG_SYNC(SYS_CTR_EL0); 223 224 GUEST_DONE(); 225 } 226 227 /* Return a safe value to a given ftr_bits an ftr value */ 228 uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr) 229 { 230 uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0); 231 232 if (ftr_bits->sign == FTR_UNSIGNED) { 233 switch (ftr_bits->type) { 234 case FTR_EXACT: 235 ftr = ftr_bits->safe_val; 236 break; 237 case FTR_LOWER_SAFE: 238 if (ftr > ftr_bits->safe_val) 239 ftr--; 240 break; 241 case FTR_HIGHER_SAFE: 242 if (ftr < ftr_max) 243 ftr++; 244 break; 245 case FTR_HIGHER_OR_ZERO_SAFE: 246 if (ftr == ftr_max) 247 ftr = 0; 248 else if (ftr != 0) 249 ftr++; 250 break; 251 default: 252 break; 253 } 254 } else if (ftr != ftr_max) { 255 switch (ftr_bits->type) { 256 case FTR_EXACT: 257 ftr = ftr_bits->safe_val; 258 break; 259 case FTR_LOWER_SAFE: 260 if (ftr > ftr_bits->safe_val) 261 ftr--; 262 break; 263 case FTR_HIGHER_SAFE: 264 if (ftr < ftr_max - 1) 265 ftr++; 266 break; 267 case FTR_HIGHER_OR_ZERO_SAFE: 268 if (ftr != 0 && ftr != ftr_max - 1) 269 ftr++; 270 break; 271 default: 272 break; 273 } 274 } 275 276 return ftr; 277 } 278 279 /* Return an invalid value to a given ftr_bits an ftr value */ 280 uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr) 281 { 282 uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0); 283 284 if (ftr_bits->sign == FTR_UNSIGNED) { 285 switch (ftr_bits->type) { 286 case FTR_EXACT: 287 ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1); 288 break; 289 case FTR_LOWER_SAFE: 290 ftr++; 291 break; 292 case FTR_HIGHER_SAFE: 293 ftr--; 294 break; 295 case FTR_HIGHER_OR_ZERO_SAFE: 296 if (ftr == 0) 297 ftr = ftr_max; 298 else 299 ftr--; 300 break; 301 default: 302 break; 303 } 304 } else if (ftr != ftr_max) { 305 switch (ftr_bits->type) { 306 case FTR_EXACT: 307 ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1); 308 break; 309 case FTR_LOWER_SAFE: 310 ftr++; 311 break; 312 case FTR_HIGHER_SAFE: 313 ftr--; 314 break; 315 case FTR_HIGHER_OR_ZERO_SAFE: 316 if (ftr == 0) 317 ftr = ftr_max - 1; 318 else 319 ftr--; 320 break; 321 default: 322 break; 323 } 324 } else { 325 ftr = 0; 326 } 327 328 return ftr; 329 } 330 331 static uint64_t test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg, 332 const struct reg_ftr_bits *ftr_bits) 333 { 334 uint8_t shift = ftr_bits->shift; 335 uint64_t mask = ftr_bits->mask; 336 uint64_t val, new_val, ftr; 337 338 vcpu_get_reg(vcpu, reg, &val); 339 ftr = (val & mask) >> shift; 340 341 ftr = get_safe_value(ftr_bits, ftr); 342 343 ftr <<= shift; 344 val &= ~mask; 345 val |= ftr; 346 347 vcpu_set_reg(vcpu, reg, val); 348 vcpu_get_reg(vcpu, reg, &new_val); 349 TEST_ASSERT_EQ(new_val, val); 350 351 return new_val; 352 } 353 354 static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg, 355 const struct reg_ftr_bits *ftr_bits) 356 { 357 uint8_t shift = ftr_bits->shift; 358 uint64_t mask = ftr_bits->mask; 359 uint64_t val, old_val, ftr; 360 int r; 361 362 vcpu_get_reg(vcpu, reg, &val); 363 ftr = (val & mask) >> shift; 364 365 ftr = get_invalid_value(ftr_bits, ftr); 366 367 old_val = val; 368 ftr <<= shift; 369 val &= ~mask; 370 val |= ftr; 371 372 r = __vcpu_set_reg(vcpu, reg, val); 373 TEST_ASSERT(r < 0 && errno == EINVAL, 374 "Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno); 375 376 vcpu_get_reg(vcpu, reg, &val); 377 TEST_ASSERT_EQ(val, old_val); 378 } 379 380 static uint64_t test_reg_vals[KVM_ARM_FEATURE_ID_RANGE_SIZE]; 381 382 #define encoding_to_range_idx(encoding) \ 383 KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(encoding), sys_reg_Op1(encoding), \ 384 sys_reg_CRn(encoding), sys_reg_CRm(encoding), \ 385 sys_reg_Op2(encoding)) 386 387 388 static void test_vm_ftr_id_regs(struct kvm_vcpu *vcpu, bool aarch64_only) 389 { 390 uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE]; 391 struct reg_mask_range range = { 392 .addr = (__u64)masks, 393 }; 394 int ret; 395 396 /* KVM should return error when reserved field is not zero */ 397 range.reserved[0] = 1; 398 ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range); 399 TEST_ASSERT(ret, "KVM doesn't check invalid parameters."); 400 401 /* Get writable masks for feature ID registers */ 402 memset(range.reserved, 0, sizeof(range.reserved)); 403 vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range); 404 405 for (int i = 0; i < ARRAY_SIZE(test_regs); i++) { 406 const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits; 407 uint32_t reg_id = test_regs[i].reg; 408 uint64_t reg = KVM_ARM64_SYS_REG(reg_id); 409 int idx; 410 411 /* Get the index to masks array for the idreg */ 412 idx = encoding_to_range_idx(reg_id); 413 414 for (int j = 0; ftr_bits[j].type != FTR_END; j++) { 415 /* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */ 416 if (aarch64_only && sys_reg_CRm(reg_id) < 4) { 417 ksft_test_result_skip("%s on AARCH64 only system\n", 418 ftr_bits[j].name); 419 continue; 420 } 421 422 /* Make sure the feature field is writable */ 423 TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask); 424 425 test_reg_set_fail(vcpu, reg, &ftr_bits[j]); 426 427 test_reg_vals[idx] = test_reg_set_success(vcpu, reg, 428 &ftr_bits[j]); 429 430 ksft_test_result_pass("%s\n", ftr_bits[j].name); 431 } 432 } 433 } 434 435 static void test_guest_reg_read(struct kvm_vcpu *vcpu) 436 { 437 bool done = false; 438 struct ucall uc; 439 440 while (!done) { 441 vcpu_run(vcpu); 442 443 switch (get_ucall(vcpu, &uc)) { 444 case UCALL_ABORT: 445 REPORT_GUEST_ASSERT(uc); 446 break; 447 case UCALL_SYNC: 448 /* Make sure the written values are seen by guest */ 449 TEST_ASSERT_EQ(test_reg_vals[encoding_to_range_idx(uc.args[2])], 450 uc.args[3]); 451 break; 452 case UCALL_DONE: 453 done = true; 454 break; 455 default: 456 TEST_FAIL("Unexpected ucall: %lu", uc.cmd); 457 } 458 } 459 } 460 461 /* Politely lifted from arch/arm64/include/asm/cache.h */ 462 /* Ctypen, bits[3(n - 1) + 2 : 3(n - 1)], for n = 1 to 7 */ 463 #define CLIDR_CTYPE_SHIFT(level) (3 * (level - 1)) 464 #define CLIDR_CTYPE_MASK(level) (7 << CLIDR_CTYPE_SHIFT(level)) 465 #define CLIDR_CTYPE(clidr, level) \ 466 (((clidr) & CLIDR_CTYPE_MASK(level)) >> CLIDR_CTYPE_SHIFT(level)) 467 468 static void test_clidr(struct kvm_vcpu *vcpu) 469 { 470 uint64_t clidr; 471 int level; 472 473 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), &clidr); 474 475 /* find the first empty level in the cache hierarchy */ 476 for (level = 1; level < 7; level++) { 477 if (!CLIDR_CTYPE(clidr, level)) 478 break; 479 } 480 481 /* 482 * If you have a mind-boggling 7 levels of cache, congratulations, you 483 * get to fix this. 484 */ 485 TEST_ASSERT(level <= 7, "can't find an empty level in cache hierarchy"); 486 487 /* stick in a unified cache level */ 488 clidr |= BIT(2) << CLIDR_CTYPE_SHIFT(level); 489 490 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), clidr); 491 test_reg_vals[encoding_to_range_idx(SYS_CLIDR_EL1)] = clidr; 492 } 493 494 static void test_ctr(struct kvm_vcpu *vcpu) 495 { 496 u64 ctr; 497 498 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), &ctr); 499 ctr &= ~CTR_EL0_DIC_MASK; 500 if (ctr & CTR_EL0_IminLine_MASK) 501 ctr--; 502 503 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), ctr); 504 test_reg_vals[encoding_to_range_idx(SYS_CTR_EL0)] = ctr; 505 } 506 507 static void test_vcpu_ftr_id_regs(struct kvm_vcpu *vcpu) 508 { 509 u64 val; 510 511 test_clidr(vcpu); 512 test_ctr(vcpu); 513 514 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), &val); 515 val++; 516 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), val); 517 518 test_reg_vals[encoding_to_range_idx(SYS_MPIDR_EL1)] = val; 519 ksft_test_result_pass("%s\n", __func__); 520 } 521 522 static void test_assert_id_reg_unchanged(struct kvm_vcpu *vcpu, uint32_t encoding) 523 { 524 size_t idx = encoding_to_range_idx(encoding); 525 uint64_t observed; 526 527 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding), &observed); 528 TEST_ASSERT_EQ(test_reg_vals[idx], observed); 529 } 530 531 static void test_reset_preserves_id_regs(struct kvm_vcpu *vcpu) 532 { 533 /* 534 * Calls KVM_ARM_VCPU_INIT behind the scenes, which will do an 535 * architectural reset of the vCPU. 536 */ 537 aarch64_vcpu_setup(vcpu, NULL); 538 539 for (int i = 0; i < ARRAY_SIZE(test_regs); i++) 540 test_assert_id_reg_unchanged(vcpu, test_regs[i].reg); 541 542 test_assert_id_reg_unchanged(vcpu, SYS_MPIDR_EL1); 543 test_assert_id_reg_unchanged(vcpu, SYS_CLIDR_EL1); 544 test_assert_id_reg_unchanged(vcpu, SYS_CTR_EL0); 545 546 ksft_test_result_pass("%s\n", __func__); 547 } 548 549 int main(void) 550 { 551 struct kvm_vcpu *vcpu; 552 struct kvm_vm *vm; 553 bool aarch64_only; 554 uint64_t val, el0; 555 int test_cnt; 556 557 TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES)); 558 559 vm = vm_create_with_one_vcpu(&vcpu, guest_code); 560 561 /* Check for AARCH64 only system */ 562 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), &val); 563 el0 = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), val); 564 aarch64_only = (el0 == ID_AA64PFR0_EL1_ELx_64BIT_ONLY); 565 566 ksft_print_header(); 567 568 test_cnt = ARRAY_SIZE(ftr_id_aa64dfr0_el1) + ARRAY_SIZE(ftr_id_dfr0_el1) + 569 ARRAY_SIZE(ftr_id_aa64isar0_el1) + ARRAY_SIZE(ftr_id_aa64isar1_el1) + 570 ARRAY_SIZE(ftr_id_aa64isar2_el1) + ARRAY_SIZE(ftr_id_aa64pfr0_el1) + 571 ARRAY_SIZE(ftr_id_aa64mmfr0_el1) + ARRAY_SIZE(ftr_id_aa64mmfr1_el1) + 572 ARRAY_SIZE(ftr_id_aa64mmfr2_el1) + ARRAY_SIZE(ftr_id_aa64zfr0_el1) - 573 ARRAY_SIZE(test_regs) + 2; 574 575 ksft_set_plan(test_cnt); 576 577 test_vm_ftr_id_regs(vcpu, aarch64_only); 578 test_vcpu_ftr_id_regs(vcpu); 579 580 test_guest_reg_read(vcpu); 581 582 test_reset_preserves_id_regs(vcpu); 583 584 kvm_vm_free(vm); 585 586 ksft_finished(); 587 } 588
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.